1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/backing-dev.h> 10 #include <linux/hash.h> 11 #include <linux/swap.h> 12 #include <linux/security.h> 13 #include <linux/cdev.h> 14 #include <linux/memblock.h> 15 #include <linux/fsnotify.h> 16 #include <linux/mount.h> 17 #include <linux/posix_acl.h> 18 #include <linux/prefetch.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget() 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 /* 71 * Statistics gathering.. 72 */ 73 struct inodes_stat_t inodes_stat; 74 75 static DEFINE_PER_CPU(unsigned long, nr_inodes); 76 static DEFINE_PER_CPU(unsigned long, nr_unused); 77 78 static struct kmem_cache *inode_cachep __read_mostly; 79 80 static long get_nr_inodes(void) 81 { 82 int i; 83 long sum = 0; 84 for_each_possible_cpu(i) 85 sum += per_cpu(nr_inodes, i); 86 return sum < 0 ? 0 : sum; 87 } 88 89 static inline long get_nr_inodes_unused(void) 90 { 91 int i; 92 long sum = 0; 93 for_each_possible_cpu(i) 94 sum += per_cpu(nr_unused, i); 95 return sum < 0 ? 0 : sum; 96 } 97 98 long get_nr_dirty_inodes(void) 99 { 100 /* not actually dirty inodes, but a wild approximation */ 101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 102 return nr_dirty > 0 ? nr_dirty : 0; 103 } 104 105 /* 106 * Handle nr_inode sysctl 107 */ 108 #ifdef CONFIG_SYSCTL 109 int proc_nr_inodes(struct ctl_table *table, int write, 110 void *buffer, size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 #endif 117 118 static int no_open(struct inode *inode, struct file *file) 119 { 120 return -ENXIO; 121 } 122 123 /** 124 * inode_init_always - perform inode structure initialisation 125 * @sb: superblock inode belongs to 126 * @inode: inode to initialise 127 * 128 * These are initializations that need to be done on every inode 129 * allocation as the fields are not initialised by slab allocation. 130 */ 131 int inode_init_always(struct super_block *sb, struct inode *inode) 132 { 133 static const struct inode_operations empty_iops; 134 static const struct file_operations no_open_fops = {.open = no_open}; 135 struct address_space *const mapping = &inode->i_data; 136 137 inode->i_sb = sb; 138 inode->i_blkbits = sb->s_blocksize_bits; 139 inode->i_flags = 0; 140 atomic64_set(&inode->i_sequence, 0); 141 atomic_set(&inode->i_count, 1); 142 inode->i_op = &empty_iops; 143 inode->i_fop = &no_open_fops; 144 inode->i_ino = 0; 145 inode->__i_nlink = 1; 146 inode->i_opflags = 0; 147 if (sb->s_xattr) 148 inode->i_opflags |= IOP_XATTR; 149 i_uid_write(inode, 0); 150 i_gid_write(inode, 0); 151 atomic_set(&inode->i_writecount, 0); 152 inode->i_size = 0; 153 inode->i_write_hint = WRITE_LIFE_NOT_SET; 154 inode->i_blocks = 0; 155 inode->i_bytes = 0; 156 inode->i_generation = 0; 157 inode->i_pipe = NULL; 158 inode->i_cdev = NULL; 159 inode->i_link = NULL; 160 inode->i_dir_seq = 0; 161 inode->i_rdev = 0; 162 inode->dirtied_when = 0; 163 164 #ifdef CONFIG_CGROUP_WRITEBACK 165 inode->i_wb_frn_winner = 0; 166 inode->i_wb_frn_avg_time = 0; 167 inode->i_wb_frn_history = 0; 168 #endif 169 170 if (security_inode_alloc(inode)) 171 goto out; 172 spin_lock_init(&inode->i_lock); 173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 174 175 init_rwsem(&inode->i_rwsem); 176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 177 178 atomic_set(&inode->i_dio_count, 0); 179 180 mapping->a_ops = &empty_aops; 181 mapping->host = inode; 182 mapping->flags = 0; 183 if (sb->s_type->fs_flags & FS_THP_SUPPORT) 184 __set_bit(AS_THP_SUPPORT, &mapping->flags); 185 mapping->wb_err = 0; 186 atomic_set(&mapping->i_mmap_writable, 0); 187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 188 atomic_set(&mapping->nr_thps, 0); 189 #endif 190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 191 mapping->private_data = NULL; 192 mapping->writeback_index = 0; 193 inode->i_private = NULL; 194 inode->i_mapping = mapping; 195 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 196 #ifdef CONFIG_FS_POSIX_ACL 197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 198 #endif 199 200 #ifdef CONFIG_FSNOTIFY 201 inode->i_fsnotify_mask = 0; 202 #endif 203 inode->i_flctx = NULL; 204 this_cpu_inc(nr_inodes); 205 206 return 0; 207 out: 208 return -ENOMEM; 209 } 210 EXPORT_SYMBOL(inode_init_always); 211 212 void free_inode_nonrcu(struct inode *inode) 213 { 214 kmem_cache_free(inode_cachep, inode); 215 } 216 EXPORT_SYMBOL(free_inode_nonrcu); 217 218 static void i_callback(struct rcu_head *head) 219 { 220 struct inode *inode = container_of(head, struct inode, i_rcu); 221 if (inode->free_inode) 222 inode->free_inode(inode); 223 else 224 free_inode_nonrcu(inode); 225 } 226 227 static struct inode *alloc_inode(struct super_block *sb) 228 { 229 const struct super_operations *ops = sb->s_op; 230 struct inode *inode; 231 232 if (ops->alloc_inode) 233 inode = ops->alloc_inode(sb); 234 else 235 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 236 237 if (!inode) 238 return NULL; 239 240 if (unlikely(inode_init_always(sb, inode))) { 241 if (ops->destroy_inode) { 242 ops->destroy_inode(inode); 243 if (!ops->free_inode) 244 return NULL; 245 } 246 inode->free_inode = ops->free_inode; 247 i_callback(&inode->i_rcu); 248 return NULL; 249 } 250 251 return inode; 252 } 253 254 void __destroy_inode(struct inode *inode) 255 { 256 BUG_ON(inode_has_buffers(inode)); 257 inode_detach_wb(inode); 258 security_inode_free(inode); 259 fsnotify_inode_delete(inode); 260 locks_free_lock_context(inode); 261 if (!inode->i_nlink) { 262 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 263 atomic_long_dec(&inode->i_sb->s_remove_count); 264 } 265 266 #ifdef CONFIG_FS_POSIX_ACL 267 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 268 posix_acl_release(inode->i_acl); 269 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 270 posix_acl_release(inode->i_default_acl); 271 #endif 272 this_cpu_dec(nr_inodes); 273 } 274 EXPORT_SYMBOL(__destroy_inode); 275 276 static void destroy_inode(struct inode *inode) 277 { 278 const struct super_operations *ops = inode->i_sb->s_op; 279 280 BUG_ON(!list_empty(&inode->i_lru)); 281 __destroy_inode(inode); 282 if (ops->destroy_inode) { 283 ops->destroy_inode(inode); 284 if (!ops->free_inode) 285 return; 286 } 287 inode->free_inode = ops->free_inode; 288 call_rcu(&inode->i_rcu, i_callback); 289 } 290 291 /** 292 * drop_nlink - directly drop an inode's link count 293 * @inode: inode 294 * 295 * This is a low-level filesystem helper to replace any 296 * direct filesystem manipulation of i_nlink. In cases 297 * where we are attempting to track writes to the 298 * filesystem, a decrement to zero means an imminent 299 * write when the file is truncated and actually unlinked 300 * on the filesystem. 301 */ 302 void drop_nlink(struct inode *inode) 303 { 304 WARN_ON(inode->i_nlink == 0); 305 inode->__i_nlink--; 306 if (!inode->i_nlink) 307 atomic_long_inc(&inode->i_sb->s_remove_count); 308 } 309 EXPORT_SYMBOL(drop_nlink); 310 311 /** 312 * clear_nlink - directly zero an inode's link count 313 * @inode: inode 314 * 315 * This is a low-level filesystem helper to replace any 316 * direct filesystem manipulation of i_nlink. See 317 * drop_nlink() for why we care about i_nlink hitting zero. 318 */ 319 void clear_nlink(struct inode *inode) 320 { 321 if (inode->i_nlink) { 322 inode->__i_nlink = 0; 323 atomic_long_inc(&inode->i_sb->s_remove_count); 324 } 325 } 326 EXPORT_SYMBOL(clear_nlink); 327 328 /** 329 * set_nlink - directly set an inode's link count 330 * @inode: inode 331 * @nlink: new nlink (should be non-zero) 332 * 333 * This is a low-level filesystem helper to replace any 334 * direct filesystem manipulation of i_nlink. 335 */ 336 void set_nlink(struct inode *inode, unsigned int nlink) 337 { 338 if (!nlink) { 339 clear_nlink(inode); 340 } else { 341 /* Yes, some filesystems do change nlink from zero to one */ 342 if (inode->i_nlink == 0) 343 atomic_long_dec(&inode->i_sb->s_remove_count); 344 345 inode->__i_nlink = nlink; 346 } 347 } 348 EXPORT_SYMBOL(set_nlink); 349 350 /** 351 * inc_nlink - directly increment an inode's link count 352 * @inode: inode 353 * 354 * This is a low-level filesystem helper to replace any 355 * direct filesystem manipulation of i_nlink. Currently, 356 * it is only here for parity with dec_nlink(). 357 */ 358 void inc_nlink(struct inode *inode) 359 { 360 if (unlikely(inode->i_nlink == 0)) { 361 WARN_ON(!(inode->i_state & I_LINKABLE)); 362 atomic_long_dec(&inode->i_sb->s_remove_count); 363 } 364 365 inode->__i_nlink++; 366 } 367 EXPORT_SYMBOL(inc_nlink); 368 369 static void __address_space_init_once(struct address_space *mapping) 370 { 371 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 372 init_rwsem(&mapping->i_mmap_rwsem); 373 INIT_LIST_HEAD(&mapping->private_list); 374 spin_lock_init(&mapping->private_lock); 375 mapping->i_mmap = RB_ROOT_CACHED; 376 } 377 378 void address_space_init_once(struct address_space *mapping) 379 { 380 memset(mapping, 0, sizeof(*mapping)); 381 __address_space_init_once(mapping); 382 } 383 EXPORT_SYMBOL(address_space_init_once); 384 385 /* 386 * These are initializations that only need to be done 387 * once, because the fields are idempotent across use 388 * of the inode, so let the slab aware of that. 389 */ 390 void inode_init_once(struct inode *inode) 391 { 392 memset(inode, 0, sizeof(*inode)); 393 INIT_HLIST_NODE(&inode->i_hash); 394 INIT_LIST_HEAD(&inode->i_devices); 395 INIT_LIST_HEAD(&inode->i_io_list); 396 INIT_LIST_HEAD(&inode->i_wb_list); 397 INIT_LIST_HEAD(&inode->i_lru); 398 __address_space_init_once(&inode->i_data); 399 i_size_ordered_init(inode); 400 } 401 EXPORT_SYMBOL(inode_init_once); 402 403 static void init_once(void *foo) 404 { 405 struct inode *inode = (struct inode *) foo; 406 407 inode_init_once(inode); 408 } 409 410 /* 411 * inode->i_lock must be held 412 */ 413 void __iget(struct inode *inode) 414 { 415 atomic_inc(&inode->i_count); 416 } 417 418 /* 419 * get additional reference to inode; caller must already hold one. 420 */ 421 void ihold(struct inode *inode) 422 { 423 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 424 } 425 EXPORT_SYMBOL(ihold); 426 427 static void inode_lru_list_add(struct inode *inode) 428 { 429 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 430 this_cpu_inc(nr_unused); 431 else 432 inode->i_state |= I_REFERENCED; 433 } 434 435 /* 436 * Add inode to LRU if needed (inode is unused and clean). 437 * 438 * Needs inode->i_lock held. 439 */ 440 void inode_add_lru(struct inode *inode) 441 { 442 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 443 I_FREEING | I_WILL_FREE)) && 444 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 445 inode_lru_list_add(inode); 446 } 447 448 449 static void inode_lru_list_del(struct inode *inode) 450 { 451 452 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 453 this_cpu_dec(nr_unused); 454 } 455 456 /** 457 * inode_sb_list_add - add inode to the superblock list of inodes 458 * @inode: inode to add 459 */ 460 void inode_sb_list_add(struct inode *inode) 461 { 462 spin_lock(&inode->i_sb->s_inode_list_lock); 463 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 464 spin_unlock(&inode->i_sb->s_inode_list_lock); 465 } 466 EXPORT_SYMBOL_GPL(inode_sb_list_add); 467 468 static inline void inode_sb_list_del(struct inode *inode) 469 { 470 if (!list_empty(&inode->i_sb_list)) { 471 spin_lock(&inode->i_sb->s_inode_list_lock); 472 list_del_init(&inode->i_sb_list); 473 spin_unlock(&inode->i_sb->s_inode_list_lock); 474 } 475 } 476 477 static unsigned long hash(struct super_block *sb, unsigned long hashval) 478 { 479 unsigned long tmp; 480 481 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 482 L1_CACHE_BYTES; 483 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 484 return tmp & i_hash_mask; 485 } 486 487 /** 488 * __insert_inode_hash - hash an inode 489 * @inode: unhashed inode 490 * @hashval: unsigned long value used to locate this object in the 491 * inode_hashtable. 492 * 493 * Add an inode to the inode hash for this superblock. 494 */ 495 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 496 { 497 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 498 499 spin_lock(&inode_hash_lock); 500 spin_lock(&inode->i_lock); 501 hlist_add_head_rcu(&inode->i_hash, b); 502 spin_unlock(&inode->i_lock); 503 spin_unlock(&inode_hash_lock); 504 } 505 EXPORT_SYMBOL(__insert_inode_hash); 506 507 /** 508 * __remove_inode_hash - remove an inode from the hash 509 * @inode: inode to unhash 510 * 511 * Remove an inode from the superblock. 512 */ 513 void __remove_inode_hash(struct inode *inode) 514 { 515 spin_lock(&inode_hash_lock); 516 spin_lock(&inode->i_lock); 517 hlist_del_init_rcu(&inode->i_hash); 518 spin_unlock(&inode->i_lock); 519 spin_unlock(&inode_hash_lock); 520 } 521 EXPORT_SYMBOL(__remove_inode_hash); 522 523 void clear_inode(struct inode *inode) 524 { 525 /* 526 * We have to cycle the i_pages lock here because reclaim can be in the 527 * process of removing the last page (in __delete_from_page_cache()) 528 * and we must not free the mapping under it. 529 */ 530 xa_lock_irq(&inode->i_data.i_pages); 531 BUG_ON(inode->i_data.nrpages); 532 /* 533 * Almost always, mapping_empty(&inode->i_data) here; but there are 534 * two known and long-standing ways in which nodes may get left behind 535 * (when deep radix-tree node allocation failed partway; or when THP 536 * collapse_file() failed). Until those two known cases are cleaned up, 537 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 538 * nor even WARN_ON(!mapping_empty). 539 */ 540 xa_unlock_irq(&inode->i_data.i_pages); 541 BUG_ON(!list_empty(&inode->i_data.private_list)); 542 BUG_ON(!(inode->i_state & I_FREEING)); 543 BUG_ON(inode->i_state & I_CLEAR); 544 BUG_ON(!list_empty(&inode->i_wb_list)); 545 /* don't need i_lock here, no concurrent mods to i_state */ 546 inode->i_state = I_FREEING | I_CLEAR; 547 } 548 EXPORT_SYMBOL(clear_inode); 549 550 /* 551 * Free the inode passed in, removing it from the lists it is still connected 552 * to. We remove any pages still attached to the inode and wait for any IO that 553 * is still in progress before finally destroying the inode. 554 * 555 * An inode must already be marked I_FREEING so that we avoid the inode being 556 * moved back onto lists if we race with other code that manipulates the lists 557 * (e.g. writeback_single_inode). The caller is responsible for setting this. 558 * 559 * An inode must already be removed from the LRU list before being evicted from 560 * the cache. This should occur atomically with setting the I_FREEING state 561 * flag, so no inodes here should ever be on the LRU when being evicted. 562 */ 563 static void evict(struct inode *inode) 564 { 565 const struct super_operations *op = inode->i_sb->s_op; 566 567 BUG_ON(!(inode->i_state & I_FREEING)); 568 BUG_ON(!list_empty(&inode->i_lru)); 569 570 if (!list_empty(&inode->i_io_list)) 571 inode_io_list_del(inode); 572 573 inode_sb_list_del(inode); 574 575 /* 576 * Wait for flusher thread to be done with the inode so that filesystem 577 * does not start destroying it while writeback is still running. Since 578 * the inode has I_FREEING set, flusher thread won't start new work on 579 * the inode. We just have to wait for running writeback to finish. 580 */ 581 inode_wait_for_writeback(inode); 582 583 if (op->evict_inode) { 584 op->evict_inode(inode); 585 } else { 586 truncate_inode_pages_final(&inode->i_data); 587 clear_inode(inode); 588 } 589 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 590 cd_forget(inode); 591 592 remove_inode_hash(inode); 593 594 spin_lock(&inode->i_lock); 595 wake_up_bit(&inode->i_state, __I_NEW); 596 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 597 spin_unlock(&inode->i_lock); 598 599 destroy_inode(inode); 600 } 601 602 /* 603 * dispose_list - dispose of the contents of a local list 604 * @head: the head of the list to free 605 * 606 * Dispose-list gets a local list with local inodes in it, so it doesn't 607 * need to worry about list corruption and SMP locks. 608 */ 609 static void dispose_list(struct list_head *head) 610 { 611 while (!list_empty(head)) { 612 struct inode *inode; 613 614 inode = list_first_entry(head, struct inode, i_lru); 615 list_del_init(&inode->i_lru); 616 617 evict(inode); 618 cond_resched(); 619 } 620 } 621 622 /** 623 * evict_inodes - evict all evictable inodes for a superblock 624 * @sb: superblock to operate on 625 * 626 * Make sure that no inodes with zero refcount are retained. This is 627 * called by superblock shutdown after having SB_ACTIVE flag removed, 628 * so any inode reaching zero refcount during or after that call will 629 * be immediately evicted. 630 */ 631 void evict_inodes(struct super_block *sb) 632 { 633 struct inode *inode, *next; 634 LIST_HEAD(dispose); 635 636 again: 637 spin_lock(&sb->s_inode_list_lock); 638 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 639 if (atomic_read(&inode->i_count)) 640 continue; 641 642 spin_lock(&inode->i_lock); 643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 644 spin_unlock(&inode->i_lock); 645 continue; 646 } 647 648 inode->i_state |= I_FREEING; 649 inode_lru_list_del(inode); 650 spin_unlock(&inode->i_lock); 651 list_add(&inode->i_lru, &dispose); 652 653 /* 654 * We can have a ton of inodes to evict at unmount time given 655 * enough memory, check to see if we need to go to sleep for a 656 * bit so we don't livelock. 657 */ 658 if (need_resched()) { 659 spin_unlock(&sb->s_inode_list_lock); 660 cond_resched(); 661 dispose_list(&dispose); 662 goto again; 663 } 664 } 665 spin_unlock(&sb->s_inode_list_lock); 666 667 dispose_list(&dispose); 668 } 669 EXPORT_SYMBOL_GPL(evict_inodes); 670 671 /** 672 * invalidate_inodes - attempt to free all inodes on a superblock 673 * @sb: superblock to operate on 674 * @kill_dirty: flag to guide handling of dirty inodes 675 * 676 * Attempts to free all inodes for a given superblock. If there were any 677 * busy inodes return a non-zero value, else zero. 678 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 679 * them as busy. 680 */ 681 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 682 { 683 int busy = 0; 684 struct inode *inode, *next; 685 LIST_HEAD(dispose); 686 687 again: 688 spin_lock(&sb->s_inode_list_lock); 689 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 690 spin_lock(&inode->i_lock); 691 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 692 spin_unlock(&inode->i_lock); 693 continue; 694 } 695 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 696 spin_unlock(&inode->i_lock); 697 busy = 1; 698 continue; 699 } 700 if (atomic_read(&inode->i_count)) { 701 spin_unlock(&inode->i_lock); 702 busy = 1; 703 continue; 704 } 705 706 inode->i_state |= I_FREEING; 707 inode_lru_list_del(inode); 708 spin_unlock(&inode->i_lock); 709 list_add(&inode->i_lru, &dispose); 710 if (need_resched()) { 711 spin_unlock(&sb->s_inode_list_lock); 712 cond_resched(); 713 dispose_list(&dispose); 714 goto again; 715 } 716 } 717 spin_unlock(&sb->s_inode_list_lock); 718 719 dispose_list(&dispose); 720 721 return busy; 722 } 723 724 /* 725 * Isolate the inode from the LRU in preparation for freeing it. 726 * 727 * Any inodes which are pinned purely because of attached pagecache have their 728 * pagecache removed. If the inode has metadata buffers attached to 729 * mapping->private_list then try to remove them. 730 * 731 * If the inode has the I_REFERENCED flag set, then it means that it has been 732 * used recently - the flag is set in iput_final(). When we encounter such an 733 * inode, clear the flag and move it to the back of the LRU so it gets another 734 * pass through the LRU before it gets reclaimed. This is necessary because of 735 * the fact we are doing lazy LRU updates to minimise lock contention so the 736 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 737 * with this flag set because they are the inodes that are out of order. 738 */ 739 static enum lru_status inode_lru_isolate(struct list_head *item, 740 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 741 { 742 struct list_head *freeable = arg; 743 struct inode *inode = container_of(item, struct inode, i_lru); 744 745 /* 746 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 747 * If we fail to get the lock, just skip it. 748 */ 749 if (!spin_trylock(&inode->i_lock)) 750 return LRU_SKIP; 751 752 /* 753 * Referenced or dirty inodes are still in use. Give them another pass 754 * through the LRU as we canot reclaim them now. 755 */ 756 if (atomic_read(&inode->i_count) || 757 (inode->i_state & ~I_REFERENCED)) { 758 list_lru_isolate(lru, &inode->i_lru); 759 spin_unlock(&inode->i_lock); 760 this_cpu_dec(nr_unused); 761 return LRU_REMOVED; 762 } 763 764 /* recently referenced inodes get one more pass */ 765 if (inode->i_state & I_REFERENCED) { 766 inode->i_state &= ~I_REFERENCED; 767 spin_unlock(&inode->i_lock); 768 return LRU_ROTATE; 769 } 770 771 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 772 __iget(inode); 773 spin_unlock(&inode->i_lock); 774 spin_unlock(lru_lock); 775 if (remove_inode_buffers(inode)) { 776 unsigned long reap; 777 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 778 if (current_is_kswapd()) 779 __count_vm_events(KSWAPD_INODESTEAL, reap); 780 else 781 __count_vm_events(PGINODESTEAL, reap); 782 if (current->reclaim_state) 783 current->reclaim_state->reclaimed_slab += reap; 784 } 785 iput(inode); 786 spin_lock(lru_lock); 787 return LRU_RETRY; 788 } 789 790 WARN_ON(inode->i_state & I_NEW); 791 inode->i_state |= I_FREEING; 792 list_lru_isolate_move(lru, &inode->i_lru, freeable); 793 spin_unlock(&inode->i_lock); 794 795 this_cpu_dec(nr_unused); 796 return LRU_REMOVED; 797 } 798 799 /* 800 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 801 * This is called from the superblock shrinker function with a number of inodes 802 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 803 * then are freed outside inode_lock by dispose_list(). 804 */ 805 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 806 { 807 LIST_HEAD(freeable); 808 long freed; 809 810 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 811 inode_lru_isolate, &freeable); 812 dispose_list(&freeable); 813 return freed; 814 } 815 816 static void __wait_on_freeing_inode(struct inode *inode); 817 /* 818 * Called with the inode lock held. 819 */ 820 static struct inode *find_inode(struct super_block *sb, 821 struct hlist_head *head, 822 int (*test)(struct inode *, void *), 823 void *data) 824 { 825 struct inode *inode = NULL; 826 827 repeat: 828 hlist_for_each_entry(inode, head, i_hash) { 829 if (inode->i_sb != sb) 830 continue; 831 if (!test(inode, data)) 832 continue; 833 spin_lock(&inode->i_lock); 834 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 835 __wait_on_freeing_inode(inode); 836 goto repeat; 837 } 838 if (unlikely(inode->i_state & I_CREATING)) { 839 spin_unlock(&inode->i_lock); 840 return ERR_PTR(-ESTALE); 841 } 842 __iget(inode); 843 spin_unlock(&inode->i_lock); 844 return inode; 845 } 846 return NULL; 847 } 848 849 /* 850 * find_inode_fast is the fast path version of find_inode, see the comment at 851 * iget_locked for details. 852 */ 853 static struct inode *find_inode_fast(struct super_block *sb, 854 struct hlist_head *head, unsigned long ino) 855 { 856 struct inode *inode = NULL; 857 858 repeat: 859 hlist_for_each_entry(inode, head, i_hash) { 860 if (inode->i_ino != ino) 861 continue; 862 if (inode->i_sb != sb) 863 continue; 864 spin_lock(&inode->i_lock); 865 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 866 __wait_on_freeing_inode(inode); 867 goto repeat; 868 } 869 if (unlikely(inode->i_state & I_CREATING)) { 870 spin_unlock(&inode->i_lock); 871 return ERR_PTR(-ESTALE); 872 } 873 __iget(inode); 874 spin_unlock(&inode->i_lock); 875 return inode; 876 } 877 return NULL; 878 } 879 880 /* 881 * Each cpu owns a range of LAST_INO_BATCH numbers. 882 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 883 * to renew the exhausted range. 884 * 885 * This does not significantly increase overflow rate because every CPU can 886 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 887 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 888 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 889 * overflow rate by 2x, which does not seem too significant. 890 * 891 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 892 * error if st_ino won't fit in target struct field. Use 32bit counter 893 * here to attempt to avoid that. 894 */ 895 #define LAST_INO_BATCH 1024 896 static DEFINE_PER_CPU(unsigned int, last_ino); 897 898 unsigned int get_next_ino(void) 899 { 900 unsigned int *p = &get_cpu_var(last_ino); 901 unsigned int res = *p; 902 903 #ifdef CONFIG_SMP 904 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 905 static atomic_t shared_last_ino; 906 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 907 908 res = next - LAST_INO_BATCH; 909 } 910 #endif 911 912 res++; 913 /* get_next_ino should not provide a 0 inode number */ 914 if (unlikely(!res)) 915 res++; 916 *p = res; 917 put_cpu_var(last_ino); 918 return res; 919 } 920 EXPORT_SYMBOL(get_next_ino); 921 922 /** 923 * new_inode_pseudo - obtain an inode 924 * @sb: superblock 925 * 926 * Allocates a new inode for given superblock. 927 * Inode wont be chained in superblock s_inodes list 928 * This means : 929 * - fs can't be unmount 930 * - quotas, fsnotify, writeback can't work 931 */ 932 struct inode *new_inode_pseudo(struct super_block *sb) 933 { 934 struct inode *inode = alloc_inode(sb); 935 936 if (inode) { 937 spin_lock(&inode->i_lock); 938 inode->i_state = 0; 939 spin_unlock(&inode->i_lock); 940 INIT_LIST_HEAD(&inode->i_sb_list); 941 } 942 return inode; 943 } 944 945 /** 946 * new_inode - obtain an inode 947 * @sb: superblock 948 * 949 * Allocates a new inode for given superblock. The default gfp_mask 950 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 951 * If HIGHMEM pages are unsuitable or it is known that pages allocated 952 * for the page cache are not reclaimable or migratable, 953 * mapping_set_gfp_mask() must be called with suitable flags on the 954 * newly created inode's mapping 955 * 956 */ 957 struct inode *new_inode(struct super_block *sb) 958 { 959 struct inode *inode; 960 961 spin_lock_prefetch(&sb->s_inode_list_lock); 962 963 inode = new_inode_pseudo(sb); 964 if (inode) 965 inode_sb_list_add(inode); 966 return inode; 967 } 968 EXPORT_SYMBOL(new_inode); 969 970 #ifdef CONFIG_DEBUG_LOCK_ALLOC 971 void lockdep_annotate_inode_mutex_key(struct inode *inode) 972 { 973 if (S_ISDIR(inode->i_mode)) { 974 struct file_system_type *type = inode->i_sb->s_type; 975 976 /* Set new key only if filesystem hasn't already changed it */ 977 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 978 /* 979 * ensure nobody is actually holding i_mutex 980 */ 981 // mutex_destroy(&inode->i_mutex); 982 init_rwsem(&inode->i_rwsem); 983 lockdep_set_class(&inode->i_rwsem, 984 &type->i_mutex_dir_key); 985 } 986 } 987 } 988 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 989 #endif 990 991 /** 992 * unlock_new_inode - clear the I_NEW state and wake up any waiters 993 * @inode: new inode to unlock 994 * 995 * Called when the inode is fully initialised to clear the new state of the 996 * inode and wake up anyone waiting for the inode to finish initialisation. 997 */ 998 void unlock_new_inode(struct inode *inode) 999 { 1000 lockdep_annotate_inode_mutex_key(inode); 1001 spin_lock(&inode->i_lock); 1002 WARN_ON(!(inode->i_state & I_NEW)); 1003 inode->i_state &= ~I_NEW & ~I_CREATING; 1004 smp_mb(); 1005 wake_up_bit(&inode->i_state, __I_NEW); 1006 spin_unlock(&inode->i_lock); 1007 } 1008 EXPORT_SYMBOL(unlock_new_inode); 1009 1010 void discard_new_inode(struct inode *inode) 1011 { 1012 lockdep_annotate_inode_mutex_key(inode); 1013 spin_lock(&inode->i_lock); 1014 WARN_ON(!(inode->i_state & I_NEW)); 1015 inode->i_state &= ~I_NEW; 1016 smp_mb(); 1017 wake_up_bit(&inode->i_state, __I_NEW); 1018 spin_unlock(&inode->i_lock); 1019 iput(inode); 1020 } 1021 EXPORT_SYMBOL(discard_new_inode); 1022 1023 /** 1024 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1025 * 1026 * Lock any non-NULL argument that is not a directory. 1027 * Zero, one or two objects may be locked by this function. 1028 * 1029 * @inode1: first inode to lock 1030 * @inode2: second inode to lock 1031 */ 1032 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1033 { 1034 if (inode1 > inode2) 1035 swap(inode1, inode2); 1036 1037 if (inode1 && !S_ISDIR(inode1->i_mode)) 1038 inode_lock(inode1); 1039 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1040 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1041 } 1042 EXPORT_SYMBOL(lock_two_nondirectories); 1043 1044 /** 1045 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1046 * @inode1: first inode to unlock 1047 * @inode2: second inode to unlock 1048 */ 1049 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1050 { 1051 if (inode1 && !S_ISDIR(inode1->i_mode)) 1052 inode_unlock(inode1); 1053 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1054 inode_unlock(inode2); 1055 } 1056 EXPORT_SYMBOL(unlock_two_nondirectories); 1057 1058 /** 1059 * inode_insert5 - obtain an inode from a mounted file system 1060 * @inode: pre-allocated inode to use for insert to cache 1061 * @hashval: hash value (usually inode number) to get 1062 * @test: callback used for comparisons between inodes 1063 * @set: callback used to initialize a new struct inode 1064 * @data: opaque data pointer to pass to @test and @set 1065 * 1066 * Search for the inode specified by @hashval and @data in the inode cache, 1067 * and if present it is return it with an increased reference count. This is 1068 * a variant of iget5_locked() for callers that don't want to fail on memory 1069 * allocation of inode. 1070 * 1071 * If the inode is not in cache, insert the pre-allocated inode to cache and 1072 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1073 * to fill it in before unlocking it via unlock_new_inode(). 1074 * 1075 * Note both @test and @set are called with the inode_hash_lock held, so can't 1076 * sleep. 1077 */ 1078 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1079 int (*test)(struct inode *, void *), 1080 int (*set)(struct inode *, void *), void *data) 1081 { 1082 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1083 struct inode *old; 1084 bool creating = inode->i_state & I_CREATING; 1085 1086 again: 1087 spin_lock(&inode_hash_lock); 1088 old = find_inode(inode->i_sb, head, test, data); 1089 if (unlikely(old)) { 1090 /* 1091 * Uhhuh, somebody else created the same inode under us. 1092 * Use the old inode instead of the preallocated one. 1093 */ 1094 spin_unlock(&inode_hash_lock); 1095 if (IS_ERR(old)) 1096 return NULL; 1097 wait_on_inode(old); 1098 if (unlikely(inode_unhashed(old))) { 1099 iput(old); 1100 goto again; 1101 } 1102 return old; 1103 } 1104 1105 if (set && unlikely(set(inode, data))) { 1106 inode = NULL; 1107 goto unlock; 1108 } 1109 1110 /* 1111 * Return the locked inode with I_NEW set, the 1112 * caller is responsible for filling in the contents 1113 */ 1114 spin_lock(&inode->i_lock); 1115 inode->i_state |= I_NEW; 1116 hlist_add_head_rcu(&inode->i_hash, head); 1117 spin_unlock(&inode->i_lock); 1118 if (!creating) 1119 inode_sb_list_add(inode); 1120 unlock: 1121 spin_unlock(&inode_hash_lock); 1122 1123 return inode; 1124 } 1125 EXPORT_SYMBOL(inode_insert5); 1126 1127 /** 1128 * iget5_locked - obtain an inode from a mounted file system 1129 * @sb: super block of file system 1130 * @hashval: hash value (usually inode number) to get 1131 * @test: callback used for comparisons between inodes 1132 * @set: callback used to initialize a new struct inode 1133 * @data: opaque data pointer to pass to @test and @set 1134 * 1135 * Search for the inode specified by @hashval and @data in the inode cache, 1136 * and if present it is return it with an increased reference count. This is 1137 * a generalized version of iget_locked() for file systems where the inode 1138 * number is not sufficient for unique identification of an inode. 1139 * 1140 * If the inode is not in cache, allocate a new inode and return it locked, 1141 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1142 * before unlocking it via unlock_new_inode(). 1143 * 1144 * Note both @test and @set are called with the inode_hash_lock held, so can't 1145 * sleep. 1146 */ 1147 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1148 int (*test)(struct inode *, void *), 1149 int (*set)(struct inode *, void *), void *data) 1150 { 1151 struct inode *inode = ilookup5(sb, hashval, test, data); 1152 1153 if (!inode) { 1154 struct inode *new = alloc_inode(sb); 1155 1156 if (new) { 1157 new->i_state = 0; 1158 inode = inode_insert5(new, hashval, test, set, data); 1159 if (unlikely(inode != new)) 1160 destroy_inode(new); 1161 } 1162 } 1163 return inode; 1164 } 1165 EXPORT_SYMBOL(iget5_locked); 1166 1167 /** 1168 * iget_locked - obtain an inode from a mounted file system 1169 * @sb: super block of file system 1170 * @ino: inode number to get 1171 * 1172 * Search for the inode specified by @ino in the inode cache and if present 1173 * return it with an increased reference count. This is for file systems 1174 * where the inode number is sufficient for unique identification of an inode. 1175 * 1176 * If the inode is not in cache, allocate a new inode and return it locked, 1177 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1178 * before unlocking it via unlock_new_inode(). 1179 */ 1180 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1181 { 1182 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1183 struct inode *inode; 1184 again: 1185 spin_lock(&inode_hash_lock); 1186 inode = find_inode_fast(sb, head, ino); 1187 spin_unlock(&inode_hash_lock); 1188 if (inode) { 1189 if (IS_ERR(inode)) 1190 return NULL; 1191 wait_on_inode(inode); 1192 if (unlikely(inode_unhashed(inode))) { 1193 iput(inode); 1194 goto again; 1195 } 1196 return inode; 1197 } 1198 1199 inode = alloc_inode(sb); 1200 if (inode) { 1201 struct inode *old; 1202 1203 spin_lock(&inode_hash_lock); 1204 /* We released the lock, so.. */ 1205 old = find_inode_fast(sb, head, ino); 1206 if (!old) { 1207 inode->i_ino = ino; 1208 spin_lock(&inode->i_lock); 1209 inode->i_state = I_NEW; 1210 hlist_add_head_rcu(&inode->i_hash, head); 1211 spin_unlock(&inode->i_lock); 1212 inode_sb_list_add(inode); 1213 spin_unlock(&inode_hash_lock); 1214 1215 /* Return the locked inode with I_NEW set, the 1216 * caller is responsible for filling in the contents 1217 */ 1218 return inode; 1219 } 1220 1221 /* 1222 * Uhhuh, somebody else created the same inode under 1223 * us. Use the old inode instead of the one we just 1224 * allocated. 1225 */ 1226 spin_unlock(&inode_hash_lock); 1227 destroy_inode(inode); 1228 if (IS_ERR(old)) 1229 return NULL; 1230 inode = old; 1231 wait_on_inode(inode); 1232 if (unlikely(inode_unhashed(inode))) { 1233 iput(inode); 1234 goto again; 1235 } 1236 } 1237 return inode; 1238 } 1239 EXPORT_SYMBOL(iget_locked); 1240 1241 /* 1242 * search the inode cache for a matching inode number. 1243 * If we find one, then the inode number we are trying to 1244 * allocate is not unique and so we should not use it. 1245 * 1246 * Returns 1 if the inode number is unique, 0 if it is not. 1247 */ 1248 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1249 { 1250 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1251 struct inode *inode; 1252 1253 hlist_for_each_entry_rcu(inode, b, i_hash) { 1254 if (inode->i_ino == ino && inode->i_sb == sb) 1255 return 0; 1256 } 1257 return 1; 1258 } 1259 1260 /** 1261 * iunique - get a unique inode number 1262 * @sb: superblock 1263 * @max_reserved: highest reserved inode number 1264 * 1265 * Obtain an inode number that is unique on the system for a given 1266 * superblock. This is used by file systems that have no natural 1267 * permanent inode numbering system. An inode number is returned that 1268 * is higher than the reserved limit but unique. 1269 * 1270 * BUGS: 1271 * With a large number of inodes live on the file system this function 1272 * currently becomes quite slow. 1273 */ 1274 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1275 { 1276 /* 1277 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1278 * error if st_ino won't fit in target struct field. Use 32bit counter 1279 * here to attempt to avoid that. 1280 */ 1281 static DEFINE_SPINLOCK(iunique_lock); 1282 static unsigned int counter; 1283 ino_t res; 1284 1285 rcu_read_lock(); 1286 spin_lock(&iunique_lock); 1287 do { 1288 if (counter <= max_reserved) 1289 counter = max_reserved + 1; 1290 res = counter++; 1291 } while (!test_inode_iunique(sb, res)); 1292 spin_unlock(&iunique_lock); 1293 rcu_read_unlock(); 1294 1295 return res; 1296 } 1297 EXPORT_SYMBOL(iunique); 1298 1299 struct inode *igrab(struct inode *inode) 1300 { 1301 spin_lock(&inode->i_lock); 1302 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1303 __iget(inode); 1304 spin_unlock(&inode->i_lock); 1305 } else { 1306 spin_unlock(&inode->i_lock); 1307 /* 1308 * Handle the case where s_op->clear_inode is not been 1309 * called yet, and somebody is calling igrab 1310 * while the inode is getting freed. 1311 */ 1312 inode = NULL; 1313 } 1314 return inode; 1315 } 1316 EXPORT_SYMBOL(igrab); 1317 1318 /** 1319 * ilookup5_nowait - search for an inode in the inode cache 1320 * @sb: super block of file system to search 1321 * @hashval: hash value (usually inode number) to search for 1322 * @test: callback used for comparisons between inodes 1323 * @data: opaque data pointer to pass to @test 1324 * 1325 * Search for the inode specified by @hashval and @data in the inode cache. 1326 * If the inode is in the cache, the inode is returned with an incremented 1327 * reference count. 1328 * 1329 * Note: I_NEW is not waited upon so you have to be very careful what you do 1330 * with the returned inode. You probably should be using ilookup5() instead. 1331 * 1332 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1333 */ 1334 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1335 int (*test)(struct inode *, void *), void *data) 1336 { 1337 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1338 struct inode *inode; 1339 1340 spin_lock(&inode_hash_lock); 1341 inode = find_inode(sb, head, test, data); 1342 spin_unlock(&inode_hash_lock); 1343 1344 return IS_ERR(inode) ? NULL : inode; 1345 } 1346 EXPORT_SYMBOL(ilookup5_nowait); 1347 1348 /** 1349 * ilookup5 - search for an inode in the inode cache 1350 * @sb: super block of file system to search 1351 * @hashval: hash value (usually inode number) to search for 1352 * @test: callback used for comparisons between inodes 1353 * @data: opaque data pointer to pass to @test 1354 * 1355 * Search for the inode specified by @hashval and @data in the inode cache, 1356 * and if the inode is in the cache, return the inode with an incremented 1357 * reference count. Waits on I_NEW before returning the inode. 1358 * returned with an incremented reference count. 1359 * 1360 * This is a generalized version of ilookup() for file systems where the 1361 * inode number is not sufficient for unique identification of an inode. 1362 * 1363 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1364 */ 1365 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1366 int (*test)(struct inode *, void *), void *data) 1367 { 1368 struct inode *inode; 1369 again: 1370 inode = ilookup5_nowait(sb, hashval, test, data); 1371 if (inode) { 1372 wait_on_inode(inode); 1373 if (unlikely(inode_unhashed(inode))) { 1374 iput(inode); 1375 goto again; 1376 } 1377 } 1378 return inode; 1379 } 1380 EXPORT_SYMBOL(ilookup5); 1381 1382 /** 1383 * ilookup - search for an inode in the inode cache 1384 * @sb: super block of file system to search 1385 * @ino: inode number to search for 1386 * 1387 * Search for the inode @ino in the inode cache, and if the inode is in the 1388 * cache, the inode is returned with an incremented reference count. 1389 */ 1390 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1391 { 1392 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1393 struct inode *inode; 1394 again: 1395 spin_lock(&inode_hash_lock); 1396 inode = find_inode_fast(sb, head, ino); 1397 spin_unlock(&inode_hash_lock); 1398 1399 if (inode) { 1400 if (IS_ERR(inode)) 1401 return NULL; 1402 wait_on_inode(inode); 1403 if (unlikely(inode_unhashed(inode))) { 1404 iput(inode); 1405 goto again; 1406 } 1407 } 1408 return inode; 1409 } 1410 EXPORT_SYMBOL(ilookup); 1411 1412 /** 1413 * find_inode_nowait - find an inode in the inode cache 1414 * @sb: super block of file system to search 1415 * @hashval: hash value (usually inode number) to search for 1416 * @match: callback used for comparisons between inodes 1417 * @data: opaque data pointer to pass to @match 1418 * 1419 * Search for the inode specified by @hashval and @data in the inode 1420 * cache, where the helper function @match will return 0 if the inode 1421 * does not match, 1 if the inode does match, and -1 if the search 1422 * should be stopped. The @match function must be responsible for 1423 * taking the i_lock spin_lock and checking i_state for an inode being 1424 * freed or being initialized, and incrementing the reference count 1425 * before returning 1. It also must not sleep, since it is called with 1426 * the inode_hash_lock spinlock held. 1427 * 1428 * This is a even more generalized version of ilookup5() when the 1429 * function must never block --- find_inode() can block in 1430 * __wait_on_freeing_inode() --- or when the caller can not increment 1431 * the reference count because the resulting iput() might cause an 1432 * inode eviction. The tradeoff is that the @match funtion must be 1433 * very carefully implemented. 1434 */ 1435 struct inode *find_inode_nowait(struct super_block *sb, 1436 unsigned long hashval, 1437 int (*match)(struct inode *, unsigned long, 1438 void *), 1439 void *data) 1440 { 1441 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1442 struct inode *inode, *ret_inode = NULL; 1443 int mval; 1444 1445 spin_lock(&inode_hash_lock); 1446 hlist_for_each_entry(inode, head, i_hash) { 1447 if (inode->i_sb != sb) 1448 continue; 1449 mval = match(inode, hashval, data); 1450 if (mval == 0) 1451 continue; 1452 if (mval == 1) 1453 ret_inode = inode; 1454 goto out; 1455 } 1456 out: 1457 spin_unlock(&inode_hash_lock); 1458 return ret_inode; 1459 } 1460 EXPORT_SYMBOL(find_inode_nowait); 1461 1462 /** 1463 * find_inode_rcu - find an inode in the inode cache 1464 * @sb: Super block of file system to search 1465 * @hashval: Key to hash 1466 * @test: Function to test match on an inode 1467 * @data: Data for test function 1468 * 1469 * Search for the inode specified by @hashval and @data in the inode cache, 1470 * where the helper function @test will return 0 if the inode does not match 1471 * and 1 if it does. The @test function must be responsible for taking the 1472 * i_lock spin_lock and checking i_state for an inode being freed or being 1473 * initialized. 1474 * 1475 * If successful, this will return the inode for which the @test function 1476 * returned 1 and NULL otherwise. 1477 * 1478 * The @test function is not permitted to take a ref on any inode presented. 1479 * It is also not permitted to sleep. 1480 * 1481 * The caller must hold the RCU read lock. 1482 */ 1483 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1484 int (*test)(struct inode *, void *), void *data) 1485 { 1486 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1487 struct inode *inode; 1488 1489 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1490 "suspicious find_inode_rcu() usage"); 1491 1492 hlist_for_each_entry_rcu(inode, head, i_hash) { 1493 if (inode->i_sb == sb && 1494 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1495 test(inode, data)) 1496 return inode; 1497 } 1498 return NULL; 1499 } 1500 EXPORT_SYMBOL(find_inode_rcu); 1501 1502 /** 1503 * find_inode_by_ino_rcu - Find an inode in the inode cache 1504 * @sb: Super block of file system to search 1505 * @ino: The inode number to match 1506 * 1507 * Search for the inode specified by @hashval and @data in the inode cache, 1508 * where the helper function @test will return 0 if the inode does not match 1509 * and 1 if it does. The @test function must be responsible for taking the 1510 * i_lock spin_lock and checking i_state for an inode being freed or being 1511 * initialized. 1512 * 1513 * If successful, this will return the inode for which the @test function 1514 * returned 1 and NULL otherwise. 1515 * 1516 * The @test function is not permitted to take a ref on any inode presented. 1517 * It is also not permitted to sleep. 1518 * 1519 * The caller must hold the RCU read lock. 1520 */ 1521 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1522 unsigned long ino) 1523 { 1524 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1525 struct inode *inode; 1526 1527 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1528 "suspicious find_inode_by_ino_rcu() usage"); 1529 1530 hlist_for_each_entry_rcu(inode, head, i_hash) { 1531 if (inode->i_ino == ino && 1532 inode->i_sb == sb && 1533 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1534 return inode; 1535 } 1536 return NULL; 1537 } 1538 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1539 1540 int insert_inode_locked(struct inode *inode) 1541 { 1542 struct super_block *sb = inode->i_sb; 1543 ino_t ino = inode->i_ino; 1544 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1545 1546 while (1) { 1547 struct inode *old = NULL; 1548 spin_lock(&inode_hash_lock); 1549 hlist_for_each_entry(old, head, i_hash) { 1550 if (old->i_ino != ino) 1551 continue; 1552 if (old->i_sb != sb) 1553 continue; 1554 spin_lock(&old->i_lock); 1555 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1556 spin_unlock(&old->i_lock); 1557 continue; 1558 } 1559 break; 1560 } 1561 if (likely(!old)) { 1562 spin_lock(&inode->i_lock); 1563 inode->i_state |= I_NEW | I_CREATING; 1564 hlist_add_head_rcu(&inode->i_hash, head); 1565 spin_unlock(&inode->i_lock); 1566 spin_unlock(&inode_hash_lock); 1567 return 0; 1568 } 1569 if (unlikely(old->i_state & I_CREATING)) { 1570 spin_unlock(&old->i_lock); 1571 spin_unlock(&inode_hash_lock); 1572 return -EBUSY; 1573 } 1574 __iget(old); 1575 spin_unlock(&old->i_lock); 1576 spin_unlock(&inode_hash_lock); 1577 wait_on_inode(old); 1578 if (unlikely(!inode_unhashed(old))) { 1579 iput(old); 1580 return -EBUSY; 1581 } 1582 iput(old); 1583 } 1584 } 1585 EXPORT_SYMBOL(insert_inode_locked); 1586 1587 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1588 int (*test)(struct inode *, void *), void *data) 1589 { 1590 struct inode *old; 1591 1592 inode->i_state |= I_CREATING; 1593 old = inode_insert5(inode, hashval, test, NULL, data); 1594 1595 if (old != inode) { 1596 iput(old); 1597 return -EBUSY; 1598 } 1599 return 0; 1600 } 1601 EXPORT_SYMBOL(insert_inode_locked4); 1602 1603 1604 int generic_delete_inode(struct inode *inode) 1605 { 1606 return 1; 1607 } 1608 EXPORT_SYMBOL(generic_delete_inode); 1609 1610 /* 1611 * Called when we're dropping the last reference 1612 * to an inode. 1613 * 1614 * Call the FS "drop_inode()" function, defaulting to 1615 * the legacy UNIX filesystem behaviour. If it tells 1616 * us to evict inode, do so. Otherwise, retain inode 1617 * in cache if fs is alive, sync and evict if fs is 1618 * shutting down. 1619 */ 1620 static void iput_final(struct inode *inode) 1621 { 1622 struct super_block *sb = inode->i_sb; 1623 const struct super_operations *op = inode->i_sb->s_op; 1624 unsigned long state; 1625 int drop; 1626 1627 WARN_ON(inode->i_state & I_NEW); 1628 1629 if (op->drop_inode) 1630 drop = op->drop_inode(inode); 1631 else 1632 drop = generic_drop_inode(inode); 1633 1634 if (!drop && 1635 !(inode->i_state & I_DONTCACHE) && 1636 (sb->s_flags & SB_ACTIVE)) { 1637 inode_add_lru(inode); 1638 spin_unlock(&inode->i_lock); 1639 return; 1640 } 1641 1642 state = inode->i_state; 1643 if (!drop) { 1644 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1645 spin_unlock(&inode->i_lock); 1646 1647 write_inode_now(inode, 1); 1648 1649 spin_lock(&inode->i_lock); 1650 state = inode->i_state; 1651 WARN_ON(state & I_NEW); 1652 state &= ~I_WILL_FREE; 1653 } 1654 1655 WRITE_ONCE(inode->i_state, state | I_FREEING); 1656 if (!list_empty(&inode->i_lru)) 1657 inode_lru_list_del(inode); 1658 spin_unlock(&inode->i_lock); 1659 1660 evict(inode); 1661 } 1662 1663 /** 1664 * iput - put an inode 1665 * @inode: inode to put 1666 * 1667 * Puts an inode, dropping its usage count. If the inode use count hits 1668 * zero, the inode is then freed and may also be destroyed. 1669 * 1670 * Consequently, iput() can sleep. 1671 */ 1672 void iput(struct inode *inode) 1673 { 1674 if (!inode) 1675 return; 1676 BUG_ON(inode->i_state & I_CLEAR); 1677 retry: 1678 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1679 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1680 atomic_inc(&inode->i_count); 1681 spin_unlock(&inode->i_lock); 1682 trace_writeback_lazytime_iput(inode); 1683 mark_inode_dirty_sync(inode); 1684 goto retry; 1685 } 1686 iput_final(inode); 1687 } 1688 } 1689 EXPORT_SYMBOL(iput); 1690 1691 #ifdef CONFIG_BLOCK 1692 /** 1693 * bmap - find a block number in a file 1694 * @inode: inode owning the block number being requested 1695 * @block: pointer containing the block to find 1696 * 1697 * Replaces the value in ``*block`` with the block number on the device holding 1698 * corresponding to the requested block number in the file. 1699 * That is, asked for block 4 of inode 1 the function will replace the 1700 * 4 in ``*block``, with disk block relative to the disk start that holds that 1701 * block of the file. 1702 * 1703 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1704 * hole, returns 0 and ``*block`` is also set to 0. 1705 */ 1706 int bmap(struct inode *inode, sector_t *block) 1707 { 1708 if (!inode->i_mapping->a_ops->bmap) 1709 return -EINVAL; 1710 1711 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1712 return 0; 1713 } 1714 EXPORT_SYMBOL(bmap); 1715 #endif 1716 1717 /* 1718 * With relative atime, only update atime if the previous atime is 1719 * earlier than either the ctime or mtime or if at least a day has 1720 * passed since the last atime update. 1721 */ 1722 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1723 struct timespec64 now) 1724 { 1725 1726 if (!(mnt->mnt_flags & MNT_RELATIME)) 1727 return 1; 1728 /* 1729 * Is mtime younger than atime? If yes, update atime: 1730 */ 1731 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1732 return 1; 1733 /* 1734 * Is ctime younger than atime? If yes, update atime: 1735 */ 1736 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1737 return 1; 1738 1739 /* 1740 * Is the previous atime value older than a day? If yes, 1741 * update atime: 1742 */ 1743 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1744 return 1; 1745 /* 1746 * Good, we can skip the atime update: 1747 */ 1748 return 0; 1749 } 1750 1751 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1752 { 1753 int dirty_flags = 0; 1754 1755 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1756 if (flags & S_ATIME) 1757 inode->i_atime = *time; 1758 if (flags & S_CTIME) 1759 inode->i_ctime = *time; 1760 if (flags & S_MTIME) 1761 inode->i_mtime = *time; 1762 1763 if (inode->i_sb->s_flags & SB_LAZYTIME) 1764 dirty_flags |= I_DIRTY_TIME; 1765 else 1766 dirty_flags |= I_DIRTY_SYNC; 1767 } 1768 1769 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1770 dirty_flags |= I_DIRTY_SYNC; 1771 1772 __mark_inode_dirty(inode, dirty_flags); 1773 return 0; 1774 } 1775 EXPORT_SYMBOL(generic_update_time); 1776 1777 /* 1778 * This does the actual work of updating an inodes time or version. Must have 1779 * had called mnt_want_write() before calling this. 1780 */ 1781 static int update_time(struct inode *inode, struct timespec64 *time, int flags) 1782 { 1783 if (inode->i_op->update_time) 1784 return inode->i_op->update_time(inode, time, flags); 1785 return generic_update_time(inode, time, flags); 1786 } 1787 1788 /** 1789 * atime_needs_update - update the access time 1790 * @path: the &struct path to update 1791 * @inode: inode to update 1792 * 1793 * Update the accessed time on an inode and mark it for writeback. 1794 * This function automatically handles read only file systems and media, 1795 * as well as the "noatime" flag and inode specific "noatime" markers. 1796 */ 1797 bool atime_needs_update(const struct path *path, struct inode *inode) 1798 { 1799 struct vfsmount *mnt = path->mnt; 1800 struct timespec64 now; 1801 1802 if (inode->i_flags & S_NOATIME) 1803 return false; 1804 1805 /* Atime updates will likely cause i_uid and i_gid to be written 1806 * back improprely if their true value is unknown to the vfs. 1807 */ 1808 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode)) 1809 return false; 1810 1811 if (IS_NOATIME(inode)) 1812 return false; 1813 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1814 return false; 1815 1816 if (mnt->mnt_flags & MNT_NOATIME) 1817 return false; 1818 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1819 return false; 1820 1821 now = current_time(inode); 1822 1823 if (!relatime_need_update(mnt, inode, now)) 1824 return false; 1825 1826 if (timespec64_equal(&inode->i_atime, &now)) 1827 return false; 1828 1829 return true; 1830 } 1831 1832 void touch_atime(const struct path *path) 1833 { 1834 struct vfsmount *mnt = path->mnt; 1835 struct inode *inode = d_inode(path->dentry); 1836 struct timespec64 now; 1837 1838 if (!atime_needs_update(path, inode)) 1839 return; 1840 1841 if (!sb_start_write_trylock(inode->i_sb)) 1842 return; 1843 1844 if (__mnt_want_write(mnt) != 0) 1845 goto skip_update; 1846 /* 1847 * File systems can error out when updating inodes if they need to 1848 * allocate new space to modify an inode (such is the case for 1849 * Btrfs), but since we touch atime while walking down the path we 1850 * really don't care if we failed to update the atime of the file, 1851 * so just ignore the return value. 1852 * We may also fail on filesystems that have the ability to make parts 1853 * of the fs read only, e.g. subvolumes in Btrfs. 1854 */ 1855 now = current_time(inode); 1856 update_time(inode, &now, S_ATIME); 1857 __mnt_drop_write(mnt); 1858 skip_update: 1859 sb_end_write(inode->i_sb); 1860 } 1861 EXPORT_SYMBOL(touch_atime); 1862 1863 /* 1864 * The logic we want is 1865 * 1866 * if suid or (sgid and xgrp) 1867 * remove privs 1868 */ 1869 int should_remove_suid(struct dentry *dentry) 1870 { 1871 umode_t mode = d_inode(dentry)->i_mode; 1872 int kill = 0; 1873 1874 /* suid always must be killed */ 1875 if (unlikely(mode & S_ISUID)) 1876 kill = ATTR_KILL_SUID; 1877 1878 /* 1879 * sgid without any exec bits is just a mandatory locking mark; leave 1880 * it alone. If some exec bits are set, it's a real sgid; kill it. 1881 */ 1882 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1883 kill |= ATTR_KILL_SGID; 1884 1885 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1886 return kill; 1887 1888 return 0; 1889 } 1890 EXPORT_SYMBOL(should_remove_suid); 1891 1892 /* 1893 * Return mask of changes for notify_change() that need to be done as a 1894 * response to write or truncate. Return 0 if nothing has to be changed. 1895 * Negative value on error (change should be denied). 1896 */ 1897 int dentry_needs_remove_privs(struct dentry *dentry) 1898 { 1899 struct inode *inode = d_inode(dentry); 1900 int mask = 0; 1901 int ret; 1902 1903 if (IS_NOSEC(inode)) 1904 return 0; 1905 1906 mask = should_remove_suid(dentry); 1907 ret = security_inode_need_killpriv(dentry); 1908 if (ret < 0) 1909 return ret; 1910 if (ret) 1911 mask |= ATTR_KILL_PRIV; 1912 return mask; 1913 } 1914 1915 static int __remove_privs(struct user_namespace *mnt_userns, 1916 struct dentry *dentry, int kill) 1917 { 1918 struct iattr newattrs; 1919 1920 newattrs.ia_valid = ATTR_FORCE | kill; 1921 /* 1922 * Note we call this on write, so notify_change will not 1923 * encounter any conflicting delegations: 1924 */ 1925 return notify_change(mnt_userns, dentry, &newattrs, NULL); 1926 } 1927 1928 /* 1929 * Remove special file priviledges (suid, capabilities) when file is written 1930 * to or truncated. 1931 */ 1932 int file_remove_privs(struct file *file) 1933 { 1934 struct dentry *dentry = file_dentry(file); 1935 struct inode *inode = file_inode(file); 1936 int kill; 1937 int error = 0; 1938 1939 /* 1940 * Fast path for nothing security related. 1941 * As well for non-regular files, e.g. blkdev inodes. 1942 * For example, blkdev_write_iter() might get here 1943 * trying to remove privs which it is not allowed to. 1944 */ 1945 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 1946 return 0; 1947 1948 kill = dentry_needs_remove_privs(dentry); 1949 if (kill < 0) 1950 return kill; 1951 if (kill) 1952 error = __remove_privs(file_mnt_user_ns(file), dentry, kill); 1953 if (!error) 1954 inode_has_no_xattr(inode); 1955 1956 return error; 1957 } 1958 EXPORT_SYMBOL(file_remove_privs); 1959 1960 /** 1961 * file_update_time - update mtime and ctime time 1962 * @file: file accessed 1963 * 1964 * Update the mtime and ctime members of an inode and mark the inode 1965 * for writeback. Note that this function is meant exclusively for 1966 * usage in the file write path of filesystems, and filesystems may 1967 * choose to explicitly ignore update via this function with the 1968 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1969 * timestamps are handled by the server. This can return an error for 1970 * file systems who need to allocate space in order to update an inode. 1971 */ 1972 1973 int file_update_time(struct file *file) 1974 { 1975 struct inode *inode = file_inode(file); 1976 struct timespec64 now; 1977 int sync_it = 0; 1978 int ret; 1979 1980 /* First try to exhaust all avenues to not sync */ 1981 if (IS_NOCMTIME(inode)) 1982 return 0; 1983 1984 now = current_time(inode); 1985 if (!timespec64_equal(&inode->i_mtime, &now)) 1986 sync_it = S_MTIME; 1987 1988 if (!timespec64_equal(&inode->i_ctime, &now)) 1989 sync_it |= S_CTIME; 1990 1991 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1992 sync_it |= S_VERSION; 1993 1994 if (!sync_it) 1995 return 0; 1996 1997 /* Finally allowed to write? Takes lock. */ 1998 if (__mnt_want_write_file(file)) 1999 return 0; 2000 2001 ret = update_time(inode, &now, sync_it); 2002 __mnt_drop_write_file(file); 2003 2004 return ret; 2005 } 2006 EXPORT_SYMBOL(file_update_time); 2007 2008 /* Caller must hold the file's inode lock */ 2009 int file_modified(struct file *file) 2010 { 2011 int err; 2012 2013 /* 2014 * Clear the security bits if the process is not being run by root. 2015 * This keeps people from modifying setuid and setgid binaries. 2016 */ 2017 err = file_remove_privs(file); 2018 if (err) 2019 return err; 2020 2021 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2022 return 0; 2023 2024 return file_update_time(file); 2025 } 2026 EXPORT_SYMBOL(file_modified); 2027 2028 int inode_needs_sync(struct inode *inode) 2029 { 2030 if (IS_SYNC(inode)) 2031 return 1; 2032 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2033 return 1; 2034 return 0; 2035 } 2036 EXPORT_SYMBOL(inode_needs_sync); 2037 2038 /* 2039 * If we try to find an inode in the inode hash while it is being 2040 * deleted, we have to wait until the filesystem completes its 2041 * deletion before reporting that it isn't found. This function waits 2042 * until the deletion _might_ have completed. Callers are responsible 2043 * to recheck inode state. 2044 * 2045 * It doesn't matter if I_NEW is not set initially, a call to 2046 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2047 * will DTRT. 2048 */ 2049 static void __wait_on_freeing_inode(struct inode *inode) 2050 { 2051 wait_queue_head_t *wq; 2052 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2053 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2054 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2055 spin_unlock(&inode->i_lock); 2056 spin_unlock(&inode_hash_lock); 2057 schedule(); 2058 finish_wait(wq, &wait.wq_entry); 2059 spin_lock(&inode_hash_lock); 2060 } 2061 2062 static __initdata unsigned long ihash_entries; 2063 static int __init set_ihash_entries(char *str) 2064 { 2065 if (!str) 2066 return 0; 2067 ihash_entries = simple_strtoul(str, &str, 0); 2068 return 1; 2069 } 2070 __setup("ihash_entries=", set_ihash_entries); 2071 2072 /* 2073 * Initialize the waitqueues and inode hash table. 2074 */ 2075 void __init inode_init_early(void) 2076 { 2077 /* If hashes are distributed across NUMA nodes, defer 2078 * hash allocation until vmalloc space is available. 2079 */ 2080 if (hashdist) 2081 return; 2082 2083 inode_hashtable = 2084 alloc_large_system_hash("Inode-cache", 2085 sizeof(struct hlist_head), 2086 ihash_entries, 2087 14, 2088 HASH_EARLY | HASH_ZERO, 2089 &i_hash_shift, 2090 &i_hash_mask, 2091 0, 2092 0); 2093 } 2094 2095 void __init inode_init(void) 2096 { 2097 /* inode slab cache */ 2098 inode_cachep = kmem_cache_create("inode_cache", 2099 sizeof(struct inode), 2100 0, 2101 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2102 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2103 init_once); 2104 2105 /* Hash may have been set up in inode_init_early */ 2106 if (!hashdist) 2107 return; 2108 2109 inode_hashtable = 2110 alloc_large_system_hash("Inode-cache", 2111 sizeof(struct hlist_head), 2112 ihash_entries, 2113 14, 2114 HASH_ZERO, 2115 &i_hash_shift, 2116 &i_hash_mask, 2117 0, 2118 0); 2119 } 2120 2121 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2122 { 2123 inode->i_mode = mode; 2124 if (S_ISCHR(mode)) { 2125 inode->i_fop = &def_chr_fops; 2126 inode->i_rdev = rdev; 2127 } else if (S_ISBLK(mode)) { 2128 inode->i_fop = &def_blk_fops; 2129 inode->i_rdev = rdev; 2130 } else if (S_ISFIFO(mode)) 2131 inode->i_fop = &pipefifo_fops; 2132 else if (S_ISSOCK(mode)) 2133 ; /* leave it no_open_fops */ 2134 else 2135 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2136 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2137 inode->i_ino); 2138 } 2139 EXPORT_SYMBOL(init_special_inode); 2140 2141 /** 2142 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2143 * @mnt_userns: User namespace of the mount the inode was created from 2144 * @inode: New inode 2145 * @dir: Directory inode 2146 * @mode: mode of the new inode 2147 * 2148 * If the inode has been created through an idmapped mount the user namespace of 2149 * the vfsmount must be passed through @mnt_userns. This function will then take 2150 * care to map the inode according to @mnt_userns before checking permissions 2151 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2152 * checking is to be performed on the raw inode simply passs init_user_ns. 2153 */ 2154 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, 2155 const struct inode *dir, umode_t mode) 2156 { 2157 inode_fsuid_set(inode, mnt_userns); 2158 if (dir && dir->i_mode & S_ISGID) { 2159 inode->i_gid = dir->i_gid; 2160 2161 /* Directories are special, and always inherit S_ISGID */ 2162 if (S_ISDIR(mode)) 2163 mode |= S_ISGID; 2164 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2165 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) && 2166 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID)) 2167 mode &= ~S_ISGID; 2168 } else 2169 inode_fsgid_set(inode, mnt_userns); 2170 inode->i_mode = mode; 2171 } 2172 EXPORT_SYMBOL(inode_init_owner); 2173 2174 /** 2175 * inode_owner_or_capable - check current task permissions to inode 2176 * @mnt_userns: user namespace of the mount the inode was found from 2177 * @inode: inode being checked 2178 * 2179 * Return true if current either has CAP_FOWNER in a namespace with the 2180 * inode owner uid mapped, or owns the file. 2181 * 2182 * If the inode has been found through an idmapped mount the user namespace of 2183 * the vfsmount must be passed through @mnt_userns. This function will then take 2184 * care to map the inode according to @mnt_userns before checking permissions. 2185 * On non-idmapped mounts or if permission checking is to be performed on the 2186 * raw inode simply passs init_user_ns. 2187 */ 2188 bool inode_owner_or_capable(struct user_namespace *mnt_userns, 2189 const struct inode *inode) 2190 { 2191 kuid_t i_uid; 2192 struct user_namespace *ns; 2193 2194 i_uid = i_uid_into_mnt(mnt_userns, inode); 2195 if (uid_eq(current_fsuid(), i_uid)) 2196 return true; 2197 2198 ns = current_user_ns(); 2199 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER)) 2200 return true; 2201 return false; 2202 } 2203 EXPORT_SYMBOL(inode_owner_or_capable); 2204 2205 /* 2206 * Direct i/o helper functions 2207 */ 2208 static void __inode_dio_wait(struct inode *inode) 2209 { 2210 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2211 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2212 2213 do { 2214 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2215 if (atomic_read(&inode->i_dio_count)) 2216 schedule(); 2217 } while (atomic_read(&inode->i_dio_count)); 2218 finish_wait(wq, &q.wq_entry); 2219 } 2220 2221 /** 2222 * inode_dio_wait - wait for outstanding DIO requests to finish 2223 * @inode: inode to wait for 2224 * 2225 * Waits for all pending direct I/O requests to finish so that we can 2226 * proceed with a truncate or equivalent operation. 2227 * 2228 * Must be called under a lock that serializes taking new references 2229 * to i_dio_count, usually by inode->i_mutex. 2230 */ 2231 void inode_dio_wait(struct inode *inode) 2232 { 2233 if (atomic_read(&inode->i_dio_count)) 2234 __inode_dio_wait(inode); 2235 } 2236 EXPORT_SYMBOL(inode_dio_wait); 2237 2238 /* 2239 * inode_set_flags - atomically set some inode flags 2240 * 2241 * Note: the caller should be holding i_mutex, or else be sure that 2242 * they have exclusive access to the inode structure (i.e., while the 2243 * inode is being instantiated). The reason for the cmpxchg() loop 2244 * --- which wouldn't be necessary if all code paths which modify 2245 * i_flags actually followed this rule, is that there is at least one 2246 * code path which doesn't today so we use cmpxchg() out of an abundance 2247 * of caution. 2248 * 2249 * In the long run, i_mutex is overkill, and we should probably look 2250 * at using the i_lock spinlock to protect i_flags, and then make sure 2251 * it is so documented in include/linux/fs.h and that all code follows 2252 * the locking convention!! 2253 */ 2254 void inode_set_flags(struct inode *inode, unsigned int flags, 2255 unsigned int mask) 2256 { 2257 WARN_ON_ONCE(flags & ~mask); 2258 set_mask_bits(&inode->i_flags, mask, flags); 2259 } 2260 EXPORT_SYMBOL(inode_set_flags); 2261 2262 void inode_nohighmem(struct inode *inode) 2263 { 2264 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2265 } 2266 EXPORT_SYMBOL(inode_nohighmem); 2267 2268 /** 2269 * timestamp_truncate - Truncate timespec to a granularity 2270 * @t: Timespec 2271 * @inode: inode being updated 2272 * 2273 * Truncate a timespec to the granularity supported by the fs 2274 * containing the inode. Always rounds down. gran must 2275 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2276 */ 2277 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2278 { 2279 struct super_block *sb = inode->i_sb; 2280 unsigned int gran = sb->s_time_gran; 2281 2282 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2283 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2284 t.tv_nsec = 0; 2285 2286 /* Avoid division in the common cases 1 ns and 1 s. */ 2287 if (gran == 1) 2288 ; /* nothing */ 2289 else if (gran == NSEC_PER_SEC) 2290 t.tv_nsec = 0; 2291 else if (gran > 1 && gran < NSEC_PER_SEC) 2292 t.tv_nsec -= t.tv_nsec % gran; 2293 else 2294 WARN(1, "invalid file time granularity: %u", gran); 2295 return t; 2296 } 2297 EXPORT_SYMBOL(timestamp_truncate); 2298 2299 /** 2300 * current_time - Return FS time 2301 * @inode: inode. 2302 * 2303 * Return the current time truncated to the time granularity supported by 2304 * the fs. 2305 * 2306 * Note that inode and inode->sb cannot be NULL. 2307 * Otherwise, the function warns and returns time without truncation. 2308 */ 2309 struct timespec64 current_time(struct inode *inode) 2310 { 2311 struct timespec64 now; 2312 2313 ktime_get_coarse_real_ts64(&now); 2314 2315 if (unlikely(!inode->i_sb)) { 2316 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2317 return now; 2318 } 2319 2320 return timestamp_truncate(now, inode); 2321 } 2322 EXPORT_SYMBOL(current_time); 2323