1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <linux/seq_file.h> 25 #include <linux/debugfs.h> 26 #include <trace/events/writeback.h> 27 #define CREATE_TRACE_POINTS 28 #include <trace/events/timestamp.h> 29 30 #include "internal.h" 31 32 /* 33 * Inode locking rules: 34 * 35 * inode->i_lock protects: 36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 37 * Inode LRU list locks protect: 38 * inode->i_sb->s_inode_lru, inode->i_lru 39 * inode->i_sb->s_inode_list_lock protects: 40 * inode->i_sb->s_inodes, inode->i_sb_list 41 * bdi->wb.list_lock protects: 42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 43 * inode_hash_lock protects: 44 * inode_hashtable, inode->i_hash 45 * 46 * Lock ordering: 47 * 48 * inode->i_sb->s_inode_list_lock 49 * inode->i_lock 50 * Inode LRU list locks 51 * 52 * bdi->wb.list_lock 53 * inode->i_lock 54 * 55 * inode_hash_lock 56 * inode->i_sb->s_inode_list_lock 57 * inode->i_lock 58 * 59 * iunique_lock 60 * inode_hash_lock 61 */ 62 63 static unsigned int i_hash_mask __ro_after_init; 64 static unsigned int i_hash_shift __ro_after_init; 65 static struct hlist_head *inode_hashtable __ro_after_init; 66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 67 68 /* 69 * Empty aops. Can be used for the cases where the user does not 70 * define any of the address_space operations. 71 */ 72 const struct address_space_operations empty_aops = { 73 }; 74 EXPORT_SYMBOL(empty_aops); 75 76 static DEFINE_PER_CPU(unsigned long, nr_inodes); 77 static DEFINE_PER_CPU(unsigned long, nr_unused); 78 79 static struct kmem_cache *inode_cachep __ro_after_init; 80 81 static long get_nr_inodes(void) 82 { 83 int i; 84 long sum = 0; 85 for_each_possible_cpu(i) 86 sum += per_cpu(nr_inodes, i); 87 return sum < 0 ? 0 : sum; 88 } 89 90 static inline long get_nr_inodes_unused(void) 91 { 92 int i; 93 long sum = 0; 94 for_each_possible_cpu(i) 95 sum += per_cpu(nr_unused, i); 96 return sum < 0 ? 0 : sum; 97 } 98 99 long get_nr_dirty_inodes(void) 100 { 101 /* not actually dirty inodes, but a wild approximation */ 102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 103 return nr_dirty > 0 ? nr_dirty : 0; 104 } 105 106 #ifdef CONFIG_DEBUG_FS 107 static DEFINE_PER_CPU(long, mg_ctime_updates); 108 static DEFINE_PER_CPU(long, mg_fine_stamps); 109 static DEFINE_PER_CPU(long, mg_ctime_swaps); 110 111 static unsigned long get_mg_ctime_updates(void) 112 { 113 unsigned long sum = 0; 114 int i; 115 116 for_each_possible_cpu(i) 117 sum += data_race(per_cpu(mg_ctime_updates, i)); 118 return sum; 119 } 120 121 static unsigned long get_mg_fine_stamps(void) 122 { 123 unsigned long sum = 0; 124 int i; 125 126 for_each_possible_cpu(i) 127 sum += data_race(per_cpu(mg_fine_stamps, i)); 128 return sum; 129 } 130 131 static unsigned long get_mg_ctime_swaps(void) 132 { 133 unsigned long sum = 0; 134 int i; 135 136 for_each_possible_cpu(i) 137 sum += data_race(per_cpu(mg_ctime_swaps, i)); 138 return sum; 139 } 140 141 #define mgtime_counter_inc(__var) this_cpu_inc(__var) 142 143 static int mgts_show(struct seq_file *s, void *p) 144 { 145 unsigned long ctime_updates = get_mg_ctime_updates(); 146 unsigned long ctime_swaps = get_mg_ctime_swaps(); 147 unsigned long fine_stamps = get_mg_fine_stamps(); 148 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps(); 149 150 seq_printf(s, "%lu %lu %lu %lu\n", 151 ctime_updates, ctime_swaps, fine_stamps, floor_swaps); 152 return 0; 153 } 154 155 DEFINE_SHOW_ATTRIBUTE(mgts); 156 157 static int __init mg_debugfs_init(void) 158 { 159 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops); 160 return 0; 161 } 162 late_initcall(mg_debugfs_init); 163 164 #else /* ! CONFIG_DEBUG_FS */ 165 166 #define mgtime_counter_inc(__var) do { } while (0) 167 168 #endif /* CONFIG_DEBUG_FS */ 169 170 /* 171 * Handle nr_inode sysctl 172 */ 173 #ifdef CONFIG_SYSCTL 174 /* 175 * Statistics gathering.. 176 */ 177 static struct inodes_stat_t inodes_stat; 178 179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, 180 size_t *lenp, loff_t *ppos) 181 { 182 inodes_stat.nr_inodes = get_nr_inodes(); 183 inodes_stat.nr_unused = get_nr_inodes_unused(); 184 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 185 } 186 187 static const struct ctl_table inodes_sysctls[] = { 188 { 189 .procname = "inode-nr", 190 .data = &inodes_stat, 191 .maxlen = 2*sizeof(long), 192 .mode = 0444, 193 .proc_handler = proc_nr_inodes, 194 }, 195 { 196 .procname = "inode-state", 197 .data = &inodes_stat, 198 .maxlen = 7*sizeof(long), 199 .mode = 0444, 200 .proc_handler = proc_nr_inodes, 201 }, 202 }; 203 204 static int __init init_fs_inode_sysctls(void) 205 { 206 register_sysctl_init("fs", inodes_sysctls); 207 return 0; 208 } 209 early_initcall(init_fs_inode_sysctls); 210 #endif 211 212 static int no_open(struct inode *inode, struct file *file) 213 { 214 return -ENXIO; 215 } 216 217 /** 218 * inode_init_always_gfp - perform inode structure initialisation 219 * @sb: superblock inode belongs to 220 * @inode: inode to initialise 221 * @gfp: allocation flags 222 * 223 * These are initializations that need to be done on every inode 224 * allocation as the fields are not initialised by slab allocation. 225 * If there are additional allocations required @gfp is used. 226 */ 227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp) 228 { 229 static const struct inode_operations empty_iops; 230 static const struct file_operations no_open_fops = {.open = no_open}; 231 struct address_space *const mapping = &inode->i_data; 232 233 inode->i_sb = sb; 234 inode->i_blkbits = sb->s_blocksize_bits; 235 inode->i_flags = 0; 236 inode_state_assign_raw(inode, 0); 237 atomic64_set(&inode->i_sequence, 0); 238 atomic_set(&inode->i_count, 1); 239 inode->i_op = &empty_iops; 240 inode->i_fop = &no_open_fops; 241 inode->i_ino = 0; 242 inode->__i_nlink = 1; 243 inode->i_opflags = 0; 244 if (sb->s_xattr) 245 inode->i_opflags |= IOP_XATTR; 246 if (sb->s_type->fs_flags & FS_MGTIME) 247 inode->i_opflags |= IOP_MGTIME; 248 i_uid_write(inode, 0); 249 i_gid_write(inode, 0); 250 atomic_set(&inode->i_writecount, 0); 251 inode->i_size = 0; 252 inode->i_write_hint = WRITE_LIFE_NOT_SET; 253 inode->i_blocks = 0; 254 inode->i_bytes = 0; 255 inode->i_generation = 0; 256 inode->i_pipe = NULL; 257 inode->i_cdev = NULL; 258 inode->i_link = NULL; 259 inode->i_dir_seq = 0; 260 inode->i_rdev = 0; 261 inode->dirtied_when = 0; 262 263 #ifdef CONFIG_CGROUP_WRITEBACK 264 inode->i_wb_frn_winner = 0; 265 inode->i_wb_frn_avg_time = 0; 266 inode->i_wb_frn_history = 0; 267 #endif 268 269 spin_lock_init(&inode->i_lock); 270 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 271 272 init_rwsem(&inode->i_rwsem); 273 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 274 275 atomic_set(&inode->i_dio_count, 0); 276 277 mapping->a_ops = &empty_aops; 278 mapping->host = inode; 279 mapping->flags = 0; 280 mapping->wb_err = 0; 281 atomic_set(&mapping->i_mmap_writable, 0); 282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 283 atomic_set(&mapping->nr_thps, 0); 284 #endif 285 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 286 mapping->i_private_data = NULL; 287 mapping->writeback_index = 0; 288 init_rwsem(&mapping->invalidate_lock); 289 lockdep_set_class_and_name(&mapping->invalidate_lock, 290 &sb->s_type->invalidate_lock_key, 291 "mapping.invalidate_lock"); 292 if (sb->s_iflags & SB_I_STABLE_WRITES) 293 mapping_set_stable_writes(mapping); 294 inode->i_private = NULL; 295 inode->i_mapping = mapping; 296 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 297 #ifdef CONFIG_FS_POSIX_ACL 298 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 299 #endif 300 301 #ifdef CONFIG_FSNOTIFY 302 inode->i_fsnotify_mask = 0; 303 #endif 304 inode->i_flctx = NULL; 305 306 if (unlikely(security_inode_alloc(inode, gfp))) 307 return -ENOMEM; 308 309 this_cpu_inc(nr_inodes); 310 311 return 0; 312 } 313 EXPORT_SYMBOL(inode_init_always_gfp); 314 315 void free_inode_nonrcu(struct inode *inode) 316 { 317 kmem_cache_free(inode_cachep, inode); 318 } 319 EXPORT_SYMBOL(free_inode_nonrcu); 320 321 static void i_callback(struct rcu_head *head) 322 { 323 struct inode *inode = container_of(head, struct inode, i_rcu); 324 if (inode->free_inode) 325 inode->free_inode(inode); 326 else 327 free_inode_nonrcu(inode); 328 } 329 330 /** 331 * alloc_inode - obtain an inode 332 * @sb: superblock 333 * 334 * Allocates a new inode for given superblock. 335 * Inode wont be chained in superblock s_inodes list 336 * This means : 337 * - fs can't be unmount 338 * - quotas, fsnotify, writeback can't work 339 */ 340 struct inode *alloc_inode(struct super_block *sb) 341 { 342 const struct super_operations *ops = sb->s_op; 343 struct inode *inode; 344 345 if (ops->alloc_inode) 346 inode = ops->alloc_inode(sb); 347 else 348 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 349 350 if (!inode) 351 return NULL; 352 353 if (unlikely(inode_init_always(sb, inode))) { 354 if (ops->destroy_inode) { 355 ops->destroy_inode(inode); 356 if (!ops->free_inode) 357 return NULL; 358 } 359 inode->free_inode = ops->free_inode; 360 i_callback(&inode->i_rcu); 361 return NULL; 362 } 363 364 return inode; 365 } 366 367 void __destroy_inode(struct inode *inode) 368 { 369 BUG_ON(inode_has_buffers(inode)); 370 inode_detach_wb(inode); 371 security_inode_free(inode); 372 fsnotify_inode_delete(inode); 373 locks_free_lock_context(inode); 374 if (!inode->i_nlink) { 375 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 376 atomic_long_dec(&inode->i_sb->s_remove_count); 377 } 378 379 #ifdef CONFIG_FS_POSIX_ACL 380 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 381 posix_acl_release(inode->i_acl); 382 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 383 posix_acl_release(inode->i_default_acl); 384 #endif 385 this_cpu_dec(nr_inodes); 386 } 387 EXPORT_SYMBOL(__destroy_inode); 388 389 static void destroy_inode(struct inode *inode) 390 { 391 const struct super_operations *ops = inode->i_sb->s_op; 392 393 BUG_ON(!list_empty(&inode->i_lru)); 394 __destroy_inode(inode); 395 if (ops->destroy_inode) { 396 ops->destroy_inode(inode); 397 if (!ops->free_inode) 398 return; 399 } 400 inode->free_inode = ops->free_inode; 401 call_rcu(&inode->i_rcu, i_callback); 402 } 403 404 /** 405 * drop_nlink - directly drop an inode's link count 406 * @inode: inode 407 * 408 * This is a low-level filesystem helper to replace any 409 * direct filesystem manipulation of i_nlink. In cases 410 * where we are attempting to track writes to the 411 * filesystem, a decrement to zero means an imminent 412 * write when the file is truncated and actually unlinked 413 * on the filesystem. 414 */ 415 void drop_nlink(struct inode *inode) 416 { 417 WARN_ON(inode->i_nlink == 0); 418 inode->__i_nlink--; 419 if (!inode->i_nlink) 420 atomic_long_inc(&inode->i_sb->s_remove_count); 421 } 422 EXPORT_SYMBOL(drop_nlink); 423 424 /** 425 * clear_nlink - directly zero an inode's link count 426 * @inode: inode 427 * 428 * This is a low-level filesystem helper to replace any 429 * direct filesystem manipulation of i_nlink. See 430 * drop_nlink() for why we care about i_nlink hitting zero. 431 */ 432 void clear_nlink(struct inode *inode) 433 { 434 if (inode->i_nlink) { 435 inode->__i_nlink = 0; 436 atomic_long_inc(&inode->i_sb->s_remove_count); 437 } 438 } 439 EXPORT_SYMBOL(clear_nlink); 440 441 /** 442 * set_nlink - directly set an inode's link count 443 * @inode: inode 444 * @nlink: new nlink (should be non-zero) 445 * 446 * This is a low-level filesystem helper to replace any 447 * direct filesystem manipulation of i_nlink. 448 */ 449 void set_nlink(struct inode *inode, unsigned int nlink) 450 { 451 if (!nlink) { 452 clear_nlink(inode); 453 } else { 454 /* Yes, some filesystems do change nlink from zero to one */ 455 if (inode->i_nlink == 0) 456 atomic_long_dec(&inode->i_sb->s_remove_count); 457 458 inode->__i_nlink = nlink; 459 } 460 } 461 EXPORT_SYMBOL(set_nlink); 462 463 /** 464 * inc_nlink - directly increment an inode's link count 465 * @inode: inode 466 * 467 * This is a low-level filesystem helper to replace any 468 * direct filesystem manipulation of i_nlink. Currently, 469 * it is only here for parity with dec_nlink(). 470 */ 471 void inc_nlink(struct inode *inode) 472 { 473 if (unlikely(inode->i_nlink == 0)) { 474 WARN_ON(!(inode_state_read_once(inode) & I_LINKABLE)); 475 atomic_long_dec(&inode->i_sb->s_remove_count); 476 } 477 478 inode->__i_nlink++; 479 } 480 EXPORT_SYMBOL(inc_nlink); 481 482 static void __address_space_init_once(struct address_space *mapping) 483 { 484 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 485 init_rwsem(&mapping->i_mmap_rwsem); 486 INIT_LIST_HEAD(&mapping->i_private_list); 487 spin_lock_init(&mapping->i_private_lock); 488 mapping->i_mmap = RB_ROOT_CACHED; 489 } 490 491 void address_space_init_once(struct address_space *mapping) 492 { 493 memset(mapping, 0, sizeof(*mapping)); 494 __address_space_init_once(mapping); 495 } 496 EXPORT_SYMBOL(address_space_init_once); 497 498 /* 499 * These are initializations that only need to be done 500 * once, because the fields are idempotent across use 501 * of the inode, so let the slab aware of that. 502 */ 503 void inode_init_once(struct inode *inode) 504 { 505 memset(inode, 0, sizeof(*inode)); 506 INIT_HLIST_NODE(&inode->i_hash); 507 INIT_LIST_HEAD(&inode->i_devices); 508 INIT_LIST_HEAD(&inode->i_io_list); 509 INIT_LIST_HEAD(&inode->i_wb_list); 510 INIT_LIST_HEAD(&inode->i_lru); 511 INIT_LIST_HEAD(&inode->i_sb_list); 512 __address_space_init_once(&inode->i_data); 513 i_size_ordered_init(inode); 514 } 515 EXPORT_SYMBOL(inode_init_once); 516 517 static void init_once(void *foo) 518 { 519 struct inode *inode = (struct inode *) foo; 520 521 inode_init_once(inode); 522 } 523 524 /* 525 * get additional reference to inode; caller must already hold one. 526 */ 527 void ihold(struct inode *inode) 528 { 529 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 530 } 531 EXPORT_SYMBOL(ihold); 532 533 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 534 struct inode *inode, u32 bit) 535 { 536 void *bit_address; 537 538 bit_address = inode_state_wait_address(inode, bit); 539 init_wait_var_entry(wqe, bit_address, 0); 540 return __var_waitqueue(bit_address); 541 } 542 EXPORT_SYMBOL(inode_bit_waitqueue); 543 544 void wait_on_new_inode(struct inode *inode) 545 { 546 struct wait_bit_queue_entry wqe; 547 struct wait_queue_head *wq_head; 548 549 spin_lock(&inode->i_lock); 550 if (!(inode_state_read(inode) & I_NEW)) { 551 spin_unlock(&inode->i_lock); 552 return; 553 } 554 555 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 556 for (;;) { 557 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 558 if (!(inode_state_read(inode) & I_NEW)) 559 break; 560 spin_unlock(&inode->i_lock); 561 schedule(); 562 spin_lock(&inode->i_lock); 563 } 564 finish_wait(wq_head, &wqe.wq_entry); 565 WARN_ON(inode_state_read(inode) & I_NEW); 566 spin_unlock(&inode->i_lock); 567 } 568 EXPORT_SYMBOL(wait_on_new_inode); 569 570 static void __inode_lru_list_add(struct inode *inode, bool rotate) 571 { 572 lockdep_assert_held(&inode->i_lock); 573 574 if (inode_state_read(inode) & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 575 return; 576 if (icount_read(inode)) 577 return; 578 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 579 return; 580 if (!mapping_shrinkable(&inode->i_data)) 581 return; 582 583 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 584 this_cpu_inc(nr_unused); 585 else if (rotate) 586 inode_state_set(inode, I_REFERENCED); 587 } 588 589 /* 590 * Add inode to LRU if needed (inode is unused and clean). 591 */ 592 void inode_lru_list_add(struct inode *inode) 593 { 594 __inode_lru_list_add(inode, false); 595 } 596 597 static void inode_lru_list_del(struct inode *inode) 598 { 599 if (list_empty(&inode->i_lru)) 600 return; 601 602 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 603 this_cpu_dec(nr_unused); 604 } 605 606 static void inode_pin_lru_isolating(struct inode *inode) 607 { 608 lockdep_assert_held(&inode->i_lock); 609 WARN_ON(inode_state_read(inode) & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 610 inode_state_set(inode, I_LRU_ISOLATING); 611 } 612 613 static void inode_unpin_lru_isolating(struct inode *inode) 614 { 615 spin_lock(&inode->i_lock); 616 WARN_ON(!(inode_state_read(inode) & I_LRU_ISOLATING)); 617 inode_state_clear(inode, I_LRU_ISOLATING); 618 /* Called with inode->i_lock which ensures memory ordering. */ 619 inode_wake_up_bit(inode, __I_LRU_ISOLATING); 620 spin_unlock(&inode->i_lock); 621 } 622 623 static void inode_wait_for_lru_isolating(struct inode *inode) 624 { 625 struct wait_bit_queue_entry wqe; 626 struct wait_queue_head *wq_head; 627 628 lockdep_assert_held(&inode->i_lock); 629 if (!(inode_state_read(inode) & I_LRU_ISOLATING)) 630 return; 631 632 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING); 633 for (;;) { 634 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 635 /* 636 * Checking I_LRU_ISOLATING with inode->i_lock guarantees 637 * memory ordering. 638 */ 639 if (!(inode_state_read(inode) & I_LRU_ISOLATING)) 640 break; 641 spin_unlock(&inode->i_lock); 642 schedule(); 643 spin_lock(&inode->i_lock); 644 } 645 finish_wait(wq_head, &wqe.wq_entry); 646 WARN_ON(inode_state_read(inode) & I_LRU_ISOLATING); 647 } 648 649 /** 650 * inode_sb_list_add - add inode to the superblock list of inodes 651 * @inode: inode to add 652 */ 653 void inode_sb_list_add(struct inode *inode) 654 { 655 struct super_block *sb = inode->i_sb; 656 657 spin_lock(&sb->s_inode_list_lock); 658 list_add(&inode->i_sb_list, &sb->s_inodes); 659 spin_unlock(&sb->s_inode_list_lock); 660 } 661 EXPORT_SYMBOL_GPL(inode_sb_list_add); 662 663 static inline void inode_sb_list_del(struct inode *inode) 664 { 665 struct super_block *sb = inode->i_sb; 666 667 if (!list_empty(&inode->i_sb_list)) { 668 spin_lock(&sb->s_inode_list_lock); 669 list_del_init(&inode->i_sb_list); 670 spin_unlock(&sb->s_inode_list_lock); 671 } 672 } 673 674 static unsigned long hash(struct super_block *sb, unsigned long hashval) 675 { 676 unsigned long tmp; 677 678 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 679 L1_CACHE_BYTES; 680 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 681 return tmp & i_hash_mask; 682 } 683 684 /** 685 * __insert_inode_hash - hash an inode 686 * @inode: unhashed inode 687 * @hashval: unsigned long value used to locate this object in the 688 * inode_hashtable. 689 * 690 * Add an inode to the inode hash for this superblock. 691 */ 692 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 693 { 694 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 695 696 spin_lock(&inode_hash_lock); 697 spin_lock(&inode->i_lock); 698 hlist_add_head_rcu(&inode->i_hash, b); 699 spin_unlock(&inode->i_lock); 700 spin_unlock(&inode_hash_lock); 701 } 702 EXPORT_SYMBOL(__insert_inode_hash); 703 704 /** 705 * __remove_inode_hash - remove an inode from the hash 706 * @inode: inode to unhash 707 * 708 * Remove an inode from the superblock. 709 */ 710 void __remove_inode_hash(struct inode *inode) 711 { 712 spin_lock(&inode_hash_lock); 713 spin_lock(&inode->i_lock); 714 hlist_del_init_rcu(&inode->i_hash); 715 spin_unlock(&inode->i_lock); 716 spin_unlock(&inode_hash_lock); 717 } 718 EXPORT_SYMBOL(__remove_inode_hash); 719 720 void dump_mapping(const struct address_space *mapping) 721 { 722 struct inode *host; 723 const struct address_space_operations *a_ops; 724 struct hlist_node *dentry_first; 725 struct dentry *dentry_ptr; 726 struct dentry dentry; 727 char fname[64] = {}; 728 unsigned long ino; 729 730 /* 731 * If mapping is an invalid pointer, we don't want to crash 732 * accessing it, so probe everything depending on it carefully. 733 */ 734 if (get_kernel_nofault(host, &mapping->host) || 735 get_kernel_nofault(a_ops, &mapping->a_ops)) { 736 pr_warn("invalid mapping:%px\n", mapping); 737 return; 738 } 739 740 if (!host) { 741 pr_warn("aops:%ps\n", a_ops); 742 return; 743 } 744 745 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 746 get_kernel_nofault(ino, &host->i_ino)) { 747 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 748 return; 749 } 750 751 if (!dentry_first) { 752 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 753 return; 754 } 755 756 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 757 if (get_kernel_nofault(dentry, dentry_ptr) || 758 !dentry.d_parent || !dentry.d_name.name) { 759 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 760 a_ops, ino, dentry_ptr); 761 return; 762 } 763 764 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) 765 strscpy(fname, "<invalid>"); 766 /* 767 * Even if strncpy_from_kernel_nofault() succeeded, 768 * the fname could be unreliable 769 */ 770 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", 771 a_ops, ino, fname); 772 } 773 774 void clear_inode(struct inode *inode) 775 { 776 /* 777 * We have to cycle the i_pages lock here because reclaim can be in the 778 * process of removing the last page (in __filemap_remove_folio()) 779 * and we must not free the mapping under it. 780 */ 781 xa_lock_irq(&inode->i_data.i_pages); 782 BUG_ON(inode->i_data.nrpages); 783 /* 784 * Almost always, mapping_empty(&inode->i_data) here; but there are 785 * two known and long-standing ways in which nodes may get left behind 786 * (when deep radix-tree node allocation failed partway; or when THP 787 * collapse_file() failed). Until those two known cases are cleaned up, 788 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 789 * nor even WARN_ON(!mapping_empty). 790 */ 791 xa_unlock_irq(&inode->i_data.i_pages); 792 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 793 BUG_ON(!(inode_state_read_once(inode) & I_FREEING)); 794 BUG_ON(inode_state_read_once(inode) & I_CLEAR); 795 BUG_ON(!list_empty(&inode->i_wb_list)); 796 /* don't need i_lock here, no concurrent mods to i_state */ 797 inode_state_assign_raw(inode, I_FREEING | I_CLEAR); 798 } 799 EXPORT_SYMBOL(clear_inode); 800 801 /* 802 * Free the inode passed in, removing it from the lists it is still connected 803 * to. We remove any pages still attached to the inode and wait for any IO that 804 * is still in progress before finally destroying the inode. 805 * 806 * An inode must already be marked I_FREEING so that we avoid the inode being 807 * moved back onto lists if we race with other code that manipulates the lists 808 * (e.g. writeback_single_inode). The caller is responsible for setting this. 809 * 810 * An inode must already be removed from the LRU list before being evicted from 811 * the cache. This should occur atomically with setting the I_FREEING state 812 * flag, so no inodes here should ever be on the LRU when being evicted. 813 */ 814 static void evict(struct inode *inode) 815 { 816 const struct super_operations *op = inode->i_sb->s_op; 817 818 BUG_ON(!(inode_state_read_once(inode) & I_FREEING)); 819 BUG_ON(!list_empty(&inode->i_lru)); 820 821 inode_io_list_del(inode); 822 inode_sb_list_del(inode); 823 824 spin_lock(&inode->i_lock); 825 inode_wait_for_lru_isolating(inode); 826 827 /* 828 * Wait for flusher thread to be done with the inode so that filesystem 829 * does not start destroying it while writeback is still running. Since 830 * the inode has I_FREEING set, flusher thread won't start new work on 831 * the inode. We just have to wait for running writeback to finish. 832 */ 833 inode_wait_for_writeback(inode); 834 spin_unlock(&inode->i_lock); 835 836 if (op->evict_inode) { 837 op->evict_inode(inode); 838 } else { 839 truncate_inode_pages_final(&inode->i_data); 840 clear_inode(inode); 841 } 842 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 843 cd_forget(inode); 844 845 remove_inode_hash(inode); 846 847 /* 848 * Wake up waiters in __wait_on_freeing_inode(). 849 * 850 * It is an invariant that any thread we need to wake up is already 851 * accounted for before remove_inode_hash() acquires ->i_lock -- both 852 * sides take the lock and sleep is aborted if the inode is found 853 * unhashed. Thus either the sleeper wins and goes off CPU, or removal 854 * wins and the sleeper aborts after testing with the lock. 855 * 856 * This also means we don't need any fences for the call below. 857 */ 858 inode_wake_up_bit(inode, __I_NEW); 859 BUG_ON(inode_state_read_once(inode) != (I_FREEING | I_CLEAR)); 860 861 destroy_inode(inode); 862 } 863 864 /* 865 * dispose_list - dispose of the contents of a local list 866 * @head: the head of the list to free 867 * 868 * Dispose-list gets a local list with local inodes in it, so it doesn't 869 * need to worry about list corruption and SMP locks. 870 */ 871 static void dispose_list(struct list_head *head) 872 { 873 while (!list_empty(head)) { 874 struct inode *inode; 875 876 inode = list_first_entry(head, struct inode, i_lru); 877 list_del_init(&inode->i_lru); 878 879 evict(inode); 880 cond_resched(); 881 } 882 } 883 884 /** 885 * evict_inodes - evict all evictable inodes for a superblock 886 * @sb: superblock to operate on 887 * 888 * Make sure that no inodes with zero refcount are retained. This is 889 * called by superblock shutdown after having SB_ACTIVE flag removed, 890 * so any inode reaching zero refcount during or after that call will 891 * be immediately evicted. 892 */ 893 void evict_inodes(struct super_block *sb) 894 { 895 struct inode *inode; 896 LIST_HEAD(dispose); 897 898 again: 899 spin_lock(&sb->s_inode_list_lock); 900 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 901 if (icount_read(inode)) 902 continue; 903 904 spin_lock(&inode->i_lock); 905 if (icount_read(inode)) { 906 spin_unlock(&inode->i_lock); 907 continue; 908 } 909 if (inode_state_read(inode) & (I_NEW | I_FREEING | I_WILL_FREE)) { 910 spin_unlock(&inode->i_lock); 911 continue; 912 } 913 914 inode_state_set(inode, I_FREEING); 915 inode_lru_list_del(inode); 916 spin_unlock(&inode->i_lock); 917 list_add(&inode->i_lru, &dispose); 918 919 /* 920 * We can have a ton of inodes to evict at unmount time given 921 * enough memory, check to see if we need to go to sleep for a 922 * bit so we don't livelock. 923 */ 924 if (need_resched()) { 925 spin_unlock(&sb->s_inode_list_lock); 926 cond_resched(); 927 dispose_list(&dispose); 928 goto again; 929 } 930 } 931 spin_unlock(&sb->s_inode_list_lock); 932 933 dispose_list(&dispose); 934 } 935 EXPORT_SYMBOL_GPL(evict_inodes); 936 937 /* 938 * Isolate the inode from the LRU in preparation for freeing it. 939 * 940 * If the inode has the I_REFERENCED flag set, then it means that it has been 941 * used recently - the flag is set in iput_final(). When we encounter such an 942 * inode, clear the flag and move it to the back of the LRU so it gets another 943 * pass through the LRU before it gets reclaimed. This is necessary because of 944 * the fact we are doing lazy LRU updates to minimise lock contention so the 945 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 946 * with this flag set because they are the inodes that are out of order. 947 */ 948 static enum lru_status inode_lru_isolate(struct list_head *item, 949 struct list_lru_one *lru, void *arg) 950 { 951 struct list_head *freeable = arg; 952 struct inode *inode = container_of(item, struct inode, i_lru); 953 954 /* 955 * We are inverting the lru lock/inode->i_lock here, so use a 956 * trylock. If we fail to get the lock, just skip it. 957 */ 958 if (!spin_trylock(&inode->i_lock)) 959 return LRU_SKIP; 960 961 /* 962 * Inodes can get referenced, redirtied, or repopulated while 963 * they're already on the LRU, and this can make them 964 * unreclaimable for a while. Remove them lazily here; iput, 965 * sync, or the last page cache deletion will requeue them. 966 */ 967 if (icount_read(inode) || 968 (inode_state_read(inode) & ~I_REFERENCED) || 969 !mapping_shrinkable(&inode->i_data)) { 970 list_lru_isolate(lru, &inode->i_lru); 971 spin_unlock(&inode->i_lock); 972 this_cpu_dec(nr_unused); 973 return LRU_REMOVED; 974 } 975 976 /* Recently referenced inodes get one more pass */ 977 if (inode_state_read(inode) & I_REFERENCED) { 978 inode_state_clear(inode, I_REFERENCED); 979 spin_unlock(&inode->i_lock); 980 return LRU_ROTATE; 981 } 982 983 /* 984 * On highmem systems, mapping_shrinkable() permits dropping 985 * page cache in order to free up struct inodes: lowmem might 986 * be under pressure before the cache inside the highmem zone. 987 */ 988 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 989 inode_pin_lru_isolating(inode); 990 spin_unlock(&inode->i_lock); 991 spin_unlock(&lru->lock); 992 if (remove_inode_buffers(inode)) { 993 unsigned long reap; 994 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 995 if (current_is_kswapd()) 996 __count_vm_events(KSWAPD_INODESTEAL, reap); 997 else 998 __count_vm_events(PGINODESTEAL, reap); 999 mm_account_reclaimed_pages(reap); 1000 } 1001 inode_unpin_lru_isolating(inode); 1002 return LRU_RETRY; 1003 } 1004 1005 WARN_ON(inode_state_read(inode) & I_NEW); 1006 inode_state_set(inode, I_FREEING); 1007 list_lru_isolate_move(lru, &inode->i_lru, freeable); 1008 spin_unlock(&inode->i_lock); 1009 1010 this_cpu_dec(nr_unused); 1011 return LRU_REMOVED; 1012 } 1013 1014 /* 1015 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 1016 * This is called from the superblock shrinker function with a number of inodes 1017 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 1018 * then are freed outside inode_lock by dispose_list(). 1019 */ 1020 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 1021 { 1022 LIST_HEAD(freeable); 1023 long freed; 1024 1025 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 1026 inode_lru_isolate, &freeable); 1027 dispose_list(&freeable); 1028 return freed; 1029 } 1030 1031 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); 1032 /* 1033 * Called with the inode lock held. 1034 */ 1035 static struct inode *find_inode(struct super_block *sb, 1036 struct hlist_head *head, 1037 int (*test)(struct inode *, void *), 1038 void *data, bool is_inode_hash_locked, 1039 bool *isnew) 1040 { 1041 struct inode *inode = NULL; 1042 1043 if (is_inode_hash_locked) 1044 lockdep_assert_held(&inode_hash_lock); 1045 else 1046 lockdep_assert_not_held(&inode_hash_lock); 1047 1048 rcu_read_lock(); 1049 repeat: 1050 hlist_for_each_entry_rcu(inode, head, i_hash) { 1051 if (inode->i_sb != sb) 1052 continue; 1053 if (!test(inode, data)) 1054 continue; 1055 spin_lock(&inode->i_lock); 1056 if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) { 1057 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1058 goto repeat; 1059 } 1060 if (unlikely(inode_state_read(inode) & I_CREATING)) { 1061 spin_unlock(&inode->i_lock); 1062 rcu_read_unlock(); 1063 return ERR_PTR(-ESTALE); 1064 } 1065 __iget(inode); 1066 *isnew = !!(inode_state_read(inode) & I_NEW); 1067 spin_unlock(&inode->i_lock); 1068 rcu_read_unlock(); 1069 return inode; 1070 } 1071 rcu_read_unlock(); 1072 return NULL; 1073 } 1074 1075 /* 1076 * find_inode_fast is the fast path version of find_inode, see the comment at 1077 * iget_locked for details. 1078 */ 1079 static struct inode *find_inode_fast(struct super_block *sb, 1080 struct hlist_head *head, unsigned long ino, 1081 bool is_inode_hash_locked, bool *isnew) 1082 { 1083 struct inode *inode = NULL; 1084 1085 if (is_inode_hash_locked) 1086 lockdep_assert_held(&inode_hash_lock); 1087 else 1088 lockdep_assert_not_held(&inode_hash_lock); 1089 1090 rcu_read_lock(); 1091 repeat: 1092 hlist_for_each_entry_rcu(inode, head, i_hash) { 1093 if (inode->i_ino != ino) 1094 continue; 1095 if (inode->i_sb != sb) 1096 continue; 1097 spin_lock(&inode->i_lock); 1098 if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) { 1099 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1100 goto repeat; 1101 } 1102 if (unlikely(inode_state_read(inode) & I_CREATING)) { 1103 spin_unlock(&inode->i_lock); 1104 rcu_read_unlock(); 1105 return ERR_PTR(-ESTALE); 1106 } 1107 __iget(inode); 1108 *isnew = !!(inode_state_read(inode) & I_NEW); 1109 spin_unlock(&inode->i_lock); 1110 rcu_read_unlock(); 1111 return inode; 1112 } 1113 rcu_read_unlock(); 1114 return NULL; 1115 } 1116 1117 /* 1118 * Each cpu owns a range of LAST_INO_BATCH numbers. 1119 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 1120 * to renew the exhausted range. 1121 * 1122 * This does not significantly increase overflow rate because every CPU can 1123 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1124 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1125 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1126 * overflow rate by 2x, which does not seem too significant. 1127 * 1128 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1129 * error if st_ino won't fit in target struct field. Use 32bit counter 1130 * here to attempt to avoid that. 1131 */ 1132 #define LAST_INO_BATCH 1024 1133 static DEFINE_PER_CPU(unsigned int, last_ino); 1134 1135 unsigned int get_next_ino(void) 1136 { 1137 unsigned int *p = &get_cpu_var(last_ino); 1138 unsigned int res = *p; 1139 1140 #ifdef CONFIG_SMP 1141 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1142 static atomic_t shared_last_ino; 1143 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1144 1145 res = next - LAST_INO_BATCH; 1146 } 1147 #endif 1148 1149 res++; 1150 /* get_next_ino should not provide a 0 inode number */ 1151 if (unlikely(!res)) 1152 res++; 1153 *p = res; 1154 put_cpu_var(last_ino); 1155 return res; 1156 } 1157 EXPORT_SYMBOL(get_next_ino); 1158 1159 /** 1160 * new_inode - obtain an inode 1161 * @sb: superblock 1162 * 1163 * Allocates a new inode for given superblock. The default gfp_mask 1164 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1165 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1166 * for the page cache are not reclaimable or migratable, 1167 * mapping_set_gfp_mask() must be called with suitable flags on the 1168 * newly created inode's mapping 1169 * 1170 */ 1171 struct inode *new_inode(struct super_block *sb) 1172 { 1173 struct inode *inode; 1174 1175 inode = alloc_inode(sb); 1176 if (inode) 1177 inode_sb_list_add(inode); 1178 return inode; 1179 } 1180 EXPORT_SYMBOL(new_inode); 1181 1182 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1183 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1184 { 1185 if (S_ISDIR(inode->i_mode)) { 1186 struct file_system_type *type = inode->i_sb->s_type; 1187 1188 /* Set new key only if filesystem hasn't already changed it */ 1189 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1190 /* 1191 * ensure nobody is actually holding i_rwsem 1192 */ 1193 init_rwsem(&inode->i_rwsem); 1194 lockdep_set_class(&inode->i_rwsem, 1195 &type->i_mutex_dir_key); 1196 } 1197 } 1198 } 1199 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1200 #endif 1201 1202 /** 1203 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1204 * @inode: new inode to unlock 1205 * 1206 * Called when the inode is fully initialised to clear the new state of the 1207 * inode and wake up anyone waiting for the inode to finish initialisation. 1208 */ 1209 void unlock_new_inode(struct inode *inode) 1210 { 1211 lockdep_annotate_inode_mutex_key(inode); 1212 spin_lock(&inode->i_lock); 1213 WARN_ON(!(inode_state_read(inode) & I_NEW)); 1214 inode_state_clear(inode, I_NEW | I_CREATING); 1215 inode_wake_up_bit(inode, __I_NEW); 1216 spin_unlock(&inode->i_lock); 1217 } 1218 EXPORT_SYMBOL(unlock_new_inode); 1219 1220 void discard_new_inode(struct inode *inode) 1221 { 1222 lockdep_annotate_inode_mutex_key(inode); 1223 spin_lock(&inode->i_lock); 1224 WARN_ON(!(inode_state_read(inode) & I_NEW)); 1225 inode_state_clear(inode, I_NEW); 1226 inode_wake_up_bit(inode, __I_NEW); 1227 spin_unlock(&inode->i_lock); 1228 iput(inode); 1229 } 1230 EXPORT_SYMBOL(discard_new_inode); 1231 1232 /** 1233 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1234 * 1235 * Lock any non-NULL argument. Passed objects must not be directories. 1236 * Zero, one or two objects may be locked by this function. 1237 * 1238 * @inode1: first inode to lock 1239 * @inode2: second inode to lock 1240 */ 1241 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1242 { 1243 if (inode1) 1244 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1245 if (inode2) 1246 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1247 if (inode1 > inode2) 1248 swap(inode1, inode2); 1249 if (inode1) 1250 inode_lock(inode1); 1251 if (inode2 && inode2 != inode1) 1252 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1253 } 1254 EXPORT_SYMBOL(lock_two_nondirectories); 1255 1256 /** 1257 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1258 * @inode1: first inode to unlock 1259 * @inode2: second inode to unlock 1260 */ 1261 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1262 { 1263 if (inode1) { 1264 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1265 inode_unlock(inode1); 1266 } 1267 if (inode2 && inode2 != inode1) { 1268 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1269 inode_unlock(inode2); 1270 } 1271 } 1272 EXPORT_SYMBOL(unlock_two_nondirectories); 1273 1274 /** 1275 * inode_insert5 - obtain an inode from a mounted file system 1276 * @inode: pre-allocated inode to use for insert to cache 1277 * @hashval: hash value (usually inode number) to get 1278 * @test: callback used for comparisons between inodes 1279 * @set: callback used to initialize a new struct inode 1280 * @data: opaque data pointer to pass to @test and @set 1281 * @isnew: pointer to a bool which will indicate whether I_NEW is set 1282 * 1283 * Search for the inode specified by @hashval and @data in the inode cache, 1284 * and if present return it with an increased reference count. This is a 1285 * variant of iget5_locked() that doesn't allocate an inode. 1286 * 1287 * If the inode is not present in the cache, insert the pre-allocated inode and 1288 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1289 * to fill it in before unlocking it via unlock_new_inode(). 1290 * 1291 * Note that both @test and @set are called with the inode_hash_lock held, so 1292 * they can't sleep. 1293 */ 1294 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1295 int (*test)(struct inode *, void *), 1296 int (*set)(struct inode *, void *), void *data) 1297 { 1298 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1299 struct inode *old; 1300 bool isnew; 1301 1302 might_sleep(); 1303 1304 again: 1305 spin_lock(&inode_hash_lock); 1306 old = find_inode(inode->i_sb, head, test, data, true, &isnew); 1307 if (unlikely(old)) { 1308 /* 1309 * Uhhuh, somebody else created the same inode under us. 1310 * Use the old inode instead of the preallocated one. 1311 */ 1312 spin_unlock(&inode_hash_lock); 1313 if (IS_ERR(old)) 1314 return NULL; 1315 if (unlikely(isnew)) 1316 wait_on_new_inode(old); 1317 if (unlikely(inode_unhashed(old))) { 1318 iput(old); 1319 goto again; 1320 } 1321 return old; 1322 } 1323 1324 if (set && unlikely(set(inode, data))) { 1325 spin_unlock(&inode_hash_lock); 1326 return NULL; 1327 } 1328 1329 /* 1330 * Return the locked inode with I_NEW set, the 1331 * caller is responsible for filling in the contents 1332 */ 1333 spin_lock(&inode->i_lock); 1334 inode_state_set(inode, I_NEW); 1335 hlist_add_head_rcu(&inode->i_hash, head); 1336 spin_unlock(&inode->i_lock); 1337 1338 spin_unlock(&inode_hash_lock); 1339 1340 /* 1341 * Add inode to the sb list if it's not already. It has I_NEW at this 1342 * point, so it should be safe to test i_sb_list locklessly. 1343 */ 1344 if (list_empty(&inode->i_sb_list)) 1345 inode_sb_list_add(inode); 1346 1347 return inode; 1348 } 1349 EXPORT_SYMBOL(inode_insert5); 1350 1351 /** 1352 * iget5_locked - obtain an inode from a mounted file system 1353 * @sb: super block of file system 1354 * @hashval: hash value (usually inode number) to get 1355 * @test: callback used for comparisons between inodes 1356 * @set: callback used to initialize a new struct inode 1357 * @data: opaque data pointer to pass to @test and @set 1358 * 1359 * Search for the inode specified by @hashval and @data in the inode cache, 1360 * and if present return it with an increased reference count. This is a 1361 * generalized version of iget_locked() for file systems where the inode 1362 * number is not sufficient for unique identification of an inode. 1363 * 1364 * If the inode is not present in the cache, allocate and insert a new inode 1365 * and return it locked, hashed, and with the I_NEW flag set. The file system 1366 * gets to fill it in before unlocking it via unlock_new_inode(). 1367 * 1368 * Note that both @test and @set are called with the inode_hash_lock held, so 1369 * they can't sleep. 1370 */ 1371 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1372 int (*test)(struct inode *, void *), 1373 int (*set)(struct inode *, void *), void *data) 1374 { 1375 struct inode *inode = ilookup5(sb, hashval, test, data); 1376 1377 if (!inode) { 1378 struct inode *new = alloc_inode(sb); 1379 1380 if (new) { 1381 inode = inode_insert5(new, hashval, test, set, data); 1382 if (unlikely(inode != new)) 1383 destroy_inode(new); 1384 } 1385 } 1386 return inode; 1387 } 1388 EXPORT_SYMBOL(iget5_locked); 1389 1390 /** 1391 * iget5_locked_rcu - obtain an inode from a mounted file system 1392 * @sb: super block of file system 1393 * @hashval: hash value (usually inode number) to get 1394 * @test: callback used for comparisons between inodes 1395 * @set: callback used to initialize a new struct inode 1396 * @data: opaque data pointer to pass to @test and @set 1397 * 1398 * This is equivalent to iget5_locked, except the @test callback must 1399 * tolerate the inode not being stable, including being mid-teardown. 1400 */ 1401 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1402 int (*test)(struct inode *, void *), 1403 int (*set)(struct inode *, void *), void *data) 1404 { 1405 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1406 struct inode *inode, *new; 1407 bool isnew; 1408 1409 might_sleep(); 1410 1411 again: 1412 inode = find_inode(sb, head, test, data, false, &isnew); 1413 if (inode) { 1414 if (IS_ERR(inode)) 1415 return NULL; 1416 if (unlikely(isnew)) 1417 wait_on_new_inode(inode); 1418 if (unlikely(inode_unhashed(inode))) { 1419 iput(inode); 1420 goto again; 1421 } 1422 return inode; 1423 } 1424 1425 new = alloc_inode(sb); 1426 if (new) { 1427 inode = inode_insert5(new, hashval, test, set, data); 1428 if (unlikely(inode != new)) 1429 destroy_inode(new); 1430 } 1431 return inode; 1432 } 1433 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1434 1435 /** 1436 * iget_locked - obtain an inode from a mounted file system 1437 * @sb: super block of file system 1438 * @ino: inode number to get 1439 * 1440 * Search for the inode specified by @ino in the inode cache and if present 1441 * return it with an increased reference count. This is for file systems 1442 * where the inode number is sufficient for unique identification of an inode. 1443 * 1444 * If the inode is not in cache, allocate a new inode and return it locked, 1445 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1446 * before unlocking it via unlock_new_inode(). 1447 */ 1448 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1449 { 1450 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1451 struct inode *inode; 1452 bool isnew; 1453 1454 might_sleep(); 1455 1456 again: 1457 inode = find_inode_fast(sb, head, ino, false, &isnew); 1458 if (inode) { 1459 if (IS_ERR(inode)) 1460 return NULL; 1461 if (unlikely(isnew)) 1462 wait_on_new_inode(inode); 1463 if (unlikely(inode_unhashed(inode))) { 1464 iput(inode); 1465 goto again; 1466 } 1467 return inode; 1468 } 1469 1470 inode = alloc_inode(sb); 1471 if (inode) { 1472 struct inode *old; 1473 1474 spin_lock(&inode_hash_lock); 1475 /* We released the lock, so.. */ 1476 old = find_inode_fast(sb, head, ino, true, &isnew); 1477 if (!old) { 1478 inode->i_ino = ino; 1479 spin_lock(&inode->i_lock); 1480 inode_state_assign(inode, I_NEW); 1481 hlist_add_head_rcu(&inode->i_hash, head); 1482 spin_unlock(&inode->i_lock); 1483 spin_unlock(&inode_hash_lock); 1484 inode_sb_list_add(inode); 1485 1486 /* Return the locked inode with I_NEW set, the 1487 * caller is responsible for filling in the contents 1488 */ 1489 return inode; 1490 } 1491 1492 /* 1493 * Uhhuh, somebody else created the same inode under 1494 * us. Use the old inode instead of the one we just 1495 * allocated. 1496 */ 1497 spin_unlock(&inode_hash_lock); 1498 destroy_inode(inode); 1499 if (IS_ERR(old)) 1500 return NULL; 1501 inode = old; 1502 if (unlikely(isnew)) 1503 wait_on_new_inode(inode); 1504 if (unlikely(inode_unhashed(inode))) { 1505 iput(inode); 1506 goto again; 1507 } 1508 } 1509 return inode; 1510 } 1511 EXPORT_SYMBOL(iget_locked); 1512 1513 /* 1514 * search the inode cache for a matching inode number. 1515 * If we find one, then the inode number we are trying to 1516 * allocate is not unique and so we should not use it. 1517 * 1518 * Returns 1 if the inode number is unique, 0 if it is not. 1519 */ 1520 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1521 { 1522 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1523 struct inode *inode; 1524 1525 hlist_for_each_entry_rcu(inode, b, i_hash) { 1526 if (inode->i_ino == ino && inode->i_sb == sb) 1527 return 0; 1528 } 1529 return 1; 1530 } 1531 1532 /** 1533 * iunique - get a unique inode number 1534 * @sb: superblock 1535 * @max_reserved: highest reserved inode number 1536 * 1537 * Obtain an inode number that is unique on the system for a given 1538 * superblock. This is used by file systems that have no natural 1539 * permanent inode numbering system. An inode number is returned that 1540 * is higher than the reserved limit but unique. 1541 * 1542 * BUGS: 1543 * With a large number of inodes live on the file system this function 1544 * currently becomes quite slow. 1545 */ 1546 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1547 { 1548 /* 1549 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1550 * error if st_ino won't fit in target struct field. Use 32bit counter 1551 * here to attempt to avoid that. 1552 */ 1553 static DEFINE_SPINLOCK(iunique_lock); 1554 static unsigned int counter; 1555 ino_t res; 1556 1557 rcu_read_lock(); 1558 spin_lock(&iunique_lock); 1559 do { 1560 if (counter <= max_reserved) 1561 counter = max_reserved + 1; 1562 res = counter++; 1563 } while (!test_inode_iunique(sb, res)); 1564 spin_unlock(&iunique_lock); 1565 rcu_read_unlock(); 1566 1567 return res; 1568 } 1569 EXPORT_SYMBOL(iunique); 1570 1571 struct inode *igrab(struct inode *inode) 1572 { 1573 spin_lock(&inode->i_lock); 1574 if (!(inode_state_read(inode) & (I_FREEING | I_WILL_FREE))) { 1575 __iget(inode); 1576 spin_unlock(&inode->i_lock); 1577 } else { 1578 spin_unlock(&inode->i_lock); 1579 /* 1580 * Handle the case where s_op->clear_inode is not been 1581 * called yet, and somebody is calling igrab 1582 * while the inode is getting freed. 1583 */ 1584 inode = NULL; 1585 } 1586 return inode; 1587 } 1588 EXPORT_SYMBOL(igrab); 1589 1590 /** 1591 * ilookup5_nowait - search for an inode in the inode cache 1592 * @sb: super block of file system to search 1593 * @hashval: hash value (usually inode number) to search for 1594 * @test: callback used for comparisons between inodes 1595 * @data: opaque data pointer to pass to @test 1596 * 1597 * Search for the inode specified by @hashval and @data in the inode cache. 1598 * If the inode is in the cache, the inode is returned with an incremented 1599 * reference count. 1600 * 1601 * Note: I_NEW is not waited upon so you have to be very careful what you do 1602 * with the returned inode. You probably should be using ilookup5() instead. 1603 * 1604 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1605 */ 1606 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1607 int (*test)(struct inode *, void *), void *data, bool *isnew) 1608 { 1609 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1610 struct inode *inode; 1611 1612 spin_lock(&inode_hash_lock); 1613 inode = find_inode(sb, head, test, data, true, isnew); 1614 spin_unlock(&inode_hash_lock); 1615 1616 return IS_ERR(inode) ? NULL : inode; 1617 } 1618 EXPORT_SYMBOL(ilookup5_nowait); 1619 1620 /** 1621 * ilookup5 - search for an inode in the inode cache 1622 * @sb: super block of file system to search 1623 * @hashval: hash value (usually inode number) to search for 1624 * @test: callback used for comparisons between inodes 1625 * @data: opaque data pointer to pass to @test 1626 * 1627 * Search for the inode specified by @hashval and @data in the inode cache, 1628 * and if the inode is in the cache, return the inode with an incremented 1629 * reference count. Waits on I_NEW before returning the inode. 1630 * returned with an incremented reference count. 1631 * 1632 * This is a generalized version of ilookup() for file systems where the 1633 * inode number is not sufficient for unique identification of an inode. 1634 * 1635 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1636 */ 1637 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1638 int (*test)(struct inode *, void *), void *data) 1639 { 1640 struct inode *inode; 1641 bool isnew; 1642 1643 might_sleep(); 1644 1645 again: 1646 inode = ilookup5_nowait(sb, hashval, test, data, &isnew); 1647 if (inode) { 1648 if (unlikely(isnew)) 1649 wait_on_new_inode(inode); 1650 if (unlikely(inode_unhashed(inode))) { 1651 iput(inode); 1652 goto again; 1653 } 1654 } 1655 return inode; 1656 } 1657 EXPORT_SYMBOL(ilookup5); 1658 1659 /** 1660 * ilookup - search for an inode in the inode cache 1661 * @sb: super block of file system to search 1662 * @ino: inode number to search for 1663 * 1664 * Search for the inode @ino in the inode cache, and if the inode is in the 1665 * cache, the inode is returned with an incremented reference count. 1666 */ 1667 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1668 { 1669 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1670 struct inode *inode; 1671 bool isnew; 1672 1673 might_sleep(); 1674 1675 again: 1676 inode = find_inode_fast(sb, head, ino, false, &isnew); 1677 1678 if (inode) { 1679 if (IS_ERR(inode)) 1680 return NULL; 1681 if (unlikely(isnew)) 1682 wait_on_new_inode(inode); 1683 if (unlikely(inode_unhashed(inode))) { 1684 iput(inode); 1685 goto again; 1686 } 1687 } 1688 return inode; 1689 } 1690 EXPORT_SYMBOL(ilookup); 1691 1692 /** 1693 * find_inode_nowait - find an inode in the inode cache 1694 * @sb: super block of file system to search 1695 * @hashval: hash value (usually inode number) to search for 1696 * @match: callback used for comparisons between inodes 1697 * @data: opaque data pointer to pass to @match 1698 * 1699 * Search for the inode specified by @hashval and @data in the inode 1700 * cache, where the helper function @match will return 0 if the inode 1701 * does not match, 1 if the inode does match, and -1 if the search 1702 * should be stopped. The @match function must be responsible for 1703 * taking the i_lock spin_lock and checking i_state for an inode being 1704 * freed or being initialized, and incrementing the reference count 1705 * before returning 1. It also must not sleep, since it is called with 1706 * the inode_hash_lock spinlock held. 1707 * 1708 * This is a even more generalized version of ilookup5() when the 1709 * function must never block --- find_inode() can block in 1710 * __wait_on_freeing_inode() --- or when the caller can not increment 1711 * the reference count because the resulting iput() might cause an 1712 * inode eviction. The tradeoff is that the @match funtion must be 1713 * very carefully implemented. 1714 */ 1715 struct inode *find_inode_nowait(struct super_block *sb, 1716 unsigned long hashval, 1717 int (*match)(struct inode *, unsigned long, 1718 void *), 1719 void *data) 1720 { 1721 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1722 struct inode *inode, *ret_inode = NULL; 1723 int mval; 1724 1725 spin_lock(&inode_hash_lock); 1726 hlist_for_each_entry(inode, head, i_hash) { 1727 if (inode->i_sb != sb) 1728 continue; 1729 mval = match(inode, hashval, data); 1730 if (mval == 0) 1731 continue; 1732 if (mval == 1) 1733 ret_inode = inode; 1734 goto out; 1735 } 1736 out: 1737 spin_unlock(&inode_hash_lock); 1738 return ret_inode; 1739 } 1740 EXPORT_SYMBOL(find_inode_nowait); 1741 1742 /** 1743 * find_inode_rcu - find an inode in the inode cache 1744 * @sb: Super block of file system to search 1745 * @hashval: Key to hash 1746 * @test: Function to test match on an inode 1747 * @data: Data for test function 1748 * 1749 * Search for the inode specified by @hashval and @data in the inode cache, 1750 * where the helper function @test will return 0 if the inode does not match 1751 * and 1 if it does. The @test function must be responsible for taking the 1752 * i_lock spin_lock and checking i_state for an inode being freed or being 1753 * initialized. 1754 * 1755 * If successful, this will return the inode for which the @test function 1756 * returned 1 and NULL otherwise. 1757 * 1758 * The @test function is not permitted to take a ref on any inode presented. 1759 * It is also not permitted to sleep. 1760 * 1761 * The caller must hold the RCU read lock. 1762 */ 1763 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1764 int (*test)(struct inode *, void *), void *data) 1765 { 1766 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1767 struct inode *inode; 1768 1769 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1770 "suspicious find_inode_rcu() usage"); 1771 1772 hlist_for_each_entry_rcu(inode, head, i_hash) { 1773 if (inode->i_sb == sb && 1774 !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE)) && 1775 test(inode, data)) 1776 return inode; 1777 } 1778 return NULL; 1779 } 1780 EXPORT_SYMBOL(find_inode_rcu); 1781 1782 /** 1783 * find_inode_by_ino_rcu - Find an inode in the inode cache 1784 * @sb: Super block of file system to search 1785 * @ino: The inode number to match 1786 * 1787 * Search for the inode specified by @hashval and @data in the inode cache, 1788 * where the helper function @test will return 0 if the inode does not match 1789 * and 1 if it does. The @test function must be responsible for taking the 1790 * i_lock spin_lock and checking i_state for an inode being freed or being 1791 * initialized. 1792 * 1793 * If successful, this will return the inode for which the @test function 1794 * returned 1 and NULL otherwise. 1795 * 1796 * The @test function is not permitted to take a ref on any inode presented. 1797 * It is also not permitted to sleep. 1798 * 1799 * The caller must hold the RCU read lock. 1800 */ 1801 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1802 unsigned long ino) 1803 { 1804 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1805 struct inode *inode; 1806 1807 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1808 "suspicious find_inode_by_ino_rcu() usage"); 1809 1810 hlist_for_each_entry_rcu(inode, head, i_hash) { 1811 if (inode->i_ino == ino && 1812 inode->i_sb == sb && 1813 !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE))) 1814 return inode; 1815 } 1816 return NULL; 1817 } 1818 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1819 1820 int insert_inode_locked(struct inode *inode) 1821 { 1822 struct super_block *sb = inode->i_sb; 1823 ino_t ino = inode->i_ino; 1824 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1825 bool isnew; 1826 1827 might_sleep(); 1828 1829 while (1) { 1830 struct inode *old = NULL; 1831 spin_lock(&inode_hash_lock); 1832 hlist_for_each_entry(old, head, i_hash) { 1833 if (old->i_ino != ino) 1834 continue; 1835 if (old->i_sb != sb) 1836 continue; 1837 spin_lock(&old->i_lock); 1838 if (inode_state_read(old) & (I_FREEING | I_WILL_FREE)) { 1839 spin_unlock(&old->i_lock); 1840 continue; 1841 } 1842 break; 1843 } 1844 if (likely(!old)) { 1845 spin_lock(&inode->i_lock); 1846 inode_state_set(inode, I_NEW | I_CREATING); 1847 hlist_add_head_rcu(&inode->i_hash, head); 1848 spin_unlock(&inode->i_lock); 1849 spin_unlock(&inode_hash_lock); 1850 return 0; 1851 } 1852 if (unlikely(inode_state_read(old) & I_CREATING)) { 1853 spin_unlock(&old->i_lock); 1854 spin_unlock(&inode_hash_lock); 1855 return -EBUSY; 1856 } 1857 __iget(old); 1858 isnew = !!(inode_state_read(old) & I_NEW); 1859 spin_unlock(&old->i_lock); 1860 spin_unlock(&inode_hash_lock); 1861 if (isnew) 1862 wait_on_new_inode(old); 1863 if (unlikely(!inode_unhashed(old))) { 1864 iput(old); 1865 return -EBUSY; 1866 } 1867 iput(old); 1868 } 1869 } 1870 EXPORT_SYMBOL(insert_inode_locked); 1871 1872 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1873 int (*test)(struct inode *, void *), void *data) 1874 { 1875 struct inode *old; 1876 1877 might_sleep(); 1878 1879 inode_state_set_raw(inode, I_CREATING); 1880 old = inode_insert5(inode, hashval, test, NULL, data); 1881 1882 if (old != inode) { 1883 iput(old); 1884 return -EBUSY; 1885 } 1886 return 0; 1887 } 1888 EXPORT_SYMBOL(insert_inode_locked4); 1889 1890 1891 int inode_just_drop(struct inode *inode) 1892 { 1893 return 1; 1894 } 1895 EXPORT_SYMBOL(inode_just_drop); 1896 1897 /* 1898 * Called when we're dropping the last reference 1899 * to an inode. 1900 * 1901 * Call the FS "drop_inode()" function, defaulting to 1902 * the legacy UNIX filesystem behaviour. If it tells 1903 * us to evict inode, do so. Otherwise, retain inode 1904 * in cache if fs is alive, sync and evict if fs is 1905 * shutting down. 1906 */ 1907 static void iput_final(struct inode *inode) 1908 { 1909 struct super_block *sb = inode->i_sb; 1910 const struct super_operations *op = inode->i_sb->s_op; 1911 int drop; 1912 1913 WARN_ON(inode_state_read(inode) & I_NEW); 1914 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode); 1915 1916 if (op->drop_inode) 1917 drop = op->drop_inode(inode); 1918 else 1919 drop = inode_generic_drop(inode); 1920 1921 if (!drop && 1922 !(inode_state_read(inode) & I_DONTCACHE) && 1923 (sb->s_flags & SB_ACTIVE)) { 1924 __inode_lru_list_add(inode, true); 1925 spin_unlock(&inode->i_lock); 1926 return; 1927 } 1928 1929 /* 1930 * Re-check ->i_count in case the ->drop_inode() hooks played games. 1931 * Note we only execute this if the verdict was to drop the inode. 1932 */ 1933 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode); 1934 1935 if (drop) { 1936 inode_state_set(inode, I_FREEING); 1937 } else { 1938 inode_state_set(inode, I_WILL_FREE); 1939 spin_unlock(&inode->i_lock); 1940 1941 write_inode_now(inode, 1); 1942 1943 spin_lock(&inode->i_lock); 1944 WARN_ON(inode_state_read(inode) & I_NEW); 1945 inode_state_replace(inode, I_WILL_FREE, I_FREEING); 1946 } 1947 1948 inode_lru_list_del(inode); 1949 spin_unlock(&inode->i_lock); 1950 1951 evict(inode); 1952 } 1953 1954 /** 1955 * iput - put an inode 1956 * @inode: inode to put 1957 * 1958 * Puts an inode, dropping its usage count. If the inode use count hits 1959 * zero, the inode is then freed and may also be destroyed. 1960 * 1961 * Consequently, iput() can sleep. 1962 */ 1963 void iput(struct inode *inode) 1964 { 1965 might_sleep(); 1966 if (unlikely(!inode)) 1967 return; 1968 1969 retry: 1970 lockdep_assert_not_held(&inode->i_lock); 1971 VFS_BUG_ON_INODE(inode_state_read_once(inode) & I_CLEAR, inode); 1972 /* 1973 * Note this assert is technically racy as if the count is bogusly 1974 * equal to one, then two CPUs racing to further drop it can both 1975 * conclude it's fine. 1976 */ 1977 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 1, inode); 1978 1979 if (atomic_add_unless(&inode->i_count, -1, 1)) 1980 return; 1981 1982 if ((inode_state_read_once(inode) & I_DIRTY_TIME) && inode->i_nlink) { 1983 trace_writeback_lazytime_iput(inode); 1984 mark_inode_dirty_sync(inode); 1985 goto retry; 1986 } 1987 1988 spin_lock(&inode->i_lock); 1989 if (unlikely((inode_state_read(inode) & I_DIRTY_TIME) && inode->i_nlink)) { 1990 spin_unlock(&inode->i_lock); 1991 goto retry; 1992 } 1993 1994 if (!atomic_dec_and_test(&inode->i_count)) { 1995 spin_unlock(&inode->i_lock); 1996 return; 1997 } 1998 1999 /* 2000 * iput_final() drops ->i_lock, we can't assert on it as the inode may 2001 * be deallocated by the time the call returns. 2002 */ 2003 iput_final(inode); 2004 } 2005 EXPORT_SYMBOL(iput); 2006 2007 /** 2008 * iput_not_last - put an inode assuming this is not the last reference 2009 * @inode: inode to put 2010 */ 2011 void iput_not_last(struct inode *inode) 2012 { 2013 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 2, inode); 2014 2015 WARN_ON(atomic_sub_return(1, &inode->i_count) == 0); 2016 } 2017 EXPORT_SYMBOL(iput_not_last); 2018 2019 #ifdef CONFIG_BLOCK 2020 /** 2021 * bmap - find a block number in a file 2022 * @inode: inode owning the block number being requested 2023 * @block: pointer containing the block to find 2024 * 2025 * Replaces the value in ``*block`` with the block number on the device holding 2026 * corresponding to the requested block number in the file. 2027 * That is, asked for block 4 of inode 1 the function will replace the 2028 * 4 in ``*block``, with disk block relative to the disk start that holds that 2029 * block of the file. 2030 * 2031 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 2032 * hole, returns 0 and ``*block`` is also set to 0. 2033 */ 2034 int bmap(struct inode *inode, sector_t *block) 2035 { 2036 if (!inode->i_mapping->a_ops->bmap) 2037 return -EINVAL; 2038 2039 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 2040 return 0; 2041 } 2042 EXPORT_SYMBOL(bmap); 2043 #endif 2044 2045 /* 2046 * With relative atime, only update atime if the previous atime is 2047 * earlier than or equal to either the ctime or mtime, 2048 * or if at least a day has passed since the last atime update. 2049 */ 2050 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 2051 struct timespec64 now) 2052 { 2053 struct timespec64 atime, mtime, ctime; 2054 2055 if (!(mnt->mnt_flags & MNT_RELATIME)) 2056 return true; 2057 /* 2058 * Is mtime younger than or equal to atime? If yes, update atime: 2059 */ 2060 atime = inode_get_atime(inode); 2061 mtime = inode_get_mtime(inode); 2062 if (timespec64_compare(&mtime, &atime) >= 0) 2063 return true; 2064 /* 2065 * Is ctime younger than or equal to atime? If yes, update atime: 2066 */ 2067 ctime = inode_get_ctime(inode); 2068 if (timespec64_compare(&ctime, &atime) >= 0) 2069 return true; 2070 2071 /* 2072 * Is the previous atime value older than a day? If yes, 2073 * update atime: 2074 */ 2075 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 2076 return true; 2077 /* 2078 * Good, we can skip the atime update: 2079 */ 2080 return false; 2081 } 2082 2083 /** 2084 * inode_update_timestamps - update the timestamps on the inode 2085 * @inode: inode to be updated 2086 * @flags: S_* flags that needed to be updated 2087 * 2088 * The update_time function is called when an inode's timestamps need to be 2089 * updated for a read or write operation. This function handles updating the 2090 * actual timestamps. It's up to the caller to ensure that the inode is marked 2091 * dirty appropriately. 2092 * 2093 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 2094 * attempt to update all three of them. S_ATIME updates can be handled 2095 * independently of the rest. 2096 * 2097 * Returns a set of S_* flags indicating which values changed. 2098 */ 2099 int inode_update_timestamps(struct inode *inode, int flags) 2100 { 2101 int updated = 0; 2102 struct timespec64 now; 2103 2104 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 2105 struct timespec64 ctime = inode_get_ctime(inode); 2106 struct timespec64 mtime = inode_get_mtime(inode); 2107 2108 now = inode_set_ctime_current(inode); 2109 if (!timespec64_equal(&now, &ctime)) 2110 updated |= S_CTIME; 2111 if (!timespec64_equal(&now, &mtime)) { 2112 inode_set_mtime_to_ts(inode, now); 2113 updated |= S_MTIME; 2114 } 2115 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 2116 updated |= S_VERSION; 2117 } else { 2118 now = current_time(inode); 2119 } 2120 2121 if (flags & S_ATIME) { 2122 struct timespec64 atime = inode_get_atime(inode); 2123 2124 if (!timespec64_equal(&now, &atime)) { 2125 inode_set_atime_to_ts(inode, now); 2126 updated |= S_ATIME; 2127 } 2128 } 2129 return updated; 2130 } 2131 EXPORT_SYMBOL(inode_update_timestamps); 2132 2133 /** 2134 * generic_update_time - update the timestamps on the inode 2135 * @inode: inode to be updated 2136 * @flags: S_* flags that needed to be updated 2137 * 2138 * The update_time function is called when an inode's timestamps need to be 2139 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 2140 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 2141 * updates can be handled done independently of the rest. 2142 * 2143 * Returns a S_* mask indicating which fields were updated. 2144 */ 2145 int generic_update_time(struct inode *inode, int flags) 2146 { 2147 int updated = inode_update_timestamps(inode, flags); 2148 int dirty_flags = 0; 2149 2150 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 2151 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 2152 if (updated & S_VERSION) 2153 dirty_flags |= I_DIRTY_SYNC; 2154 __mark_inode_dirty(inode, dirty_flags); 2155 return updated; 2156 } 2157 EXPORT_SYMBOL(generic_update_time); 2158 2159 /* 2160 * This does the actual work of updating an inodes time or version. Must have 2161 * had called mnt_want_write() before calling this. 2162 */ 2163 int inode_update_time(struct inode *inode, int flags) 2164 { 2165 if (inode->i_op->update_time) 2166 return inode->i_op->update_time(inode, flags); 2167 generic_update_time(inode, flags); 2168 return 0; 2169 } 2170 EXPORT_SYMBOL(inode_update_time); 2171 2172 /** 2173 * atime_needs_update - update the access time 2174 * @path: the &struct path to update 2175 * @inode: inode to update 2176 * 2177 * Update the accessed time on an inode and mark it for writeback. 2178 * This function automatically handles read only file systems and media, 2179 * as well as the "noatime" flag and inode specific "noatime" markers. 2180 */ 2181 bool atime_needs_update(const struct path *path, struct inode *inode) 2182 { 2183 struct vfsmount *mnt = path->mnt; 2184 struct timespec64 now, atime; 2185 2186 if (inode->i_flags & S_NOATIME) 2187 return false; 2188 2189 /* Atime updates will likely cause i_uid and i_gid to be written 2190 * back improprely if their true value is unknown to the vfs. 2191 */ 2192 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2193 return false; 2194 2195 if (IS_NOATIME(inode)) 2196 return false; 2197 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2198 return false; 2199 2200 if (mnt->mnt_flags & MNT_NOATIME) 2201 return false; 2202 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2203 return false; 2204 2205 now = current_time(inode); 2206 2207 if (!relatime_need_update(mnt, inode, now)) 2208 return false; 2209 2210 atime = inode_get_atime(inode); 2211 if (timespec64_equal(&atime, &now)) 2212 return false; 2213 2214 return true; 2215 } 2216 2217 void touch_atime(const struct path *path) 2218 { 2219 struct vfsmount *mnt = path->mnt; 2220 struct inode *inode = d_inode(path->dentry); 2221 2222 if (!atime_needs_update(path, inode)) 2223 return; 2224 2225 if (!sb_start_write_trylock(inode->i_sb)) 2226 return; 2227 2228 if (mnt_get_write_access(mnt) != 0) 2229 goto skip_update; 2230 /* 2231 * File systems can error out when updating inodes if they need to 2232 * allocate new space to modify an inode (such is the case for 2233 * Btrfs), but since we touch atime while walking down the path we 2234 * really don't care if we failed to update the atime of the file, 2235 * so just ignore the return value. 2236 * We may also fail on filesystems that have the ability to make parts 2237 * of the fs read only, e.g. subvolumes in Btrfs. 2238 */ 2239 inode_update_time(inode, S_ATIME); 2240 mnt_put_write_access(mnt); 2241 skip_update: 2242 sb_end_write(inode->i_sb); 2243 } 2244 EXPORT_SYMBOL(touch_atime); 2245 2246 /* 2247 * Return mask of changes for notify_change() that need to be done as a 2248 * response to write or truncate. Return 0 if nothing has to be changed. 2249 * Negative value on error (change should be denied). 2250 */ 2251 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2252 struct dentry *dentry) 2253 { 2254 struct inode *inode = d_inode(dentry); 2255 int mask = 0; 2256 int ret; 2257 2258 if (IS_NOSEC(inode)) 2259 return 0; 2260 2261 mask = setattr_should_drop_suidgid(idmap, inode); 2262 ret = security_inode_need_killpriv(dentry); 2263 if (ret < 0) 2264 return ret; 2265 if (ret) 2266 mask |= ATTR_KILL_PRIV; 2267 return mask; 2268 } 2269 2270 static int __remove_privs(struct mnt_idmap *idmap, 2271 struct dentry *dentry, int kill) 2272 { 2273 struct iattr newattrs; 2274 2275 newattrs.ia_valid = ATTR_FORCE | kill; 2276 /* 2277 * Note we call this on write, so notify_change will not 2278 * encounter any conflicting delegations: 2279 */ 2280 return notify_change(idmap, dentry, &newattrs, NULL); 2281 } 2282 2283 static int file_remove_privs_flags(struct file *file, unsigned int flags) 2284 { 2285 struct dentry *dentry = file_dentry(file); 2286 struct inode *inode = file_inode(file); 2287 int error = 0; 2288 int kill; 2289 2290 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2291 return 0; 2292 2293 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2294 if (kill < 0) 2295 return kill; 2296 2297 if (kill) { 2298 if (flags & IOCB_NOWAIT) 2299 return -EAGAIN; 2300 2301 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2302 } 2303 2304 if (!error) 2305 inode_has_no_xattr(inode); 2306 return error; 2307 } 2308 2309 /** 2310 * file_remove_privs - remove special file privileges (suid, capabilities) 2311 * @file: file to remove privileges from 2312 * 2313 * When file is modified by a write or truncation ensure that special 2314 * file privileges are removed. 2315 * 2316 * Return: 0 on success, negative errno on failure. 2317 */ 2318 int file_remove_privs(struct file *file) 2319 { 2320 return file_remove_privs_flags(file, 0); 2321 } 2322 EXPORT_SYMBOL(file_remove_privs); 2323 2324 /** 2325 * current_time - Return FS time (possibly fine-grained) 2326 * @inode: inode. 2327 * 2328 * Return the current time truncated to the time granularity supported by 2329 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged 2330 * as having been QUERIED, get a fine-grained timestamp, but don't update 2331 * the floor. 2332 * 2333 * For a multigrain inode, this is effectively an estimate of the timestamp 2334 * that a file would receive. An actual update must go through 2335 * inode_set_ctime_current(). 2336 */ 2337 struct timespec64 current_time(struct inode *inode) 2338 { 2339 struct timespec64 now; 2340 u32 cns; 2341 2342 ktime_get_coarse_real_ts64_mg(&now); 2343 2344 if (!is_mgtime(inode)) 2345 goto out; 2346 2347 /* If nothing has queried it, then coarse time is fine */ 2348 cns = smp_load_acquire(&inode->i_ctime_nsec); 2349 if (cns & I_CTIME_QUERIED) { 2350 /* 2351 * If there is no apparent change, then get a fine-grained 2352 * timestamp. 2353 */ 2354 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED)) 2355 ktime_get_real_ts64(&now); 2356 } 2357 out: 2358 return timestamp_truncate(now, inode); 2359 } 2360 EXPORT_SYMBOL(current_time); 2361 2362 static int file_update_time_flags(struct file *file, unsigned int flags) 2363 { 2364 struct inode *inode = file_inode(file); 2365 struct timespec64 now, ts; 2366 int sync_mode = 0; 2367 int ret = 0; 2368 2369 /* First try to exhaust all avenues to not sync */ 2370 if (IS_NOCMTIME(inode)) 2371 return 0; 2372 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2373 return 0; 2374 2375 now = current_time(inode); 2376 2377 ts = inode_get_mtime(inode); 2378 if (!timespec64_equal(&ts, &now)) 2379 sync_mode |= S_MTIME; 2380 ts = inode_get_ctime(inode); 2381 if (!timespec64_equal(&ts, &now)) 2382 sync_mode |= S_CTIME; 2383 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2384 sync_mode |= S_VERSION; 2385 2386 if (!sync_mode) 2387 return 0; 2388 2389 if (flags & IOCB_NOWAIT) 2390 return -EAGAIN; 2391 2392 if (mnt_get_write_access_file(file)) 2393 return 0; 2394 ret = inode_update_time(inode, sync_mode); 2395 mnt_put_write_access_file(file); 2396 return ret; 2397 } 2398 2399 /** 2400 * file_update_time - update mtime and ctime time 2401 * @file: file accessed 2402 * 2403 * Update the mtime and ctime members of an inode and mark the inode for 2404 * writeback. Note that this function is meant exclusively for usage in 2405 * the file write path of filesystems, and filesystems may choose to 2406 * explicitly ignore updates via this function with the _NOCMTIME inode 2407 * flag, e.g. for network filesystem where these imestamps are handled 2408 * by the server. This can return an error for file systems who need to 2409 * allocate space in order to update an inode. 2410 * 2411 * Return: 0 on success, negative errno on failure. 2412 */ 2413 int file_update_time(struct file *file) 2414 { 2415 return file_update_time_flags(file, 0); 2416 } 2417 EXPORT_SYMBOL(file_update_time); 2418 2419 /** 2420 * file_modified_flags - handle mandated vfs changes when modifying a file 2421 * @file: file that was modified 2422 * @flags: kiocb flags 2423 * 2424 * When file has been modified ensure that special 2425 * file privileges are removed and time settings are updated. 2426 * 2427 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2428 * time settings will not be updated. It will return -EAGAIN. 2429 * 2430 * Context: Caller must hold the file's inode lock. 2431 * 2432 * Return: 0 on success, negative errno on failure. 2433 */ 2434 static int file_modified_flags(struct file *file, int flags) 2435 { 2436 int ret; 2437 2438 /* 2439 * Clear the security bits if the process is not being run by root. 2440 * This keeps people from modifying setuid and setgid binaries. 2441 */ 2442 ret = file_remove_privs_flags(file, flags); 2443 if (ret) 2444 return ret; 2445 return file_update_time_flags(file, flags); 2446 } 2447 2448 /** 2449 * file_modified - handle mandated vfs changes when modifying a file 2450 * @file: file that was modified 2451 * 2452 * When file has been modified ensure that special 2453 * file privileges are removed and time settings are updated. 2454 * 2455 * Context: Caller must hold the file's inode lock. 2456 * 2457 * Return: 0 on success, negative errno on failure. 2458 */ 2459 int file_modified(struct file *file) 2460 { 2461 return file_modified_flags(file, 0); 2462 } 2463 EXPORT_SYMBOL(file_modified); 2464 2465 /** 2466 * kiocb_modified - handle mandated vfs changes when modifying a file 2467 * @iocb: iocb that was modified 2468 * 2469 * When file has been modified ensure that special 2470 * file privileges are removed and time settings are updated. 2471 * 2472 * Context: Caller must hold the file's inode lock. 2473 * 2474 * Return: 0 on success, negative errno on failure. 2475 */ 2476 int kiocb_modified(struct kiocb *iocb) 2477 { 2478 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2479 } 2480 EXPORT_SYMBOL_GPL(kiocb_modified); 2481 2482 int inode_needs_sync(struct inode *inode) 2483 { 2484 if (IS_SYNC(inode)) 2485 return 1; 2486 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2487 return 1; 2488 return 0; 2489 } 2490 EXPORT_SYMBOL(inode_needs_sync); 2491 2492 /* 2493 * If we try to find an inode in the inode hash while it is being 2494 * deleted, we have to wait until the filesystem completes its 2495 * deletion before reporting that it isn't found. This function waits 2496 * until the deletion _might_ have completed. Callers are responsible 2497 * to recheck inode state. 2498 * 2499 * It doesn't matter if I_NEW is not set initially, a call to 2500 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2501 * will DTRT. 2502 */ 2503 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) 2504 { 2505 struct wait_bit_queue_entry wqe; 2506 struct wait_queue_head *wq_head; 2507 2508 /* 2509 * Handle racing against evict(), see that routine for more details. 2510 */ 2511 if (unlikely(inode_unhashed(inode))) { 2512 WARN_ON(is_inode_hash_locked); 2513 spin_unlock(&inode->i_lock); 2514 return; 2515 } 2516 2517 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 2518 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 2519 spin_unlock(&inode->i_lock); 2520 rcu_read_unlock(); 2521 if (is_inode_hash_locked) 2522 spin_unlock(&inode_hash_lock); 2523 schedule(); 2524 finish_wait(wq_head, &wqe.wq_entry); 2525 if (is_inode_hash_locked) 2526 spin_lock(&inode_hash_lock); 2527 rcu_read_lock(); 2528 } 2529 2530 static __initdata unsigned long ihash_entries; 2531 static int __init set_ihash_entries(char *str) 2532 { 2533 if (!str) 2534 return 0; 2535 ihash_entries = simple_strtoul(str, &str, 0); 2536 return 1; 2537 } 2538 __setup("ihash_entries=", set_ihash_entries); 2539 2540 /* 2541 * Initialize the waitqueues and inode hash table. 2542 */ 2543 void __init inode_init_early(void) 2544 { 2545 /* If hashes are distributed across NUMA nodes, defer 2546 * hash allocation until vmalloc space is available. 2547 */ 2548 if (hashdist) 2549 return; 2550 2551 inode_hashtable = 2552 alloc_large_system_hash("Inode-cache", 2553 sizeof(struct hlist_head), 2554 ihash_entries, 2555 14, 2556 HASH_EARLY | HASH_ZERO, 2557 &i_hash_shift, 2558 &i_hash_mask, 2559 0, 2560 0); 2561 } 2562 2563 void __init inode_init(void) 2564 { 2565 /* inode slab cache */ 2566 inode_cachep = kmem_cache_create("inode_cache", 2567 sizeof(struct inode), 2568 0, 2569 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2570 SLAB_ACCOUNT), 2571 init_once); 2572 2573 /* Hash may have been set up in inode_init_early */ 2574 if (!hashdist) 2575 return; 2576 2577 inode_hashtable = 2578 alloc_large_system_hash("Inode-cache", 2579 sizeof(struct hlist_head), 2580 ihash_entries, 2581 14, 2582 HASH_ZERO, 2583 &i_hash_shift, 2584 &i_hash_mask, 2585 0, 2586 0); 2587 } 2588 2589 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2590 { 2591 inode->i_mode = mode; 2592 switch (inode->i_mode & S_IFMT) { 2593 case S_IFCHR: 2594 inode->i_fop = &def_chr_fops; 2595 inode->i_rdev = rdev; 2596 break; 2597 case S_IFBLK: 2598 if (IS_ENABLED(CONFIG_BLOCK)) 2599 inode->i_fop = &def_blk_fops; 2600 inode->i_rdev = rdev; 2601 break; 2602 case S_IFIFO: 2603 inode->i_fop = &pipefifo_fops; 2604 break; 2605 case S_IFSOCK: 2606 /* leave it no_open_fops */ 2607 break; 2608 default: 2609 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2610 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2611 inode->i_ino); 2612 break; 2613 } 2614 } 2615 EXPORT_SYMBOL(init_special_inode); 2616 2617 /** 2618 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2619 * @idmap: idmap of the mount the inode was created from 2620 * @inode: New inode 2621 * @dir: Directory inode 2622 * @mode: mode of the new inode 2623 * 2624 * If the inode has been created through an idmapped mount the idmap of 2625 * the vfsmount must be passed through @idmap. This function will then take 2626 * care to map the inode according to @idmap before checking permissions 2627 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2628 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2629 */ 2630 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2631 const struct inode *dir, umode_t mode) 2632 { 2633 inode_fsuid_set(inode, idmap); 2634 if (dir && dir->i_mode & S_ISGID) { 2635 inode->i_gid = dir->i_gid; 2636 2637 /* Directories are special, and always inherit S_ISGID */ 2638 if (S_ISDIR(mode)) 2639 mode |= S_ISGID; 2640 } else 2641 inode_fsgid_set(inode, idmap); 2642 inode->i_mode = mode; 2643 } 2644 EXPORT_SYMBOL(inode_init_owner); 2645 2646 /** 2647 * inode_owner_or_capable - check current task permissions to inode 2648 * @idmap: idmap of the mount the inode was found from 2649 * @inode: inode being checked 2650 * 2651 * Return true if current either has CAP_FOWNER in a namespace with the 2652 * inode owner uid mapped, or owns the file. 2653 * 2654 * If the inode has been found through an idmapped mount the idmap of 2655 * the vfsmount must be passed through @idmap. This function will then take 2656 * care to map the inode according to @idmap before checking permissions. 2657 * On non-idmapped mounts or if permission checking is to be performed on the 2658 * raw inode simply pass @nop_mnt_idmap. 2659 */ 2660 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2661 const struct inode *inode) 2662 { 2663 vfsuid_t vfsuid; 2664 struct user_namespace *ns; 2665 2666 vfsuid = i_uid_into_vfsuid(idmap, inode); 2667 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2668 return true; 2669 2670 ns = current_user_ns(); 2671 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2672 return true; 2673 return false; 2674 } 2675 EXPORT_SYMBOL(inode_owner_or_capable); 2676 2677 /* 2678 * Direct i/o helper functions 2679 */ 2680 bool inode_dio_finished(const struct inode *inode) 2681 { 2682 return atomic_read(&inode->i_dio_count) == 0; 2683 } 2684 EXPORT_SYMBOL(inode_dio_finished); 2685 2686 /** 2687 * inode_dio_wait - wait for outstanding DIO requests to finish 2688 * @inode: inode to wait for 2689 * 2690 * Waits for all pending direct I/O requests to finish so that we can 2691 * proceed with a truncate or equivalent operation. 2692 * 2693 * Must be called under a lock that serializes taking new references 2694 * to i_dio_count, usually by inode->i_rwsem. 2695 */ 2696 void inode_dio_wait(struct inode *inode) 2697 { 2698 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode)); 2699 } 2700 EXPORT_SYMBOL(inode_dio_wait); 2701 2702 void inode_dio_wait_interruptible(struct inode *inode) 2703 { 2704 wait_var_event_interruptible(&inode->i_dio_count, 2705 inode_dio_finished(inode)); 2706 } 2707 EXPORT_SYMBOL(inode_dio_wait_interruptible); 2708 2709 /* 2710 * inode_set_flags - atomically set some inode flags 2711 * 2712 * Note: the caller should be holding i_rwsem exclusively, or else be sure that 2713 * they have exclusive access to the inode structure (i.e., while the 2714 * inode is being instantiated). The reason for the cmpxchg() loop 2715 * --- which wouldn't be necessary if all code paths which modify 2716 * i_flags actually followed this rule, is that there is at least one 2717 * code path which doesn't today so we use cmpxchg() out of an abundance 2718 * of caution. 2719 * 2720 * In the long run, i_rwsem is overkill, and we should probably look 2721 * at using the i_lock spinlock to protect i_flags, and then make sure 2722 * it is so documented in include/linux/fs.h and that all code follows 2723 * the locking convention!! 2724 */ 2725 void inode_set_flags(struct inode *inode, unsigned int flags, 2726 unsigned int mask) 2727 { 2728 WARN_ON_ONCE(flags & ~mask); 2729 set_mask_bits(&inode->i_flags, mask, flags); 2730 } 2731 EXPORT_SYMBOL(inode_set_flags); 2732 2733 void inode_nohighmem(struct inode *inode) 2734 { 2735 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2736 } 2737 EXPORT_SYMBOL(inode_nohighmem); 2738 2739 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts) 2740 { 2741 trace_inode_set_ctime_to_ts(inode, &ts); 2742 set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec); 2743 inode->i_ctime_sec = ts.tv_sec; 2744 inode->i_ctime_nsec = ts.tv_nsec; 2745 return ts; 2746 } 2747 EXPORT_SYMBOL(inode_set_ctime_to_ts); 2748 2749 /** 2750 * timestamp_truncate - Truncate timespec to a granularity 2751 * @t: Timespec 2752 * @inode: inode being updated 2753 * 2754 * Truncate a timespec to the granularity supported by the fs 2755 * containing the inode. Always rounds down. gran must 2756 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2757 */ 2758 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2759 { 2760 struct super_block *sb = inode->i_sb; 2761 unsigned int gran = sb->s_time_gran; 2762 2763 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2764 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2765 t.tv_nsec = 0; 2766 2767 /* Avoid division in the common cases 1 ns and 1 s. */ 2768 if (gran == 1) 2769 ; /* nothing */ 2770 else if (gran == NSEC_PER_SEC) 2771 t.tv_nsec = 0; 2772 else if (gran > 1 && gran < NSEC_PER_SEC) 2773 t.tv_nsec -= t.tv_nsec % gran; 2774 else 2775 WARN(1, "invalid file time granularity: %u", gran); 2776 return t; 2777 } 2778 EXPORT_SYMBOL(timestamp_truncate); 2779 2780 /** 2781 * inode_set_ctime_current - set the ctime to current_time 2782 * @inode: inode 2783 * 2784 * Set the inode's ctime to the current value for the inode. Returns the 2785 * current value that was assigned. If this is not a multigrain inode, then we 2786 * set it to the later of the coarse time and floor value. 2787 * 2788 * If it is multigrain, then we first see if the coarse-grained timestamp is 2789 * distinct from what is already there. If so, then use that. Otherwise, get a 2790 * fine-grained timestamp. 2791 * 2792 * After that, try to swap the new value into i_ctime_nsec. Accept the 2793 * resulting ctime, regardless of the outcome of the swap. If it has 2794 * already been replaced, then that timestamp is later than the earlier 2795 * unacceptable one, and is thus acceptable. 2796 */ 2797 struct timespec64 inode_set_ctime_current(struct inode *inode) 2798 { 2799 struct timespec64 now; 2800 u32 cns, cur; 2801 2802 ktime_get_coarse_real_ts64_mg(&now); 2803 now = timestamp_truncate(now, inode); 2804 2805 /* Just return that if this is not a multigrain fs */ 2806 if (!is_mgtime(inode)) { 2807 inode_set_ctime_to_ts(inode, now); 2808 goto out; 2809 } 2810 2811 /* 2812 * A fine-grained time is only needed if someone has queried 2813 * for timestamps, and the current coarse grained time isn't 2814 * later than what's already there. 2815 */ 2816 cns = smp_load_acquire(&inode->i_ctime_nsec); 2817 if (cns & I_CTIME_QUERIED) { 2818 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec, 2819 .tv_nsec = cns & ~I_CTIME_QUERIED }; 2820 2821 if (timespec64_compare(&now, &ctime) <= 0) { 2822 ktime_get_real_ts64_mg(&now); 2823 now = timestamp_truncate(now, inode); 2824 mgtime_counter_inc(mg_fine_stamps); 2825 } 2826 } 2827 mgtime_counter_inc(mg_ctime_updates); 2828 2829 /* No need to cmpxchg if it's exactly the same */ 2830 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) { 2831 trace_ctime_xchg_skip(inode, &now); 2832 goto out; 2833 } 2834 cur = cns; 2835 retry: 2836 /* Try to swap the nsec value into place. */ 2837 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) { 2838 /* If swap occurred, then we're (mostly) done */ 2839 inode->i_ctime_sec = now.tv_sec; 2840 trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur); 2841 mgtime_counter_inc(mg_ctime_swaps); 2842 } else { 2843 /* 2844 * Was the change due to someone marking the old ctime QUERIED? 2845 * If so then retry the swap. This can only happen once since 2846 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2847 * with a new ctime. 2848 */ 2849 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) { 2850 cns = cur; 2851 goto retry; 2852 } 2853 /* Otherwise, keep the existing ctime */ 2854 now.tv_sec = inode->i_ctime_sec; 2855 now.tv_nsec = cur & ~I_CTIME_QUERIED; 2856 } 2857 out: 2858 return now; 2859 } 2860 EXPORT_SYMBOL(inode_set_ctime_current); 2861 2862 /** 2863 * inode_set_ctime_deleg - try to update the ctime on a delegated inode 2864 * @inode: inode to update 2865 * @update: timespec64 to set the ctime 2866 * 2867 * Attempt to atomically update the ctime on behalf of a delegation holder. 2868 * 2869 * The nfs server can call back the holder of a delegation to get updated 2870 * inode attributes, including the mtime. When updating the mtime, update 2871 * the ctime to a value at least equal to that. 2872 * 2873 * This can race with concurrent updates to the inode, in which 2874 * case the update is skipped. 2875 * 2876 * Note that this works even when multigrain timestamps are not enabled, 2877 * so it is used in either case. 2878 */ 2879 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update) 2880 { 2881 struct timespec64 now, cur_ts; 2882 u32 cur, old; 2883 2884 /* pairs with try_cmpxchg below */ 2885 cur = smp_load_acquire(&inode->i_ctime_nsec); 2886 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2887 cur_ts.tv_sec = inode->i_ctime_sec; 2888 2889 /* If the update is older than the existing value, skip it. */ 2890 if (timespec64_compare(&update, &cur_ts) <= 0) 2891 return cur_ts; 2892 2893 ktime_get_coarse_real_ts64_mg(&now); 2894 2895 /* Clamp the update to "now" if it's in the future */ 2896 if (timespec64_compare(&update, &now) > 0) 2897 update = now; 2898 2899 update = timestamp_truncate(update, inode); 2900 2901 /* No need to update if the values are already the same */ 2902 if (timespec64_equal(&update, &cur_ts)) 2903 return cur_ts; 2904 2905 /* 2906 * Try to swap the nsec value into place. If it fails, that means 2907 * it raced with an update due to a write or similar activity. That 2908 * stamp takes precedence, so just skip the update. 2909 */ 2910 retry: 2911 old = cur; 2912 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) { 2913 inode->i_ctime_sec = update.tv_sec; 2914 mgtime_counter_inc(mg_ctime_swaps); 2915 return update; 2916 } 2917 2918 /* 2919 * Was the change due to another task marking the old ctime QUERIED? 2920 * 2921 * If so, then retry the swap. This can only happen once since 2922 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2923 * with a new ctime. 2924 */ 2925 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED))) 2926 goto retry; 2927 2928 /* Otherwise, it was a new timestamp. */ 2929 cur_ts.tv_sec = inode->i_ctime_sec; 2930 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2931 return cur_ts; 2932 } 2933 EXPORT_SYMBOL(inode_set_ctime_deleg); 2934 2935 /** 2936 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2937 * @idmap: idmap of the mount @inode was found from 2938 * @inode: inode to check 2939 * @vfsgid: the new/current vfsgid of @inode 2940 * 2941 * Check whether @vfsgid is in the caller's group list or if the caller is 2942 * privileged with CAP_FSETID over @inode. This can be used to determine 2943 * whether the setgid bit can be kept or must be dropped. 2944 * 2945 * Return: true if the caller is sufficiently privileged, false if not. 2946 */ 2947 bool in_group_or_capable(struct mnt_idmap *idmap, 2948 const struct inode *inode, vfsgid_t vfsgid) 2949 { 2950 if (vfsgid_in_group_p(vfsgid)) 2951 return true; 2952 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2953 return true; 2954 return false; 2955 } 2956 EXPORT_SYMBOL(in_group_or_capable); 2957 2958 /** 2959 * mode_strip_sgid - handle the sgid bit for non-directories 2960 * @idmap: idmap of the mount the inode was created from 2961 * @dir: parent directory inode 2962 * @mode: mode of the file to be created in @dir 2963 * 2964 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2965 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2966 * either in the group of the parent directory or they have CAP_FSETID 2967 * in their user namespace and are privileged over the parent directory. 2968 * In all other cases, strip the S_ISGID bit from @mode. 2969 * 2970 * Return: the new mode to use for the file 2971 */ 2972 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2973 const struct inode *dir, umode_t mode) 2974 { 2975 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2976 return mode; 2977 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2978 return mode; 2979 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2980 return mode; 2981 return mode & ~S_ISGID; 2982 } 2983 EXPORT_SYMBOL(mode_strip_sgid); 2984 2985 #ifdef CONFIG_DEBUG_VFS 2986 /* 2987 * Dump an inode. 2988 * 2989 * TODO: add a proper inode dumping routine, this is a stub to get debug off the 2990 * ground. 2991 * 2992 * TODO: handle getting to fs type with get_kernel_nofault()? 2993 * See dump_mapping() above. 2994 */ 2995 void dump_inode(struct inode *inode, const char *reason) 2996 { 2997 struct super_block *sb = inode->i_sb; 2998 2999 pr_warn("%s encountered for inode %px\n" 3000 "fs %s mode %ho opflags 0x%hx flags 0x%x state 0x%x count %d\n", 3001 reason, inode, sb->s_type->name, inode->i_mode, inode->i_opflags, 3002 inode->i_flags, inode_state_read_once(inode), atomic_read(&inode->i_count)); 3003 } 3004 3005 EXPORT_SYMBOL(dump_inode); 3006 #endif 3007