1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/dcache.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/writeback.h> 11 #include <linux/module.h> 12 #include <linux/backing-dev.h> 13 #include <linux/wait.h> 14 #include <linux/rwsem.h> 15 #include <linux/hash.h> 16 #include <linux/swap.h> 17 #include <linux/security.h> 18 #include <linux/pagemap.h> 19 #include <linux/cdev.h> 20 #include <linux/bootmem.h> 21 #include <linux/fsnotify.h> 22 #include <linux/mount.h> 23 #include <linux/async.h> 24 #include <linux/posix_acl.h> 25 #include <linux/prefetch.h> 26 #include <linux/ima.h> 27 #include <linux/cred.h> 28 #include <linux/buffer_head.h> /* for inode_has_buffers */ 29 #include <linux/ratelimit.h> 30 #include "internal.h" 31 32 /* 33 * Inode locking rules: 34 * 35 * inode->i_lock protects: 36 * inode->i_state, inode->i_hash, __iget() 37 * inode->i_sb->s_inode_lru_lock protects: 38 * inode->i_sb->s_inode_lru, inode->i_lru 39 * inode_sb_list_lock protects: 40 * sb->s_inodes, inode->i_sb_list 41 * bdi->wb.list_lock protects: 42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 43 * inode_hash_lock protects: 44 * inode_hashtable, inode->i_hash 45 * 46 * Lock ordering: 47 * 48 * inode_sb_list_lock 49 * inode->i_lock 50 * inode->i_sb->s_inode_lru_lock 51 * 52 * bdi->wb.list_lock 53 * inode->i_lock 54 * 55 * inode_hash_lock 56 * inode_sb_list_lock 57 * inode->i_lock 58 * 59 * iunique_lock 60 * inode_hash_lock 61 */ 62 63 static unsigned int i_hash_mask __read_mostly; 64 static unsigned int i_hash_shift __read_mostly; 65 static struct hlist_head *inode_hashtable __read_mostly; 66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 67 68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 69 70 /* 71 * Empty aops. Can be used for the cases where the user does not 72 * define any of the address_space operations. 73 */ 74 const struct address_space_operations empty_aops = { 75 }; 76 EXPORT_SYMBOL(empty_aops); 77 78 /* 79 * Statistics gathering.. 80 */ 81 struct inodes_stat_t inodes_stat; 82 83 static DEFINE_PER_CPU(unsigned int, nr_inodes); 84 static DEFINE_PER_CPU(unsigned int, nr_unused); 85 86 static struct kmem_cache *inode_cachep __read_mostly; 87 88 static int get_nr_inodes(void) 89 { 90 int i; 91 int sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_inodes, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 static inline int get_nr_inodes_unused(void) 98 { 99 int i; 100 int sum = 0; 101 for_each_possible_cpu(i) 102 sum += per_cpu(nr_unused, i); 103 return sum < 0 ? 0 : sum; 104 } 105 106 int get_nr_dirty_inodes(void) 107 { 108 /* not actually dirty inodes, but a wild approximation */ 109 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 110 return nr_dirty > 0 ? nr_dirty : 0; 111 } 112 113 /* 114 * Handle nr_inode sysctl 115 */ 116 #ifdef CONFIG_SYSCTL 117 int proc_nr_inodes(ctl_table *table, int write, 118 void __user *buffer, size_t *lenp, loff_t *ppos) 119 { 120 inodes_stat.nr_inodes = get_nr_inodes(); 121 inodes_stat.nr_unused = get_nr_inodes_unused(); 122 return proc_dointvec(table, write, buffer, lenp, ppos); 123 } 124 #endif 125 126 /** 127 * inode_init_always - perform inode structure intialisation 128 * @sb: superblock inode belongs to 129 * @inode: inode to initialise 130 * 131 * These are initializations that need to be done on every inode 132 * allocation as the fields are not initialised by slab allocation. 133 */ 134 int inode_init_always(struct super_block *sb, struct inode *inode) 135 { 136 static const struct inode_operations empty_iops; 137 static const struct file_operations empty_fops; 138 struct address_space *const mapping = &inode->i_data; 139 140 inode->i_sb = sb; 141 inode->i_blkbits = sb->s_blocksize_bits; 142 inode->i_flags = 0; 143 atomic_set(&inode->i_count, 1); 144 inode->i_op = &empty_iops; 145 inode->i_fop = &empty_fops; 146 inode->__i_nlink = 1; 147 inode->i_opflags = 0; 148 inode->i_uid = 0; 149 inode->i_gid = 0; 150 atomic_set(&inode->i_writecount, 0); 151 inode->i_size = 0; 152 inode->i_blocks = 0; 153 inode->i_bytes = 0; 154 inode->i_generation = 0; 155 #ifdef CONFIG_QUOTA 156 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 157 #endif 158 inode->i_pipe = NULL; 159 inode->i_bdev = NULL; 160 inode->i_cdev = NULL; 161 inode->i_rdev = 0; 162 inode->dirtied_when = 0; 163 164 if (security_inode_alloc(inode)) 165 goto out; 166 spin_lock_init(&inode->i_lock); 167 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 168 169 mutex_init(&inode->i_mutex); 170 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 171 172 atomic_set(&inode->i_dio_count, 0); 173 174 mapping->a_ops = &empty_aops; 175 mapping->host = inode; 176 mapping->flags = 0; 177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 178 mapping->assoc_mapping = NULL; 179 mapping->backing_dev_info = &default_backing_dev_info; 180 mapping->writeback_index = 0; 181 182 /* 183 * If the block_device provides a backing_dev_info for client 184 * inodes then use that. Otherwise the inode share the bdev's 185 * backing_dev_info. 186 */ 187 if (sb->s_bdev) { 188 struct backing_dev_info *bdi; 189 190 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 191 mapping->backing_dev_info = bdi; 192 } 193 inode->i_private = NULL; 194 inode->i_mapping = mapping; 195 INIT_LIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 196 #ifdef CONFIG_FS_POSIX_ACL 197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 198 #endif 199 200 #ifdef CONFIG_FSNOTIFY 201 inode->i_fsnotify_mask = 0; 202 #endif 203 204 this_cpu_inc(nr_inodes); 205 206 return 0; 207 out: 208 return -ENOMEM; 209 } 210 EXPORT_SYMBOL(inode_init_always); 211 212 static struct inode *alloc_inode(struct super_block *sb) 213 { 214 struct inode *inode; 215 216 if (sb->s_op->alloc_inode) 217 inode = sb->s_op->alloc_inode(sb); 218 else 219 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 220 221 if (!inode) 222 return NULL; 223 224 if (unlikely(inode_init_always(sb, inode))) { 225 if (inode->i_sb->s_op->destroy_inode) 226 inode->i_sb->s_op->destroy_inode(inode); 227 else 228 kmem_cache_free(inode_cachep, inode); 229 return NULL; 230 } 231 232 return inode; 233 } 234 235 void free_inode_nonrcu(struct inode *inode) 236 { 237 kmem_cache_free(inode_cachep, inode); 238 } 239 EXPORT_SYMBOL(free_inode_nonrcu); 240 241 void __destroy_inode(struct inode *inode) 242 { 243 BUG_ON(inode_has_buffers(inode)); 244 security_inode_free(inode); 245 fsnotify_inode_delete(inode); 246 if (!inode->i_nlink) { 247 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 248 atomic_long_dec(&inode->i_sb->s_remove_count); 249 } 250 251 #ifdef CONFIG_FS_POSIX_ACL 252 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 253 posix_acl_release(inode->i_acl); 254 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 255 posix_acl_release(inode->i_default_acl); 256 #endif 257 this_cpu_dec(nr_inodes); 258 } 259 EXPORT_SYMBOL(__destroy_inode); 260 261 static void i_callback(struct rcu_head *head) 262 { 263 struct inode *inode = container_of(head, struct inode, i_rcu); 264 kmem_cache_free(inode_cachep, inode); 265 } 266 267 static void destroy_inode(struct inode *inode) 268 { 269 BUG_ON(!list_empty(&inode->i_lru)); 270 __destroy_inode(inode); 271 if (inode->i_sb->s_op->destroy_inode) 272 inode->i_sb->s_op->destroy_inode(inode); 273 else 274 call_rcu(&inode->i_rcu, i_callback); 275 } 276 277 /** 278 * drop_nlink - directly drop an inode's link count 279 * @inode: inode 280 * 281 * This is a low-level filesystem helper to replace any 282 * direct filesystem manipulation of i_nlink. In cases 283 * where we are attempting to track writes to the 284 * filesystem, a decrement to zero means an imminent 285 * write when the file is truncated and actually unlinked 286 * on the filesystem. 287 */ 288 void drop_nlink(struct inode *inode) 289 { 290 WARN_ON(inode->i_nlink == 0); 291 inode->__i_nlink--; 292 if (!inode->i_nlink) 293 atomic_long_inc(&inode->i_sb->s_remove_count); 294 } 295 EXPORT_SYMBOL(drop_nlink); 296 297 /** 298 * clear_nlink - directly zero an inode's link count 299 * @inode: inode 300 * 301 * This is a low-level filesystem helper to replace any 302 * direct filesystem manipulation of i_nlink. See 303 * drop_nlink() for why we care about i_nlink hitting zero. 304 */ 305 void clear_nlink(struct inode *inode) 306 { 307 if (inode->i_nlink) { 308 inode->__i_nlink = 0; 309 atomic_long_inc(&inode->i_sb->s_remove_count); 310 } 311 } 312 EXPORT_SYMBOL(clear_nlink); 313 314 /** 315 * set_nlink - directly set an inode's link count 316 * @inode: inode 317 * @nlink: new nlink (should be non-zero) 318 * 319 * This is a low-level filesystem helper to replace any 320 * direct filesystem manipulation of i_nlink. 321 */ 322 void set_nlink(struct inode *inode, unsigned int nlink) 323 { 324 if (!nlink) { 325 printk_ratelimited(KERN_INFO 326 "set_nlink() clearing i_nlink on %s inode %li\n", 327 inode->i_sb->s_type->name, inode->i_ino); 328 clear_nlink(inode); 329 } else { 330 /* Yes, some filesystems do change nlink from zero to one */ 331 if (inode->i_nlink == 0) 332 atomic_long_dec(&inode->i_sb->s_remove_count); 333 334 inode->__i_nlink = nlink; 335 } 336 } 337 EXPORT_SYMBOL(set_nlink); 338 339 /** 340 * inc_nlink - directly increment an inode's link count 341 * @inode: inode 342 * 343 * This is a low-level filesystem helper to replace any 344 * direct filesystem manipulation of i_nlink. Currently, 345 * it is only here for parity with dec_nlink(). 346 */ 347 void inc_nlink(struct inode *inode) 348 { 349 if (WARN_ON(inode->i_nlink == 0)) 350 atomic_long_dec(&inode->i_sb->s_remove_count); 351 352 inode->__i_nlink++; 353 } 354 EXPORT_SYMBOL(inc_nlink); 355 356 void address_space_init_once(struct address_space *mapping) 357 { 358 memset(mapping, 0, sizeof(*mapping)); 359 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 360 spin_lock_init(&mapping->tree_lock); 361 mutex_init(&mapping->i_mmap_mutex); 362 INIT_LIST_HEAD(&mapping->private_list); 363 spin_lock_init(&mapping->private_lock); 364 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); 365 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 366 } 367 EXPORT_SYMBOL(address_space_init_once); 368 369 /* 370 * These are initializations that only need to be done 371 * once, because the fields are idempotent across use 372 * of the inode, so let the slab aware of that. 373 */ 374 void inode_init_once(struct inode *inode) 375 { 376 memset(inode, 0, sizeof(*inode)); 377 INIT_HLIST_NODE(&inode->i_hash); 378 INIT_LIST_HEAD(&inode->i_devices); 379 INIT_LIST_HEAD(&inode->i_wb_list); 380 INIT_LIST_HEAD(&inode->i_lru); 381 address_space_init_once(&inode->i_data); 382 i_size_ordered_init(inode); 383 #ifdef CONFIG_FSNOTIFY 384 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 385 #endif 386 } 387 EXPORT_SYMBOL(inode_init_once); 388 389 static void init_once(void *foo) 390 { 391 struct inode *inode = (struct inode *) foo; 392 393 inode_init_once(inode); 394 } 395 396 /* 397 * inode->i_lock must be held 398 */ 399 void __iget(struct inode *inode) 400 { 401 atomic_inc(&inode->i_count); 402 } 403 404 /* 405 * get additional reference to inode; caller must already hold one. 406 */ 407 void ihold(struct inode *inode) 408 { 409 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 410 } 411 EXPORT_SYMBOL(ihold); 412 413 static void inode_lru_list_add(struct inode *inode) 414 { 415 spin_lock(&inode->i_sb->s_inode_lru_lock); 416 if (list_empty(&inode->i_lru)) { 417 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru); 418 inode->i_sb->s_nr_inodes_unused++; 419 this_cpu_inc(nr_unused); 420 } 421 spin_unlock(&inode->i_sb->s_inode_lru_lock); 422 } 423 424 static void inode_lru_list_del(struct inode *inode) 425 { 426 spin_lock(&inode->i_sb->s_inode_lru_lock); 427 if (!list_empty(&inode->i_lru)) { 428 list_del_init(&inode->i_lru); 429 inode->i_sb->s_nr_inodes_unused--; 430 this_cpu_dec(nr_unused); 431 } 432 spin_unlock(&inode->i_sb->s_inode_lru_lock); 433 } 434 435 /** 436 * inode_sb_list_add - add inode to the superblock list of inodes 437 * @inode: inode to add 438 */ 439 void inode_sb_list_add(struct inode *inode) 440 { 441 spin_lock(&inode_sb_list_lock); 442 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 443 spin_unlock(&inode_sb_list_lock); 444 } 445 EXPORT_SYMBOL_GPL(inode_sb_list_add); 446 447 static inline void inode_sb_list_del(struct inode *inode) 448 { 449 if (!list_empty(&inode->i_sb_list)) { 450 spin_lock(&inode_sb_list_lock); 451 list_del_init(&inode->i_sb_list); 452 spin_unlock(&inode_sb_list_lock); 453 } 454 } 455 456 static unsigned long hash(struct super_block *sb, unsigned long hashval) 457 { 458 unsigned long tmp; 459 460 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 461 L1_CACHE_BYTES; 462 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 463 return tmp & i_hash_mask; 464 } 465 466 /** 467 * __insert_inode_hash - hash an inode 468 * @inode: unhashed inode 469 * @hashval: unsigned long value used to locate this object in the 470 * inode_hashtable. 471 * 472 * Add an inode to the inode hash for this superblock. 473 */ 474 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 475 { 476 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 477 478 spin_lock(&inode_hash_lock); 479 spin_lock(&inode->i_lock); 480 hlist_add_head(&inode->i_hash, b); 481 spin_unlock(&inode->i_lock); 482 spin_unlock(&inode_hash_lock); 483 } 484 EXPORT_SYMBOL(__insert_inode_hash); 485 486 /** 487 * __remove_inode_hash - remove an inode from the hash 488 * @inode: inode to unhash 489 * 490 * Remove an inode from the superblock. 491 */ 492 void __remove_inode_hash(struct inode *inode) 493 { 494 spin_lock(&inode_hash_lock); 495 spin_lock(&inode->i_lock); 496 hlist_del_init(&inode->i_hash); 497 spin_unlock(&inode->i_lock); 498 spin_unlock(&inode_hash_lock); 499 } 500 EXPORT_SYMBOL(__remove_inode_hash); 501 502 void end_writeback(struct inode *inode) 503 { 504 might_sleep(); 505 /* 506 * We have to cycle tree_lock here because reclaim can be still in the 507 * process of removing the last page (in __delete_from_page_cache()) 508 * and we must not free mapping under it. 509 */ 510 spin_lock_irq(&inode->i_data.tree_lock); 511 BUG_ON(inode->i_data.nrpages); 512 spin_unlock_irq(&inode->i_data.tree_lock); 513 BUG_ON(!list_empty(&inode->i_data.private_list)); 514 BUG_ON(!(inode->i_state & I_FREEING)); 515 BUG_ON(inode->i_state & I_CLEAR); 516 inode_sync_wait(inode); 517 /* don't need i_lock here, no concurrent mods to i_state */ 518 inode->i_state = I_FREEING | I_CLEAR; 519 } 520 EXPORT_SYMBOL(end_writeback); 521 522 /* 523 * Free the inode passed in, removing it from the lists it is still connected 524 * to. We remove any pages still attached to the inode and wait for any IO that 525 * is still in progress before finally destroying the inode. 526 * 527 * An inode must already be marked I_FREEING so that we avoid the inode being 528 * moved back onto lists if we race with other code that manipulates the lists 529 * (e.g. writeback_single_inode). The caller is responsible for setting this. 530 * 531 * An inode must already be removed from the LRU list before being evicted from 532 * the cache. This should occur atomically with setting the I_FREEING state 533 * flag, so no inodes here should ever be on the LRU when being evicted. 534 */ 535 static void evict(struct inode *inode) 536 { 537 const struct super_operations *op = inode->i_sb->s_op; 538 539 BUG_ON(!(inode->i_state & I_FREEING)); 540 BUG_ON(!list_empty(&inode->i_lru)); 541 542 if (!list_empty(&inode->i_wb_list)) 543 inode_wb_list_del(inode); 544 545 inode_sb_list_del(inode); 546 547 if (op->evict_inode) { 548 op->evict_inode(inode); 549 } else { 550 if (inode->i_data.nrpages) 551 truncate_inode_pages(&inode->i_data, 0); 552 end_writeback(inode); 553 } 554 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 555 bd_forget(inode); 556 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 557 cd_forget(inode); 558 559 remove_inode_hash(inode); 560 561 spin_lock(&inode->i_lock); 562 wake_up_bit(&inode->i_state, __I_NEW); 563 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 564 spin_unlock(&inode->i_lock); 565 566 destroy_inode(inode); 567 } 568 569 /* 570 * dispose_list - dispose of the contents of a local list 571 * @head: the head of the list to free 572 * 573 * Dispose-list gets a local list with local inodes in it, so it doesn't 574 * need to worry about list corruption and SMP locks. 575 */ 576 static void dispose_list(struct list_head *head) 577 { 578 while (!list_empty(head)) { 579 struct inode *inode; 580 581 inode = list_first_entry(head, struct inode, i_lru); 582 list_del_init(&inode->i_lru); 583 584 evict(inode); 585 } 586 } 587 588 /** 589 * evict_inodes - evict all evictable inodes for a superblock 590 * @sb: superblock to operate on 591 * 592 * Make sure that no inodes with zero refcount are retained. This is 593 * called by superblock shutdown after having MS_ACTIVE flag removed, 594 * so any inode reaching zero refcount during or after that call will 595 * be immediately evicted. 596 */ 597 void evict_inodes(struct super_block *sb) 598 { 599 struct inode *inode, *next; 600 LIST_HEAD(dispose); 601 602 spin_lock(&inode_sb_list_lock); 603 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 604 if (atomic_read(&inode->i_count)) 605 continue; 606 607 spin_lock(&inode->i_lock); 608 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 609 spin_unlock(&inode->i_lock); 610 continue; 611 } 612 613 inode->i_state |= I_FREEING; 614 inode_lru_list_del(inode); 615 spin_unlock(&inode->i_lock); 616 list_add(&inode->i_lru, &dispose); 617 } 618 spin_unlock(&inode_sb_list_lock); 619 620 dispose_list(&dispose); 621 } 622 623 /** 624 * invalidate_inodes - attempt to free all inodes on a superblock 625 * @sb: superblock to operate on 626 * @kill_dirty: flag to guide handling of dirty inodes 627 * 628 * Attempts to free all inodes for a given superblock. If there were any 629 * busy inodes return a non-zero value, else zero. 630 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 631 * them as busy. 632 */ 633 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 634 { 635 int busy = 0; 636 struct inode *inode, *next; 637 LIST_HEAD(dispose); 638 639 spin_lock(&inode_sb_list_lock); 640 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 641 spin_lock(&inode->i_lock); 642 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 643 spin_unlock(&inode->i_lock); 644 continue; 645 } 646 if (inode->i_state & I_DIRTY && !kill_dirty) { 647 spin_unlock(&inode->i_lock); 648 busy = 1; 649 continue; 650 } 651 if (atomic_read(&inode->i_count)) { 652 spin_unlock(&inode->i_lock); 653 busy = 1; 654 continue; 655 } 656 657 inode->i_state |= I_FREEING; 658 inode_lru_list_del(inode); 659 spin_unlock(&inode->i_lock); 660 list_add(&inode->i_lru, &dispose); 661 } 662 spin_unlock(&inode_sb_list_lock); 663 664 dispose_list(&dispose); 665 666 return busy; 667 } 668 669 static int can_unuse(struct inode *inode) 670 { 671 if (inode->i_state & ~I_REFERENCED) 672 return 0; 673 if (inode_has_buffers(inode)) 674 return 0; 675 if (atomic_read(&inode->i_count)) 676 return 0; 677 if (inode->i_data.nrpages) 678 return 0; 679 return 1; 680 } 681 682 /* 683 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 684 * This is called from the superblock shrinker function with a number of inodes 685 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 686 * then are freed outside inode_lock by dispose_list(). 687 * 688 * Any inodes which are pinned purely because of attached pagecache have their 689 * pagecache removed. If the inode has metadata buffers attached to 690 * mapping->private_list then try to remove them. 691 * 692 * If the inode has the I_REFERENCED flag set, then it means that it has been 693 * used recently - the flag is set in iput_final(). When we encounter such an 694 * inode, clear the flag and move it to the back of the LRU so it gets another 695 * pass through the LRU before it gets reclaimed. This is necessary because of 696 * the fact we are doing lazy LRU updates to minimise lock contention so the 697 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 698 * with this flag set because they are the inodes that are out of order. 699 */ 700 void prune_icache_sb(struct super_block *sb, int nr_to_scan) 701 { 702 LIST_HEAD(freeable); 703 int nr_scanned; 704 unsigned long reap = 0; 705 706 spin_lock(&sb->s_inode_lru_lock); 707 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) { 708 struct inode *inode; 709 710 if (list_empty(&sb->s_inode_lru)) 711 break; 712 713 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru); 714 715 /* 716 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here, 717 * so use a trylock. If we fail to get the lock, just move the 718 * inode to the back of the list so we don't spin on it. 719 */ 720 if (!spin_trylock(&inode->i_lock)) { 721 list_move_tail(&inode->i_lru, &sb->s_inode_lru); 722 continue; 723 } 724 725 /* 726 * Referenced or dirty inodes are still in use. Give them 727 * another pass through the LRU as we canot reclaim them now. 728 */ 729 if (atomic_read(&inode->i_count) || 730 (inode->i_state & ~I_REFERENCED)) { 731 list_del_init(&inode->i_lru); 732 spin_unlock(&inode->i_lock); 733 sb->s_nr_inodes_unused--; 734 this_cpu_dec(nr_unused); 735 continue; 736 } 737 738 /* recently referenced inodes get one more pass */ 739 if (inode->i_state & I_REFERENCED) { 740 inode->i_state &= ~I_REFERENCED; 741 list_move(&inode->i_lru, &sb->s_inode_lru); 742 spin_unlock(&inode->i_lock); 743 continue; 744 } 745 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 746 __iget(inode); 747 spin_unlock(&inode->i_lock); 748 spin_unlock(&sb->s_inode_lru_lock); 749 if (remove_inode_buffers(inode)) 750 reap += invalidate_mapping_pages(&inode->i_data, 751 0, -1); 752 iput(inode); 753 spin_lock(&sb->s_inode_lru_lock); 754 755 if (inode != list_entry(sb->s_inode_lru.next, 756 struct inode, i_lru)) 757 continue; /* wrong inode or list_empty */ 758 /* avoid lock inversions with trylock */ 759 if (!spin_trylock(&inode->i_lock)) 760 continue; 761 if (!can_unuse(inode)) { 762 spin_unlock(&inode->i_lock); 763 continue; 764 } 765 } 766 WARN_ON(inode->i_state & I_NEW); 767 inode->i_state |= I_FREEING; 768 spin_unlock(&inode->i_lock); 769 770 list_move(&inode->i_lru, &freeable); 771 sb->s_nr_inodes_unused--; 772 this_cpu_dec(nr_unused); 773 } 774 if (current_is_kswapd()) 775 __count_vm_events(KSWAPD_INODESTEAL, reap); 776 else 777 __count_vm_events(PGINODESTEAL, reap); 778 spin_unlock(&sb->s_inode_lru_lock); 779 if (current->reclaim_state) 780 current->reclaim_state->reclaimed_slab += reap; 781 782 dispose_list(&freeable); 783 } 784 785 static void __wait_on_freeing_inode(struct inode *inode); 786 /* 787 * Called with the inode lock held. 788 */ 789 static struct inode *find_inode(struct super_block *sb, 790 struct hlist_head *head, 791 int (*test)(struct inode *, void *), 792 void *data) 793 { 794 struct hlist_node *node; 795 struct inode *inode = NULL; 796 797 repeat: 798 hlist_for_each_entry(inode, node, head, i_hash) { 799 spin_lock(&inode->i_lock); 800 if (inode->i_sb != sb) { 801 spin_unlock(&inode->i_lock); 802 continue; 803 } 804 if (!test(inode, data)) { 805 spin_unlock(&inode->i_lock); 806 continue; 807 } 808 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 809 __wait_on_freeing_inode(inode); 810 goto repeat; 811 } 812 __iget(inode); 813 spin_unlock(&inode->i_lock); 814 return inode; 815 } 816 return NULL; 817 } 818 819 /* 820 * find_inode_fast is the fast path version of find_inode, see the comment at 821 * iget_locked for details. 822 */ 823 static struct inode *find_inode_fast(struct super_block *sb, 824 struct hlist_head *head, unsigned long ino) 825 { 826 struct hlist_node *node; 827 struct inode *inode = NULL; 828 829 repeat: 830 hlist_for_each_entry(inode, node, head, i_hash) { 831 spin_lock(&inode->i_lock); 832 if (inode->i_ino != ino) { 833 spin_unlock(&inode->i_lock); 834 continue; 835 } 836 if (inode->i_sb != sb) { 837 spin_unlock(&inode->i_lock); 838 continue; 839 } 840 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 841 __wait_on_freeing_inode(inode); 842 goto repeat; 843 } 844 __iget(inode); 845 spin_unlock(&inode->i_lock); 846 return inode; 847 } 848 return NULL; 849 } 850 851 /* 852 * Each cpu owns a range of LAST_INO_BATCH numbers. 853 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 854 * to renew the exhausted range. 855 * 856 * This does not significantly increase overflow rate because every CPU can 857 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 858 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 859 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 860 * overflow rate by 2x, which does not seem too significant. 861 * 862 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 863 * error if st_ino won't fit in target struct field. Use 32bit counter 864 * here to attempt to avoid that. 865 */ 866 #define LAST_INO_BATCH 1024 867 static DEFINE_PER_CPU(unsigned int, last_ino); 868 869 unsigned int get_next_ino(void) 870 { 871 unsigned int *p = &get_cpu_var(last_ino); 872 unsigned int res = *p; 873 874 #ifdef CONFIG_SMP 875 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 876 static atomic_t shared_last_ino; 877 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 878 879 res = next - LAST_INO_BATCH; 880 } 881 #endif 882 883 *p = ++res; 884 put_cpu_var(last_ino); 885 return res; 886 } 887 EXPORT_SYMBOL(get_next_ino); 888 889 /** 890 * new_inode_pseudo - obtain an inode 891 * @sb: superblock 892 * 893 * Allocates a new inode for given superblock. 894 * Inode wont be chained in superblock s_inodes list 895 * This means : 896 * - fs can't be unmount 897 * - quotas, fsnotify, writeback can't work 898 */ 899 struct inode *new_inode_pseudo(struct super_block *sb) 900 { 901 struct inode *inode = alloc_inode(sb); 902 903 if (inode) { 904 spin_lock(&inode->i_lock); 905 inode->i_state = 0; 906 spin_unlock(&inode->i_lock); 907 INIT_LIST_HEAD(&inode->i_sb_list); 908 } 909 return inode; 910 } 911 912 /** 913 * new_inode - obtain an inode 914 * @sb: superblock 915 * 916 * Allocates a new inode for given superblock. The default gfp_mask 917 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 918 * If HIGHMEM pages are unsuitable or it is known that pages allocated 919 * for the page cache are not reclaimable or migratable, 920 * mapping_set_gfp_mask() must be called with suitable flags on the 921 * newly created inode's mapping 922 * 923 */ 924 struct inode *new_inode(struct super_block *sb) 925 { 926 struct inode *inode; 927 928 spin_lock_prefetch(&inode_sb_list_lock); 929 930 inode = new_inode_pseudo(sb); 931 if (inode) 932 inode_sb_list_add(inode); 933 return inode; 934 } 935 EXPORT_SYMBOL(new_inode); 936 937 #ifdef CONFIG_DEBUG_LOCK_ALLOC 938 void lockdep_annotate_inode_mutex_key(struct inode *inode) 939 { 940 if (S_ISDIR(inode->i_mode)) { 941 struct file_system_type *type = inode->i_sb->s_type; 942 943 /* Set new key only if filesystem hasn't already changed it */ 944 if (!lockdep_match_class(&inode->i_mutex, 945 &type->i_mutex_key)) { 946 /* 947 * ensure nobody is actually holding i_mutex 948 */ 949 mutex_destroy(&inode->i_mutex); 950 mutex_init(&inode->i_mutex); 951 lockdep_set_class(&inode->i_mutex, 952 &type->i_mutex_dir_key); 953 } 954 } 955 } 956 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 957 #endif 958 959 /** 960 * unlock_new_inode - clear the I_NEW state and wake up any waiters 961 * @inode: new inode to unlock 962 * 963 * Called when the inode is fully initialised to clear the new state of the 964 * inode and wake up anyone waiting for the inode to finish initialisation. 965 */ 966 void unlock_new_inode(struct inode *inode) 967 { 968 lockdep_annotate_inode_mutex_key(inode); 969 spin_lock(&inode->i_lock); 970 WARN_ON(!(inode->i_state & I_NEW)); 971 inode->i_state &= ~I_NEW; 972 wake_up_bit(&inode->i_state, __I_NEW); 973 spin_unlock(&inode->i_lock); 974 } 975 EXPORT_SYMBOL(unlock_new_inode); 976 977 /** 978 * iget5_locked - obtain an inode from a mounted file system 979 * @sb: super block of file system 980 * @hashval: hash value (usually inode number) to get 981 * @test: callback used for comparisons between inodes 982 * @set: callback used to initialize a new struct inode 983 * @data: opaque data pointer to pass to @test and @set 984 * 985 * Search for the inode specified by @hashval and @data in the inode cache, 986 * and if present it is return it with an increased reference count. This is 987 * a generalized version of iget_locked() for file systems where the inode 988 * number is not sufficient for unique identification of an inode. 989 * 990 * If the inode is not in cache, allocate a new inode and return it locked, 991 * hashed, and with the I_NEW flag set. The file system gets to fill it in 992 * before unlocking it via unlock_new_inode(). 993 * 994 * Note both @test and @set are called with the inode_hash_lock held, so can't 995 * sleep. 996 */ 997 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 998 int (*test)(struct inode *, void *), 999 int (*set)(struct inode *, void *), void *data) 1000 { 1001 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1002 struct inode *inode; 1003 1004 spin_lock(&inode_hash_lock); 1005 inode = find_inode(sb, head, test, data); 1006 spin_unlock(&inode_hash_lock); 1007 1008 if (inode) { 1009 wait_on_inode(inode); 1010 return inode; 1011 } 1012 1013 inode = alloc_inode(sb); 1014 if (inode) { 1015 struct inode *old; 1016 1017 spin_lock(&inode_hash_lock); 1018 /* We released the lock, so.. */ 1019 old = find_inode(sb, head, test, data); 1020 if (!old) { 1021 if (set(inode, data)) 1022 goto set_failed; 1023 1024 spin_lock(&inode->i_lock); 1025 inode->i_state = I_NEW; 1026 hlist_add_head(&inode->i_hash, head); 1027 spin_unlock(&inode->i_lock); 1028 inode_sb_list_add(inode); 1029 spin_unlock(&inode_hash_lock); 1030 1031 /* Return the locked inode with I_NEW set, the 1032 * caller is responsible for filling in the contents 1033 */ 1034 return inode; 1035 } 1036 1037 /* 1038 * Uhhuh, somebody else created the same inode under 1039 * us. Use the old inode instead of the one we just 1040 * allocated. 1041 */ 1042 spin_unlock(&inode_hash_lock); 1043 destroy_inode(inode); 1044 inode = old; 1045 wait_on_inode(inode); 1046 } 1047 return inode; 1048 1049 set_failed: 1050 spin_unlock(&inode_hash_lock); 1051 destroy_inode(inode); 1052 return NULL; 1053 } 1054 EXPORT_SYMBOL(iget5_locked); 1055 1056 /** 1057 * iget_locked - obtain an inode from a mounted file system 1058 * @sb: super block of file system 1059 * @ino: inode number to get 1060 * 1061 * Search for the inode specified by @ino in the inode cache and if present 1062 * return it with an increased reference count. This is for file systems 1063 * where the inode number is sufficient for unique identification of an inode. 1064 * 1065 * If the inode is not in cache, allocate a new inode and return it locked, 1066 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1067 * before unlocking it via unlock_new_inode(). 1068 */ 1069 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1070 { 1071 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1072 struct inode *inode; 1073 1074 spin_lock(&inode_hash_lock); 1075 inode = find_inode_fast(sb, head, ino); 1076 spin_unlock(&inode_hash_lock); 1077 if (inode) { 1078 wait_on_inode(inode); 1079 return inode; 1080 } 1081 1082 inode = alloc_inode(sb); 1083 if (inode) { 1084 struct inode *old; 1085 1086 spin_lock(&inode_hash_lock); 1087 /* We released the lock, so.. */ 1088 old = find_inode_fast(sb, head, ino); 1089 if (!old) { 1090 inode->i_ino = ino; 1091 spin_lock(&inode->i_lock); 1092 inode->i_state = I_NEW; 1093 hlist_add_head(&inode->i_hash, head); 1094 spin_unlock(&inode->i_lock); 1095 inode_sb_list_add(inode); 1096 spin_unlock(&inode_hash_lock); 1097 1098 /* Return the locked inode with I_NEW set, the 1099 * caller is responsible for filling in the contents 1100 */ 1101 return inode; 1102 } 1103 1104 /* 1105 * Uhhuh, somebody else created the same inode under 1106 * us. Use the old inode instead of the one we just 1107 * allocated. 1108 */ 1109 spin_unlock(&inode_hash_lock); 1110 destroy_inode(inode); 1111 inode = old; 1112 wait_on_inode(inode); 1113 } 1114 return inode; 1115 } 1116 EXPORT_SYMBOL(iget_locked); 1117 1118 /* 1119 * search the inode cache for a matching inode number. 1120 * If we find one, then the inode number we are trying to 1121 * allocate is not unique and so we should not use it. 1122 * 1123 * Returns 1 if the inode number is unique, 0 if it is not. 1124 */ 1125 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1126 { 1127 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1128 struct hlist_node *node; 1129 struct inode *inode; 1130 1131 spin_lock(&inode_hash_lock); 1132 hlist_for_each_entry(inode, node, b, i_hash) { 1133 if (inode->i_ino == ino && inode->i_sb == sb) { 1134 spin_unlock(&inode_hash_lock); 1135 return 0; 1136 } 1137 } 1138 spin_unlock(&inode_hash_lock); 1139 1140 return 1; 1141 } 1142 1143 /** 1144 * iunique - get a unique inode number 1145 * @sb: superblock 1146 * @max_reserved: highest reserved inode number 1147 * 1148 * Obtain an inode number that is unique on the system for a given 1149 * superblock. This is used by file systems that have no natural 1150 * permanent inode numbering system. An inode number is returned that 1151 * is higher than the reserved limit but unique. 1152 * 1153 * BUGS: 1154 * With a large number of inodes live on the file system this function 1155 * currently becomes quite slow. 1156 */ 1157 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1158 { 1159 /* 1160 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1161 * error if st_ino won't fit in target struct field. Use 32bit counter 1162 * here to attempt to avoid that. 1163 */ 1164 static DEFINE_SPINLOCK(iunique_lock); 1165 static unsigned int counter; 1166 ino_t res; 1167 1168 spin_lock(&iunique_lock); 1169 do { 1170 if (counter <= max_reserved) 1171 counter = max_reserved + 1; 1172 res = counter++; 1173 } while (!test_inode_iunique(sb, res)); 1174 spin_unlock(&iunique_lock); 1175 1176 return res; 1177 } 1178 EXPORT_SYMBOL(iunique); 1179 1180 struct inode *igrab(struct inode *inode) 1181 { 1182 spin_lock(&inode->i_lock); 1183 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1184 __iget(inode); 1185 spin_unlock(&inode->i_lock); 1186 } else { 1187 spin_unlock(&inode->i_lock); 1188 /* 1189 * Handle the case where s_op->clear_inode is not been 1190 * called yet, and somebody is calling igrab 1191 * while the inode is getting freed. 1192 */ 1193 inode = NULL; 1194 } 1195 return inode; 1196 } 1197 EXPORT_SYMBOL(igrab); 1198 1199 /** 1200 * ilookup5_nowait - search for an inode in the inode cache 1201 * @sb: super block of file system to search 1202 * @hashval: hash value (usually inode number) to search for 1203 * @test: callback used for comparisons between inodes 1204 * @data: opaque data pointer to pass to @test 1205 * 1206 * Search for the inode specified by @hashval and @data in the inode cache. 1207 * If the inode is in the cache, the inode is returned with an incremented 1208 * reference count. 1209 * 1210 * Note: I_NEW is not waited upon so you have to be very careful what you do 1211 * with the returned inode. You probably should be using ilookup5() instead. 1212 * 1213 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1214 */ 1215 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1216 int (*test)(struct inode *, void *), void *data) 1217 { 1218 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1219 struct inode *inode; 1220 1221 spin_lock(&inode_hash_lock); 1222 inode = find_inode(sb, head, test, data); 1223 spin_unlock(&inode_hash_lock); 1224 1225 return inode; 1226 } 1227 EXPORT_SYMBOL(ilookup5_nowait); 1228 1229 /** 1230 * ilookup5 - search for an inode in the inode cache 1231 * @sb: super block of file system to search 1232 * @hashval: hash value (usually inode number) to search for 1233 * @test: callback used for comparisons between inodes 1234 * @data: opaque data pointer to pass to @test 1235 * 1236 * Search for the inode specified by @hashval and @data in the inode cache, 1237 * and if the inode is in the cache, return the inode with an incremented 1238 * reference count. Waits on I_NEW before returning the inode. 1239 * returned with an incremented reference count. 1240 * 1241 * This is a generalized version of ilookup() for file systems where the 1242 * inode number is not sufficient for unique identification of an inode. 1243 * 1244 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1245 */ 1246 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1247 int (*test)(struct inode *, void *), void *data) 1248 { 1249 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1250 1251 if (inode) 1252 wait_on_inode(inode); 1253 return inode; 1254 } 1255 EXPORT_SYMBOL(ilookup5); 1256 1257 /** 1258 * ilookup - search for an inode in the inode cache 1259 * @sb: super block of file system to search 1260 * @ino: inode number to search for 1261 * 1262 * Search for the inode @ino in the inode cache, and if the inode is in the 1263 * cache, the inode is returned with an incremented reference count. 1264 */ 1265 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1266 { 1267 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1268 struct inode *inode; 1269 1270 spin_lock(&inode_hash_lock); 1271 inode = find_inode_fast(sb, head, ino); 1272 spin_unlock(&inode_hash_lock); 1273 1274 if (inode) 1275 wait_on_inode(inode); 1276 return inode; 1277 } 1278 EXPORT_SYMBOL(ilookup); 1279 1280 int insert_inode_locked(struct inode *inode) 1281 { 1282 struct super_block *sb = inode->i_sb; 1283 ino_t ino = inode->i_ino; 1284 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1285 1286 while (1) { 1287 struct hlist_node *node; 1288 struct inode *old = NULL; 1289 spin_lock(&inode_hash_lock); 1290 hlist_for_each_entry(old, node, head, i_hash) { 1291 if (old->i_ino != ino) 1292 continue; 1293 if (old->i_sb != sb) 1294 continue; 1295 spin_lock(&old->i_lock); 1296 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1297 spin_unlock(&old->i_lock); 1298 continue; 1299 } 1300 break; 1301 } 1302 if (likely(!node)) { 1303 spin_lock(&inode->i_lock); 1304 inode->i_state |= I_NEW; 1305 hlist_add_head(&inode->i_hash, head); 1306 spin_unlock(&inode->i_lock); 1307 spin_unlock(&inode_hash_lock); 1308 return 0; 1309 } 1310 __iget(old); 1311 spin_unlock(&old->i_lock); 1312 spin_unlock(&inode_hash_lock); 1313 wait_on_inode(old); 1314 if (unlikely(!inode_unhashed(old))) { 1315 iput(old); 1316 return -EBUSY; 1317 } 1318 iput(old); 1319 } 1320 } 1321 EXPORT_SYMBOL(insert_inode_locked); 1322 1323 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1324 int (*test)(struct inode *, void *), void *data) 1325 { 1326 struct super_block *sb = inode->i_sb; 1327 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1328 1329 while (1) { 1330 struct hlist_node *node; 1331 struct inode *old = NULL; 1332 1333 spin_lock(&inode_hash_lock); 1334 hlist_for_each_entry(old, node, head, i_hash) { 1335 if (old->i_sb != sb) 1336 continue; 1337 if (!test(old, data)) 1338 continue; 1339 spin_lock(&old->i_lock); 1340 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1341 spin_unlock(&old->i_lock); 1342 continue; 1343 } 1344 break; 1345 } 1346 if (likely(!node)) { 1347 spin_lock(&inode->i_lock); 1348 inode->i_state |= I_NEW; 1349 hlist_add_head(&inode->i_hash, head); 1350 spin_unlock(&inode->i_lock); 1351 spin_unlock(&inode_hash_lock); 1352 return 0; 1353 } 1354 __iget(old); 1355 spin_unlock(&old->i_lock); 1356 spin_unlock(&inode_hash_lock); 1357 wait_on_inode(old); 1358 if (unlikely(!inode_unhashed(old))) { 1359 iput(old); 1360 return -EBUSY; 1361 } 1362 iput(old); 1363 } 1364 } 1365 EXPORT_SYMBOL(insert_inode_locked4); 1366 1367 1368 int generic_delete_inode(struct inode *inode) 1369 { 1370 return 1; 1371 } 1372 EXPORT_SYMBOL(generic_delete_inode); 1373 1374 /* 1375 * Normal UNIX filesystem behaviour: delete the 1376 * inode when the usage count drops to zero, and 1377 * i_nlink is zero. 1378 */ 1379 int generic_drop_inode(struct inode *inode) 1380 { 1381 return !inode->i_nlink || inode_unhashed(inode); 1382 } 1383 EXPORT_SYMBOL_GPL(generic_drop_inode); 1384 1385 /* 1386 * Called when we're dropping the last reference 1387 * to an inode. 1388 * 1389 * Call the FS "drop_inode()" function, defaulting to 1390 * the legacy UNIX filesystem behaviour. If it tells 1391 * us to evict inode, do so. Otherwise, retain inode 1392 * in cache if fs is alive, sync and evict if fs is 1393 * shutting down. 1394 */ 1395 static void iput_final(struct inode *inode) 1396 { 1397 struct super_block *sb = inode->i_sb; 1398 const struct super_operations *op = inode->i_sb->s_op; 1399 int drop; 1400 1401 WARN_ON(inode->i_state & I_NEW); 1402 1403 if (op->drop_inode) 1404 drop = op->drop_inode(inode); 1405 else 1406 drop = generic_drop_inode(inode); 1407 1408 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1409 inode->i_state |= I_REFERENCED; 1410 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1411 inode_lru_list_add(inode); 1412 spin_unlock(&inode->i_lock); 1413 return; 1414 } 1415 1416 if (!drop) { 1417 inode->i_state |= I_WILL_FREE; 1418 spin_unlock(&inode->i_lock); 1419 write_inode_now(inode, 1); 1420 spin_lock(&inode->i_lock); 1421 WARN_ON(inode->i_state & I_NEW); 1422 inode->i_state &= ~I_WILL_FREE; 1423 } 1424 1425 inode->i_state |= I_FREEING; 1426 if (!list_empty(&inode->i_lru)) 1427 inode_lru_list_del(inode); 1428 spin_unlock(&inode->i_lock); 1429 1430 evict(inode); 1431 } 1432 1433 /** 1434 * iput - put an inode 1435 * @inode: inode to put 1436 * 1437 * Puts an inode, dropping its usage count. If the inode use count hits 1438 * zero, the inode is then freed and may also be destroyed. 1439 * 1440 * Consequently, iput() can sleep. 1441 */ 1442 void iput(struct inode *inode) 1443 { 1444 if (inode) { 1445 BUG_ON(inode->i_state & I_CLEAR); 1446 1447 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1448 iput_final(inode); 1449 } 1450 } 1451 EXPORT_SYMBOL(iput); 1452 1453 /** 1454 * bmap - find a block number in a file 1455 * @inode: inode of file 1456 * @block: block to find 1457 * 1458 * Returns the block number on the device holding the inode that 1459 * is the disk block number for the block of the file requested. 1460 * That is, asked for block 4 of inode 1 the function will return the 1461 * disk block relative to the disk start that holds that block of the 1462 * file. 1463 */ 1464 sector_t bmap(struct inode *inode, sector_t block) 1465 { 1466 sector_t res = 0; 1467 if (inode->i_mapping->a_ops->bmap) 1468 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1469 return res; 1470 } 1471 EXPORT_SYMBOL(bmap); 1472 1473 /* 1474 * With relative atime, only update atime if the previous atime is 1475 * earlier than either the ctime or mtime or if at least a day has 1476 * passed since the last atime update. 1477 */ 1478 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1479 struct timespec now) 1480 { 1481 1482 if (!(mnt->mnt_flags & MNT_RELATIME)) 1483 return 1; 1484 /* 1485 * Is mtime younger than atime? If yes, update atime: 1486 */ 1487 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1488 return 1; 1489 /* 1490 * Is ctime younger than atime? If yes, update atime: 1491 */ 1492 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1493 return 1; 1494 1495 /* 1496 * Is the previous atime value older than a day? If yes, 1497 * update atime: 1498 */ 1499 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1500 return 1; 1501 /* 1502 * Good, we can skip the atime update: 1503 */ 1504 return 0; 1505 } 1506 1507 /** 1508 * touch_atime - update the access time 1509 * @mnt: mount the inode is accessed on 1510 * @dentry: dentry accessed 1511 * 1512 * Update the accessed time on an inode and mark it for writeback. 1513 * This function automatically handles read only file systems and media, 1514 * as well as the "noatime" flag and inode specific "noatime" markers. 1515 */ 1516 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1517 { 1518 struct inode *inode = dentry->d_inode; 1519 struct timespec now; 1520 1521 if (inode->i_flags & S_NOATIME) 1522 return; 1523 if (IS_NOATIME(inode)) 1524 return; 1525 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1526 return; 1527 1528 if (mnt->mnt_flags & MNT_NOATIME) 1529 return; 1530 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1531 return; 1532 1533 now = current_fs_time(inode->i_sb); 1534 1535 if (!relatime_need_update(mnt, inode, now)) 1536 return; 1537 1538 if (timespec_equal(&inode->i_atime, &now)) 1539 return; 1540 1541 if (mnt_want_write(mnt)) 1542 return; 1543 1544 inode->i_atime = now; 1545 mark_inode_dirty_sync(inode); 1546 mnt_drop_write(mnt); 1547 } 1548 EXPORT_SYMBOL(touch_atime); 1549 1550 /** 1551 * file_update_time - update mtime and ctime time 1552 * @file: file accessed 1553 * 1554 * Update the mtime and ctime members of an inode and mark the inode 1555 * for writeback. Note that this function is meant exclusively for 1556 * usage in the file write path of filesystems, and filesystems may 1557 * choose to explicitly ignore update via this function with the 1558 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1559 * timestamps are handled by the server. 1560 */ 1561 1562 void file_update_time(struct file *file) 1563 { 1564 struct inode *inode = file->f_path.dentry->d_inode; 1565 struct timespec now; 1566 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1567 1568 /* First try to exhaust all avenues to not sync */ 1569 if (IS_NOCMTIME(inode)) 1570 return; 1571 1572 now = current_fs_time(inode->i_sb); 1573 if (!timespec_equal(&inode->i_mtime, &now)) 1574 sync_it = S_MTIME; 1575 1576 if (!timespec_equal(&inode->i_ctime, &now)) 1577 sync_it |= S_CTIME; 1578 1579 if (IS_I_VERSION(inode)) 1580 sync_it |= S_VERSION; 1581 1582 if (!sync_it) 1583 return; 1584 1585 /* Finally allowed to write? Takes lock. */ 1586 if (mnt_want_write_file(file)) 1587 return; 1588 1589 /* Only change inode inside the lock region */ 1590 if (sync_it & S_VERSION) 1591 inode_inc_iversion(inode); 1592 if (sync_it & S_CTIME) 1593 inode->i_ctime = now; 1594 if (sync_it & S_MTIME) 1595 inode->i_mtime = now; 1596 mark_inode_dirty_sync(inode); 1597 mnt_drop_write_file(file); 1598 } 1599 EXPORT_SYMBOL(file_update_time); 1600 1601 int inode_needs_sync(struct inode *inode) 1602 { 1603 if (IS_SYNC(inode)) 1604 return 1; 1605 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1606 return 1; 1607 return 0; 1608 } 1609 EXPORT_SYMBOL(inode_needs_sync); 1610 1611 int inode_wait(void *word) 1612 { 1613 schedule(); 1614 return 0; 1615 } 1616 EXPORT_SYMBOL(inode_wait); 1617 1618 /* 1619 * If we try to find an inode in the inode hash while it is being 1620 * deleted, we have to wait until the filesystem completes its 1621 * deletion before reporting that it isn't found. This function waits 1622 * until the deletion _might_ have completed. Callers are responsible 1623 * to recheck inode state. 1624 * 1625 * It doesn't matter if I_NEW is not set initially, a call to 1626 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1627 * will DTRT. 1628 */ 1629 static void __wait_on_freeing_inode(struct inode *inode) 1630 { 1631 wait_queue_head_t *wq; 1632 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1633 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1634 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1635 spin_unlock(&inode->i_lock); 1636 spin_unlock(&inode_hash_lock); 1637 schedule(); 1638 finish_wait(wq, &wait.wait); 1639 spin_lock(&inode_hash_lock); 1640 } 1641 1642 static __initdata unsigned long ihash_entries; 1643 static int __init set_ihash_entries(char *str) 1644 { 1645 if (!str) 1646 return 0; 1647 ihash_entries = simple_strtoul(str, &str, 0); 1648 return 1; 1649 } 1650 __setup("ihash_entries=", set_ihash_entries); 1651 1652 /* 1653 * Initialize the waitqueues and inode hash table. 1654 */ 1655 void __init inode_init_early(void) 1656 { 1657 int loop; 1658 1659 /* If hashes are distributed across NUMA nodes, defer 1660 * hash allocation until vmalloc space is available. 1661 */ 1662 if (hashdist) 1663 return; 1664 1665 inode_hashtable = 1666 alloc_large_system_hash("Inode-cache", 1667 sizeof(struct hlist_head), 1668 ihash_entries, 1669 14, 1670 HASH_EARLY, 1671 &i_hash_shift, 1672 &i_hash_mask, 1673 0); 1674 1675 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1676 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1677 } 1678 1679 void __init inode_init(void) 1680 { 1681 int loop; 1682 1683 /* inode slab cache */ 1684 inode_cachep = kmem_cache_create("inode_cache", 1685 sizeof(struct inode), 1686 0, 1687 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1688 SLAB_MEM_SPREAD), 1689 init_once); 1690 1691 /* Hash may have been set up in inode_init_early */ 1692 if (!hashdist) 1693 return; 1694 1695 inode_hashtable = 1696 alloc_large_system_hash("Inode-cache", 1697 sizeof(struct hlist_head), 1698 ihash_entries, 1699 14, 1700 0, 1701 &i_hash_shift, 1702 &i_hash_mask, 1703 0); 1704 1705 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1706 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1707 } 1708 1709 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1710 { 1711 inode->i_mode = mode; 1712 if (S_ISCHR(mode)) { 1713 inode->i_fop = &def_chr_fops; 1714 inode->i_rdev = rdev; 1715 } else if (S_ISBLK(mode)) { 1716 inode->i_fop = &def_blk_fops; 1717 inode->i_rdev = rdev; 1718 } else if (S_ISFIFO(mode)) 1719 inode->i_fop = &def_fifo_fops; 1720 else if (S_ISSOCK(mode)) 1721 inode->i_fop = &bad_sock_fops; 1722 else 1723 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1724 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1725 inode->i_ino); 1726 } 1727 EXPORT_SYMBOL(init_special_inode); 1728 1729 /** 1730 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1731 * @inode: New inode 1732 * @dir: Directory inode 1733 * @mode: mode of the new inode 1734 */ 1735 void inode_init_owner(struct inode *inode, const struct inode *dir, 1736 umode_t mode) 1737 { 1738 inode->i_uid = current_fsuid(); 1739 if (dir && dir->i_mode & S_ISGID) { 1740 inode->i_gid = dir->i_gid; 1741 if (S_ISDIR(mode)) 1742 mode |= S_ISGID; 1743 } else 1744 inode->i_gid = current_fsgid(); 1745 inode->i_mode = mode; 1746 } 1747 EXPORT_SYMBOL(inode_init_owner); 1748 1749 /** 1750 * inode_owner_or_capable - check current task permissions to inode 1751 * @inode: inode being checked 1752 * 1753 * Return true if current either has CAP_FOWNER to the inode, or 1754 * owns the file. 1755 */ 1756 bool inode_owner_or_capable(const struct inode *inode) 1757 { 1758 struct user_namespace *ns = inode_userns(inode); 1759 1760 if (current_user_ns() == ns && current_fsuid() == inode->i_uid) 1761 return true; 1762 if (ns_capable(ns, CAP_FOWNER)) 1763 return true; 1764 return false; 1765 } 1766 EXPORT_SYMBOL(inode_owner_or_capable); 1767