xref: /linux/fs/inode.c (revision 8ec3b8432e4fe8d452f88f1ed9a3450e715bb797)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28 
29 /*
30  * This is needed for the following functions:
31  *  - inode_has_buffers
32  *  - invalidate_bdev
33  *
34  * FIXME: remove all knowledge of the buffer layer from this file
35  */
36 #include <linux/buffer_head.h>
37 
38 /*
39  * New inode.c implementation.
40  *
41  * This implementation has the basic premise of trying
42  * to be extremely low-overhead and SMP-safe, yet be
43  * simple enough to be "obviously correct".
44  *
45  * Famous last words.
46  */
47 
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49 
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52 
53 /*
54  * Inode lookup is no longer as critical as it used to be:
55  * most of the lookups are going to be through the dcache.
56  */
57 #define I_HASHBITS	i_hash_shift
58 #define I_HASHMASK	i_hash_mask
59 
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62 
63 /*
64  * Each inode can be on two separate lists. One is
65  * the hash list of the inode, used for lookups. The
66  * other linked list is the "type" list:
67  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
68  *  "dirty"  - as "in_use" but also dirty
69  *  "unused" - valid inode, i_count = 0
70  *
71  * A "dirty" list is maintained for each super block,
72  * allowing for low-overhead inode sync() operations.
73  */
74 
75 static LIST_HEAD(inode_lru);
76 static struct hlist_head *inode_hashtable __read_mostly;
77 
78 /*
79  * A simple spinlock to protect the list manipulations.
80  *
81  * NOTE! You also have to own the lock if you change
82  * the i_state of an inode while it is in use..
83  */
84 DEFINE_SPINLOCK(inode_lock);
85 
86 /*
87  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
88  * icache shrinking path, and the umount path.  Without this exclusion,
89  * by the time prune_icache calls iput for the inode whose pages it has
90  * been invalidating, or by the time it calls clear_inode & destroy_inode
91  * from its final dispose_list, the struct super_block they refer to
92  * (for inode->i_sb->s_op) may already have been freed and reused.
93  *
94  * We make this an rwsem because the fastpath is icache shrinking. In
95  * some cases a filesystem may be doing a significant amount of work in
96  * its inode reclaim code, so this should improve parallelism.
97  */
98 static DECLARE_RWSEM(iprune_sem);
99 
100 /*
101  * Statistics gathering..
102  */
103 struct inodes_stat_t inodes_stat;
104 
105 static DEFINE_PER_CPU(unsigned int, nr_inodes);
106 
107 static struct kmem_cache *inode_cachep __read_mostly;
108 
109 static int get_nr_inodes(void)
110 {
111 	int i;
112 	int sum = 0;
113 	for_each_possible_cpu(i)
114 		sum += per_cpu(nr_inodes, i);
115 	return sum < 0 ? 0 : sum;
116 }
117 
118 static inline int get_nr_inodes_unused(void)
119 {
120 	return inodes_stat.nr_unused;
121 }
122 
123 int get_nr_dirty_inodes(void)
124 {
125 	/* not actually dirty inodes, but a wild approximation */
126 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
127 	return nr_dirty > 0 ? nr_dirty : 0;
128 }
129 
130 /*
131  * Handle nr_inode sysctl
132  */
133 #ifdef CONFIG_SYSCTL
134 int proc_nr_inodes(ctl_table *table, int write,
135 		   void __user *buffer, size_t *lenp, loff_t *ppos)
136 {
137 	inodes_stat.nr_inodes = get_nr_inodes();
138 	return proc_dointvec(table, write, buffer, lenp, ppos);
139 }
140 #endif
141 
142 static void wake_up_inode(struct inode *inode)
143 {
144 	/*
145 	 * Prevent speculative execution through spin_unlock(&inode_lock);
146 	 */
147 	smp_mb();
148 	wake_up_bit(&inode->i_state, __I_NEW);
149 }
150 
151 /**
152  * inode_init_always - perform inode structure intialisation
153  * @sb: superblock inode belongs to
154  * @inode: inode to initialise
155  *
156  * These are initializations that need to be done on every inode
157  * allocation as the fields are not initialised by slab allocation.
158  */
159 int inode_init_always(struct super_block *sb, struct inode *inode)
160 {
161 	static const struct address_space_operations empty_aops;
162 	static const struct inode_operations empty_iops;
163 	static const struct file_operations empty_fops;
164 	struct address_space *const mapping = &inode->i_data;
165 
166 	inode->i_sb = sb;
167 	inode->i_blkbits = sb->s_blocksize_bits;
168 	inode->i_flags = 0;
169 	atomic_set(&inode->i_count, 1);
170 	inode->i_op = &empty_iops;
171 	inode->i_fop = &empty_fops;
172 	inode->i_nlink = 1;
173 	inode->i_uid = 0;
174 	inode->i_gid = 0;
175 	atomic_set(&inode->i_writecount, 0);
176 	inode->i_size = 0;
177 	inode->i_blocks = 0;
178 	inode->i_bytes = 0;
179 	inode->i_generation = 0;
180 #ifdef CONFIG_QUOTA
181 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
182 #endif
183 	inode->i_pipe = NULL;
184 	inode->i_bdev = NULL;
185 	inode->i_cdev = NULL;
186 	inode->i_rdev = 0;
187 	inode->dirtied_when = 0;
188 
189 	if (security_inode_alloc(inode))
190 		goto out;
191 	spin_lock_init(&inode->i_lock);
192 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
193 
194 	mutex_init(&inode->i_mutex);
195 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
196 
197 	init_rwsem(&inode->i_alloc_sem);
198 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
199 
200 	mapping->a_ops = &empty_aops;
201 	mapping->host = inode;
202 	mapping->flags = 0;
203 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
204 	mapping->assoc_mapping = NULL;
205 	mapping->backing_dev_info = &default_backing_dev_info;
206 	mapping->writeback_index = 0;
207 
208 	/*
209 	 * If the block_device provides a backing_dev_info for client
210 	 * inodes then use that.  Otherwise the inode share the bdev's
211 	 * backing_dev_info.
212 	 */
213 	if (sb->s_bdev) {
214 		struct backing_dev_info *bdi;
215 
216 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
217 		mapping->backing_dev_info = bdi;
218 	}
219 	inode->i_private = NULL;
220 	inode->i_mapping = mapping;
221 #ifdef CONFIG_FS_POSIX_ACL
222 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223 #endif
224 
225 #ifdef CONFIG_FSNOTIFY
226 	inode->i_fsnotify_mask = 0;
227 #endif
228 
229 	this_cpu_inc(nr_inodes);
230 
231 	return 0;
232 out:
233 	return -ENOMEM;
234 }
235 EXPORT_SYMBOL(inode_init_always);
236 
237 static struct inode *alloc_inode(struct super_block *sb)
238 {
239 	struct inode *inode;
240 
241 	if (sb->s_op->alloc_inode)
242 		inode = sb->s_op->alloc_inode(sb);
243 	else
244 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
245 
246 	if (!inode)
247 		return NULL;
248 
249 	if (unlikely(inode_init_always(sb, inode))) {
250 		if (inode->i_sb->s_op->destroy_inode)
251 			inode->i_sb->s_op->destroy_inode(inode);
252 		else
253 			kmem_cache_free(inode_cachep, inode);
254 		return NULL;
255 	}
256 
257 	return inode;
258 }
259 
260 void free_inode_nonrcu(struct inode *inode)
261 {
262 	kmem_cache_free(inode_cachep, inode);
263 }
264 EXPORT_SYMBOL(free_inode_nonrcu);
265 
266 void __destroy_inode(struct inode *inode)
267 {
268 	BUG_ON(inode_has_buffers(inode));
269 	security_inode_free(inode);
270 	fsnotify_inode_delete(inode);
271 #ifdef CONFIG_FS_POSIX_ACL
272 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
273 		posix_acl_release(inode->i_acl);
274 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
275 		posix_acl_release(inode->i_default_acl);
276 #endif
277 	this_cpu_dec(nr_inodes);
278 }
279 EXPORT_SYMBOL(__destroy_inode);
280 
281 static void i_callback(struct rcu_head *head)
282 {
283 	struct inode *inode = container_of(head, struct inode, i_rcu);
284 	INIT_LIST_HEAD(&inode->i_dentry);
285 	kmem_cache_free(inode_cachep, inode);
286 }
287 
288 static void destroy_inode(struct inode *inode)
289 {
290 	BUG_ON(!list_empty(&inode->i_lru));
291 	__destroy_inode(inode);
292 	if (inode->i_sb->s_op->destroy_inode)
293 		inode->i_sb->s_op->destroy_inode(inode);
294 	else
295 		call_rcu(&inode->i_rcu, i_callback);
296 }
297 
298 void address_space_init_once(struct address_space *mapping)
299 {
300 	memset(mapping, 0, sizeof(*mapping));
301 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
302 	spin_lock_init(&mapping->tree_lock);
303 	spin_lock_init(&mapping->i_mmap_lock);
304 	INIT_LIST_HEAD(&mapping->private_list);
305 	spin_lock_init(&mapping->private_lock);
306 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
307 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
308 	mutex_init(&mapping->unmap_mutex);
309 }
310 EXPORT_SYMBOL(address_space_init_once);
311 
312 /*
313  * These are initializations that only need to be done
314  * once, because the fields are idempotent across use
315  * of the inode, so let the slab aware of that.
316  */
317 void inode_init_once(struct inode *inode)
318 {
319 	memset(inode, 0, sizeof(*inode));
320 	INIT_HLIST_NODE(&inode->i_hash);
321 	INIT_LIST_HEAD(&inode->i_dentry);
322 	INIT_LIST_HEAD(&inode->i_devices);
323 	INIT_LIST_HEAD(&inode->i_wb_list);
324 	INIT_LIST_HEAD(&inode->i_lru);
325 	address_space_init_once(&inode->i_data);
326 	i_size_ordered_init(inode);
327 #ifdef CONFIG_FSNOTIFY
328 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
329 #endif
330 }
331 EXPORT_SYMBOL(inode_init_once);
332 
333 static void init_once(void *foo)
334 {
335 	struct inode *inode = (struct inode *) foo;
336 
337 	inode_init_once(inode);
338 }
339 
340 /*
341  * inode_lock must be held
342  */
343 void __iget(struct inode *inode)
344 {
345 	atomic_inc(&inode->i_count);
346 }
347 
348 /*
349  * get additional reference to inode; caller must already hold one.
350  */
351 void ihold(struct inode *inode)
352 {
353 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
354 }
355 EXPORT_SYMBOL(ihold);
356 
357 static void inode_lru_list_add(struct inode *inode)
358 {
359 	if (list_empty(&inode->i_lru)) {
360 		list_add(&inode->i_lru, &inode_lru);
361 		inodes_stat.nr_unused++;
362 	}
363 }
364 
365 static void inode_lru_list_del(struct inode *inode)
366 {
367 	if (!list_empty(&inode->i_lru)) {
368 		list_del_init(&inode->i_lru);
369 		inodes_stat.nr_unused--;
370 	}
371 }
372 
373 static inline void __inode_sb_list_add(struct inode *inode)
374 {
375 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
376 }
377 
378 /**
379  * inode_sb_list_add - add inode to the superblock list of inodes
380  * @inode: inode to add
381  */
382 void inode_sb_list_add(struct inode *inode)
383 {
384 	spin_lock(&inode_lock);
385 	__inode_sb_list_add(inode);
386 	spin_unlock(&inode_lock);
387 }
388 EXPORT_SYMBOL_GPL(inode_sb_list_add);
389 
390 static inline void __inode_sb_list_del(struct inode *inode)
391 {
392 	list_del_init(&inode->i_sb_list);
393 }
394 
395 static unsigned long hash(struct super_block *sb, unsigned long hashval)
396 {
397 	unsigned long tmp;
398 
399 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
400 			L1_CACHE_BYTES;
401 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
402 	return tmp & I_HASHMASK;
403 }
404 
405 /**
406  *	__insert_inode_hash - hash an inode
407  *	@inode: unhashed inode
408  *	@hashval: unsigned long value used to locate this object in the
409  *		inode_hashtable.
410  *
411  *	Add an inode to the inode hash for this superblock.
412  */
413 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
414 {
415 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
416 
417 	spin_lock(&inode_lock);
418 	hlist_add_head(&inode->i_hash, b);
419 	spin_unlock(&inode_lock);
420 }
421 EXPORT_SYMBOL(__insert_inode_hash);
422 
423 /**
424  *	__remove_inode_hash - remove an inode from the hash
425  *	@inode: inode to unhash
426  *
427  *	Remove an inode from the superblock.
428  */
429 static void __remove_inode_hash(struct inode *inode)
430 {
431 	hlist_del_init(&inode->i_hash);
432 }
433 
434 /**
435  *	remove_inode_hash - remove an inode from the hash
436  *	@inode: inode to unhash
437  *
438  *	Remove an inode from the superblock.
439  */
440 void remove_inode_hash(struct inode *inode)
441 {
442 	spin_lock(&inode_lock);
443 	hlist_del_init(&inode->i_hash);
444 	spin_unlock(&inode_lock);
445 }
446 EXPORT_SYMBOL(remove_inode_hash);
447 
448 void end_writeback(struct inode *inode)
449 {
450 	might_sleep();
451 	BUG_ON(inode->i_data.nrpages);
452 	BUG_ON(!list_empty(&inode->i_data.private_list));
453 	BUG_ON(!(inode->i_state & I_FREEING));
454 	BUG_ON(inode->i_state & I_CLEAR);
455 	inode_sync_wait(inode);
456 	/* don't need i_lock here, no concurrent mods to i_state */
457 	inode->i_state = I_FREEING | I_CLEAR;
458 }
459 EXPORT_SYMBOL(end_writeback);
460 
461 static void evict(struct inode *inode)
462 {
463 	const struct super_operations *op = inode->i_sb->s_op;
464 
465 	if (op->evict_inode) {
466 		op->evict_inode(inode);
467 	} else {
468 		if (inode->i_data.nrpages)
469 			truncate_inode_pages(&inode->i_data, 0);
470 		end_writeback(inode);
471 	}
472 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
473 		bd_forget(inode);
474 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
475 		cd_forget(inode);
476 }
477 
478 /*
479  * dispose_list - dispose of the contents of a local list
480  * @head: the head of the list to free
481  *
482  * Dispose-list gets a local list with local inodes in it, so it doesn't
483  * need to worry about list corruption and SMP locks.
484  */
485 static void dispose_list(struct list_head *head)
486 {
487 	while (!list_empty(head)) {
488 		struct inode *inode;
489 
490 		inode = list_first_entry(head, struct inode, i_lru);
491 		list_del_init(&inode->i_lru);
492 
493 		evict(inode);
494 
495 		spin_lock(&inode_lock);
496 		__remove_inode_hash(inode);
497 		__inode_sb_list_del(inode);
498 		spin_unlock(&inode_lock);
499 
500 		wake_up_inode(inode);
501 		destroy_inode(inode);
502 	}
503 }
504 
505 /**
506  * evict_inodes	- evict all evictable inodes for a superblock
507  * @sb:		superblock to operate on
508  *
509  * Make sure that no inodes with zero refcount are retained.  This is
510  * called by superblock shutdown after having MS_ACTIVE flag removed,
511  * so any inode reaching zero refcount during or after that call will
512  * be immediately evicted.
513  */
514 void evict_inodes(struct super_block *sb)
515 {
516 	struct inode *inode, *next;
517 	LIST_HEAD(dispose);
518 
519 	down_write(&iprune_sem);
520 
521 	spin_lock(&inode_lock);
522 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
523 		if (atomic_read(&inode->i_count))
524 			continue;
525 
526 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
527 			WARN_ON(1);
528 			continue;
529 		}
530 
531 		inode->i_state |= I_FREEING;
532 
533 		/*
534 		 * Move the inode off the IO lists and LRU once I_FREEING is
535 		 * set so that it won't get moved back on there if it is dirty.
536 		 */
537 		list_move(&inode->i_lru, &dispose);
538 		list_del_init(&inode->i_wb_list);
539 		if (!(inode->i_state & (I_DIRTY | I_SYNC)))
540 			inodes_stat.nr_unused--;
541 	}
542 	spin_unlock(&inode_lock);
543 
544 	dispose_list(&dispose);
545 	up_write(&iprune_sem);
546 }
547 
548 /**
549  * invalidate_inodes	- attempt to free all inodes on a superblock
550  * @sb:		superblock to operate on
551  * @kill_dirty: flag to guide handling of dirty inodes
552  *
553  * Attempts to free all inodes for a given superblock.  If there were any
554  * busy inodes return a non-zero value, else zero.
555  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
556  * them as busy.
557  */
558 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
559 {
560 	int busy = 0;
561 	struct inode *inode, *next;
562 	LIST_HEAD(dispose);
563 
564 	down_write(&iprune_sem);
565 
566 	spin_lock(&inode_lock);
567 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
568 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
569 			continue;
570 		if (inode->i_state & I_DIRTY && !kill_dirty) {
571 			busy = 1;
572 			continue;
573 		}
574 		if (atomic_read(&inode->i_count)) {
575 			busy = 1;
576 			continue;
577 		}
578 
579 		inode->i_state |= I_FREEING;
580 
581 		/*
582 		 * Move the inode off the IO lists and LRU once I_FREEING is
583 		 * set so that it won't get moved back on there if it is dirty.
584 		 */
585 		list_move(&inode->i_lru, &dispose);
586 		list_del_init(&inode->i_wb_list);
587 		if (!(inode->i_state & (I_DIRTY | I_SYNC)))
588 			inodes_stat.nr_unused--;
589 	}
590 	spin_unlock(&inode_lock);
591 
592 	dispose_list(&dispose);
593 	up_write(&iprune_sem);
594 
595 	return busy;
596 }
597 
598 static int can_unuse(struct inode *inode)
599 {
600 	if (inode->i_state & ~I_REFERENCED)
601 		return 0;
602 	if (inode_has_buffers(inode))
603 		return 0;
604 	if (atomic_read(&inode->i_count))
605 		return 0;
606 	if (inode->i_data.nrpages)
607 		return 0;
608 	return 1;
609 }
610 
611 /*
612  * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
613  * temporary list and then are freed outside inode_lock by dispose_list().
614  *
615  * Any inodes which are pinned purely because of attached pagecache have their
616  * pagecache removed.  If the inode has metadata buffers attached to
617  * mapping->private_list then try to remove them.
618  *
619  * If the inode has the I_REFERENCED flag set, then it means that it has been
620  * used recently - the flag is set in iput_final(). When we encounter such an
621  * inode, clear the flag and move it to the back of the LRU so it gets another
622  * pass through the LRU before it gets reclaimed. This is necessary because of
623  * the fact we are doing lazy LRU updates to minimise lock contention so the
624  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
625  * with this flag set because they are the inodes that are out of order.
626  */
627 static void prune_icache(int nr_to_scan)
628 {
629 	LIST_HEAD(freeable);
630 	int nr_scanned;
631 	unsigned long reap = 0;
632 
633 	down_read(&iprune_sem);
634 	spin_lock(&inode_lock);
635 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
636 		struct inode *inode;
637 
638 		if (list_empty(&inode_lru))
639 			break;
640 
641 		inode = list_entry(inode_lru.prev, struct inode, i_lru);
642 
643 		/*
644 		 * Referenced or dirty inodes are still in use. Give them
645 		 * another pass through the LRU as we canot reclaim them now.
646 		 */
647 		if (atomic_read(&inode->i_count) ||
648 		    (inode->i_state & ~I_REFERENCED)) {
649 			list_del_init(&inode->i_lru);
650 			inodes_stat.nr_unused--;
651 			continue;
652 		}
653 
654 		/* recently referenced inodes get one more pass */
655 		if (inode->i_state & I_REFERENCED) {
656 			list_move(&inode->i_lru, &inode_lru);
657 			inode->i_state &= ~I_REFERENCED;
658 			continue;
659 		}
660 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
661 			__iget(inode);
662 			spin_unlock(&inode_lock);
663 			if (remove_inode_buffers(inode))
664 				reap += invalidate_mapping_pages(&inode->i_data,
665 								0, -1);
666 			iput(inode);
667 			spin_lock(&inode_lock);
668 
669 			if (inode != list_entry(inode_lru.next,
670 						struct inode, i_lru))
671 				continue;	/* wrong inode or list_empty */
672 			if (!can_unuse(inode))
673 				continue;
674 		}
675 		WARN_ON(inode->i_state & I_NEW);
676 		inode->i_state |= I_FREEING;
677 
678 		/*
679 		 * Move the inode off the IO lists and LRU once I_FREEING is
680 		 * set so that it won't get moved back on there if it is dirty.
681 		 */
682 		list_move(&inode->i_lru, &freeable);
683 		list_del_init(&inode->i_wb_list);
684 		inodes_stat.nr_unused--;
685 	}
686 	if (current_is_kswapd())
687 		__count_vm_events(KSWAPD_INODESTEAL, reap);
688 	else
689 		__count_vm_events(PGINODESTEAL, reap);
690 	spin_unlock(&inode_lock);
691 
692 	dispose_list(&freeable);
693 	up_read(&iprune_sem);
694 }
695 
696 /*
697  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
698  * "unused" means that no dentries are referring to the inodes: the files are
699  * not open and the dcache references to those inodes have already been
700  * reclaimed.
701  *
702  * This function is passed the number of inodes to scan, and it returns the
703  * total number of remaining possibly-reclaimable inodes.
704  */
705 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
706 {
707 	if (nr) {
708 		/*
709 		 * Nasty deadlock avoidance.  We may hold various FS locks,
710 		 * and we don't want to recurse into the FS that called us
711 		 * in clear_inode() and friends..
712 		 */
713 		if (!(gfp_mask & __GFP_FS))
714 			return -1;
715 		prune_icache(nr);
716 	}
717 	return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
718 }
719 
720 static struct shrinker icache_shrinker = {
721 	.shrink = shrink_icache_memory,
722 	.seeks = DEFAULT_SEEKS,
723 };
724 
725 static void __wait_on_freeing_inode(struct inode *inode);
726 /*
727  * Called with the inode lock held.
728  */
729 static struct inode *find_inode(struct super_block *sb,
730 				struct hlist_head *head,
731 				int (*test)(struct inode *, void *),
732 				void *data)
733 {
734 	struct hlist_node *node;
735 	struct inode *inode = NULL;
736 
737 repeat:
738 	hlist_for_each_entry(inode, node, head, i_hash) {
739 		if (inode->i_sb != sb)
740 			continue;
741 		if (!test(inode, data))
742 			continue;
743 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
744 			__wait_on_freeing_inode(inode);
745 			goto repeat;
746 		}
747 		__iget(inode);
748 		return inode;
749 	}
750 	return NULL;
751 }
752 
753 /*
754  * find_inode_fast is the fast path version of find_inode, see the comment at
755  * iget_locked for details.
756  */
757 static struct inode *find_inode_fast(struct super_block *sb,
758 				struct hlist_head *head, unsigned long ino)
759 {
760 	struct hlist_node *node;
761 	struct inode *inode = NULL;
762 
763 repeat:
764 	hlist_for_each_entry(inode, node, head, i_hash) {
765 		if (inode->i_ino != ino)
766 			continue;
767 		if (inode->i_sb != sb)
768 			continue;
769 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
770 			__wait_on_freeing_inode(inode);
771 			goto repeat;
772 		}
773 		__iget(inode);
774 		return inode;
775 	}
776 	return NULL;
777 }
778 
779 /*
780  * Each cpu owns a range of LAST_INO_BATCH numbers.
781  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
782  * to renew the exhausted range.
783  *
784  * This does not significantly increase overflow rate because every CPU can
785  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
786  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
787  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
788  * overflow rate by 2x, which does not seem too significant.
789  *
790  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
791  * error if st_ino won't fit in target struct field. Use 32bit counter
792  * here to attempt to avoid that.
793  */
794 #define LAST_INO_BATCH 1024
795 static DEFINE_PER_CPU(unsigned int, last_ino);
796 
797 unsigned int get_next_ino(void)
798 {
799 	unsigned int *p = &get_cpu_var(last_ino);
800 	unsigned int res = *p;
801 
802 #ifdef CONFIG_SMP
803 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
804 		static atomic_t shared_last_ino;
805 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
806 
807 		res = next - LAST_INO_BATCH;
808 	}
809 #endif
810 
811 	*p = ++res;
812 	put_cpu_var(last_ino);
813 	return res;
814 }
815 EXPORT_SYMBOL(get_next_ino);
816 
817 /**
818  *	new_inode 	- obtain an inode
819  *	@sb: superblock
820  *
821  *	Allocates a new inode for given superblock. The default gfp_mask
822  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
823  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
824  *	for the page cache are not reclaimable or migratable,
825  *	mapping_set_gfp_mask() must be called with suitable flags on the
826  *	newly created inode's mapping
827  *
828  */
829 struct inode *new_inode(struct super_block *sb)
830 {
831 	struct inode *inode;
832 
833 	spin_lock_prefetch(&inode_lock);
834 
835 	inode = alloc_inode(sb);
836 	if (inode) {
837 		spin_lock(&inode_lock);
838 		__inode_sb_list_add(inode);
839 		inode->i_state = 0;
840 		spin_unlock(&inode_lock);
841 	}
842 	return inode;
843 }
844 EXPORT_SYMBOL(new_inode);
845 
846 void unlock_new_inode(struct inode *inode)
847 {
848 #ifdef CONFIG_DEBUG_LOCK_ALLOC
849 	if (S_ISDIR(inode->i_mode)) {
850 		struct file_system_type *type = inode->i_sb->s_type;
851 
852 		/* Set new key only if filesystem hasn't already changed it */
853 		if (!lockdep_match_class(&inode->i_mutex,
854 		    &type->i_mutex_key)) {
855 			/*
856 			 * ensure nobody is actually holding i_mutex
857 			 */
858 			mutex_destroy(&inode->i_mutex);
859 			mutex_init(&inode->i_mutex);
860 			lockdep_set_class(&inode->i_mutex,
861 					  &type->i_mutex_dir_key);
862 		}
863 	}
864 #endif
865 	/*
866 	 * This is special!  We do not need the spinlock when clearing I_NEW,
867 	 * because we're guaranteed that nobody else tries to do anything about
868 	 * the state of the inode when it is locked, as we just created it (so
869 	 * there can be no old holders that haven't tested I_NEW).
870 	 * However we must emit the memory barrier so that other CPUs reliably
871 	 * see the clearing of I_NEW after the other inode initialisation has
872 	 * completed.
873 	 */
874 	smp_mb();
875 	WARN_ON(!(inode->i_state & I_NEW));
876 	inode->i_state &= ~I_NEW;
877 	wake_up_inode(inode);
878 }
879 EXPORT_SYMBOL(unlock_new_inode);
880 
881 /*
882  * This is called without the inode lock held.. Be careful.
883  *
884  * We no longer cache the sb_flags in i_flags - see fs.h
885  *	-- rmk@arm.uk.linux.org
886  */
887 static struct inode *get_new_inode(struct super_block *sb,
888 				struct hlist_head *head,
889 				int (*test)(struct inode *, void *),
890 				int (*set)(struct inode *, void *),
891 				void *data)
892 {
893 	struct inode *inode;
894 
895 	inode = alloc_inode(sb);
896 	if (inode) {
897 		struct inode *old;
898 
899 		spin_lock(&inode_lock);
900 		/* We released the lock, so.. */
901 		old = find_inode(sb, head, test, data);
902 		if (!old) {
903 			if (set(inode, data))
904 				goto set_failed;
905 
906 			hlist_add_head(&inode->i_hash, head);
907 			__inode_sb_list_add(inode);
908 			inode->i_state = I_NEW;
909 			spin_unlock(&inode_lock);
910 
911 			/* Return the locked inode with I_NEW set, the
912 			 * caller is responsible for filling in the contents
913 			 */
914 			return inode;
915 		}
916 
917 		/*
918 		 * Uhhuh, somebody else created the same inode under
919 		 * us. Use the old inode instead of the one we just
920 		 * allocated.
921 		 */
922 		spin_unlock(&inode_lock);
923 		destroy_inode(inode);
924 		inode = old;
925 		wait_on_inode(inode);
926 	}
927 	return inode;
928 
929 set_failed:
930 	spin_unlock(&inode_lock);
931 	destroy_inode(inode);
932 	return NULL;
933 }
934 
935 /*
936  * get_new_inode_fast is the fast path version of get_new_inode, see the
937  * comment at iget_locked for details.
938  */
939 static struct inode *get_new_inode_fast(struct super_block *sb,
940 				struct hlist_head *head, unsigned long ino)
941 {
942 	struct inode *inode;
943 
944 	inode = alloc_inode(sb);
945 	if (inode) {
946 		struct inode *old;
947 
948 		spin_lock(&inode_lock);
949 		/* We released the lock, so.. */
950 		old = find_inode_fast(sb, head, ino);
951 		if (!old) {
952 			inode->i_ino = ino;
953 			hlist_add_head(&inode->i_hash, head);
954 			__inode_sb_list_add(inode);
955 			inode->i_state = I_NEW;
956 			spin_unlock(&inode_lock);
957 
958 			/* Return the locked inode with I_NEW set, the
959 			 * caller is responsible for filling in the contents
960 			 */
961 			return inode;
962 		}
963 
964 		/*
965 		 * Uhhuh, somebody else created the same inode under
966 		 * us. Use the old inode instead of the one we just
967 		 * allocated.
968 		 */
969 		spin_unlock(&inode_lock);
970 		destroy_inode(inode);
971 		inode = old;
972 		wait_on_inode(inode);
973 	}
974 	return inode;
975 }
976 
977 /*
978  * search the inode cache for a matching inode number.
979  * If we find one, then the inode number we are trying to
980  * allocate is not unique and so we should not use it.
981  *
982  * Returns 1 if the inode number is unique, 0 if it is not.
983  */
984 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
985 {
986 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
987 	struct hlist_node *node;
988 	struct inode *inode;
989 
990 	hlist_for_each_entry(inode, node, b, i_hash) {
991 		if (inode->i_ino == ino && inode->i_sb == sb)
992 			return 0;
993 	}
994 
995 	return 1;
996 }
997 
998 /**
999  *	iunique - get a unique inode number
1000  *	@sb: superblock
1001  *	@max_reserved: highest reserved inode number
1002  *
1003  *	Obtain an inode number that is unique on the system for a given
1004  *	superblock. This is used by file systems that have no natural
1005  *	permanent inode numbering system. An inode number is returned that
1006  *	is higher than the reserved limit but unique.
1007  *
1008  *	BUGS:
1009  *	With a large number of inodes live on the file system this function
1010  *	currently becomes quite slow.
1011  */
1012 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1013 {
1014 	/*
1015 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1016 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1017 	 * here to attempt to avoid that.
1018 	 */
1019 	static DEFINE_SPINLOCK(iunique_lock);
1020 	static unsigned int counter;
1021 	ino_t res;
1022 
1023 	spin_lock(&inode_lock);
1024 	spin_lock(&iunique_lock);
1025 	do {
1026 		if (counter <= max_reserved)
1027 			counter = max_reserved + 1;
1028 		res = counter++;
1029 	} while (!test_inode_iunique(sb, res));
1030 	spin_unlock(&iunique_lock);
1031 	spin_unlock(&inode_lock);
1032 
1033 	return res;
1034 }
1035 EXPORT_SYMBOL(iunique);
1036 
1037 struct inode *igrab(struct inode *inode)
1038 {
1039 	spin_lock(&inode_lock);
1040 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1041 		__iget(inode);
1042 	else
1043 		/*
1044 		 * Handle the case where s_op->clear_inode is not been
1045 		 * called yet, and somebody is calling igrab
1046 		 * while the inode is getting freed.
1047 		 */
1048 		inode = NULL;
1049 	spin_unlock(&inode_lock);
1050 	return inode;
1051 }
1052 EXPORT_SYMBOL(igrab);
1053 
1054 /**
1055  * ifind - internal function, you want ilookup5() or iget5().
1056  * @sb:		super block of file system to search
1057  * @head:       the head of the list to search
1058  * @test:	callback used for comparisons between inodes
1059  * @data:	opaque data pointer to pass to @test
1060  * @wait:	if true wait for the inode to be unlocked, if false do not
1061  *
1062  * ifind() searches for the inode specified by @data in the inode
1063  * cache. This is a generalized version of ifind_fast() for file systems where
1064  * the inode number is not sufficient for unique identification of an inode.
1065  *
1066  * If the inode is in the cache, the inode is returned with an incremented
1067  * reference count.
1068  *
1069  * Otherwise NULL is returned.
1070  *
1071  * Note, @test is called with the inode_lock held, so can't sleep.
1072  */
1073 static struct inode *ifind(struct super_block *sb,
1074 		struct hlist_head *head, int (*test)(struct inode *, void *),
1075 		void *data, const int wait)
1076 {
1077 	struct inode *inode;
1078 
1079 	spin_lock(&inode_lock);
1080 	inode = find_inode(sb, head, test, data);
1081 	if (inode) {
1082 		spin_unlock(&inode_lock);
1083 		if (likely(wait))
1084 			wait_on_inode(inode);
1085 		return inode;
1086 	}
1087 	spin_unlock(&inode_lock);
1088 	return NULL;
1089 }
1090 
1091 /**
1092  * ifind_fast - internal function, you want ilookup() or iget().
1093  * @sb:		super block of file system to search
1094  * @head:       head of the list to search
1095  * @ino:	inode number to search for
1096  *
1097  * ifind_fast() searches for the inode @ino in the inode cache. This is for
1098  * file systems where the inode number is sufficient for unique identification
1099  * of an inode.
1100  *
1101  * If the inode is in the cache, the inode is returned with an incremented
1102  * reference count.
1103  *
1104  * Otherwise NULL is returned.
1105  */
1106 static struct inode *ifind_fast(struct super_block *sb,
1107 		struct hlist_head *head, unsigned long ino)
1108 {
1109 	struct inode *inode;
1110 
1111 	spin_lock(&inode_lock);
1112 	inode = find_inode_fast(sb, head, ino);
1113 	if (inode) {
1114 		spin_unlock(&inode_lock);
1115 		wait_on_inode(inode);
1116 		return inode;
1117 	}
1118 	spin_unlock(&inode_lock);
1119 	return NULL;
1120 }
1121 
1122 /**
1123  * ilookup5_nowait - search for an inode in the inode cache
1124  * @sb:		super block of file system to search
1125  * @hashval:	hash value (usually inode number) to search for
1126  * @test:	callback used for comparisons between inodes
1127  * @data:	opaque data pointer to pass to @test
1128  *
1129  * ilookup5() uses ifind() to search for the inode specified by @hashval and
1130  * @data in the inode cache. This is a generalized version of ilookup() for
1131  * file systems where the inode number is not sufficient for unique
1132  * identification of an inode.
1133  *
1134  * If the inode is in the cache, the inode is returned with an incremented
1135  * reference count.  Note, the inode lock is not waited upon so you have to be
1136  * very careful what you do with the returned inode.  You probably should be
1137  * using ilookup5() instead.
1138  *
1139  * Otherwise NULL is returned.
1140  *
1141  * Note, @test is called with the inode_lock held, so can't sleep.
1142  */
1143 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1144 		int (*test)(struct inode *, void *), void *data)
1145 {
1146 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1147 
1148 	return ifind(sb, head, test, data, 0);
1149 }
1150 EXPORT_SYMBOL(ilookup5_nowait);
1151 
1152 /**
1153  * ilookup5 - search for an inode in the inode cache
1154  * @sb:		super block of file system to search
1155  * @hashval:	hash value (usually inode number) to search for
1156  * @test:	callback used for comparisons between inodes
1157  * @data:	opaque data pointer to pass to @test
1158  *
1159  * ilookup5() uses ifind() to search for the inode specified by @hashval and
1160  * @data in the inode cache. This is a generalized version of ilookup() for
1161  * file systems where the inode number is not sufficient for unique
1162  * identification of an inode.
1163  *
1164  * If the inode is in the cache, the inode lock is waited upon and the inode is
1165  * returned with an incremented reference count.
1166  *
1167  * Otherwise NULL is returned.
1168  *
1169  * Note, @test is called with the inode_lock held, so can't sleep.
1170  */
1171 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1172 		int (*test)(struct inode *, void *), void *data)
1173 {
1174 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1175 
1176 	return ifind(sb, head, test, data, 1);
1177 }
1178 EXPORT_SYMBOL(ilookup5);
1179 
1180 /**
1181  * ilookup - search for an inode in the inode cache
1182  * @sb:		super block of file system to search
1183  * @ino:	inode number to search for
1184  *
1185  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1186  * This is for file systems where the inode number is sufficient for unique
1187  * identification of an inode.
1188  *
1189  * If the inode is in the cache, the inode is returned with an incremented
1190  * reference count.
1191  *
1192  * Otherwise NULL is returned.
1193  */
1194 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1195 {
1196 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1197 
1198 	return ifind_fast(sb, head, ino);
1199 }
1200 EXPORT_SYMBOL(ilookup);
1201 
1202 /**
1203  * iget5_locked - obtain an inode from a mounted file system
1204  * @sb:		super block of file system
1205  * @hashval:	hash value (usually inode number) to get
1206  * @test:	callback used for comparisons between inodes
1207  * @set:	callback used to initialize a new struct inode
1208  * @data:	opaque data pointer to pass to @test and @set
1209  *
1210  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1211  * and @data in the inode cache and if present it is returned with an increased
1212  * reference count. This is a generalized version of iget_locked() for file
1213  * systems where the inode number is not sufficient for unique identification
1214  * of an inode.
1215  *
1216  * If the inode is not in cache, get_new_inode() is called to allocate a new
1217  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1218  * file system gets to fill it in before unlocking it via unlock_new_inode().
1219  *
1220  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1221  */
1222 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1223 		int (*test)(struct inode *, void *),
1224 		int (*set)(struct inode *, void *), void *data)
1225 {
1226 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1227 	struct inode *inode;
1228 
1229 	inode = ifind(sb, head, test, data, 1);
1230 	if (inode)
1231 		return inode;
1232 	/*
1233 	 * get_new_inode() will do the right thing, re-trying the search
1234 	 * in case it had to block at any point.
1235 	 */
1236 	return get_new_inode(sb, head, test, set, data);
1237 }
1238 EXPORT_SYMBOL(iget5_locked);
1239 
1240 /**
1241  * iget_locked - obtain an inode from a mounted file system
1242  * @sb:		super block of file system
1243  * @ino:	inode number to get
1244  *
1245  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1246  * the inode cache and if present it is returned with an increased reference
1247  * count. This is for file systems where the inode number is sufficient for
1248  * unique identification of an inode.
1249  *
1250  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1251  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1252  * The file system gets to fill it in before unlocking it via
1253  * unlock_new_inode().
1254  */
1255 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1256 {
1257 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1258 	struct inode *inode;
1259 
1260 	inode = ifind_fast(sb, head, ino);
1261 	if (inode)
1262 		return inode;
1263 	/*
1264 	 * get_new_inode_fast() will do the right thing, re-trying the search
1265 	 * in case it had to block at any point.
1266 	 */
1267 	return get_new_inode_fast(sb, head, ino);
1268 }
1269 EXPORT_SYMBOL(iget_locked);
1270 
1271 int insert_inode_locked(struct inode *inode)
1272 {
1273 	struct super_block *sb = inode->i_sb;
1274 	ino_t ino = inode->i_ino;
1275 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1276 
1277 	inode->i_state |= I_NEW;
1278 	while (1) {
1279 		struct hlist_node *node;
1280 		struct inode *old = NULL;
1281 		spin_lock(&inode_lock);
1282 		hlist_for_each_entry(old, node, head, i_hash) {
1283 			if (old->i_ino != ino)
1284 				continue;
1285 			if (old->i_sb != sb)
1286 				continue;
1287 			if (old->i_state & (I_FREEING|I_WILL_FREE))
1288 				continue;
1289 			break;
1290 		}
1291 		if (likely(!node)) {
1292 			hlist_add_head(&inode->i_hash, head);
1293 			spin_unlock(&inode_lock);
1294 			return 0;
1295 		}
1296 		__iget(old);
1297 		spin_unlock(&inode_lock);
1298 		wait_on_inode(old);
1299 		if (unlikely(!inode_unhashed(old))) {
1300 			iput(old);
1301 			return -EBUSY;
1302 		}
1303 		iput(old);
1304 	}
1305 }
1306 EXPORT_SYMBOL(insert_inode_locked);
1307 
1308 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1309 		int (*test)(struct inode *, void *), void *data)
1310 {
1311 	struct super_block *sb = inode->i_sb;
1312 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1313 
1314 	inode->i_state |= I_NEW;
1315 
1316 	while (1) {
1317 		struct hlist_node *node;
1318 		struct inode *old = NULL;
1319 
1320 		spin_lock(&inode_lock);
1321 		hlist_for_each_entry(old, node, head, i_hash) {
1322 			if (old->i_sb != sb)
1323 				continue;
1324 			if (!test(old, data))
1325 				continue;
1326 			if (old->i_state & (I_FREEING|I_WILL_FREE))
1327 				continue;
1328 			break;
1329 		}
1330 		if (likely(!node)) {
1331 			hlist_add_head(&inode->i_hash, head);
1332 			spin_unlock(&inode_lock);
1333 			return 0;
1334 		}
1335 		__iget(old);
1336 		spin_unlock(&inode_lock);
1337 		wait_on_inode(old);
1338 		if (unlikely(!inode_unhashed(old))) {
1339 			iput(old);
1340 			return -EBUSY;
1341 		}
1342 		iput(old);
1343 	}
1344 }
1345 EXPORT_SYMBOL(insert_inode_locked4);
1346 
1347 
1348 int generic_delete_inode(struct inode *inode)
1349 {
1350 	return 1;
1351 }
1352 EXPORT_SYMBOL(generic_delete_inode);
1353 
1354 /*
1355  * Normal UNIX filesystem behaviour: delete the
1356  * inode when the usage count drops to zero, and
1357  * i_nlink is zero.
1358  */
1359 int generic_drop_inode(struct inode *inode)
1360 {
1361 	return !inode->i_nlink || inode_unhashed(inode);
1362 }
1363 EXPORT_SYMBOL_GPL(generic_drop_inode);
1364 
1365 /*
1366  * Called when we're dropping the last reference
1367  * to an inode.
1368  *
1369  * Call the FS "drop_inode()" function, defaulting to
1370  * the legacy UNIX filesystem behaviour.  If it tells
1371  * us to evict inode, do so.  Otherwise, retain inode
1372  * in cache if fs is alive, sync and evict if fs is
1373  * shutting down.
1374  */
1375 static void iput_final(struct inode *inode)
1376 {
1377 	struct super_block *sb = inode->i_sb;
1378 	const struct super_operations *op = inode->i_sb->s_op;
1379 	int drop;
1380 
1381 	if (op && op->drop_inode)
1382 		drop = op->drop_inode(inode);
1383 	else
1384 		drop = generic_drop_inode(inode);
1385 
1386 	if (!drop) {
1387 		if (sb->s_flags & MS_ACTIVE) {
1388 			inode->i_state |= I_REFERENCED;
1389 			if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1390 				inode_lru_list_add(inode);
1391 			}
1392 			spin_unlock(&inode_lock);
1393 			return;
1394 		}
1395 		WARN_ON(inode->i_state & I_NEW);
1396 		inode->i_state |= I_WILL_FREE;
1397 		spin_unlock(&inode_lock);
1398 		write_inode_now(inode, 1);
1399 		spin_lock(&inode_lock);
1400 		WARN_ON(inode->i_state & I_NEW);
1401 		inode->i_state &= ~I_WILL_FREE;
1402 		__remove_inode_hash(inode);
1403 	}
1404 
1405 	WARN_ON(inode->i_state & I_NEW);
1406 	inode->i_state |= I_FREEING;
1407 
1408 	/*
1409 	 * Move the inode off the IO lists and LRU once I_FREEING is
1410 	 * set so that it won't get moved back on there if it is dirty.
1411 	 */
1412 	inode_lru_list_del(inode);
1413 	list_del_init(&inode->i_wb_list);
1414 
1415 	__inode_sb_list_del(inode);
1416 	spin_unlock(&inode_lock);
1417 	evict(inode);
1418 	remove_inode_hash(inode);
1419 	wake_up_inode(inode);
1420 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1421 	destroy_inode(inode);
1422 }
1423 
1424 /**
1425  *	iput	- put an inode
1426  *	@inode: inode to put
1427  *
1428  *	Puts an inode, dropping its usage count. If the inode use count hits
1429  *	zero, the inode is then freed and may also be destroyed.
1430  *
1431  *	Consequently, iput() can sleep.
1432  */
1433 void iput(struct inode *inode)
1434 {
1435 	if (inode) {
1436 		BUG_ON(inode->i_state & I_CLEAR);
1437 
1438 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1439 			iput_final(inode);
1440 	}
1441 }
1442 EXPORT_SYMBOL(iput);
1443 
1444 /**
1445  *	bmap	- find a block number in a file
1446  *	@inode: inode of file
1447  *	@block: block to find
1448  *
1449  *	Returns the block number on the device holding the inode that
1450  *	is the disk block number for the block of the file requested.
1451  *	That is, asked for block 4 of inode 1 the function will return the
1452  *	disk block relative to the disk start that holds that block of the
1453  *	file.
1454  */
1455 sector_t bmap(struct inode *inode, sector_t block)
1456 {
1457 	sector_t res = 0;
1458 	if (inode->i_mapping->a_ops->bmap)
1459 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1460 	return res;
1461 }
1462 EXPORT_SYMBOL(bmap);
1463 
1464 /*
1465  * With relative atime, only update atime if the previous atime is
1466  * earlier than either the ctime or mtime or if at least a day has
1467  * passed since the last atime update.
1468  */
1469 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1470 			     struct timespec now)
1471 {
1472 
1473 	if (!(mnt->mnt_flags & MNT_RELATIME))
1474 		return 1;
1475 	/*
1476 	 * Is mtime younger than atime? If yes, update atime:
1477 	 */
1478 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1479 		return 1;
1480 	/*
1481 	 * Is ctime younger than atime? If yes, update atime:
1482 	 */
1483 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1484 		return 1;
1485 
1486 	/*
1487 	 * Is the previous atime value older than a day? If yes,
1488 	 * update atime:
1489 	 */
1490 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1491 		return 1;
1492 	/*
1493 	 * Good, we can skip the atime update:
1494 	 */
1495 	return 0;
1496 }
1497 
1498 /**
1499  *	touch_atime	-	update the access time
1500  *	@mnt: mount the inode is accessed on
1501  *	@dentry: dentry accessed
1502  *
1503  *	Update the accessed time on an inode and mark it for writeback.
1504  *	This function automatically handles read only file systems and media,
1505  *	as well as the "noatime" flag and inode specific "noatime" markers.
1506  */
1507 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1508 {
1509 	struct inode *inode = dentry->d_inode;
1510 	struct timespec now;
1511 
1512 	if (inode->i_flags & S_NOATIME)
1513 		return;
1514 	if (IS_NOATIME(inode))
1515 		return;
1516 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1517 		return;
1518 
1519 	if (mnt->mnt_flags & MNT_NOATIME)
1520 		return;
1521 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1522 		return;
1523 
1524 	now = current_fs_time(inode->i_sb);
1525 
1526 	if (!relatime_need_update(mnt, inode, now))
1527 		return;
1528 
1529 	if (timespec_equal(&inode->i_atime, &now))
1530 		return;
1531 
1532 	if (mnt_want_write(mnt))
1533 		return;
1534 
1535 	inode->i_atime = now;
1536 	mark_inode_dirty_sync(inode);
1537 	mnt_drop_write(mnt);
1538 }
1539 EXPORT_SYMBOL(touch_atime);
1540 
1541 /**
1542  *	file_update_time	-	update mtime and ctime time
1543  *	@file: file accessed
1544  *
1545  *	Update the mtime and ctime members of an inode and mark the inode
1546  *	for writeback.  Note that this function is meant exclusively for
1547  *	usage in the file write path of filesystems, and filesystems may
1548  *	choose to explicitly ignore update via this function with the
1549  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1550  *	timestamps are handled by the server.
1551  */
1552 
1553 void file_update_time(struct file *file)
1554 {
1555 	struct inode *inode = file->f_path.dentry->d_inode;
1556 	struct timespec now;
1557 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1558 
1559 	/* First try to exhaust all avenues to not sync */
1560 	if (IS_NOCMTIME(inode))
1561 		return;
1562 
1563 	now = current_fs_time(inode->i_sb);
1564 	if (!timespec_equal(&inode->i_mtime, &now))
1565 		sync_it = S_MTIME;
1566 
1567 	if (!timespec_equal(&inode->i_ctime, &now))
1568 		sync_it |= S_CTIME;
1569 
1570 	if (IS_I_VERSION(inode))
1571 		sync_it |= S_VERSION;
1572 
1573 	if (!sync_it)
1574 		return;
1575 
1576 	/* Finally allowed to write? Takes lock. */
1577 	if (mnt_want_write_file(file))
1578 		return;
1579 
1580 	/* Only change inode inside the lock region */
1581 	if (sync_it & S_VERSION)
1582 		inode_inc_iversion(inode);
1583 	if (sync_it & S_CTIME)
1584 		inode->i_ctime = now;
1585 	if (sync_it & S_MTIME)
1586 		inode->i_mtime = now;
1587 	mark_inode_dirty_sync(inode);
1588 	mnt_drop_write(file->f_path.mnt);
1589 }
1590 EXPORT_SYMBOL(file_update_time);
1591 
1592 int inode_needs_sync(struct inode *inode)
1593 {
1594 	if (IS_SYNC(inode))
1595 		return 1;
1596 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1597 		return 1;
1598 	return 0;
1599 }
1600 EXPORT_SYMBOL(inode_needs_sync);
1601 
1602 int inode_wait(void *word)
1603 {
1604 	schedule();
1605 	return 0;
1606 }
1607 EXPORT_SYMBOL(inode_wait);
1608 
1609 /*
1610  * If we try to find an inode in the inode hash while it is being
1611  * deleted, we have to wait until the filesystem completes its
1612  * deletion before reporting that it isn't found.  This function waits
1613  * until the deletion _might_ have completed.  Callers are responsible
1614  * to recheck inode state.
1615  *
1616  * It doesn't matter if I_NEW is not set initially, a call to
1617  * wake_up_inode() after removing from the hash list will DTRT.
1618  *
1619  * This is called with inode_lock held.
1620  */
1621 static void __wait_on_freeing_inode(struct inode *inode)
1622 {
1623 	wait_queue_head_t *wq;
1624 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1625 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1626 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1627 	spin_unlock(&inode_lock);
1628 	schedule();
1629 	finish_wait(wq, &wait.wait);
1630 	spin_lock(&inode_lock);
1631 }
1632 
1633 static __initdata unsigned long ihash_entries;
1634 static int __init set_ihash_entries(char *str)
1635 {
1636 	if (!str)
1637 		return 0;
1638 	ihash_entries = simple_strtoul(str, &str, 0);
1639 	return 1;
1640 }
1641 __setup("ihash_entries=", set_ihash_entries);
1642 
1643 /*
1644  * Initialize the waitqueues and inode hash table.
1645  */
1646 void __init inode_init_early(void)
1647 {
1648 	int loop;
1649 
1650 	/* If hashes are distributed across NUMA nodes, defer
1651 	 * hash allocation until vmalloc space is available.
1652 	 */
1653 	if (hashdist)
1654 		return;
1655 
1656 	inode_hashtable =
1657 		alloc_large_system_hash("Inode-cache",
1658 					sizeof(struct hlist_head),
1659 					ihash_entries,
1660 					14,
1661 					HASH_EARLY,
1662 					&i_hash_shift,
1663 					&i_hash_mask,
1664 					0);
1665 
1666 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1667 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1668 }
1669 
1670 void __init inode_init(void)
1671 {
1672 	int loop;
1673 
1674 	/* inode slab cache */
1675 	inode_cachep = kmem_cache_create("inode_cache",
1676 					 sizeof(struct inode),
1677 					 0,
1678 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1679 					 SLAB_MEM_SPREAD),
1680 					 init_once);
1681 	register_shrinker(&icache_shrinker);
1682 
1683 	/* Hash may have been set up in inode_init_early */
1684 	if (!hashdist)
1685 		return;
1686 
1687 	inode_hashtable =
1688 		alloc_large_system_hash("Inode-cache",
1689 					sizeof(struct hlist_head),
1690 					ihash_entries,
1691 					14,
1692 					0,
1693 					&i_hash_shift,
1694 					&i_hash_mask,
1695 					0);
1696 
1697 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1698 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1699 }
1700 
1701 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1702 {
1703 	inode->i_mode = mode;
1704 	if (S_ISCHR(mode)) {
1705 		inode->i_fop = &def_chr_fops;
1706 		inode->i_rdev = rdev;
1707 	} else if (S_ISBLK(mode)) {
1708 		inode->i_fop = &def_blk_fops;
1709 		inode->i_rdev = rdev;
1710 	} else if (S_ISFIFO(mode))
1711 		inode->i_fop = &def_fifo_fops;
1712 	else if (S_ISSOCK(mode))
1713 		inode->i_fop = &bad_sock_fops;
1714 	else
1715 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1716 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1717 				  inode->i_ino);
1718 }
1719 EXPORT_SYMBOL(init_special_inode);
1720 
1721 /**
1722  * Init uid,gid,mode for new inode according to posix standards
1723  * @inode: New inode
1724  * @dir: Directory inode
1725  * @mode: mode of the new inode
1726  */
1727 void inode_init_owner(struct inode *inode, const struct inode *dir,
1728 			mode_t mode)
1729 {
1730 	inode->i_uid = current_fsuid();
1731 	if (dir && dir->i_mode & S_ISGID) {
1732 		inode->i_gid = dir->i_gid;
1733 		if (S_ISDIR(mode))
1734 			mode |= S_ISGID;
1735 	} else
1736 		inode->i_gid = current_fsgid();
1737 	inode->i_mode = mode;
1738 }
1739 EXPORT_SYMBOL(inode_init_owner);
1740