1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/writeback.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/wait.h> 16 #include <linux/rwsem.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mount.h> 25 #include <linux/async.h> 26 #include <linux/posix_acl.h> 27 #include <linux/ima.h> 28 #include <linux/cred.h> 29 #include "internal.h" 30 31 /* 32 * inode locking rules. 33 * 34 * inode->i_lock protects: 35 * inode->i_state, inode->i_hash, __iget() 36 * inode_lru_lock protects: 37 * inode_lru, inode->i_lru 38 * inode_sb_list_lock protects: 39 * sb->s_inodes, inode->i_sb_list 40 * inode_wb_list_lock protects: 41 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 42 * inode_hash_lock protects: 43 * inode_hashtable, inode->i_hash 44 * 45 * Lock ordering: 46 * 47 * inode_sb_list_lock 48 * inode->i_lock 49 * inode_lru_lock 50 * 51 * inode_wb_list_lock 52 * inode->i_lock 53 * 54 * inode_hash_lock 55 * inode_sb_list_lock 56 * inode->i_lock 57 * 58 * iunique_lock 59 * inode_hash_lock 60 */ 61 62 /* 63 * This is needed for the following functions: 64 * - inode_has_buffers 65 * - invalidate_bdev 66 * 67 * FIXME: remove all knowledge of the buffer layer from this file 68 */ 69 #include <linux/buffer_head.h> 70 71 /* 72 * New inode.c implementation. 73 * 74 * This implementation has the basic premise of trying 75 * to be extremely low-overhead and SMP-safe, yet be 76 * simple enough to be "obviously correct". 77 * 78 * Famous last words. 79 */ 80 81 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 82 83 /* #define INODE_PARANOIA 1 */ 84 /* #define INODE_DEBUG 1 */ 85 86 /* 87 * Inode lookup is no longer as critical as it used to be: 88 * most of the lookups are going to be through the dcache. 89 */ 90 #define I_HASHBITS i_hash_shift 91 #define I_HASHMASK i_hash_mask 92 93 static unsigned int i_hash_mask __read_mostly; 94 static unsigned int i_hash_shift __read_mostly; 95 static struct hlist_head *inode_hashtable __read_mostly; 96 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 97 98 /* 99 * Each inode can be on two separate lists. One is 100 * the hash list of the inode, used for lookups. The 101 * other linked list is the "type" list: 102 * "in_use" - valid inode, i_count > 0, i_nlink > 0 103 * "dirty" - as "in_use" but also dirty 104 * "unused" - valid inode, i_count = 0 105 * 106 * A "dirty" list is maintained for each super block, 107 * allowing for low-overhead inode sync() operations. 108 */ 109 110 static LIST_HEAD(inode_lru); 111 static DEFINE_SPINLOCK(inode_lru_lock); 112 113 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 114 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock); 115 116 /* 117 * iprune_sem provides exclusion between the icache shrinking and the 118 * umount path. 119 * 120 * We don't actually need it to protect anything in the umount path, 121 * but only need to cycle through it to make sure any inode that 122 * prune_icache took off the LRU list has been fully torn down by the 123 * time we are past evict_inodes. 124 */ 125 static DECLARE_RWSEM(iprune_sem); 126 127 /* 128 * Empty aops. Can be used for the cases where the user does not 129 * define any of the address_space operations. 130 */ 131 const struct address_space_operations empty_aops = { 132 }; 133 EXPORT_SYMBOL(empty_aops); 134 135 /* 136 * Statistics gathering.. 137 */ 138 struct inodes_stat_t inodes_stat; 139 140 static DEFINE_PER_CPU(unsigned int, nr_inodes); 141 142 static struct kmem_cache *inode_cachep __read_mostly; 143 144 static int get_nr_inodes(void) 145 { 146 int i; 147 int sum = 0; 148 for_each_possible_cpu(i) 149 sum += per_cpu(nr_inodes, i); 150 return sum < 0 ? 0 : sum; 151 } 152 153 static inline int get_nr_inodes_unused(void) 154 { 155 return inodes_stat.nr_unused; 156 } 157 158 int get_nr_dirty_inodes(void) 159 { 160 /* not actually dirty inodes, but a wild approximation */ 161 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 162 return nr_dirty > 0 ? nr_dirty : 0; 163 } 164 165 /* 166 * Handle nr_inode sysctl 167 */ 168 #ifdef CONFIG_SYSCTL 169 int proc_nr_inodes(ctl_table *table, int write, 170 void __user *buffer, size_t *lenp, loff_t *ppos) 171 { 172 inodes_stat.nr_inodes = get_nr_inodes(); 173 return proc_dointvec(table, write, buffer, lenp, ppos); 174 } 175 #endif 176 177 /** 178 * inode_init_always - perform inode structure intialisation 179 * @sb: superblock inode belongs to 180 * @inode: inode to initialise 181 * 182 * These are initializations that need to be done on every inode 183 * allocation as the fields are not initialised by slab allocation. 184 */ 185 int inode_init_always(struct super_block *sb, struct inode *inode) 186 { 187 static const struct inode_operations empty_iops; 188 static const struct file_operations empty_fops; 189 struct address_space *const mapping = &inode->i_data; 190 191 inode->i_sb = sb; 192 inode->i_blkbits = sb->s_blocksize_bits; 193 inode->i_flags = 0; 194 atomic_set(&inode->i_count, 1); 195 inode->i_op = &empty_iops; 196 inode->i_fop = &empty_fops; 197 inode->i_nlink = 1; 198 inode->i_uid = 0; 199 inode->i_gid = 0; 200 atomic_set(&inode->i_writecount, 0); 201 inode->i_size = 0; 202 inode->i_blocks = 0; 203 inode->i_bytes = 0; 204 inode->i_generation = 0; 205 #ifdef CONFIG_QUOTA 206 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 207 #endif 208 inode->i_pipe = NULL; 209 inode->i_bdev = NULL; 210 inode->i_cdev = NULL; 211 inode->i_rdev = 0; 212 inode->dirtied_when = 0; 213 214 if (security_inode_alloc(inode)) 215 goto out; 216 spin_lock_init(&inode->i_lock); 217 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 218 219 mutex_init(&inode->i_mutex); 220 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 221 222 init_rwsem(&inode->i_alloc_sem); 223 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 224 225 mapping->a_ops = &empty_aops; 226 mapping->host = inode; 227 mapping->flags = 0; 228 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 229 mapping->assoc_mapping = NULL; 230 mapping->backing_dev_info = &default_backing_dev_info; 231 mapping->writeback_index = 0; 232 233 /* 234 * If the block_device provides a backing_dev_info for client 235 * inodes then use that. Otherwise the inode share the bdev's 236 * backing_dev_info. 237 */ 238 if (sb->s_bdev) { 239 struct backing_dev_info *bdi; 240 241 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 242 mapping->backing_dev_info = bdi; 243 } 244 inode->i_private = NULL; 245 inode->i_mapping = mapping; 246 #ifdef CONFIG_FS_POSIX_ACL 247 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 248 #endif 249 250 #ifdef CONFIG_FSNOTIFY 251 inode->i_fsnotify_mask = 0; 252 #endif 253 254 this_cpu_inc(nr_inodes); 255 256 return 0; 257 out: 258 return -ENOMEM; 259 } 260 EXPORT_SYMBOL(inode_init_always); 261 262 static struct inode *alloc_inode(struct super_block *sb) 263 { 264 struct inode *inode; 265 266 if (sb->s_op->alloc_inode) 267 inode = sb->s_op->alloc_inode(sb); 268 else 269 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 270 271 if (!inode) 272 return NULL; 273 274 if (unlikely(inode_init_always(sb, inode))) { 275 if (inode->i_sb->s_op->destroy_inode) 276 inode->i_sb->s_op->destroy_inode(inode); 277 else 278 kmem_cache_free(inode_cachep, inode); 279 return NULL; 280 } 281 282 return inode; 283 } 284 285 void free_inode_nonrcu(struct inode *inode) 286 { 287 kmem_cache_free(inode_cachep, inode); 288 } 289 EXPORT_SYMBOL(free_inode_nonrcu); 290 291 void __destroy_inode(struct inode *inode) 292 { 293 BUG_ON(inode_has_buffers(inode)); 294 security_inode_free(inode); 295 fsnotify_inode_delete(inode); 296 #ifdef CONFIG_FS_POSIX_ACL 297 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 298 posix_acl_release(inode->i_acl); 299 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 300 posix_acl_release(inode->i_default_acl); 301 #endif 302 this_cpu_dec(nr_inodes); 303 } 304 EXPORT_SYMBOL(__destroy_inode); 305 306 static void i_callback(struct rcu_head *head) 307 { 308 struct inode *inode = container_of(head, struct inode, i_rcu); 309 INIT_LIST_HEAD(&inode->i_dentry); 310 kmem_cache_free(inode_cachep, inode); 311 } 312 313 static void destroy_inode(struct inode *inode) 314 { 315 BUG_ON(!list_empty(&inode->i_lru)); 316 __destroy_inode(inode); 317 if (inode->i_sb->s_op->destroy_inode) 318 inode->i_sb->s_op->destroy_inode(inode); 319 else 320 call_rcu(&inode->i_rcu, i_callback); 321 } 322 323 void address_space_init_once(struct address_space *mapping) 324 { 325 memset(mapping, 0, sizeof(*mapping)); 326 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 327 spin_lock_init(&mapping->tree_lock); 328 spin_lock_init(&mapping->i_mmap_lock); 329 INIT_LIST_HEAD(&mapping->private_list); 330 spin_lock_init(&mapping->private_lock); 331 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); 332 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 333 mutex_init(&mapping->unmap_mutex); 334 } 335 EXPORT_SYMBOL(address_space_init_once); 336 337 /* 338 * These are initializations that only need to be done 339 * once, because the fields are idempotent across use 340 * of the inode, so let the slab aware of that. 341 */ 342 void inode_init_once(struct inode *inode) 343 { 344 memset(inode, 0, sizeof(*inode)); 345 INIT_HLIST_NODE(&inode->i_hash); 346 INIT_LIST_HEAD(&inode->i_dentry); 347 INIT_LIST_HEAD(&inode->i_devices); 348 INIT_LIST_HEAD(&inode->i_wb_list); 349 INIT_LIST_HEAD(&inode->i_lru); 350 address_space_init_once(&inode->i_data); 351 i_size_ordered_init(inode); 352 #ifdef CONFIG_FSNOTIFY 353 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 354 #endif 355 } 356 EXPORT_SYMBOL(inode_init_once); 357 358 static void init_once(void *foo) 359 { 360 struct inode *inode = (struct inode *) foo; 361 362 inode_init_once(inode); 363 } 364 365 /* 366 * inode->i_lock must be held 367 */ 368 void __iget(struct inode *inode) 369 { 370 atomic_inc(&inode->i_count); 371 } 372 373 /* 374 * get additional reference to inode; caller must already hold one. 375 */ 376 void ihold(struct inode *inode) 377 { 378 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 379 } 380 EXPORT_SYMBOL(ihold); 381 382 static void inode_lru_list_add(struct inode *inode) 383 { 384 spin_lock(&inode_lru_lock); 385 if (list_empty(&inode->i_lru)) { 386 list_add(&inode->i_lru, &inode_lru); 387 inodes_stat.nr_unused++; 388 } 389 spin_unlock(&inode_lru_lock); 390 } 391 392 static void inode_lru_list_del(struct inode *inode) 393 { 394 spin_lock(&inode_lru_lock); 395 if (!list_empty(&inode->i_lru)) { 396 list_del_init(&inode->i_lru); 397 inodes_stat.nr_unused--; 398 } 399 spin_unlock(&inode_lru_lock); 400 } 401 402 /** 403 * inode_sb_list_add - add inode to the superblock list of inodes 404 * @inode: inode to add 405 */ 406 void inode_sb_list_add(struct inode *inode) 407 { 408 spin_lock(&inode_sb_list_lock); 409 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 410 spin_unlock(&inode_sb_list_lock); 411 } 412 EXPORT_SYMBOL_GPL(inode_sb_list_add); 413 414 static inline void inode_sb_list_del(struct inode *inode) 415 { 416 spin_lock(&inode_sb_list_lock); 417 list_del_init(&inode->i_sb_list); 418 spin_unlock(&inode_sb_list_lock); 419 } 420 421 static unsigned long hash(struct super_block *sb, unsigned long hashval) 422 { 423 unsigned long tmp; 424 425 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 426 L1_CACHE_BYTES; 427 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 428 return tmp & I_HASHMASK; 429 } 430 431 /** 432 * __insert_inode_hash - hash an inode 433 * @inode: unhashed inode 434 * @hashval: unsigned long value used to locate this object in the 435 * inode_hashtable. 436 * 437 * Add an inode to the inode hash for this superblock. 438 */ 439 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 440 { 441 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 442 443 spin_lock(&inode_hash_lock); 444 spin_lock(&inode->i_lock); 445 hlist_add_head(&inode->i_hash, b); 446 spin_unlock(&inode->i_lock); 447 spin_unlock(&inode_hash_lock); 448 } 449 EXPORT_SYMBOL(__insert_inode_hash); 450 451 /** 452 * remove_inode_hash - remove an inode from the hash 453 * @inode: inode to unhash 454 * 455 * Remove an inode from the superblock. 456 */ 457 void remove_inode_hash(struct inode *inode) 458 { 459 spin_lock(&inode_hash_lock); 460 spin_lock(&inode->i_lock); 461 hlist_del_init(&inode->i_hash); 462 spin_unlock(&inode->i_lock); 463 spin_unlock(&inode_hash_lock); 464 } 465 EXPORT_SYMBOL(remove_inode_hash); 466 467 void end_writeback(struct inode *inode) 468 { 469 might_sleep(); 470 BUG_ON(inode->i_data.nrpages); 471 BUG_ON(!list_empty(&inode->i_data.private_list)); 472 BUG_ON(!(inode->i_state & I_FREEING)); 473 BUG_ON(inode->i_state & I_CLEAR); 474 inode_sync_wait(inode); 475 /* don't need i_lock here, no concurrent mods to i_state */ 476 inode->i_state = I_FREEING | I_CLEAR; 477 } 478 EXPORT_SYMBOL(end_writeback); 479 480 /* 481 * Free the inode passed in, removing it from the lists it is still connected 482 * to. We remove any pages still attached to the inode and wait for any IO that 483 * is still in progress before finally destroying the inode. 484 * 485 * An inode must already be marked I_FREEING so that we avoid the inode being 486 * moved back onto lists if we race with other code that manipulates the lists 487 * (e.g. writeback_single_inode). The caller is responsible for setting this. 488 * 489 * An inode must already be removed from the LRU list before being evicted from 490 * the cache. This should occur atomically with setting the I_FREEING state 491 * flag, so no inodes here should ever be on the LRU when being evicted. 492 */ 493 static void evict(struct inode *inode) 494 { 495 const struct super_operations *op = inode->i_sb->s_op; 496 497 BUG_ON(!(inode->i_state & I_FREEING)); 498 BUG_ON(!list_empty(&inode->i_lru)); 499 500 inode_wb_list_del(inode); 501 inode_sb_list_del(inode); 502 503 if (op->evict_inode) { 504 op->evict_inode(inode); 505 } else { 506 if (inode->i_data.nrpages) 507 truncate_inode_pages(&inode->i_data, 0); 508 end_writeback(inode); 509 } 510 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 511 bd_forget(inode); 512 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 513 cd_forget(inode); 514 515 remove_inode_hash(inode); 516 517 spin_lock(&inode->i_lock); 518 wake_up_bit(&inode->i_state, __I_NEW); 519 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 520 spin_unlock(&inode->i_lock); 521 522 destroy_inode(inode); 523 } 524 525 /* 526 * dispose_list - dispose of the contents of a local list 527 * @head: the head of the list to free 528 * 529 * Dispose-list gets a local list with local inodes in it, so it doesn't 530 * need to worry about list corruption and SMP locks. 531 */ 532 static void dispose_list(struct list_head *head) 533 { 534 while (!list_empty(head)) { 535 struct inode *inode; 536 537 inode = list_first_entry(head, struct inode, i_lru); 538 list_del_init(&inode->i_lru); 539 540 evict(inode); 541 } 542 } 543 544 /** 545 * evict_inodes - evict all evictable inodes for a superblock 546 * @sb: superblock to operate on 547 * 548 * Make sure that no inodes with zero refcount are retained. This is 549 * called by superblock shutdown after having MS_ACTIVE flag removed, 550 * so any inode reaching zero refcount during or after that call will 551 * be immediately evicted. 552 */ 553 void evict_inodes(struct super_block *sb) 554 { 555 struct inode *inode, *next; 556 LIST_HEAD(dispose); 557 558 spin_lock(&inode_sb_list_lock); 559 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 560 if (atomic_read(&inode->i_count)) 561 continue; 562 563 spin_lock(&inode->i_lock); 564 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 565 spin_unlock(&inode->i_lock); 566 continue; 567 } 568 569 inode->i_state |= I_FREEING; 570 inode_lru_list_del(inode); 571 spin_unlock(&inode->i_lock); 572 list_add(&inode->i_lru, &dispose); 573 } 574 spin_unlock(&inode_sb_list_lock); 575 576 dispose_list(&dispose); 577 578 /* 579 * Cycle through iprune_sem to make sure any inode that prune_icache 580 * moved off the list before we took the lock has been fully torn 581 * down. 582 */ 583 down_write(&iprune_sem); 584 up_write(&iprune_sem); 585 } 586 587 /** 588 * invalidate_inodes - attempt to free all inodes on a superblock 589 * @sb: superblock to operate on 590 * @kill_dirty: flag to guide handling of dirty inodes 591 * 592 * Attempts to free all inodes for a given superblock. If there were any 593 * busy inodes return a non-zero value, else zero. 594 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 595 * them as busy. 596 */ 597 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 598 { 599 int busy = 0; 600 struct inode *inode, *next; 601 LIST_HEAD(dispose); 602 603 spin_lock(&inode_sb_list_lock); 604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 605 spin_lock(&inode->i_lock); 606 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 607 spin_unlock(&inode->i_lock); 608 continue; 609 } 610 if (inode->i_state & I_DIRTY && !kill_dirty) { 611 spin_unlock(&inode->i_lock); 612 busy = 1; 613 continue; 614 } 615 if (atomic_read(&inode->i_count)) { 616 spin_unlock(&inode->i_lock); 617 busy = 1; 618 continue; 619 } 620 621 inode->i_state |= I_FREEING; 622 inode_lru_list_del(inode); 623 spin_unlock(&inode->i_lock); 624 list_add(&inode->i_lru, &dispose); 625 } 626 spin_unlock(&inode_sb_list_lock); 627 628 dispose_list(&dispose); 629 630 return busy; 631 } 632 633 static int can_unuse(struct inode *inode) 634 { 635 if (inode->i_state & ~I_REFERENCED) 636 return 0; 637 if (inode_has_buffers(inode)) 638 return 0; 639 if (atomic_read(&inode->i_count)) 640 return 0; 641 if (inode->i_data.nrpages) 642 return 0; 643 return 1; 644 } 645 646 /* 647 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a 648 * temporary list and then are freed outside inode_lru_lock by dispose_list(). 649 * 650 * Any inodes which are pinned purely because of attached pagecache have their 651 * pagecache removed. If the inode has metadata buffers attached to 652 * mapping->private_list then try to remove them. 653 * 654 * If the inode has the I_REFERENCED flag set, then it means that it has been 655 * used recently - the flag is set in iput_final(). When we encounter such an 656 * inode, clear the flag and move it to the back of the LRU so it gets another 657 * pass through the LRU before it gets reclaimed. This is necessary because of 658 * the fact we are doing lazy LRU updates to minimise lock contention so the 659 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 660 * with this flag set because they are the inodes that are out of order. 661 */ 662 static void prune_icache(int nr_to_scan) 663 { 664 LIST_HEAD(freeable); 665 int nr_scanned; 666 unsigned long reap = 0; 667 668 down_read(&iprune_sem); 669 spin_lock(&inode_lru_lock); 670 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 671 struct inode *inode; 672 673 if (list_empty(&inode_lru)) 674 break; 675 676 inode = list_entry(inode_lru.prev, struct inode, i_lru); 677 678 /* 679 * we are inverting the inode_lru_lock/inode->i_lock here, 680 * so use a trylock. If we fail to get the lock, just move the 681 * inode to the back of the list so we don't spin on it. 682 */ 683 if (!spin_trylock(&inode->i_lock)) { 684 list_move(&inode->i_lru, &inode_lru); 685 continue; 686 } 687 688 /* 689 * Referenced or dirty inodes are still in use. Give them 690 * another pass through the LRU as we canot reclaim them now. 691 */ 692 if (atomic_read(&inode->i_count) || 693 (inode->i_state & ~I_REFERENCED)) { 694 list_del_init(&inode->i_lru); 695 spin_unlock(&inode->i_lock); 696 inodes_stat.nr_unused--; 697 continue; 698 } 699 700 /* recently referenced inodes get one more pass */ 701 if (inode->i_state & I_REFERENCED) { 702 inode->i_state &= ~I_REFERENCED; 703 list_move(&inode->i_lru, &inode_lru); 704 spin_unlock(&inode->i_lock); 705 continue; 706 } 707 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 708 __iget(inode); 709 spin_unlock(&inode->i_lock); 710 spin_unlock(&inode_lru_lock); 711 if (remove_inode_buffers(inode)) 712 reap += invalidate_mapping_pages(&inode->i_data, 713 0, -1); 714 iput(inode); 715 spin_lock(&inode_lru_lock); 716 717 if (inode != list_entry(inode_lru.next, 718 struct inode, i_lru)) 719 continue; /* wrong inode or list_empty */ 720 /* avoid lock inversions with trylock */ 721 if (!spin_trylock(&inode->i_lock)) 722 continue; 723 if (!can_unuse(inode)) { 724 spin_unlock(&inode->i_lock); 725 continue; 726 } 727 } 728 WARN_ON(inode->i_state & I_NEW); 729 inode->i_state |= I_FREEING; 730 spin_unlock(&inode->i_lock); 731 732 list_move(&inode->i_lru, &freeable); 733 inodes_stat.nr_unused--; 734 } 735 if (current_is_kswapd()) 736 __count_vm_events(KSWAPD_INODESTEAL, reap); 737 else 738 __count_vm_events(PGINODESTEAL, reap); 739 spin_unlock(&inode_lru_lock); 740 741 dispose_list(&freeable); 742 up_read(&iprune_sem); 743 } 744 745 /* 746 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 747 * "unused" means that no dentries are referring to the inodes: the files are 748 * not open and the dcache references to those inodes have already been 749 * reclaimed. 750 * 751 * This function is passed the number of inodes to scan, and it returns the 752 * total number of remaining possibly-reclaimable inodes. 753 */ 754 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask) 755 { 756 if (nr) { 757 /* 758 * Nasty deadlock avoidance. We may hold various FS locks, 759 * and we don't want to recurse into the FS that called us 760 * in clear_inode() and friends.. 761 */ 762 if (!(gfp_mask & __GFP_FS)) 763 return -1; 764 prune_icache(nr); 765 } 766 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure; 767 } 768 769 static struct shrinker icache_shrinker = { 770 .shrink = shrink_icache_memory, 771 .seeks = DEFAULT_SEEKS, 772 }; 773 774 static void __wait_on_freeing_inode(struct inode *inode); 775 /* 776 * Called with the inode lock held. 777 */ 778 static struct inode *find_inode(struct super_block *sb, 779 struct hlist_head *head, 780 int (*test)(struct inode *, void *), 781 void *data) 782 { 783 struct hlist_node *node; 784 struct inode *inode = NULL; 785 786 repeat: 787 hlist_for_each_entry(inode, node, head, i_hash) { 788 spin_lock(&inode->i_lock); 789 if (inode->i_sb != sb) { 790 spin_unlock(&inode->i_lock); 791 continue; 792 } 793 if (!test(inode, data)) { 794 spin_unlock(&inode->i_lock); 795 continue; 796 } 797 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 798 __wait_on_freeing_inode(inode); 799 goto repeat; 800 } 801 __iget(inode); 802 spin_unlock(&inode->i_lock); 803 return inode; 804 } 805 return NULL; 806 } 807 808 /* 809 * find_inode_fast is the fast path version of find_inode, see the comment at 810 * iget_locked for details. 811 */ 812 static struct inode *find_inode_fast(struct super_block *sb, 813 struct hlist_head *head, unsigned long ino) 814 { 815 struct hlist_node *node; 816 struct inode *inode = NULL; 817 818 repeat: 819 hlist_for_each_entry(inode, node, head, i_hash) { 820 spin_lock(&inode->i_lock); 821 if (inode->i_ino != ino) { 822 spin_unlock(&inode->i_lock); 823 continue; 824 } 825 if (inode->i_sb != sb) { 826 spin_unlock(&inode->i_lock); 827 continue; 828 } 829 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 830 __wait_on_freeing_inode(inode); 831 goto repeat; 832 } 833 __iget(inode); 834 spin_unlock(&inode->i_lock); 835 return inode; 836 } 837 return NULL; 838 } 839 840 /* 841 * Each cpu owns a range of LAST_INO_BATCH numbers. 842 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 843 * to renew the exhausted range. 844 * 845 * This does not significantly increase overflow rate because every CPU can 846 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 847 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 848 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 849 * overflow rate by 2x, which does not seem too significant. 850 * 851 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 852 * error if st_ino won't fit in target struct field. Use 32bit counter 853 * here to attempt to avoid that. 854 */ 855 #define LAST_INO_BATCH 1024 856 static DEFINE_PER_CPU(unsigned int, last_ino); 857 858 unsigned int get_next_ino(void) 859 { 860 unsigned int *p = &get_cpu_var(last_ino); 861 unsigned int res = *p; 862 863 #ifdef CONFIG_SMP 864 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 865 static atomic_t shared_last_ino; 866 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 867 868 res = next - LAST_INO_BATCH; 869 } 870 #endif 871 872 *p = ++res; 873 put_cpu_var(last_ino); 874 return res; 875 } 876 EXPORT_SYMBOL(get_next_ino); 877 878 /** 879 * new_inode - obtain an inode 880 * @sb: superblock 881 * 882 * Allocates a new inode for given superblock. The default gfp_mask 883 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 884 * If HIGHMEM pages are unsuitable or it is known that pages allocated 885 * for the page cache are not reclaimable or migratable, 886 * mapping_set_gfp_mask() must be called with suitable flags on the 887 * newly created inode's mapping 888 * 889 */ 890 struct inode *new_inode(struct super_block *sb) 891 { 892 struct inode *inode; 893 894 spin_lock_prefetch(&inode_sb_list_lock); 895 896 inode = alloc_inode(sb); 897 if (inode) { 898 spin_lock(&inode->i_lock); 899 inode->i_state = 0; 900 spin_unlock(&inode->i_lock); 901 inode_sb_list_add(inode); 902 } 903 return inode; 904 } 905 EXPORT_SYMBOL(new_inode); 906 907 /** 908 * unlock_new_inode - clear the I_NEW state and wake up any waiters 909 * @inode: new inode to unlock 910 * 911 * Called when the inode is fully initialised to clear the new state of the 912 * inode and wake up anyone waiting for the inode to finish initialisation. 913 */ 914 void unlock_new_inode(struct inode *inode) 915 { 916 #ifdef CONFIG_DEBUG_LOCK_ALLOC 917 if (S_ISDIR(inode->i_mode)) { 918 struct file_system_type *type = inode->i_sb->s_type; 919 920 /* Set new key only if filesystem hasn't already changed it */ 921 if (!lockdep_match_class(&inode->i_mutex, 922 &type->i_mutex_key)) { 923 /* 924 * ensure nobody is actually holding i_mutex 925 */ 926 mutex_destroy(&inode->i_mutex); 927 mutex_init(&inode->i_mutex); 928 lockdep_set_class(&inode->i_mutex, 929 &type->i_mutex_dir_key); 930 } 931 } 932 #endif 933 spin_lock(&inode->i_lock); 934 WARN_ON(!(inode->i_state & I_NEW)); 935 inode->i_state &= ~I_NEW; 936 wake_up_bit(&inode->i_state, __I_NEW); 937 spin_unlock(&inode->i_lock); 938 } 939 EXPORT_SYMBOL(unlock_new_inode); 940 941 /** 942 * iget5_locked - obtain an inode from a mounted file system 943 * @sb: super block of file system 944 * @hashval: hash value (usually inode number) to get 945 * @test: callback used for comparisons between inodes 946 * @set: callback used to initialize a new struct inode 947 * @data: opaque data pointer to pass to @test and @set 948 * 949 * Search for the inode specified by @hashval and @data in the inode cache, 950 * and if present it is return it with an increased reference count. This is 951 * a generalized version of iget_locked() for file systems where the inode 952 * number is not sufficient for unique identification of an inode. 953 * 954 * If the inode is not in cache, allocate a new inode and return it locked, 955 * hashed, and with the I_NEW flag set. The file system gets to fill it in 956 * before unlocking it via unlock_new_inode(). 957 * 958 * Note both @test and @set are called with the inode_hash_lock held, so can't 959 * sleep. 960 */ 961 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 962 int (*test)(struct inode *, void *), 963 int (*set)(struct inode *, void *), void *data) 964 { 965 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 966 struct inode *inode; 967 968 spin_lock(&inode_hash_lock); 969 inode = find_inode(sb, head, test, data); 970 spin_unlock(&inode_hash_lock); 971 972 if (inode) { 973 wait_on_inode(inode); 974 return inode; 975 } 976 977 inode = alloc_inode(sb); 978 if (inode) { 979 struct inode *old; 980 981 spin_lock(&inode_hash_lock); 982 /* We released the lock, so.. */ 983 old = find_inode(sb, head, test, data); 984 if (!old) { 985 if (set(inode, data)) 986 goto set_failed; 987 988 spin_lock(&inode->i_lock); 989 inode->i_state = I_NEW; 990 hlist_add_head(&inode->i_hash, head); 991 spin_unlock(&inode->i_lock); 992 inode_sb_list_add(inode); 993 spin_unlock(&inode_hash_lock); 994 995 /* Return the locked inode with I_NEW set, the 996 * caller is responsible for filling in the contents 997 */ 998 return inode; 999 } 1000 1001 /* 1002 * Uhhuh, somebody else created the same inode under 1003 * us. Use the old inode instead of the one we just 1004 * allocated. 1005 */ 1006 spin_unlock(&inode_hash_lock); 1007 destroy_inode(inode); 1008 inode = old; 1009 wait_on_inode(inode); 1010 } 1011 return inode; 1012 1013 set_failed: 1014 spin_unlock(&inode_hash_lock); 1015 destroy_inode(inode); 1016 return NULL; 1017 } 1018 EXPORT_SYMBOL(iget5_locked); 1019 1020 /** 1021 * iget_locked - obtain an inode from a mounted file system 1022 * @sb: super block of file system 1023 * @ino: inode number to get 1024 * 1025 * Search for the inode specified by @ino in the inode cache and if present 1026 * return it with an increased reference count. This is for file systems 1027 * where the inode number is sufficient for unique identification of an inode. 1028 * 1029 * If the inode is not in cache, allocate a new inode and return it locked, 1030 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1031 * before unlocking it via unlock_new_inode(). 1032 */ 1033 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1034 { 1035 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1036 struct inode *inode; 1037 1038 spin_lock(&inode_hash_lock); 1039 inode = find_inode_fast(sb, head, ino); 1040 spin_unlock(&inode_hash_lock); 1041 if (inode) { 1042 wait_on_inode(inode); 1043 return inode; 1044 } 1045 1046 inode = alloc_inode(sb); 1047 if (inode) { 1048 struct inode *old; 1049 1050 spin_lock(&inode_hash_lock); 1051 /* We released the lock, so.. */ 1052 old = find_inode_fast(sb, head, ino); 1053 if (!old) { 1054 inode->i_ino = ino; 1055 spin_lock(&inode->i_lock); 1056 inode->i_state = I_NEW; 1057 hlist_add_head(&inode->i_hash, head); 1058 spin_unlock(&inode->i_lock); 1059 inode_sb_list_add(inode); 1060 spin_unlock(&inode_hash_lock); 1061 1062 /* Return the locked inode with I_NEW set, the 1063 * caller is responsible for filling in the contents 1064 */ 1065 return inode; 1066 } 1067 1068 /* 1069 * Uhhuh, somebody else created the same inode under 1070 * us. Use the old inode instead of the one we just 1071 * allocated. 1072 */ 1073 spin_unlock(&inode_hash_lock); 1074 destroy_inode(inode); 1075 inode = old; 1076 wait_on_inode(inode); 1077 } 1078 return inode; 1079 } 1080 EXPORT_SYMBOL(iget_locked); 1081 1082 /* 1083 * search the inode cache for a matching inode number. 1084 * If we find one, then the inode number we are trying to 1085 * allocate is not unique and so we should not use it. 1086 * 1087 * Returns 1 if the inode number is unique, 0 if it is not. 1088 */ 1089 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1090 { 1091 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1092 struct hlist_node *node; 1093 struct inode *inode; 1094 1095 spin_lock(&inode_hash_lock); 1096 hlist_for_each_entry(inode, node, b, i_hash) { 1097 if (inode->i_ino == ino && inode->i_sb == sb) { 1098 spin_unlock(&inode_hash_lock); 1099 return 0; 1100 } 1101 } 1102 spin_unlock(&inode_hash_lock); 1103 1104 return 1; 1105 } 1106 1107 /** 1108 * iunique - get a unique inode number 1109 * @sb: superblock 1110 * @max_reserved: highest reserved inode number 1111 * 1112 * Obtain an inode number that is unique on the system for a given 1113 * superblock. This is used by file systems that have no natural 1114 * permanent inode numbering system. An inode number is returned that 1115 * is higher than the reserved limit but unique. 1116 * 1117 * BUGS: 1118 * With a large number of inodes live on the file system this function 1119 * currently becomes quite slow. 1120 */ 1121 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1122 { 1123 /* 1124 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1125 * error if st_ino won't fit in target struct field. Use 32bit counter 1126 * here to attempt to avoid that. 1127 */ 1128 static DEFINE_SPINLOCK(iunique_lock); 1129 static unsigned int counter; 1130 ino_t res; 1131 1132 spin_lock(&iunique_lock); 1133 do { 1134 if (counter <= max_reserved) 1135 counter = max_reserved + 1; 1136 res = counter++; 1137 } while (!test_inode_iunique(sb, res)); 1138 spin_unlock(&iunique_lock); 1139 1140 return res; 1141 } 1142 EXPORT_SYMBOL(iunique); 1143 1144 struct inode *igrab(struct inode *inode) 1145 { 1146 spin_lock(&inode->i_lock); 1147 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1148 __iget(inode); 1149 spin_unlock(&inode->i_lock); 1150 } else { 1151 spin_unlock(&inode->i_lock); 1152 /* 1153 * Handle the case where s_op->clear_inode is not been 1154 * called yet, and somebody is calling igrab 1155 * while the inode is getting freed. 1156 */ 1157 inode = NULL; 1158 } 1159 return inode; 1160 } 1161 EXPORT_SYMBOL(igrab); 1162 1163 /** 1164 * ilookup5_nowait - search for an inode in the inode cache 1165 * @sb: super block of file system to search 1166 * @hashval: hash value (usually inode number) to search for 1167 * @test: callback used for comparisons between inodes 1168 * @data: opaque data pointer to pass to @test 1169 * 1170 * Search for the inode specified by @hashval and @data in the inode cache. 1171 * If the inode is in the cache, the inode is returned with an incremented 1172 * reference count. 1173 * 1174 * Note: I_NEW is not waited upon so you have to be very careful what you do 1175 * with the returned inode. You probably should be using ilookup5() instead. 1176 * 1177 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1178 */ 1179 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1180 int (*test)(struct inode *, void *), void *data) 1181 { 1182 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1183 struct inode *inode; 1184 1185 spin_lock(&inode_hash_lock); 1186 inode = find_inode(sb, head, test, data); 1187 spin_unlock(&inode_hash_lock); 1188 1189 return inode; 1190 } 1191 EXPORT_SYMBOL(ilookup5_nowait); 1192 1193 /** 1194 * ilookup5 - search for an inode in the inode cache 1195 * @sb: super block of file system to search 1196 * @hashval: hash value (usually inode number) to search for 1197 * @test: callback used for comparisons between inodes 1198 * @data: opaque data pointer to pass to @test 1199 * 1200 * Search for the inode specified by @hashval and @data in the inode cache, 1201 * and if the inode is in the cache, return the inode with an incremented 1202 * reference count. Waits on I_NEW before returning the inode. 1203 * returned with an incremented reference count. 1204 * 1205 * This is a generalized version of ilookup() for file systems where the 1206 * inode number is not sufficient for unique identification of an inode. 1207 * 1208 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1209 */ 1210 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1211 int (*test)(struct inode *, void *), void *data) 1212 { 1213 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1214 1215 if (inode) 1216 wait_on_inode(inode); 1217 return inode; 1218 } 1219 EXPORT_SYMBOL(ilookup5); 1220 1221 /** 1222 * ilookup - search for an inode in the inode cache 1223 * @sb: super block of file system to search 1224 * @ino: inode number to search for 1225 * 1226 * Search for the inode @ino in the inode cache, and if the inode is in the 1227 * cache, the inode is returned with an incremented reference count. 1228 */ 1229 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1230 { 1231 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1232 struct inode *inode; 1233 1234 spin_lock(&inode_hash_lock); 1235 inode = find_inode_fast(sb, head, ino); 1236 spin_unlock(&inode_hash_lock); 1237 1238 if (inode) 1239 wait_on_inode(inode); 1240 return inode; 1241 } 1242 EXPORT_SYMBOL(ilookup); 1243 1244 int insert_inode_locked(struct inode *inode) 1245 { 1246 struct super_block *sb = inode->i_sb; 1247 ino_t ino = inode->i_ino; 1248 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1249 1250 while (1) { 1251 struct hlist_node *node; 1252 struct inode *old = NULL; 1253 spin_lock(&inode_hash_lock); 1254 hlist_for_each_entry(old, node, head, i_hash) { 1255 if (old->i_ino != ino) 1256 continue; 1257 if (old->i_sb != sb) 1258 continue; 1259 spin_lock(&old->i_lock); 1260 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1261 spin_unlock(&old->i_lock); 1262 continue; 1263 } 1264 break; 1265 } 1266 if (likely(!node)) { 1267 spin_lock(&inode->i_lock); 1268 inode->i_state |= I_NEW; 1269 hlist_add_head(&inode->i_hash, head); 1270 spin_unlock(&inode->i_lock); 1271 spin_unlock(&inode_hash_lock); 1272 return 0; 1273 } 1274 __iget(old); 1275 spin_unlock(&old->i_lock); 1276 spin_unlock(&inode_hash_lock); 1277 wait_on_inode(old); 1278 if (unlikely(!inode_unhashed(old))) { 1279 iput(old); 1280 return -EBUSY; 1281 } 1282 iput(old); 1283 } 1284 } 1285 EXPORT_SYMBOL(insert_inode_locked); 1286 1287 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1288 int (*test)(struct inode *, void *), void *data) 1289 { 1290 struct super_block *sb = inode->i_sb; 1291 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1292 1293 while (1) { 1294 struct hlist_node *node; 1295 struct inode *old = NULL; 1296 1297 spin_lock(&inode_hash_lock); 1298 hlist_for_each_entry(old, node, head, i_hash) { 1299 if (old->i_sb != sb) 1300 continue; 1301 if (!test(old, data)) 1302 continue; 1303 spin_lock(&old->i_lock); 1304 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1305 spin_unlock(&old->i_lock); 1306 continue; 1307 } 1308 break; 1309 } 1310 if (likely(!node)) { 1311 spin_lock(&inode->i_lock); 1312 inode->i_state |= I_NEW; 1313 hlist_add_head(&inode->i_hash, head); 1314 spin_unlock(&inode->i_lock); 1315 spin_unlock(&inode_hash_lock); 1316 return 0; 1317 } 1318 __iget(old); 1319 spin_unlock(&old->i_lock); 1320 spin_unlock(&inode_hash_lock); 1321 wait_on_inode(old); 1322 if (unlikely(!inode_unhashed(old))) { 1323 iput(old); 1324 return -EBUSY; 1325 } 1326 iput(old); 1327 } 1328 } 1329 EXPORT_SYMBOL(insert_inode_locked4); 1330 1331 1332 int generic_delete_inode(struct inode *inode) 1333 { 1334 return 1; 1335 } 1336 EXPORT_SYMBOL(generic_delete_inode); 1337 1338 /* 1339 * Normal UNIX filesystem behaviour: delete the 1340 * inode when the usage count drops to zero, and 1341 * i_nlink is zero. 1342 */ 1343 int generic_drop_inode(struct inode *inode) 1344 { 1345 return !inode->i_nlink || inode_unhashed(inode); 1346 } 1347 EXPORT_SYMBOL_GPL(generic_drop_inode); 1348 1349 /* 1350 * Called when we're dropping the last reference 1351 * to an inode. 1352 * 1353 * Call the FS "drop_inode()" function, defaulting to 1354 * the legacy UNIX filesystem behaviour. If it tells 1355 * us to evict inode, do so. Otherwise, retain inode 1356 * in cache if fs is alive, sync and evict if fs is 1357 * shutting down. 1358 */ 1359 static void iput_final(struct inode *inode) 1360 { 1361 struct super_block *sb = inode->i_sb; 1362 const struct super_operations *op = inode->i_sb->s_op; 1363 int drop; 1364 1365 WARN_ON(inode->i_state & I_NEW); 1366 1367 if (op && op->drop_inode) 1368 drop = op->drop_inode(inode); 1369 else 1370 drop = generic_drop_inode(inode); 1371 1372 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1373 inode->i_state |= I_REFERENCED; 1374 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1375 inode_lru_list_add(inode); 1376 spin_unlock(&inode->i_lock); 1377 return; 1378 } 1379 1380 if (!drop) { 1381 inode->i_state |= I_WILL_FREE; 1382 spin_unlock(&inode->i_lock); 1383 write_inode_now(inode, 1); 1384 spin_lock(&inode->i_lock); 1385 WARN_ON(inode->i_state & I_NEW); 1386 inode->i_state &= ~I_WILL_FREE; 1387 } 1388 1389 inode->i_state |= I_FREEING; 1390 inode_lru_list_del(inode); 1391 spin_unlock(&inode->i_lock); 1392 1393 evict(inode); 1394 } 1395 1396 /** 1397 * iput - put an inode 1398 * @inode: inode to put 1399 * 1400 * Puts an inode, dropping its usage count. If the inode use count hits 1401 * zero, the inode is then freed and may also be destroyed. 1402 * 1403 * Consequently, iput() can sleep. 1404 */ 1405 void iput(struct inode *inode) 1406 { 1407 if (inode) { 1408 BUG_ON(inode->i_state & I_CLEAR); 1409 1410 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1411 iput_final(inode); 1412 } 1413 } 1414 EXPORT_SYMBOL(iput); 1415 1416 /** 1417 * bmap - find a block number in a file 1418 * @inode: inode of file 1419 * @block: block to find 1420 * 1421 * Returns the block number on the device holding the inode that 1422 * is the disk block number for the block of the file requested. 1423 * That is, asked for block 4 of inode 1 the function will return the 1424 * disk block relative to the disk start that holds that block of the 1425 * file. 1426 */ 1427 sector_t bmap(struct inode *inode, sector_t block) 1428 { 1429 sector_t res = 0; 1430 if (inode->i_mapping->a_ops->bmap) 1431 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1432 return res; 1433 } 1434 EXPORT_SYMBOL(bmap); 1435 1436 /* 1437 * With relative atime, only update atime if the previous atime is 1438 * earlier than either the ctime or mtime or if at least a day has 1439 * passed since the last atime update. 1440 */ 1441 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1442 struct timespec now) 1443 { 1444 1445 if (!(mnt->mnt_flags & MNT_RELATIME)) 1446 return 1; 1447 /* 1448 * Is mtime younger than atime? If yes, update atime: 1449 */ 1450 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1451 return 1; 1452 /* 1453 * Is ctime younger than atime? If yes, update atime: 1454 */ 1455 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1456 return 1; 1457 1458 /* 1459 * Is the previous atime value older than a day? If yes, 1460 * update atime: 1461 */ 1462 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1463 return 1; 1464 /* 1465 * Good, we can skip the atime update: 1466 */ 1467 return 0; 1468 } 1469 1470 /** 1471 * touch_atime - update the access time 1472 * @mnt: mount the inode is accessed on 1473 * @dentry: dentry accessed 1474 * 1475 * Update the accessed time on an inode and mark it for writeback. 1476 * This function automatically handles read only file systems and media, 1477 * as well as the "noatime" flag and inode specific "noatime" markers. 1478 */ 1479 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1480 { 1481 struct inode *inode = dentry->d_inode; 1482 struct timespec now; 1483 1484 if (inode->i_flags & S_NOATIME) 1485 return; 1486 if (IS_NOATIME(inode)) 1487 return; 1488 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1489 return; 1490 1491 if (mnt->mnt_flags & MNT_NOATIME) 1492 return; 1493 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1494 return; 1495 1496 now = current_fs_time(inode->i_sb); 1497 1498 if (!relatime_need_update(mnt, inode, now)) 1499 return; 1500 1501 if (timespec_equal(&inode->i_atime, &now)) 1502 return; 1503 1504 if (mnt_want_write(mnt)) 1505 return; 1506 1507 inode->i_atime = now; 1508 mark_inode_dirty_sync(inode); 1509 mnt_drop_write(mnt); 1510 } 1511 EXPORT_SYMBOL(touch_atime); 1512 1513 /** 1514 * file_update_time - update mtime and ctime time 1515 * @file: file accessed 1516 * 1517 * Update the mtime and ctime members of an inode and mark the inode 1518 * for writeback. Note that this function is meant exclusively for 1519 * usage in the file write path of filesystems, and filesystems may 1520 * choose to explicitly ignore update via this function with the 1521 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1522 * timestamps are handled by the server. 1523 */ 1524 1525 void file_update_time(struct file *file) 1526 { 1527 struct inode *inode = file->f_path.dentry->d_inode; 1528 struct timespec now; 1529 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1530 1531 /* First try to exhaust all avenues to not sync */ 1532 if (IS_NOCMTIME(inode)) 1533 return; 1534 1535 now = current_fs_time(inode->i_sb); 1536 if (!timespec_equal(&inode->i_mtime, &now)) 1537 sync_it = S_MTIME; 1538 1539 if (!timespec_equal(&inode->i_ctime, &now)) 1540 sync_it |= S_CTIME; 1541 1542 if (IS_I_VERSION(inode)) 1543 sync_it |= S_VERSION; 1544 1545 if (!sync_it) 1546 return; 1547 1548 /* Finally allowed to write? Takes lock. */ 1549 if (mnt_want_write_file(file)) 1550 return; 1551 1552 /* Only change inode inside the lock region */ 1553 if (sync_it & S_VERSION) 1554 inode_inc_iversion(inode); 1555 if (sync_it & S_CTIME) 1556 inode->i_ctime = now; 1557 if (sync_it & S_MTIME) 1558 inode->i_mtime = now; 1559 mark_inode_dirty_sync(inode); 1560 mnt_drop_write(file->f_path.mnt); 1561 } 1562 EXPORT_SYMBOL(file_update_time); 1563 1564 int inode_needs_sync(struct inode *inode) 1565 { 1566 if (IS_SYNC(inode)) 1567 return 1; 1568 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1569 return 1; 1570 return 0; 1571 } 1572 EXPORT_SYMBOL(inode_needs_sync); 1573 1574 int inode_wait(void *word) 1575 { 1576 schedule(); 1577 return 0; 1578 } 1579 EXPORT_SYMBOL(inode_wait); 1580 1581 /* 1582 * If we try to find an inode in the inode hash while it is being 1583 * deleted, we have to wait until the filesystem completes its 1584 * deletion before reporting that it isn't found. This function waits 1585 * until the deletion _might_ have completed. Callers are responsible 1586 * to recheck inode state. 1587 * 1588 * It doesn't matter if I_NEW is not set initially, a call to 1589 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1590 * will DTRT. 1591 */ 1592 static void __wait_on_freeing_inode(struct inode *inode) 1593 { 1594 wait_queue_head_t *wq; 1595 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1596 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1597 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1598 spin_unlock(&inode->i_lock); 1599 spin_unlock(&inode_hash_lock); 1600 schedule(); 1601 finish_wait(wq, &wait.wait); 1602 spin_lock(&inode_hash_lock); 1603 } 1604 1605 static __initdata unsigned long ihash_entries; 1606 static int __init set_ihash_entries(char *str) 1607 { 1608 if (!str) 1609 return 0; 1610 ihash_entries = simple_strtoul(str, &str, 0); 1611 return 1; 1612 } 1613 __setup("ihash_entries=", set_ihash_entries); 1614 1615 /* 1616 * Initialize the waitqueues and inode hash table. 1617 */ 1618 void __init inode_init_early(void) 1619 { 1620 int loop; 1621 1622 /* If hashes are distributed across NUMA nodes, defer 1623 * hash allocation until vmalloc space is available. 1624 */ 1625 if (hashdist) 1626 return; 1627 1628 inode_hashtable = 1629 alloc_large_system_hash("Inode-cache", 1630 sizeof(struct hlist_head), 1631 ihash_entries, 1632 14, 1633 HASH_EARLY, 1634 &i_hash_shift, 1635 &i_hash_mask, 1636 0); 1637 1638 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1639 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1640 } 1641 1642 void __init inode_init(void) 1643 { 1644 int loop; 1645 1646 /* inode slab cache */ 1647 inode_cachep = kmem_cache_create("inode_cache", 1648 sizeof(struct inode), 1649 0, 1650 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1651 SLAB_MEM_SPREAD), 1652 init_once); 1653 register_shrinker(&icache_shrinker); 1654 1655 /* Hash may have been set up in inode_init_early */ 1656 if (!hashdist) 1657 return; 1658 1659 inode_hashtable = 1660 alloc_large_system_hash("Inode-cache", 1661 sizeof(struct hlist_head), 1662 ihash_entries, 1663 14, 1664 0, 1665 &i_hash_shift, 1666 &i_hash_mask, 1667 0); 1668 1669 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1670 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1671 } 1672 1673 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1674 { 1675 inode->i_mode = mode; 1676 if (S_ISCHR(mode)) { 1677 inode->i_fop = &def_chr_fops; 1678 inode->i_rdev = rdev; 1679 } else if (S_ISBLK(mode)) { 1680 inode->i_fop = &def_blk_fops; 1681 inode->i_rdev = rdev; 1682 } else if (S_ISFIFO(mode)) 1683 inode->i_fop = &def_fifo_fops; 1684 else if (S_ISSOCK(mode)) 1685 inode->i_fop = &bad_sock_fops; 1686 else 1687 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1688 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1689 inode->i_ino); 1690 } 1691 EXPORT_SYMBOL(init_special_inode); 1692 1693 /** 1694 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1695 * @inode: New inode 1696 * @dir: Directory inode 1697 * @mode: mode of the new inode 1698 */ 1699 void inode_init_owner(struct inode *inode, const struct inode *dir, 1700 mode_t mode) 1701 { 1702 inode->i_uid = current_fsuid(); 1703 if (dir && dir->i_mode & S_ISGID) { 1704 inode->i_gid = dir->i_gid; 1705 if (S_ISDIR(mode)) 1706 mode |= S_ISGID; 1707 } else 1708 inode->i_gid = current_fsgid(); 1709 inode->i_mode = mode; 1710 } 1711 EXPORT_SYMBOL(inode_init_owner); 1712 1713 /** 1714 * inode_owner_or_capable - check current task permissions to inode 1715 * @inode: inode being checked 1716 * 1717 * Return true if current either has CAP_FOWNER to the inode, or 1718 * owns the file. 1719 */ 1720 bool inode_owner_or_capable(const struct inode *inode) 1721 { 1722 struct user_namespace *ns = inode_userns(inode); 1723 1724 if (current_user_ns() == ns && current_fsuid() == inode->i_uid) 1725 return true; 1726 if (ns_capable(ns, CAP_FOWNER)) 1727 return true; 1728 return false; 1729 } 1730 EXPORT_SYMBOL(inode_owner_or_capable); 1731