xref: /linux/fs/inode.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include <linux/ratelimit.h>
30 #include "internal.h"
31 
32 /*
33  * Inode locking rules:
34  *
35  * inode->i_lock protects:
36  *   inode->i_state, inode->i_hash, __iget()
37  * inode->i_sb->s_inode_lru_lock protects:
38  *   inode->i_sb->s_inode_lru, inode->i_lru
39  * inode_sb_list_lock protects:
40  *   sb->s_inodes, inode->i_sb_list
41  * bdi->wb.list_lock protects:
42  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43  * inode_hash_lock protects:
44  *   inode_hashtable, inode->i_hash
45  *
46  * Lock ordering:
47  *
48  * inode_sb_list_lock
49  *   inode->i_lock
50  *     inode->i_sb->s_inode_lru_lock
51  *
52  * bdi->wb.list_lock
53  *   inode->i_lock
54  *
55  * inode_hash_lock
56  *   inode_sb_list_lock
57  *   inode->i_lock
58  *
59  * iunique_lock
60  *   inode_hash_lock
61  */
62 
63 static unsigned int i_hash_mask __read_mostly;
64 static unsigned int i_hash_shift __read_mostly;
65 static struct hlist_head *inode_hashtable __read_mostly;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67 
68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
69 
70 /*
71  * Empty aops. Can be used for the cases where the user does not
72  * define any of the address_space operations.
73  */
74 const struct address_space_operations empty_aops = {
75 };
76 EXPORT_SYMBOL(empty_aops);
77 
78 /*
79  * Statistics gathering..
80  */
81 struct inodes_stat_t inodes_stat;
82 
83 static DEFINE_PER_CPU(unsigned int, nr_inodes);
84 static DEFINE_PER_CPU(unsigned int, nr_unused);
85 
86 static struct kmem_cache *inode_cachep __read_mostly;
87 
88 static int get_nr_inodes(void)
89 {
90 	int i;
91 	int sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_inodes, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 static inline int get_nr_inodes_unused(void)
98 {
99 	int i;
100 	int sum = 0;
101 	for_each_possible_cpu(i)
102 		sum += per_cpu(nr_unused, i);
103 	return sum < 0 ? 0 : sum;
104 }
105 
106 int get_nr_dirty_inodes(void)
107 {
108 	/* not actually dirty inodes, but a wild approximation */
109 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
110 	return nr_dirty > 0 ? nr_dirty : 0;
111 }
112 
113 /*
114  * Handle nr_inode sysctl
115  */
116 #ifdef CONFIG_SYSCTL
117 int proc_nr_inodes(ctl_table *table, int write,
118 		   void __user *buffer, size_t *lenp, loff_t *ppos)
119 {
120 	inodes_stat.nr_inodes = get_nr_inodes();
121 	inodes_stat.nr_unused = get_nr_inodes_unused();
122 	return proc_dointvec(table, write, buffer, lenp, ppos);
123 }
124 #endif
125 
126 /**
127  * inode_init_always - perform inode structure intialisation
128  * @sb: superblock inode belongs to
129  * @inode: inode to initialise
130  *
131  * These are initializations that need to be done on every inode
132  * allocation as the fields are not initialised by slab allocation.
133  */
134 int inode_init_always(struct super_block *sb, struct inode *inode)
135 {
136 	static const struct inode_operations empty_iops;
137 	static const struct file_operations empty_fops;
138 	struct address_space *const mapping = &inode->i_data;
139 
140 	inode->i_sb = sb;
141 	inode->i_blkbits = sb->s_blocksize_bits;
142 	inode->i_flags = 0;
143 	atomic_set(&inode->i_count, 1);
144 	inode->i_op = &empty_iops;
145 	inode->i_fop = &empty_fops;
146 	inode->__i_nlink = 1;
147 	inode->i_opflags = 0;
148 	inode->i_uid = 0;
149 	inode->i_gid = 0;
150 	atomic_set(&inode->i_writecount, 0);
151 	inode->i_size = 0;
152 	inode->i_blocks = 0;
153 	inode->i_bytes = 0;
154 	inode->i_generation = 0;
155 #ifdef CONFIG_QUOTA
156 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
157 #endif
158 	inode->i_pipe = NULL;
159 	inode->i_bdev = NULL;
160 	inode->i_cdev = NULL;
161 	inode->i_rdev = 0;
162 	inode->dirtied_when = 0;
163 
164 	if (security_inode_alloc(inode))
165 		goto out;
166 	spin_lock_init(&inode->i_lock);
167 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168 
169 	mutex_init(&inode->i_mutex);
170 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
171 
172 	atomic_set(&inode->i_dio_count, 0);
173 
174 	mapping->a_ops = &empty_aops;
175 	mapping->host = inode;
176 	mapping->flags = 0;
177 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 	mapping->assoc_mapping = NULL;
179 	mapping->backing_dev_info = &default_backing_dev_info;
180 	mapping->writeback_index = 0;
181 
182 	/*
183 	 * If the block_device provides a backing_dev_info for client
184 	 * inodes then use that.  Otherwise the inode share the bdev's
185 	 * backing_dev_info.
186 	 */
187 	if (sb->s_bdev) {
188 		struct backing_dev_info *bdi;
189 
190 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
191 		mapping->backing_dev_info = bdi;
192 	}
193 	inode->i_private = NULL;
194 	inode->i_mapping = mapping;
195 	INIT_LIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199 
200 #ifdef CONFIG_FSNOTIFY
201 	inode->i_fsnotify_mask = 0;
202 #endif
203 
204 	this_cpu_inc(nr_inodes);
205 
206 	return 0;
207 out:
208 	return -ENOMEM;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211 
212 static struct inode *alloc_inode(struct super_block *sb)
213 {
214 	struct inode *inode;
215 
216 	if (sb->s_op->alloc_inode)
217 		inode = sb->s_op->alloc_inode(sb);
218 	else
219 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
220 
221 	if (!inode)
222 		return NULL;
223 
224 	if (unlikely(inode_init_always(sb, inode))) {
225 		if (inode->i_sb->s_op->destroy_inode)
226 			inode->i_sb->s_op->destroy_inode(inode);
227 		else
228 			kmem_cache_free(inode_cachep, inode);
229 		return NULL;
230 	}
231 
232 	return inode;
233 }
234 
235 void free_inode_nonrcu(struct inode *inode)
236 {
237 	kmem_cache_free(inode_cachep, inode);
238 }
239 EXPORT_SYMBOL(free_inode_nonrcu);
240 
241 void __destroy_inode(struct inode *inode)
242 {
243 	BUG_ON(inode_has_buffers(inode));
244 	security_inode_free(inode);
245 	fsnotify_inode_delete(inode);
246 	if (!inode->i_nlink) {
247 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
248 		atomic_long_dec(&inode->i_sb->s_remove_count);
249 	}
250 
251 #ifdef CONFIG_FS_POSIX_ACL
252 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
253 		posix_acl_release(inode->i_acl);
254 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
255 		posix_acl_release(inode->i_default_acl);
256 #endif
257 	this_cpu_dec(nr_inodes);
258 }
259 EXPORT_SYMBOL(__destroy_inode);
260 
261 static void i_callback(struct rcu_head *head)
262 {
263 	struct inode *inode = container_of(head, struct inode, i_rcu);
264 	kmem_cache_free(inode_cachep, inode);
265 }
266 
267 static void destroy_inode(struct inode *inode)
268 {
269 	BUG_ON(!list_empty(&inode->i_lru));
270 	__destroy_inode(inode);
271 	if (inode->i_sb->s_op->destroy_inode)
272 		inode->i_sb->s_op->destroy_inode(inode);
273 	else
274 		call_rcu(&inode->i_rcu, i_callback);
275 }
276 
277 /**
278  * drop_nlink - directly drop an inode's link count
279  * @inode: inode
280  *
281  * This is a low-level filesystem helper to replace any
282  * direct filesystem manipulation of i_nlink.  In cases
283  * where we are attempting to track writes to the
284  * filesystem, a decrement to zero means an imminent
285  * write when the file is truncated and actually unlinked
286  * on the filesystem.
287  */
288 void drop_nlink(struct inode *inode)
289 {
290 	WARN_ON(inode->i_nlink == 0);
291 	inode->__i_nlink--;
292 	if (!inode->i_nlink)
293 		atomic_long_inc(&inode->i_sb->s_remove_count);
294 }
295 EXPORT_SYMBOL(drop_nlink);
296 
297 /**
298  * clear_nlink - directly zero an inode's link count
299  * @inode: inode
300  *
301  * This is a low-level filesystem helper to replace any
302  * direct filesystem manipulation of i_nlink.  See
303  * drop_nlink() for why we care about i_nlink hitting zero.
304  */
305 void clear_nlink(struct inode *inode)
306 {
307 	if (inode->i_nlink) {
308 		inode->__i_nlink = 0;
309 		atomic_long_inc(&inode->i_sb->s_remove_count);
310 	}
311 }
312 EXPORT_SYMBOL(clear_nlink);
313 
314 /**
315  * set_nlink - directly set an inode's link count
316  * @inode: inode
317  * @nlink: new nlink (should be non-zero)
318  *
319  * This is a low-level filesystem helper to replace any
320  * direct filesystem manipulation of i_nlink.
321  */
322 void set_nlink(struct inode *inode, unsigned int nlink)
323 {
324 	if (!nlink) {
325 		printk_ratelimited(KERN_INFO
326 			"set_nlink() clearing i_nlink on %s inode %li\n",
327 			inode->i_sb->s_type->name, inode->i_ino);
328 		clear_nlink(inode);
329 	} else {
330 		/* Yes, some filesystems do change nlink from zero to one */
331 		if (inode->i_nlink == 0)
332 			atomic_long_dec(&inode->i_sb->s_remove_count);
333 
334 		inode->__i_nlink = nlink;
335 	}
336 }
337 EXPORT_SYMBOL(set_nlink);
338 
339 /**
340  * inc_nlink - directly increment an inode's link count
341  * @inode: inode
342  *
343  * This is a low-level filesystem helper to replace any
344  * direct filesystem manipulation of i_nlink.  Currently,
345  * it is only here for parity with dec_nlink().
346  */
347 void inc_nlink(struct inode *inode)
348 {
349 	if (WARN_ON(inode->i_nlink == 0))
350 		atomic_long_dec(&inode->i_sb->s_remove_count);
351 
352 	inode->__i_nlink++;
353 }
354 EXPORT_SYMBOL(inc_nlink);
355 
356 void address_space_init_once(struct address_space *mapping)
357 {
358 	memset(mapping, 0, sizeof(*mapping));
359 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
360 	spin_lock_init(&mapping->tree_lock);
361 	mutex_init(&mapping->i_mmap_mutex);
362 	INIT_LIST_HEAD(&mapping->private_list);
363 	spin_lock_init(&mapping->private_lock);
364 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
365 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
366 }
367 EXPORT_SYMBOL(address_space_init_once);
368 
369 /*
370  * These are initializations that only need to be done
371  * once, because the fields are idempotent across use
372  * of the inode, so let the slab aware of that.
373  */
374 void inode_init_once(struct inode *inode)
375 {
376 	memset(inode, 0, sizeof(*inode));
377 	INIT_HLIST_NODE(&inode->i_hash);
378 	INIT_LIST_HEAD(&inode->i_devices);
379 	INIT_LIST_HEAD(&inode->i_wb_list);
380 	INIT_LIST_HEAD(&inode->i_lru);
381 	address_space_init_once(&inode->i_data);
382 	i_size_ordered_init(inode);
383 #ifdef CONFIG_FSNOTIFY
384 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
385 #endif
386 }
387 EXPORT_SYMBOL(inode_init_once);
388 
389 static void init_once(void *foo)
390 {
391 	struct inode *inode = (struct inode *) foo;
392 
393 	inode_init_once(inode);
394 }
395 
396 /*
397  * inode->i_lock must be held
398  */
399 void __iget(struct inode *inode)
400 {
401 	atomic_inc(&inode->i_count);
402 }
403 
404 /*
405  * get additional reference to inode; caller must already hold one.
406  */
407 void ihold(struct inode *inode)
408 {
409 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
410 }
411 EXPORT_SYMBOL(ihold);
412 
413 static void inode_lru_list_add(struct inode *inode)
414 {
415 	spin_lock(&inode->i_sb->s_inode_lru_lock);
416 	if (list_empty(&inode->i_lru)) {
417 		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
418 		inode->i_sb->s_nr_inodes_unused++;
419 		this_cpu_inc(nr_unused);
420 	}
421 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
422 }
423 
424 static void inode_lru_list_del(struct inode *inode)
425 {
426 	spin_lock(&inode->i_sb->s_inode_lru_lock);
427 	if (!list_empty(&inode->i_lru)) {
428 		list_del_init(&inode->i_lru);
429 		inode->i_sb->s_nr_inodes_unused--;
430 		this_cpu_dec(nr_unused);
431 	}
432 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
433 }
434 
435 /**
436  * inode_sb_list_add - add inode to the superblock list of inodes
437  * @inode: inode to add
438  */
439 void inode_sb_list_add(struct inode *inode)
440 {
441 	spin_lock(&inode_sb_list_lock);
442 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
443 	spin_unlock(&inode_sb_list_lock);
444 }
445 EXPORT_SYMBOL_GPL(inode_sb_list_add);
446 
447 static inline void inode_sb_list_del(struct inode *inode)
448 {
449 	if (!list_empty(&inode->i_sb_list)) {
450 		spin_lock(&inode_sb_list_lock);
451 		list_del_init(&inode->i_sb_list);
452 		spin_unlock(&inode_sb_list_lock);
453 	}
454 }
455 
456 static unsigned long hash(struct super_block *sb, unsigned long hashval)
457 {
458 	unsigned long tmp;
459 
460 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
461 			L1_CACHE_BYTES;
462 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
463 	return tmp & i_hash_mask;
464 }
465 
466 /**
467  *	__insert_inode_hash - hash an inode
468  *	@inode: unhashed inode
469  *	@hashval: unsigned long value used to locate this object in the
470  *		inode_hashtable.
471  *
472  *	Add an inode to the inode hash for this superblock.
473  */
474 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
475 {
476 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
477 
478 	spin_lock(&inode_hash_lock);
479 	spin_lock(&inode->i_lock);
480 	hlist_add_head(&inode->i_hash, b);
481 	spin_unlock(&inode->i_lock);
482 	spin_unlock(&inode_hash_lock);
483 }
484 EXPORT_SYMBOL(__insert_inode_hash);
485 
486 /**
487  *	__remove_inode_hash - remove an inode from the hash
488  *	@inode: inode to unhash
489  *
490  *	Remove an inode from the superblock.
491  */
492 void __remove_inode_hash(struct inode *inode)
493 {
494 	spin_lock(&inode_hash_lock);
495 	spin_lock(&inode->i_lock);
496 	hlist_del_init(&inode->i_hash);
497 	spin_unlock(&inode->i_lock);
498 	spin_unlock(&inode_hash_lock);
499 }
500 EXPORT_SYMBOL(__remove_inode_hash);
501 
502 void end_writeback(struct inode *inode)
503 {
504 	might_sleep();
505 	/*
506 	 * We have to cycle tree_lock here because reclaim can be still in the
507 	 * process of removing the last page (in __delete_from_page_cache())
508 	 * and we must not free mapping under it.
509 	 */
510 	spin_lock_irq(&inode->i_data.tree_lock);
511 	BUG_ON(inode->i_data.nrpages);
512 	spin_unlock_irq(&inode->i_data.tree_lock);
513 	BUG_ON(!list_empty(&inode->i_data.private_list));
514 	BUG_ON(!(inode->i_state & I_FREEING));
515 	BUG_ON(inode->i_state & I_CLEAR);
516 	inode_sync_wait(inode);
517 	/* don't need i_lock here, no concurrent mods to i_state */
518 	inode->i_state = I_FREEING | I_CLEAR;
519 }
520 EXPORT_SYMBOL(end_writeback);
521 
522 /*
523  * Free the inode passed in, removing it from the lists it is still connected
524  * to. We remove any pages still attached to the inode and wait for any IO that
525  * is still in progress before finally destroying the inode.
526  *
527  * An inode must already be marked I_FREEING so that we avoid the inode being
528  * moved back onto lists if we race with other code that manipulates the lists
529  * (e.g. writeback_single_inode). The caller is responsible for setting this.
530  *
531  * An inode must already be removed from the LRU list before being evicted from
532  * the cache. This should occur atomically with setting the I_FREEING state
533  * flag, so no inodes here should ever be on the LRU when being evicted.
534  */
535 static void evict(struct inode *inode)
536 {
537 	const struct super_operations *op = inode->i_sb->s_op;
538 
539 	BUG_ON(!(inode->i_state & I_FREEING));
540 	BUG_ON(!list_empty(&inode->i_lru));
541 
542 	if (!list_empty(&inode->i_wb_list))
543 		inode_wb_list_del(inode);
544 
545 	inode_sb_list_del(inode);
546 
547 	if (op->evict_inode) {
548 		op->evict_inode(inode);
549 	} else {
550 		if (inode->i_data.nrpages)
551 			truncate_inode_pages(&inode->i_data, 0);
552 		end_writeback(inode);
553 	}
554 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
555 		bd_forget(inode);
556 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
557 		cd_forget(inode);
558 
559 	remove_inode_hash(inode);
560 
561 	spin_lock(&inode->i_lock);
562 	wake_up_bit(&inode->i_state, __I_NEW);
563 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
564 	spin_unlock(&inode->i_lock);
565 
566 	destroy_inode(inode);
567 }
568 
569 /*
570  * dispose_list - dispose of the contents of a local list
571  * @head: the head of the list to free
572  *
573  * Dispose-list gets a local list with local inodes in it, so it doesn't
574  * need to worry about list corruption and SMP locks.
575  */
576 static void dispose_list(struct list_head *head)
577 {
578 	while (!list_empty(head)) {
579 		struct inode *inode;
580 
581 		inode = list_first_entry(head, struct inode, i_lru);
582 		list_del_init(&inode->i_lru);
583 
584 		evict(inode);
585 	}
586 }
587 
588 /**
589  * evict_inodes	- evict all evictable inodes for a superblock
590  * @sb:		superblock to operate on
591  *
592  * Make sure that no inodes with zero refcount are retained.  This is
593  * called by superblock shutdown after having MS_ACTIVE flag removed,
594  * so any inode reaching zero refcount during or after that call will
595  * be immediately evicted.
596  */
597 void evict_inodes(struct super_block *sb)
598 {
599 	struct inode *inode, *next;
600 	LIST_HEAD(dispose);
601 
602 	spin_lock(&inode_sb_list_lock);
603 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
604 		if (atomic_read(&inode->i_count))
605 			continue;
606 
607 		spin_lock(&inode->i_lock);
608 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
609 			spin_unlock(&inode->i_lock);
610 			continue;
611 		}
612 
613 		inode->i_state |= I_FREEING;
614 		inode_lru_list_del(inode);
615 		spin_unlock(&inode->i_lock);
616 		list_add(&inode->i_lru, &dispose);
617 	}
618 	spin_unlock(&inode_sb_list_lock);
619 
620 	dispose_list(&dispose);
621 }
622 
623 /**
624  * invalidate_inodes	- attempt to free all inodes on a superblock
625  * @sb:		superblock to operate on
626  * @kill_dirty: flag to guide handling of dirty inodes
627  *
628  * Attempts to free all inodes for a given superblock.  If there were any
629  * busy inodes return a non-zero value, else zero.
630  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
631  * them as busy.
632  */
633 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
634 {
635 	int busy = 0;
636 	struct inode *inode, *next;
637 	LIST_HEAD(dispose);
638 
639 	spin_lock(&inode_sb_list_lock);
640 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
641 		spin_lock(&inode->i_lock);
642 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
643 			spin_unlock(&inode->i_lock);
644 			continue;
645 		}
646 		if (inode->i_state & I_DIRTY && !kill_dirty) {
647 			spin_unlock(&inode->i_lock);
648 			busy = 1;
649 			continue;
650 		}
651 		if (atomic_read(&inode->i_count)) {
652 			spin_unlock(&inode->i_lock);
653 			busy = 1;
654 			continue;
655 		}
656 
657 		inode->i_state |= I_FREEING;
658 		inode_lru_list_del(inode);
659 		spin_unlock(&inode->i_lock);
660 		list_add(&inode->i_lru, &dispose);
661 	}
662 	spin_unlock(&inode_sb_list_lock);
663 
664 	dispose_list(&dispose);
665 
666 	return busy;
667 }
668 
669 static int can_unuse(struct inode *inode)
670 {
671 	if (inode->i_state & ~I_REFERENCED)
672 		return 0;
673 	if (inode_has_buffers(inode))
674 		return 0;
675 	if (atomic_read(&inode->i_count))
676 		return 0;
677 	if (inode->i_data.nrpages)
678 		return 0;
679 	return 1;
680 }
681 
682 /*
683  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
684  * This is called from the superblock shrinker function with a number of inodes
685  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
686  * then are freed outside inode_lock by dispose_list().
687  *
688  * Any inodes which are pinned purely because of attached pagecache have their
689  * pagecache removed.  If the inode has metadata buffers attached to
690  * mapping->private_list then try to remove them.
691  *
692  * If the inode has the I_REFERENCED flag set, then it means that it has been
693  * used recently - the flag is set in iput_final(). When we encounter such an
694  * inode, clear the flag and move it to the back of the LRU so it gets another
695  * pass through the LRU before it gets reclaimed. This is necessary because of
696  * the fact we are doing lazy LRU updates to minimise lock contention so the
697  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
698  * with this flag set because they are the inodes that are out of order.
699  */
700 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
701 {
702 	LIST_HEAD(freeable);
703 	int nr_scanned;
704 	unsigned long reap = 0;
705 
706 	spin_lock(&sb->s_inode_lru_lock);
707 	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
708 		struct inode *inode;
709 
710 		if (list_empty(&sb->s_inode_lru))
711 			break;
712 
713 		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
714 
715 		/*
716 		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
717 		 * so use a trylock. If we fail to get the lock, just move the
718 		 * inode to the back of the list so we don't spin on it.
719 		 */
720 		if (!spin_trylock(&inode->i_lock)) {
721 			list_move_tail(&inode->i_lru, &sb->s_inode_lru);
722 			continue;
723 		}
724 
725 		/*
726 		 * Referenced or dirty inodes are still in use. Give them
727 		 * another pass through the LRU as we canot reclaim them now.
728 		 */
729 		if (atomic_read(&inode->i_count) ||
730 		    (inode->i_state & ~I_REFERENCED)) {
731 			list_del_init(&inode->i_lru);
732 			spin_unlock(&inode->i_lock);
733 			sb->s_nr_inodes_unused--;
734 			this_cpu_dec(nr_unused);
735 			continue;
736 		}
737 
738 		/* recently referenced inodes get one more pass */
739 		if (inode->i_state & I_REFERENCED) {
740 			inode->i_state &= ~I_REFERENCED;
741 			list_move(&inode->i_lru, &sb->s_inode_lru);
742 			spin_unlock(&inode->i_lock);
743 			continue;
744 		}
745 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
746 			__iget(inode);
747 			spin_unlock(&inode->i_lock);
748 			spin_unlock(&sb->s_inode_lru_lock);
749 			if (remove_inode_buffers(inode))
750 				reap += invalidate_mapping_pages(&inode->i_data,
751 								0, -1);
752 			iput(inode);
753 			spin_lock(&sb->s_inode_lru_lock);
754 
755 			if (inode != list_entry(sb->s_inode_lru.next,
756 						struct inode, i_lru))
757 				continue;	/* wrong inode or list_empty */
758 			/* avoid lock inversions with trylock */
759 			if (!spin_trylock(&inode->i_lock))
760 				continue;
761 			if (!can_unuse(inode)) {
762 				spin_unlock(&inode->i_lock);
763 				continue;
764 			}
765 		}
766 		WARN_ON(inode->i_state & I_NEW);
767 		inode->i_state |= I_FREEING;
768 		spin_unlock(&inode->i_lock);
769 
770 		list_move(&inode->i_lru, &freeable);
771 		sb->s_nr_inodes_unused--;
772 		this_cpu_dec(nr_unused);
773 	}
774 	if (current_is_kswapd())
775 		__count_vm_events(KSWAPD_INODESTEAL, reap);
776 	else
777 		__count_vm_events(PGINODESTEAL, reap);
778 	spin_unlock(&sb->s_inode_lru_lock);
779 	if (current->reclaim_state)
780 		current->reclaim_state->reclaimed_slab += reap;
781 
782 	dispose_list(&freeable);
783 }
784 
785 static void __wait_on_freeing_inode(struct inode *inode);
786 /*
787  * Called with the inode lock held.
788  */
789 static struct inode *find_inode(struct super_block *sb,
790 				struct hlist_head *head,
791 				int (*test)(struct inode *, void *),
792 				void *data)
793 {
794 	struct hlist_node *node;
795 	struct inode *inode = NULL;
796 
797 repeat:
798 	hlist_for_each_entry(inode, node, head, i_hash) {
799 		spin_lock(&inode->i_lock);
800 		if (inode->i_sb != sb) {
801 			spin_unlock(&inode->i_lock);
802 			continue;
803 		}
804 		if (!test(inode, data)) {
805 			spin_unlock(&inode->i_lock);
806 			continue;
807 		}
808 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
809 			__wait_on_freeing_inode(inode);
810 			goto repeat;
811 		}
812 		__iget(inode);
813 		spin_unlock(&inode->i_lock);
814 		return inode;
815 	}
816 	return NULL;
817 }
818 
819 /*
820  * find_inode_fast is the fast path version of find_inode, see the comment at
821  * iget_locked for details.
822  */
823 static struct inode *find_inode_fast(struct super_block *sb,
824 				struct hlist_head *head, unsigned long ino)
825 {
826 	struct hlist_node *node;
827 	struct inode *inode = NULL;
828 
829 repeat:
830 	hlist_for_each_entry(inode, node, head, i_hash) {
831 		spin_lock(&inode->i_lock);
832 		if (inode->i_ino != ino) {
833 			spin_unlock(&inode->i_lock);
834 			continue;
835 		}
836 		if (inode->i_sb != sb) {
837 			spin_unlock(&inode->i_lock);
838 			continue;
839 		}
840 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
841 			__wait_on_freeing_inode(inode);
842 			goto repeat;
843 		}
844 		__iget(inode);
845 		spin_unlock(&inode->i_lock);
846 		return inode;
847 	}
848 	return NULL;
849 }
850 
851 /*
852  * Each cpu owns a range of LAST_INO_BATCH numbers.
853  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
854  * to renew the exhausted range.
855  *
856  * This does not significantly increase overflow rate because every CPU can
857  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
858  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
859  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
860  * overflow rate by 2x, which does not seem too significant.
861  *
862  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
863  * error if st_ino won't fit in target struct field. Use 32bit counter
864  * here to attempt to avoid that.
865  */
866 #define LAST_INO_BATCH 1024
867 static DEFINE_PER_CPU(unsigned int, last_ino);
868 
869 unsigned int get_next_ino(void)
870 {
871 	unsigned int *p = &get_cpu_var(last_ino);
872 	unsigned int res = *p;
873 
874 #ifdef CONFIG_SMP
875 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
876 		static atomic_t shared_last_ino;
877 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
878 
879 		res = next - LAST_INO_BATCH;
880 	}
881 #endif
882 
883 	*p = ++res;
884 	put_cpu_var(last_ino);
885 	return res;
886 }
887 EXPORT_SYMBOL(get_next_ino);
888 
889 /**
890  *	new_inode_pseudo 	- obtain an inode
891  *	@sb: superblock
892  *
893  *	Allocates a new inode for given superblock.
894  *	Inode wont be chained in superblock s_inodes list
895  *	This means :
896  *	- fs can't be unmount
897  *	- quotas, fsnotify, writeback can't work
898  */
899 struct inode *new_inode_pseudo(struct super_block *sb)
900 {
901 	struct inode *inode = alloc_inode(sb);
902 
903 	if (inode) {
904 		spin_lock(&inode->i_lock);
905 		inode->i_state = 0;
906 		spin_unlock(&inode->i_lock);
907 		INIT_LIST_HEAD(&inode->i_sb_list);
908 	}
909 	return inode;
910 }
911 
912 /**
913  *	new_inode 	- obtain an inode
914  *	@sb: superblock
915  *
916  *	Allocates a new inode for given superblock. The default gfp_mask
917  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
918  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
919  *	for the page cache are not reclaimable or migratable,
920  *	mapping_set_gfp_mask() must be called with suitable flags on the
921  *	newly created inode's mapping
922  *
923  */
924 struct inode *new_inode(struct super_block *sb)
925 {
926 	struct inode *inode;
927 
928 	spin_lock_prefetch(&inode_sb_list_lock);
929 
930 	inode = new_inode_pseudo(sb);
931 	if (inode)
932 		inode_sb_list_add(inode);
933 	return inode;
934 }
935 EXPORT_SYMBOL(new_inode);
936 
937 #ifdef CONFIG_DEBUG_LOCK_ALLOC
938 void lockdep_annotate_inode_mutex_key(struct inode *inode)
939 {
940 	if (S_ISDIR(inode->i_mode)) {
941 		struct file_system_type *type = inode->i_sb->s_type;
942 
943 		/* Set new key only if filesystem hasn't already changed it */
944 		if (!lockdep_match_class(&inode->i_mutex,
945 		    &type->i_mutex_key)) {
946 			/*
947 			 * ensure nobody is actually holding i_mutex
948 			 */
949 			mutex_destroy(&inode->i_mutex);
950 			mutex_init(&inode->i_mutex);
951 			lockdep_set_class(&inode->i_mutex,
952 					  &type->i_mutex_dir_key);
953 		}
954 	}
955 }
956 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
957 #endif
958 
959 /**
960  * unlock_new_inode - clear the I_NEW state and wake up any waiters
961  * @inode:	new inode to unlock
962  *
963  * Called when the inode is fully initialised to clear the new state of the
964  * inode and wake up anyone waiting for the inode to finish initialisation.
965  */
966 void unlock_new_inode(struct inode *inode)
967 {
968 	lockdep_annotate_inode_mutex_key(inode);
969 	spin_lock(&inode->i_lock);
970 	WARN_ON(!(inode->i_state & I_NEW));
971 	inode->i_state &= ~I_NEW;
972 	wake_up_bit(&inode->i_state, __I_NEW);
973 	spin_unlock(&inode->i_lock);
974 }
975 EXPORT_SYMBOL(unlock_new_inode);
976 
977 /**
978  * iget5_locked - obtain an inode from a mounted file system
979  * @sb:		super block of file system
980  * @hashval:	hash value (usually inode number) to get
981  * @test:	callback used for comparisons between inodes
982  * @set:	callback used to initialize a new struct inode
983  * @data:	opaque data pointer to pass to @test and @set
984  *
985  * Search for the inode specified by @hashval and @data in the inode cache,
986  * and if present it is return it with an increased reference count. This is
987  * a generalized version of iget_locked() for file systems where the inode
988  * number is not sufficient for unique identification of an inode.
989  *
990  * If the inode is not in cache, allocate a new inode and return it locked,
991  * hashed, and with the I_NEW flag set. The file system gets to fill it in
992  * before unlocking it via unlock_new_inode().
993  *
994  * Note both @test and @set are called with the inode_hash_lock held, so can't
995  * sleep.
996  */
997 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
998 		int (*test)(struct inode *, void *),
999 		int (*set)(struct inode *, void *), void *data)
1000 {
1001 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1002 	struct inode *inode;
1003 
1004 	spin_lock(&inode_hash_lock);
1005 	inode = find_inode(sb, head, test, data);
1006 	spin_unlock(&inode_hash_lock);
1007 
1008 	if (inode) {
1009 		wait_on_inode(inode);
1010 		return inode;
1011 	}
1012 
1013 	inode = alloc_inode(sb);
1014 	if (inode) {
1015 		struct inode *old;
1016 
1017 		spin_lock(&inode_hash_lock);
1018 		/* We released the lock, so.. */
1019 		old = find_inode(sb, head, test, data);
1020 		if (!old) {
1021 			if (set(inode, data))
1022 				goto set_failed;
1023 
1024 			spin_lock(&inode->i_lock);
1025 			inode->i_state = I_NEW;
1026 			hlist_add_head(&inode->i_hash, head);
1027 			spin_unlock(&inode->i_lock);
1028 			inode_sb_list_add(inode);
1029 			spin_unlock(&inode_hash_lock);
1030 
1031 			/* Return the locked inode with I_NEW set, the
1032 			 * caller is responsible for filling in the contents
1033 			 */
1034 			return inode;
1035 		}
1036 
1037 		/*
1038 		 * Uhhuh, somebody else created the same inode under
1039 		 * us. Use the old inode instead of the one we just
1040 		 * allocated.
1041 		 */
1042 		spin_unlock(&inode_hash_lock);
1043 		destroy_inode(inode);
1044 		inode = old;
1045 		wait_on_inode(inode);
1046 	}
1047 	return inode;
1048 
1049 set_failed:
1050 	spin_unlock(&inode_hash_lock);
1051 	destroy_inode(inode);
1052 	return NULL;
1053 }
1054 EXPORT_SYMBOL(iget5_locked);
1055 
1056 /**
1057  * iget_locked - obtain an inode from a mounted file system
1058  * @sb:		super block of file system
1059  * @ino:	inode number to get
1060  *
1061  * Search for the inode specified by @ino in the inode cache and if present
1062  * return it with an increased reference count. This is for file systems
1063  * where the inode number is sufficient for unique identification of an inode.
1064  *
1065  * If the inode is not in cache, allocate a new inode and return it locked,
1066  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1067  * before unlocking it via unlock_new_inode().
1068  */
1069 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1070 {
1071 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1072 	struct inode *inode;
1073 
1074 	spin_lock(&inode_hash_lock);
1075 	inode = find_inode_fast(sb, head, ino);
1076 	spin_unlock(&inode_hash_lock);
1077 	if (inode) {
1078 		wait_on_inode(inode);
1079 		return inode;
1080 	}
1081 
1082 	inode = alloc_inode(sb);
1083 	if (inode) {
1084 		struct inode *old;
1085 
1086 		spin_lock(&inode_hash_lock);
1087 		/* We released the lock, so.. */
1088 		old = find_inode_fast(sb, head, ino);
1089 		if (!old) {
1090 			inode->i_ino = ino;
1091 			spin_lock(&inode->i_lock);
1092 			inode->i_state = I_NEW;
1093 			hlist_add_head(&inode->i_hash, head);
1094 			spin_unlock(&inode->i_lock);
1095 			inode_sb_list_add(inode);
1096 			spin_unlock(&inode_hash_lock);
1097 
1098 			/* Return the locked inode with I_NEW set, the
1099 			 * caller is responsible for filling in the contents
1100 			 */
1101 			return inode;
1102 		}
1103 
1104 		/*
1105 		 * Uhhuh, somebody else created the same inode under
1106 		 * us. Use the old inode instead of the one we just
1107 		 * allocated.
1108 		 */
1109 		spin_unlock(&inode_hash_lock);
1110 		destroy_inode(inode);
1111 		inode = old;
1112 		wait_on_inode(inode);
1113 	}
1114 	return inode;
1115 }
1116 EXPORT_SYMBOL(iget_locked);
1117 
1118 /*
1119  * search the inode cache for a matching inode number.
1120  * If we find one, then the inode number we are trying to
1121  * allocate is not unique and so we should not use it.
1122  *
1123  * Returns 1 if the inode number is unique, 0 if it is not.
1124  */
1125 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1126 {
1127 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1128 	struct hlist_node *node;
1129 	struct inode *inode;
1130 
1131 	spin_lock(&inode_hash_lock);
1132 	hlist_for_each_entry(inode, node, b, i_hash) {
1133 		if (inode->i_ino == ino && inode->i_sb == sb) {
1134 			spin_unlock(&inode_hash_lock);
1135 			return 0;
1136 		}
1137 	}
1138 	spin_unlock(&inode_hash_lock);
1139 
1140 	return 1;
1141 }
1142 
1143 /**
1144  *	iunique - get a unique inode number
1145  *	@sb: superblock
1146  *	@max_reserved: highest reserved inode number
1147  *
1148  *	Obtain an inode number that is unique on the system for a given
1149  *	superblock. This is used by file systems that have no natural
1150  *	permanent inode numbering system. An inode number is returned that
1151  *	is higher than the reserved limit but unique.
1152  *
1153  *	BUGS:
1154  *	With a large number of inodes live on the file system this function
1155  *	currently becomes quite slow.
1156  */
1157 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1158 {
1159 	/*
1160 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1161 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1162 	 * here to attempt to avoid that.
1163 	 */
1164 	static DEFINE_SPINLOCK(iunique_lock);
1165 	static unsigned int counter;
1166 	ino_t res;
1167 
1168 	spin_lock(&iunique_lock);
1169 	do {
1170 		if (counter <= max_reserved)
1171 			counter = max_reserved + 1;
1172 		res = counter++;
1173 	} while (!test_inode_iunique(sb, res));
1174 	spin_unlock(&iunique_lock);
1175 
1176 	return res;
1177 }
1178 EXPORT_SYMBOL(iunique);
1179 
1180 struct inode *igrab(struct inode *inode)
1181 {
1182 	spin_lock(&inode->i_lock);
1183 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1184 		__iget(inode);
1185 		spin_unlock(&inode->i_lock);
1186 	} else {
1187 		spin_unlock(&inode->i_lock);
1188 		/*
1189 		 * Handle the case where s_op->clear_inode is not been
1190 		 * called yet, and somebody is calling igrab
1191 		 * while the inode is getting freed.
1192 		 */
1193 		inode = NULL;
1194 	}
1195 	return inode;
1196 }
1197 EXPORT_SYMBOL(igrab);
1198 
1199 /**
1200  * ilookup5_nowait - search for an inode in the inode cache
1201  * @sb:		super block of file system to search
1202  * @hashval:	hash value (usually inode number) to search for
1203  * @test:	callback used for comparisons between inodes
1204  * @data:	opaque data pointer to pass to @test
1205  *
1206  * Search for the inode specified by @hashval and @data in the inode cache.
1207  * If the inode is in the cache, the inode is returned with an incremented
1208  * reference count.
1209  *
1210  * Note: I_NEW is not waited upon so you have to be very careful what you do
1211  * with the returned inode.  You probably should be using ilookup5() instead.
1212  *
1213  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1214  */
1215 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1216 		int (*test)(struct inode *, void *), void *data)
1217 {
1218 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1219 	struct inode *inode;
1220 
1221 	spin_lock(&inode_hash_lock);
1222 	inode = find_inode(sb, head, test, data);
1223 	spin_unlock(&inode_hash_lock);
1224 
1225 	return inode;
1226 }
1227 EXPORT_SYMBOL(ilookup5_nowait);
1228 
1229 /**
1230  * ilookup5 - search for an inode in the inode cache
1231  * @sb:		super block of file system to search
1232  * @hashval:	hash value (usually inode number) to search for
1233  * @test:	callback used for comparisons between inodes
1234  * @data:	opaque data pointer to pass to @test
1235  *
1236  * Search for the inode specified by @hashval and @data in the inode cache,
1237  * and if the inode is in the cache, return the inode with an incremented
1238  * reference count.  Waits on I_NEW before returning the inode.
1239  * returned with an incremented reference count.
1240  *
1241  * This is a generalized version of ilookup() for file systems where the
1242  * inode number is not sufficient for unique identification of an inode.
1243  *
1244  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1245  */
1246 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1247 		int (*test)(struct inode *, void *), void *data)
1248 {
1249 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1250 
1251 	if (inode)
1252 		wait_on_inode(inode);
1253 	return inode;
1254 }
1255 EXPORT_SYMBOL(ilookup5);
1256 
1257 /**
1258  * ilookup - search for an inode in the inode cache
1259  * @sb:		super block of file system to search
1260  * @ino:	inode number to search for
1261  *
1262  * Search for the inode @ino in the inode cache, and if the inode is in the
1263  * cache, the inode is returned with an incremented reference count.
1264  */
1265 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1266 {
1267 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1268 	struct inode *inode;
1269 
1270 	spin_lock(&inode_hash_lock);
1271 	inode = find_inode_fast(sb, head, ino);
1272 	spin_unlock(&inode_hash_lock);
1273 
1274 	if (inode)
1275 		wait_on_inode(inode);
1276 	return inode;
1277 }
1278 EXPORT_SYMBOL(ilookup);
1279 
1280 int insert_inode_locked(struct inode *inode)
1281 {
1282 	struct super_block *sb = inode->i_sb;
1283 	ino_t ino = inode->i_ino;
1284 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1285 
1286 	while (1) {
1287 		struct hlist_node *node;
1288 		struct inode *old = NULL;
1289 		spin_lock(&inode_hash_lock);
1290 		hlist_for_each_entry(old, node, head, i_hash) {
1291 			if (old->i_ino != ino)
1292 				continue;
1293 			if (old->i_sb != sb)
1294 				continue;
1295 			spin_lock(&old->i_lock);
1296 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1297 				spin_unlock(&old->i_lock);
1298 				continue;
1299 			}
1300 			break;
1301 		}
1302 		if (likely(!node)) {
1303 			spin_lock(&inode->i_lock);
1304 			inode->i_state |= I_NEW;
1305 			hlist_add_head(&inode->i_hash, head);
1306 			spin_unlock(&inode->i_lock);
1307 			spin_unlock(&inode_hash_lock);
1308 			return 0;
1309 		}
1310 		__iget(old);
1311 		spin_unlock(&old->i_lock);
1312 		spin_unlock(&inode_hash_lock);
1313 		wait_on_inode(old);
1314 		if (unlikely(!inode_unhashed(old))) {
1315 			iput(old);
1316 			return -EBUSY;
1317 		}
1318 		iput(old);
1319 	}
1320 }
1321 EXPORT_SYMBOL(insert_inode_locked);
1322 
1323 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1324 		int (*test)(struct inode *, void *), void *data)
1325 {
1326 	struct super_block *sb = inode->i_sb;
1327 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1328 
1329 	while (1) {
1330 		struct hlist_node *node;
1331 		struct inode *old = NULL;
1332 
1333 		spin_lock(&inode_hash_lock);
1334 		hlist_for_each_entry(old, node, head, i_hash) {
1335 			if (old->i_sb != sb)
1336 				continue;
1337 			if (!test(old, data))
1338 				continue;
1339 			spin_lock(&old->i_lock);
1340 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1341 				spin_unlock(&old->i_lock);
1342 				continue;
1343 			}
1344 			break;
1345 		}
1346 		if (likely(!node)) {
1347 			spin_lock(&inode->i_lock);
1348 			inode->i_state |= I_NEW;
1349 			hlist_add_head(&inode->i_hash, head);
1350 			spin_unlock(&inode->i_lock);
1351 			spin_unlock(&inode_hash_lock);
1352 			return 0;
1353 		}
1354 		__iget(old);
1355 		spin_unlock(&old->i_lock);
1356 		spin_unlock(&inode_hash_lock);
1357 		wait_on_inode(old);
1358 		if (unlikely(!inode_unhashed(old))) {
1359 			iput(old);
1360 			return -EBUSY;
1361 		}
1362 		iput(old);
1363 	}
1364 }
1365 EXPORT_SYMBOL(insert_inode_locked4);
1366 
1367 
1368 int generic_delete_inode(struct inode *inode)
1369 {
1370 	return 1;
1371 }
1372 EXPORT_SYMBOL(generic_delete_inode);
1373 
1374 /*
1375  * Normal UNIX filesystem behaviour: delete the
1376  * inode when the usage count drops to zero, and
1377  * i_nlink is zero.
1378  */
1379 int generic_drop_inode(struct inode *inode)
1380 {
1381 	return !inode->i_nlink || inode_unhashed(inode);
1382 }
1383 EXPORT_SYMBOL_GPL(generic_drop_inode);
1384 
1385 /*
1386  * Called when we're dropping the last reference
1387  * to an inode.
1388  *
1389  * Call the FS "drop_inode()" function, defaulting to
1390  * the legacy UNIX filesystem behaviour.  If it tells
1391  * us to evict inode, do so.  Otherwise, retain inode
1392  * in cache if fs is alive, sync and evict if fs is
1393  * shutting down.
1394  */
1395 static void iput_final(struct inode *inode)
1396 {
1397 	struct super_block *sb = inode->i_sb;
1398 	const struct super_operations *op = inode->i_sb->s_op;
1399 	int drop;
1400 
1401 	WARN_ON(inode->i_state & I_NEW);
1402 
1403 	if (op->drop_inode)
1404 		drop = op->drop_inode(inode);
1405 	else
1406 		drop = generic_drop_inode(inode);
1407 
1408 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1409 		inode->i_state |= I_REFERENCED;
1410 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1411 			inode_lru_list_add(inode);
1412 		spin_unlock(&inode->i_lock);
1413 		return;
1414 	}
1415 
1416 	if (!drop) {
1417 		inode->i_state |= I_WILL_FREE;
1418 		spin_unlock(&inode->i_lock);
1419 		write_inode_now(inode, 1);
1420 		spin_lock(&inode->i_lock);
1421 		WARN_ON(inode->i_state & I_NEW);
1422 		inode->i_state &= ~I_WILL_FREE;
1423 	}
1424 
1425 	inode->i_state |= I_FREEING;
1426 	if (!list_empty(&inode->i_lru))
1427 		inode_lru_list_del(inode);
1428 	spin_unlock(&inode->i_lock);
1429 
1430 	evict(inode);
1431 }
1432 
1433 /**
1434  *	iput	- put an inode
1435  *	@inode: inode to put
1436  *
1437  *	Puts an inode, dropping its usage count. If the inode use count hits
1438  *	zero, the inode is then freed and may also be destroyed.
1439  *
1440  *	Consequently, iput() can sleep.
1441  */
1442 void iput(struct inode *inode)
1443 {
1444 	if (inode) {
1445 		BUG_ON(inode->i_state & I_CLEAR);
1446 
1447 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1448 			iput_final(inode);
1449 	}
1450 }
1451 EXPORT_SYMBOL(iput);
1452 
1453 /**
1454  *	bmap	- find a block number in a file
1455  *	@inode: inode of file
1456  *	@block: block to find
1457  *
1458  *	Returns the block number on the device holding the inode that
1459  *	is the disk block number for the block of the file requested.
1460  *	That is, asked for block 4 of inode 1 the function will return the
1461  *	disk block relative to the disk start that holds that block of the
1462  *	file.
1463  */
1464 sector_t bmap(struct inode *inode, sector_t block)
1465 {
1466 	sector_t res = 0;
1467 	if (inode->i_mapping->a_ops->bmap)
1468 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1469 	return res;
1470 }
1471 EXPORT_SYMBOL(bmap);
1472 
1473 /*
1474  * With relative atime, only update atime if the previous atime is
1475  * earlier than either the ctime or mtime or if at least a day has
1476  * passed since the last atime update.
1477  */
1478 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1479 			     struct timespec now)
1480 {
1481 
1482 	if (!(mnt->mnt_flags & MNT_RELATIME))
1483 		return 1;
1484 	/*
1485 	 * Is mtime younger than atime? If yes, update atime:
1486 	 */
1487 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1488 		return 1;
1489 	/*
1490 	 * Is ctime younger than atime? If yes, update atime:
1491 	 */
1492 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1493 		return 1;
1494 
1495 	/*
1496 	 * Is the previous atime value older than a day? If yes,
1497 	 * update atime:
1498 	 */
1499 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1500 		return 1;
1501 	/*
1502 	 * Good, we can skip the atime update:
1503 	 */
1504 	return 0;
1505 }
1506 
1507 /**
1508  *	touch_atime	-	update the access time
1509  *	@mnt: mount the inode is accessed on
1510  *	@dentry: dentry accessed
1511  *
1512  *	Update the accessed time on an inode and mark it for writeback.
1513  *	This function automatically handles read only file systems and media,
1514  *	as well as the "noatime" flag and inode specific "noatime" markers.
1515  */
1516 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1517 {
1518 	struct inode *inode = dentry->d_inode;
1519 	struct timespec now;
1520 
1521 	if (inode->i_flags & S_NOATIME)
1522 		return;
1523 	if (IS_NOATIME(inode))
1524 		return;
1525 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1526 		return;
1527 
1528 	if (mnt->mnt_flags & MNT_NOATIME)
1529 		return;
1530 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1531 		return;
1532 
1533 	now = current_fs_time(inode->i_sb);
1534 
1535 	if (!relatime_need_update(mnt, inode, now))
1536 		return;
1537 
1538 	if (timespec_equal(&inode->i_atime, &now))
1539 		return;
1540 
1541 	if (mnt_want_write(mnt))
1542 		return;
1543 
1544 	inode->i_atime = now;
1545 	mark_inode_dirty_sync(inode);
1546 	mnt_drop_write(mnt);
1547 }
1548 EXPORT_SYMBOL(touch_atime);
1549 
1550 /**
1551  *	file_update_time	-	update mtime and ctime time
1552  *	@file: file accessed
1553  *
1554  *	Update the mtime and ctime members of an inode and mark the inode
1555  *	for writeback.  Note that this function is meant exclusively for
1556  *	usage in the file write path of filesystems, and filesystems may
1557  *	choose to explicitly ignore update via this function with the
1558  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1559  *	timestamps are handled by the server.
1560  */
1561 
1562 void file_update_time(struct file *file)
1563 {
1564 	struct inode *inode = file->f_path.dentry->d_inode;
1565 	struct timespec now;
1566 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1567 
1568 	/* First try to exhaust all avenues to not sync */
1569 	if (IS_NOCMTIME(inode))
1570 		return;
1571 
1572 	now = current_fs_time(inode->i_sb);
1573 	if (!timespec_equal(&inode->i_mtime, &now))
1574 		sync_it = S_MTIME;
1575 
1576 	if (!timespec_equal(&inode->i_ctime, &now))
1577 		sync_it |= S_CTIME;
1578 
1579 	if (IS_I_VERSION(inode))
1580 		sync_it |= S_VERSION;
1581 
1582 	if (!sync_it)
1583 		return;
1584 
1585 	/* Finally allowed to write? Takes lock. */
1586 	if (mnt_want_write_file(file))
1587 		return;
1588 
1589 	/* Only change inode inside the lock region */
1590 	if (sync_it & S_VERSION)
1591 		inode_inc_iversion(inode);
1592 	if (sync_it & S_CTIME)
1593 		inode->i_ctime = now;
1594 	if (sync_it & S_MTIME)
1595 		inode->i_mtime = now;
1596 	mark_inode_dirty_sync(inode);
1597 	mnt_drop_write_file(file);
1598 }
1599 EXPORT_SYMBOL(file_update_time);
1600 
1601 int inode_needs_sync(struct inode *inode)
1602 {
1603 	if (IS_SYNC(inode))
1604 		return 1;
1605 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1606 		return 1;
1607 	return 0;
1608 }
1609 EXPORT_SYMBOL(inode_needs_sync);
1610 
1611 int inode_wait(void *word)
1612 {
1613 	schedule();
1614 	return 0;
1615 }
1616 EXPORT_SYMBOL(inode_wait);
1617 
1618 /*
1619  * If we try to find an inode in the inode hash while it is being
1620  * deleted, we have to wait until the filesystem completes its
1621  * deletion before reporting that it isn't found.  This function waits
1622  * until the deletion _might_ have completed.  Callers are responsible
1623  * to recheck inode state.
1624  *
1625  * It doesn't matter if I_NEW is not set initially, a call to
1626  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1627  * will DTRT.
1628  */
1629 static void __wait_on_freeing_inode(struct inode *inode)
1630 {
1631 	wait_queue_head_t *wq;
1632 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1633 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1634 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1635 	spin_unlock(&inode->i_lock);
1636 	spin_unlock(&inode_hash_lock);
1637 	schedule();
1638 	finish_wait(wq, &wait.wait);
1639 	spin_lock(&inode_hash_lock);
1640 }
1641 
1642 static __initdata unsigned long ihash_entries;
1643 static int __init set_ihash_entries(char *str)
1644 {
1645 	if (!str)
1646 		return 0;
1647 	ihash_entries = simple_strtoul(str, &str, 0);
1648 	return 1;
1649 }
1650 __setup("ihash_entries=", set_ihash_entries);
1651 
1652 /*
1653  * Initialize the waitqueues and inode hash table.
1654  */
1655 void __init inode_init_early(void)
1656 {
1657 	int loop;
1658 
1659 	/* If hashes are distributed across NUMA nodes, defer
1660 	 * hash allocation until vmalloc space is available.
1661 	 */
1662 	if (hashdist)
1663 		return;
1664 
1665 	inode_hashtable =
1666 		alloc_large_system_hash("Inode-cache",
1667 					sizeof(struct hlist_head),
1668 					ihash_entries,
1669 					14,
1670 					HASH_EARLY,
1671 					&i_hash_shift,
1672 					&i_hash_mask,
1673 					0);
1674 
1675 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1676 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1677 }
1678 
1679 void __init inode_init(void)
1680 {
1681 	int loop;
1682 
1683 	/* inode slab cache */
1684 	inode_cachep = kmem_cache_create("inode_cache",
1685 					 sizeof(struct inode),
1686 					 0,
1687 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1688 					 SLAB_MEM_SPREAD),
1689 					 init_once);
1690 
1691 	/* Hash may have been set up in inode_init_early */
1692 	if (!hashdist)
1693 		return;
1694 
1695 	inode_hashtable =
1696 		alloc_large_system_hash("Inode-cache",
1697 					sizeof(struct hlist_head),
1698 					ihash_entries,
1699 					14,
1700 					0,
1701 					&i_hash_shift,
1702 					&i_hash_mask,
1703 					0);
1704 
1705 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1706 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1707 }
1708 
1709 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1710 {
1711 	inode->i_mode = mode;
1712 	if (S_ISCHR(mode)) {
1713 		inode->i_fop = &def_chr_fops;
1714 		inode->i_rdev = rdev;
1715 	} else if (S_ISBLK(mode)) {
1716 		inode->i_fop = &def_blk_fops;
1717 		inode->i_rdev = rdev;
1718 	} else if (S_ISFIFO(mode))
1719 		inode->i_fop = &def_fifo_fops;
1720 	else if (S_ISSOCK(mode))
1721 		inode->i_fop = &bad_sock_fops;
1722 	else
1723 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1724 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1725 				  inode->i_ino);
1726 }
1727 EXPORT_SYMBOL(init_special_inode);
1728 
1729 /**
1730  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1731  * @inode: New inode
1732  * @dir: Directory inode
1733  * @mode: mode of the new inode
1734  */
1735 void inode_init_owner(struct inode *inode, const struct inode *dir,
1736 			umode_t mode)
1737 {
1738 	inode->i_uid = current_fsuid();
1739 	if (dir && dir->i_mode & S_ISGID) {
1740 		inode->i_gid = dir->i_gid;
1741 		if (S_ISDIR(mode))
1742 			mode |= S_ISGID;
1743 	} else
1744 		inode->i_gid = current_fsgid();
1745 	inode->i_mode = mode;
1746 }
1747 EXPORT_SYMBOL(inode_init_owner);
1748 
1749 /**
1750  * inode_owner_or_capable - check current task permissions to inode
1751  * @inode: inode being checked
1752  *
1753  * Return true if current either has CAP_FOWNER to the inode, or
1754  * owns the file.
1755  */
1756 bool inode_owner_or_capable(const struct inode *inode)
1757 {
1758 	struct user_namespace *ns = inode_userns(inode);
1759 
1760 	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1761 		return true;
1762 	if (ns_capable(ns, CAP_FOWNER))
1763 		return true;
1764 	return false;
1765 }
1766 EXPORT_SYMBOL(inode_owner_or_capable);
1767