1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <linux/seq_file.h> 25 #include <linux/debugfs.h> 26 #include <trace/events/writeback.h> 27 #define CREATE_TRACE_POINTS 28 #include <trace/events/timestamp.h> 29 30 #include "internal.h" 31 32 /* 33 * Inode locking rules: 34 * 35 * inode->i_lock protects: 36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 37 * Inode LRU list locks protect: 38 * inode->i_sb->s_inode_lru, inode->i_lru 39 * inode->i_sb->s_inode_list_lock protects: 40 * inode->i_sb->s_inodes, inode->i_sb_list 41 * bdi->wb.list_lock protects: 42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 43 * inode_hash_lock protects: 44 * inode_hashtable, inode->i_hash 45 * 46 * Lock ordering: 47 * 48 * inode->i_sb->s_inode_list_lock 49 * inode->i_lock 50 * Inode LRU list locks 51 * 52 * bdi->wb.list_lock 53 * inode->i_lock 54 * 55 * inode_hash_lock 56 * inode->i_sb->s_inode_list_lock 57 * inode->i_lock 58 * 59 * iunique_lock 60 * inode_hash_lock 61 */ 62 63 static unsigned int i_hash_mask __ro_after_init; 64 static unsigned int i_hash_shift __ro_after_init; 65 static struct hlist_head *inode_hashtable __ro_after_init; 66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 67 68 /* 69 * Empty aops. Can be used for the cases where the user does not 70 * define any of the address_space operations. 71 */ 72 const struct address_space_operations empty_aops = { 73 }; 74 EXPORT_SYMBOL(empty_aops); 75 76 static DEFINE_PER_CPU(unsigned long, nr_inodes); 77 static DEFINE_PER_CPU(unsigned long, nr_unused); 78 79 static struct kmem_cache *inode_cachep __ro_after_init; 80 81 static long get_nr_inodes(void) 82 { 83 int i; 84 long sum = 0; 85 for_each_possible_cpu(i) 86 sum += per_cpu(nr_inodes, i); 87 return sum < 0 ? 0 : sum; 88 } 89 90 static inline long get_nr_inodes_unused(void) 91 { 92 int i; 93 long sum = 0; 94 for_each_possible_cpu(i) 95 sum += per_cpu(nr_unused, i); 96 return sum < 0 ? 0 : sum; 97 } 98 99 long get_nr_dirty_inodes(void) 100 { 101 /* not actually dirty inodes, but a wild approximation */ 102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 103 return nr_dirty > 0 ? nr_dirty : 0; 104 } 105 106 #ifdef CONFIG_DEBUG_FS 107 static DEFINE_PER_CPU(long, mg_ctime_updates); 108 static DEFINE_PER_CPU(long, mg_fine_stamps); 109 static DEFINE_PER_CPU(long, mg_ctime_swaps); 110 111 static unsigned long get_mg_ctime_updates(void) 112 { 113 unsigned long sum = 0; 114 int i; 115 116 for_each_possible_cpu(i) 117 sum += data_race(per_cpu(mg_ctime_updates, i)); 118 return sum; 119 } 120 121 static unsigned long get_mg_fine_stamps(void) 122 { 123 unsigned long sum = 0; 124 int i; 125 126 for_each_possible_cpu(i) 127 sum += data_race(per_cpu(mg_fine_stamps, i)); 128 return sum; 129 } 130 131 static unsigned long get_mg_ctime_swaps(void) 132 { 133 unsigned long sum = 0; 134 int i; 135 136 for_each_possible_cpu(i) 137 sum += data_race(per_cpu(mg_ctime_swaps, i)); 138 return sum; 139 } 140 141 #define mgtime_counter_inc(__var) this_cpu_inc(__var) 142 143 static int mgts_show(struct seq_file *s, void *p) 144 { 145 unsigned long ctime_updates = get_mg_ctime_updates(); 146 unsigned long ctime_swaps = get_mg_ctime_swaps(); 147 unsigned long fine_stamps = get_mg_fine_stamps(); 148 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps(); 149 150 seq_printf(s, "%lu %lu %lu %lu\n", 151 ctime_updates, ctime_swaps, fine_stamps, floor_swaps); 152 return 0; 153 } 154 155 DEFINE_SHOW_ATTRIBUTE(mgts); 156 157 static int __init mg_debugfs_init(void) 158 { 159 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops); 160 return 0; 161 } 162 late_initcall(mg_debugfs_init); 163 164 #else /* ! CONFIG_DEBUG_FS */ 165 166 #define mgtime_counter_inc(__var) do { } while (0) 167 168 #endif /* CONFIG_DEBUG_FS */ 169 170 /* 171 * Handle nr_inode sysctl 172 */ 173 #ifdef CONFIG_SYSCTL 174 /* 175 * Statistics gathering.. 176 */ 177 static struct inodes_stat_t inodes_stat; 178 179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, 180 size_t *lenp, loff_t *ppos) 181 { 182 inodes_stat.nr_inodes = get_nr_inodes(); 183 inodes_stat.nr_unused = get_nr_inodes_unused(); 184 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 185 } 186 187 static struct ctl_table inodes_sysctls[] = { 188 { 189 .procname = "inode-nr", 190 .data = &inodes_stat, 191 .maxlen = 2*sizeof(long), 192 .mode = 0444, 193 .proc_handler = proc_nr_inodes, 194 }, 195 { 196 .procname = "inode-state", 197 .data = &inodes_stat, 198 .maxlen = 7*sizeof(long), 199 .mode = 0444, 200 .proc_handler = proc_nr_inodes, 201 }, 202 }; 203 204 static int __init init_fs_inode_sysctls(void) 205 { 206 register_sysctl_init("fs", inodes_sysctls); 207 return 0; 208 } 209 early_initcall(init_fs_inode_sysctls); 210 #endif 211 212 static int no_open(struct inode *inode, struct file *file) 213 { 214 return -ENXIO; 215 } 216 217 /** 218 * inode_init_always_gfp - perform inode structure initialisation 219 * @sb: superblock inode belongs to 220 * @inode: inode to initialise 221 * @gfp: allocation flags 222 * 223 * These are initializations that need to be done on every inode 224 * allocation as the fields are not initialised by slab allocation. 225 * If there are additional allocations required @gfp is used. 226 */ 227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp) 228 { 229 static const struct inode_operations empty_iops; 230 static const struct file_operations no_open_fops = {.open = no_open}; 231 struct address_space *const mapping = &inode->i_data; 232 233 inode->i_sb = sb; 234 inode->i_blkbits = sb->s_blocksize_bits; 235 inode->i_flags = 0; 236 inode->i_state = 0; 237 atomic64_set(&inode->i_sequence, 0); 238 atomic_set(&inode->i_count, 1); 239 inode->i_op = &empty_iops; 240 inode->i_fop = &no_open_fops; 241 inode->i_ino = 0; 242 inode->__i_nlink = 1; 243 inode->i_opflags = 0; 244 if (sb->s_xattr) 245 inode->i_opflags |= IOP_XATTR; 246 if (sb->s_type->fs_flags & FS_MGTIME) 247 inode->i_opflags |= IOP_MGTIME; 248 i_uid_write(inode, 0); 249 i_gid_write(inode, 0); 250 atomic_set(&inode->i_writecount, 0); 251 inode->i_size = 0; 252 inode->i_write_hint = WRITE_LIFE_NOT_SET; 253 inode->i_blocks = 0; 254 inode->i_bytes = 0; 255 inode->i_generation = 0; 256 inode->i_pipe = NULL; 257 inode->i_cdev = NULL; 258 inode->i_link = NULL; 259 inode->i_dir_seq = 0; 260 inode->i_rdev = 0; 261 inode->dirtied_when = 0; 262 263 #ifdef CONFIG_CGROUP_WRITEBACK 264 inode->i_wb_frn_winner = 0; 265 inode->i_wb_frn_avg_time = 0; 266 inode->i_wb_frn_history = 0; 267 #endif 268 269 spin_lock_init(&inode->i_lock); 270 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 271 272 init_rwsem(&inode->i_rwsem); 273 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 274 275 atomic_set(&inode->i_dio_count, 0); 276 277 mapping->a_ops = &empty_aops; 278 mapping->host = inode; 279 mapping->flags = 0; 280 mapping->wb_err = 0; 281 atomic_set(&mapping->i_mmap_writable, 0); 282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 283 atomic_set(&mapping->nr_thps, 0); 284 #endif 285 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 286 mapping->i_private_data = NULL; 287 mapping->writeback_index = 0; 288 init_rwsem(&mapping->invalidate_lock); 289 lockdep_set_class_and_name(&mapping->invalidate_lock, 290 &sb->s_type->invalidate_lock_key, 291 "mapping.invalidate_lock"); 292 if (sb->s_iflags & SB_I_STABLE_WRITES) 293 mapping_set_stable_writes(mapping); 294 inode->i_private = NULL; 295 inode->i_mapping = mapping; 296 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 297 #ifdef CONFIG_FS_POSIX_ACL 298 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 299 #endif 300 301 #ifdef CONFIG_FSNOTIFY 302 inode->i_fsnotify_mask = 0; 303 #endif 304 inode->i_flctx = NULL; 305 306 if (unlikely(security_inode_alloc(inode, gfp))) 307 return -ENOMEM; 308 309 this_cpu_inc(nr_inodes); 310 311 return 0; 312 } 313 EXPORT_SYMBOL(inode_init_always_gfp); 314 315 void free_inode_nonrcu(struct inode *inode) 316 { 317 kmem_cache_free(inode_cachep, inode); 318 } 319 EXPORT_SYMBOL(free_inode_nonrcu); 320 321 static void i_callback(struct rcu_head *head) 322 { 323 struct inode *inode = container_of(head, struct inode, i_rcu); 324 if (inode->free_inode) 325 inode->free_inode(inode); 326 else 327 free_inode_nonrcu(inode); 328 } 329 330 static struct inode *alloc_inode(struct super_block *sb) 331 { 332 const struct super_operations *ops = sb->s_op; 333 struct inode *inode; 334 335 if (ops->alloc_inode) 336 inode = ops->alloc_inode(sb); 337 else 338 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 339 340 if (!inode) 341 return NULL; 342 343 if (unlikely(inode_init_always(sb, inode))) { 344 if (ops->destroy_inode) { 345 ops->destroy_inode(inode); 346 if (!ops->free_inode) 347 return NULL; 348 } 349 inode->free_inode = ops->free_inode; 350 i_callback(&inode->i_rcu); 351 return NULL; 352 } 353 354 return inode; 355 } 356 357 void __destroy_inode(struct inode *inode) 358 { 359 BUG_ON(inode_has_buffers(inode)); 360 inode_detach_wb(inode); 361 security_inode_free(inode); 362 fsnotify_inode_delete(inode); 363 locks_free_lock_context(inode); 364 if (!inode->i_nlink) { 365 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 366 atomic_long_dec(&inode->i_sb->s_remove_count); 367 } 368 369 #ifdef CONFIG_FS_POSIX_ACL 370 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 371 posix_acl_release(inode->i_acl); 372 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 373 posix_acl_release(inode->i_default_acl); 374 #endif 375 this_cpu_dec(nr_inodes); 376 } 377 EXPORT_SYMBOL(__destroy_inode); 378 379 static void destroy_inode(struct inode *inode) 380 { 381 const struct super_operations *ops = inode->i_sb->s_op; 382 383 BUG_ON(!list_empty(&inode->i_lru)); 384 __destroy_inode(inode); 385 if (ops->destroy_inode) { 386 ops->destroy_inode(inode); 387 if (!ops->free_inode) 388 return; 389 } 390 inode->free_inode = ops->free_inode; 391 call_rcu(&inode->i_rcu, i_callback); 392 } 393 394 /** 395 * drop_nlink - directly drop an inode's link count 396 * @inode: inode 397 * 398 * This is a low-level filesystem helper to replace any 399 * direct filesystem manipulation of i_nlink. In cases 400 * where we are attempting to track writes to the 401 * filesystem, a decrement to zero means an imminent 402 * write when the file is truncated and actually unlinked 403 * on the filesystem. 404 */ 405 void drop_nlink(struct inode *inode) 406 { 407 WARN_ON(inode->i_nlink == 0); 408 inode->__i_nlink--; 409 if (!inode->i_nlink) 410 atomic_long_inc(&inode->i_sb->s_remove_count); 411 } 412 EXPORT_SYMBOL(drop_nlink); 413 414 /** 415 * clear_nlink - directly zero an inode's link count 416 * @inode: inode 417 * 418 * This is a low-level filesystem helper to replace any 419 * direct filesystem manipulation of i_nlink. See 420 * drop_nlink() for why we care about i_nlink hitting zero. 421 */ 422 void clear_nlink(struct inode *inode) 423 { 424 if (inode->i_nlink) { 425 inode->__i_nlink = 0; 426 atomic_long_inc(&inode->i_sb->s_remove_count); 427 } 428 } 429 EXPORT_SYMBOL(clear_nlink); 430 431 /** 432 * set_nlink - directly set an inode's link count 433 * @inode: inode 434 * @nlink: new nlink (should be non-zero) 435 * 436 * This is a low-level filesystem helper to replace any 437 * direct filesystem manipulation of i_nlink. 438 */ 439 void set_nlink(struct inode *inode, unsigned int nlink) 440 { 441 if (!nlink) { 442 clear_nlink(inode); 443 } else { 444 /* Yes, some filesystems do change nlink from zero to one */ 445 if (inode->i_nlink == 0) 446 atomic_long_dec(&inode->i_sb->s_remove_count); 447 448 inode->__i_nlink = nlink; 449 } 450 } 451 EXPORT_SYMBOL(set_nlink); 452 453 /** 454 * inc_nlink - directly increment an inode's link count 455 * @inode: inode 456 * 457 * This is a low-level filesystem helper to replace any 458 * direct filesystem manipulation of i_nlink. Currently, 459 * it is only here for parity with dec_nlink(). 460 */ 461 void inc_nlink(struct inode *inode) 462 { 463 if (unlikely(inode->i_nlink == 0)) { 464 WARN_ON(!(inode->i_state & I_LINKABLE)); 465 atomic_long_dec(&inode->i_sb->s_remove_count); 466 } 467 468 inode->__i_nlink++; 469 } 470 EXPORT_SYMBOL(inc_nlink); 471 472 static void __address_space_init_once(struct address_space *mapping) 473 { 474 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 475 init_rwsem(&mapping->i_mmap_rwsem); 476 INIT_LIST_HEAD(&mapping->i_private_list); 477 spin_lock_init(&mapping->i_private_lock); 478 mapping->i_mmap = RB_ROOT_CACHED; 479 } 480 481 void address_space_init_once(struct address_space *mapping) 482 { 483 memset(mapping, 0, sizeof(*mapping)); 484 __address_space_init_once(mapping); 485 } 486 EXPORT_SYMBOL(address_space_init_once); 487 488 /* 489 * These are initializations that only need to be done 490 * once, because the fields are idempotent across use 491 * of the inode, so let the slab aware of that. 492 */ 493 void inode_init_once(struct inode *inode) 494 { 495 memset(inode, 0, sizeof(*inode)); 496 INIT_HLIST_NODE(&inode->i_hash); 497 INIT_LIST_HEAD(&inode->i_devices); 498 INIT_LIST_HEAD(&inode->i_io_list); 499 INIT_LIST_HEAD(&inode->i_wb_list); 500 INIT_LIST_HEAD(&inode->i_lru); 501 INIT_LIST_HEAD(&inode->i_sb_list); 502 __address_space_init_once(&inode->i_data); 503 i_size_ordered_init(inode); 504 } 505 EXPORT_SYMBOL(inode_init_once); 506 507 static void init_once(void *foo) 508 { 509 struct inode *inode = (struct inode *) foo; 510 511 inode_init_once(inode); 512 } 513 514 /* 515 * get additional reference to inode; caller must already hold one. 516 */ 517 void ihold(struct inode *inode) 518 { 519 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 520 } 521 EXPORT_SYMBOL(ihold); 522 523 static void __inode_add_lru(struct inode *inode, bool rotate) 524 { 525 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 526 return; 527 if (atomic_read(&inode->i_count)) 528 return; 529 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 530 return; 531 if (!mapping_shrinkable(&inode->i_data)) 532 return; 533 534 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 535 this_cpu_inc(nr_unused); 536 else if (rotate) 537 inode->i_state |= I_REFERENCED; 538 } 539 540 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 541 struct inode *inode, u32 bit) 542 { 543 void *bit_address; 544 545 bit_address = inode_state_wait_address(inode, bit); 546 init_wait_var_entry(wqe, bit_address, 0); 547 return __var_waitqueue(bit_address); 548 } 549 EXPORT_SYMBOL(inode_bit_waitqueue); 550 551 /* 552 * Add inode to LRU if needed (inode is unused and clean). 553 * 554 * Needs inode->i_lock held. 555 */ 556 void inode_add_lru(struct inode *inode) 557 { 558 __inode_add_lru(inode, false); 559 } 560 561 static void inode_lru_list_del(struct inode *inode) 562 { 563 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 564 this_cpu_dec(nr_unused); 565 } 566 567 static void inode_pin_lru_isolating(struct inode *inode) 568 { 569 lockdep_assert_held(&inode->i_lock); 570 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 571 inode->i_state |= I_LRU_ISOLATING; 572 } 573 574 static void inode_unpin_lru_isolating(struct inode *inode) 575 { 576 spin_lock(&inode->i_lock); 577 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 578 inode->i_state &= ~I_LRU_ISOLATING; 579 /* Called with inode->i_lock which ensures memory ordering. */ 580 inode_wake_up_bit(inode, __I_LRU_ISOLATING); 581 spin_unlock(&inode->i_lock); 582 } 583 584 static void inode_wait_for_lru_isolating(struct inode *inode) 585 { 586 struct wait_bit_queue_entry wqe; 587 struct wait_queue_head *wq_head; 588 589 lockdep_assert_held(&inode->i_lock); 590 if (!(inode->i_state & I_LRU_ISOLATING)) 591 return; 592 593 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING); 594 for (;;) { 595 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 596 /* 597 * Checking I_LRU_ISOLATING with inode->i_lock guarantees 598 * memory ordering. 599 */ 600 if (!(inode->i_state & I_LRU_ISOLATING)) 601 break; 602 spin_unlock(&inode->i_lock); 603 schedule(); 604 spin_lock(&inode->i_lock); 605 } 606 finish_wait(wq_head, &wqe.wq_entry); 607 WARN_ON(inode->i_state & I_LRU_ISOLATING); 608 } 609 610 /** 611 * inode_sb_list_add - add inode to the superblock list of inodes 612 * @inode: inode to add 613 */ 614 void inode_sb_list_add(struct inode *inode) 615 { 616 spin_lock(&inode->i_sb->s_inode_list_lock); 617 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 618 spin_unlock(&inode->i_sb->s_inode_list_lock); 619 } 620 EXPORT_SYMBOL_GPL(inode_sb_list_add); 621 622 static inline void inode_sb_list_del(struct inode *inode) 623 { 624 if (!list_empty(&inode->i_sb_list)) { 625 spin_lock(&inode->i_sb->s_inode_list_lock); 626 list_del_init(&inode->i_sb_list); 627 spin_unlock(&inode->i_sb->s_inode_list_lock); 628 } 629 } 630 631 static unsigned long hash(struct super_block *sb, unsigned long hashval) 632 { 633 unsigned long tmp; 634 635 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 636 L1_CACHE_BYTES; 637 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 638 return tmp & i_hash_mask; 639 } 640 641 /** 642 * __insert_inode_hash - hash an inode 643 * @inode: unhashed inode 644 * @hashval: unsigned long value used to locate this object in the 645 * inode_hashtable. 646 * 647 * Add an inode to the inode hash for this superblock. 648 */ 649 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 650 { 651 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 652 653 spin_lock(&inode_hash_lock); 654 spin_lock(&inode->i_lock); 655 hlist_add_head_rcu(&inode->i_hash, b); 656 spin_unlock(&inode->i_lock); 657 spin_unlock(&inode_hash_lock); 658 } 659 EXPORT_SYMBOL(__insert_inode_hash); 660 661 /** 662 * __remove_inode_hash - remove an inode from the hash 663 * @inode: inode to unhash 664 * 665 * Remove an inode from the superblock. 666 */ 667 void __remove_inode_hash(struct inode *inode) 668 { 669 spin_lock(&inode_hash_lock); 670 spin_lock(&inode->i_lock); 671 hlist_del_init_rcu(&inode->i_hash); 672 spin_unlock(&inode->i_lock); 673 spin_unlock(&inode_hash_lock); 674 } 675 EXPORT_SYMBOL(__remove_inode_hash); 676 677 void dump_mapping(const struct address_space *mapping) 678 { 679 struct inode *host; 680 const struct address_space_operations *a_ops; 681 struct hlist_node *dentry_first; 682 struct dentry *dentry_ptr; 683 struct dentry dentry; 684 char fname[64] = {}; 685 unsigned long ino; 686 687 /* 688 * If mapping is an invalid pointer, we don't want to crash 689 * accessing it, so probe everything depending on it carefully. 690 */ 691 if (get_kernel_nofault(host, &mapping->host) || 692 get_kernel_nofault(a_ops, &mapping->a_ops)) { 693 pr_warn("invalid mapping:%px\n", mapping); 694 return; 695 } 696 697 if (!host) { 698 pr_warn("aops:%ps\n", a_ops); 699 return; 700 } 701 702 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 703 get_kernel_nofault(ino, &host->i_ino)) { 704 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 705 return; 706 } 707 708 if (!dentry_first) { 709 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 710 return; 711 } 712 713 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 714 if (get_kernel_nofault(dentry, dentry_ptr) || 715 !dentry.d_parent || !dentry.d_name.name) { 716 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 717 a_ops, ino, dentry_ptr); 718 return; 719 } 720 721 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) 722 strscpy(fname, "<invalid>"); 723 /* 724 * Even if strncpy_from_kernel_nofault() succeeded, 725 * the fname could be unreliable 726 */ 727 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", 728 a_ops, ino, fname); 729 } 730 731 void clear_inode(struct inode *inode) 732 { 733 /* 734 * We have to cycle the i_pages lock here because reclaim can be in the 735 * process of removing the last page (in __filemap_remove_folio()) 736 * and we must not free the mapping under it. 737 */ 738 xa_lock_irq(&inode->i_data.i_pages); 739 BUG_ON(inode->i_data.nrpages); 740 /* 741 * Almost always, mapping_empty(&inode->i_data) here; but there are 742 * two known and long-standing ways in which nodes may get left behind 743 * (when deep radix-tree node allocation failed partway; or when THP 744 * collapse_file() failed). Until those two known cases are cleaned up, 745 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 746 * nor even WARN_ON(!mapping_empty). 747 */ 748 xa_unlock_irq(&inode->i_data.i_pages); 749 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 750 BUG_ON(!(inode->i_state & I_FREEING)); 751 BUG_ON(inode->i_state & I_CLEAR); 752 BUG_ON(!list_empty(&inode->i_wb_list)); 753 /* don't need i_lock here, no concurrent mods to i_state */ 754 inode->i_state = I_FREEING | I_CLEAR; 755 } 756 EXPORT_SYMBOL(clear_inode); 757 758 /* 759 * Free the inode passed in, removing it from the lists it is still connected 760 * to. We remove any pages still attached to the inode and wait for any IO that 761 * is still in progress before finally destroying the inode. 762 * 763 * An inode must already be marked I_FREEING so that we avoid the inode being 764 * moved back onto lists if we race with other code that manipulates the lists 765 * (e.g. writeback_single_inode). The caller is responsible for setting this. 766 * 767 * An inode must already be removed from the LRU list before being evicted from 768 * the cache. This should occur atomically with setting the I_FREEING state 769 * flag, so no inodes here should ever be on the LRU when being evicted. 770 */ 771 static void evict(struct inode *inode) 772 { 773 const struct super_operations *op = inode->i_sb->s_op; 774 775 BUG_ON(!(inode->i_state & I_FREEING)); 776 BUG_ON(!list_empty(&inode->i_lru)); 777 778 if (!list_empty(&inode->i_io_list)) 779 inode_io_list_del(inode); 780 781 inode_sb_list_del(inode); 782 783 spin_lock(&inode->i_lock); 784 inode_wait_for_lru_isolating(inode); 785 786 /* 787 * Wait for flusher thread to be done with the inode so that filesystem 788 * does not start destroying it while writeback is still running. Since 789 * the inode has I_FREEING set, flusher thread won't start new work on 790 * the inode. We just have to wait for running writeback to finish. 791 */ 792 inode_wait_for_writeback(inode); 793 spin_unlock(&inode->i_lock); 794 795 if (op->evict_inode) { 796 op->evict_inode(inode); 797 } else { 798 truncate_inode_pages_final(&inode->i_data); 799 clear_inode(inode); 800 } 801 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 802 cd_forget(inode); 803 804 remove_inode_hash(inode); 805 806 /* 807 * Wake up waiters in __wait_on_freeing_inode(). 808 * 809 * Lockless hash lookup may end up finding the inode before we removed 810 * it above, but only lock it *after* we are done with the wakeup below. 811 * In this case the potential waiter cannot safely block. 812 * 813 * The inode being unhashed after the call to remove_inode_hash() is 814 * used as an indicator whether blocking on it is safe. 815 */ 816 spin_lock(&inode->i_lock); 817 /* 818 * Pairs with the barrier in prepare_to_wait_event() to make sure 819 * ___wait_var_event() either sees the bit cleared or 820 * waitqueue_active() check in wake_up_var() sees the waiter. 821 */ 822 smp_mb__after_spinlock(); 823 inode_wake_up_bit(inode, __I_NEW); 824 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 825 spin_unlock(&inode->i_lock); 826 827 destroy_inode(inode); 828 } 829 830 /* 831 * dispose_list - dispose of the contents of a local list 832 * @head: the head of the list to free 833 * 834 * Dispose-list gets a local list with local inodes in it, so it doesn't 835 * need to worry about list corruption and SMP locks. 836 */ 837 static void dispose_list(struct list_head *head) 838 { 839 while (!list_empty(head)) { 840 struct inode *inode; 841 842 inode = list_first_entry(head, struct inode, i_lru); 843 list_del_init(&inode->i_lru); 844 845 evict(inode); 846 cond_resched(); 847 } 848 } 849 850 /** 851 * evict_inodes - evict all evictable inodes for a superblock 852 * @sb: superblock to operate on 853 * 854 * Make sure that no inodes with zero refcount are retained. This is 855 * called by superblock shutdown after having SB_ACTIVE flag removed, 856 * so any inode reaching zero refcount during or after that call will 857 * be immediately evicted. 858 */ 859 void evict_inodes(struct super_block *sb) 860 { 861 struct inode *inode, *next; 862 LIST_HEAD(dispose); 863 864 again: 865 spin_lock(&sb->s_inode_list_lock); 866 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 867 if (atomic_read(&inode->i_count)) 868 continue; 869 870 spin_lock(&inode->i_lock); 871 if (atomic_read(&inode->i_count)) { 872 spin_unlock(&inode->i_lock); 873 continue; 874 } 875 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 876 spin_unlock(&inode->i_lock); 877 continue; 878 } 879 880 inode->i_state |= I_FREEING; 881 inode_lru_list_del(inode); 882 spin_unlock(&inode->i_lock); 883 list_add(&inode->i_lru, &dispose); 884 885 /* 886 * We can have a ton of inodes to evict at unmount time given 887 * enough memory, check to see if we need to go to sleep for a 888 * bit so we don't livelock. 889 */ 890 if (need_resched()) { 891 spin_unlock(&sb->s_inode_list_lock); 892 cond_resched(); 893 dispose_list(&dispose); 894 goto again; 895 } 896 } 897 spin_unlock(&sb->s_inode_list_lock); 898 899 dispose_list(&dispose); 900 } 901 EXPORT_SYMBOL_GPL(evict_inodes); 902 903 /** 904 * invalidate_inodes - attempt to free all inodes on a superblock 905 * @sb: superblock to operate on 906 * 907 * Attempts to free all inodes (including dirty inodes) for a given superblock. 908 */ 909 void invalidate_inodes(struct super_block *sb) 910 { 911 struct inode *inode, *next; 912 LIST_HEAD(dispose); 913 914 again: 915 spin_lock(&sb->s_inode_list_lock); 916 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 917 spin_lock(&inode->i_lock); 918 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 919 spin_unlock(&inode->i_lock); 920 continue; 921 } 922 if (atomic_read(&inode->i_count)) { 923 spin_unlock(&inode->i_lock); 924 continue; 925 } 926 927 inode->i_state |= I_FREEING; 928 inode_lru_list_del(inode); 929 spin_unlock(&inode->i_lock); 930 list_add(&inode->i_lru, &dispose); 931 if (need_resched()) { 932 spin_unlock(&sb->s_inode_list_lock); 933 cond_resched(); 934 dispose_list(&dispose); 935 goto again; 936 } 937 } 938 spin_unlock(&sb->s_inode_list_lock); 939 940 dispose_list(&dispose); 941 } 942 943 /* 944 * Isolate the inode from the LRU in preparation for freeing it. 945 * 946 * If the inode has the I_REFERENCED flag set, then it means that it has been 947 * used recently - the flag is set in iput_final(). When we encounter such an 948 * inode, clear the flag and move it to the back of the LRU so it gets another 949 * pass through the LRU before it gets reclaimed. This is necessary because of 950 * the fact we are doing lazy LRU updates to minimise lock contention so the 951 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 952 * with this flag set because they are the inodes that are out of order. 953 */ 954 static enum lru_status inode_lru_isolate(struct list_head *item, 955 struct list_lru_one *lru, void *arg) 956 { 957 struct list_head *freeable = arg; 958 struct inode *inode = container_of(item, struct inode, i_lru); 959 960 /* 961 * We are inverting the lru lock/inode->i_lock here, so use a 962 * trylock. If we fail to get the lock, just skip it. 963 */ 964 if (!spin_trylock(&inode->i_lock)) 965 return LRU_SKIP; 966 967 /* 968 * Inodes can get referenced, redirtied, or repopulated while 969 * they're already on the LRU, and this can make them 970 * unreclaimable for a while. Remove them lazily here; iput, 971 * sync, or the last page cache deletion will requeue them. 972 */ 973 if (atomic_read(&inode->i_count) || 974 (inode->i_state & ~I_REFERENCED) || 975 !mapping_shrinkable(&inode->i_data)) { 976 list_lru_isolate(lru, &inode->i_lru); 977 spin_unlock(&inode->i_lock); 978 this_cpu_dec(nr_unused); 979 return LRU_REMOVED; 980 } 981 982 /* Recently referenced inodes get one more pass */ 983 if (inode->i_state & I_REFERENCED) { 984 inode->i_state &= ~I_REFERENCED; 985 spin_unlock(&inode->i_lock); 986 return LRU_ROTATE; 987 } 988 989 /* 990 * On highmem systems, mapping_shrinkable() permits dropping 991 * page cache in order to free up struct inodes: lowmem might 992 * be under pressure before the cache inside the highmem zone. 993 */ 994 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 995 inode_pin_lru_isolating(inode); 996 spin_unlock(&inode->i_lock); 997 spin_unlock(&lru->lock); 998 if (remove_inode_buffers(inode)) { 999 unsigned long reap; 1000 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 1001 if (current_is_kswapd()) 1002 __count_vm_events(KSWAPD_INODESTEAL, reap); 1003 else 1004 __count_vm_events(PGINODESTEAL, reap); 1005 mm_account_reclaimed_pages(reap); 1006 } 1007 inode_unpin_lru_isolating(inode); 1008 return LRU_RETRY; 1009 } 1010 1011 WARN_ON(inode->i_state & I_NEW); 1012 inode->i_state |= I_FREEING; 1013 list_lru_isolate_move(lru, &inode->i_lru, freeable); 1014 spin_unlock(&inode->i_lock); 1015 1016 this_cpu_dec(nr_unused); 1017 return LRU_REMOVED; 1018 } 1019 1020 /* 1021 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 1022 * This is called from the superblock shrinker function with a number of inodes 1023 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 1024 * then are freed outside inode_lock by dispose_list(). 1025 */ 1026 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 1027 { 1028 LIST_HEAD(freeable); 1029 long freed; 1030 1031 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 1032 inode_lru_isolate, &freeable); 1033 dispose_list(&freeable); 1034 return freed; 1035 } 1036 1037 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); 1038 /* 1039 * Called with the inode lock held. 1040 */ 1041 static struct inode *find_inode(struct super_block *sb, 1042 struct hlist_head *head, 1043 int (*test)(struct inode *, void *), 1044 void *data, bool is_inode_hash_locked) 1045 { 1046 struct inode *inode = NULL; 1047 1048 if (is_inode_hash_locked) 1049 lockdep_assert_held(&inode_hash_lock); 1050 else 1051 lockdep_assert_not_held(&inode_hash_lock); 1052 1053 rcu_read_lock(); 1054 repeat: 1055 hlist_for_each_entry_rcu(inode, head, i_hash) { 1056 if (inode->i_sb != sb) 1057 continue; 1058 if (!test(inode, data)) 1059 continue; 1060 spin_lock(&inode->i_lock); 1061 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1062 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1063 goto repeat; 1064 } 1065 if (unlikely(inode->i_state & I_CREATING)) { 1066 spin_unlock(&inode->i_lock); 1067 rcu_read_unlock(); 1068 return ERR_PTR(-ESTALE); 1069 } 1070 __iget(inode); 1071 spin_unlock(&inode->i_lock); 1072 rcu_read_unlock(); 1073 return inode; 1074 } 1075 rcu_read_unlock(); 1076 return NULL; 1077 } 1078 1079 /* 1080 * find_inode_fast is the fast path version of find_inode, see the comment at 1081 * iget_locked for details. 1082 */ 1083 static struct inode *find_inode_fast(struct super_block *sb, 1084 struct hlist_head *head, unsigned long ino, 1085 bool is_inode_hash_locked) 1086 { 1087 struct inode *inode = NULL; 1088 1089 if (is_inode_hash_locked) 1090 lockdep_assert_held(&inode_hash_lock); 1091 else 1092 lockdep_assert_not_held(&inode_hash_lock); 1093 1094 rcu_read_lock(); 1095 repeat: 1096 hlist_for_each_entry_rcu(inode, head, i_hash) { 1097 if (inode->i_ino != ino) 1098 continue; 1099 if (inode->i_sb != sb) 1100 continue; 1101 spin_lock(&inode->i_lock); 1102 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1103 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1104 goto repeat; 1105 } 1106 if (unlikely(inode->i_state & I_CREATING)) { 1107 spin_unlock(&inode->i_lock); 1108 rcu_read_unlock(); 1109 return ERR_PTR(-ESTALE); 1110 } 1111 __iget(inode); 1112 spin_unlock(&inode->i_lock); 1113 rcu_read_unlock(); 1114 return inode; 1115 } 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 1120 /* 1121 * Each cpu owns a range of LAST_INO_BATCH numbers. 1122 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 1123 * to renew the exhausted range. 1124 * 1125 * This does not significantly increase overflow rate because every CPU can 1126 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1127 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1128 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1129 * overflow rate by 2x, which does not seem too significant. 1130 * 1131 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1132 * error if st_ino won't fit in target struct field. Use 32bit counter 1133 * here to attempt to avoid that. 1134 */ 1135 #define LAST_INO_BATCH 1024 1136 static DEFINE_PER_CPU(unsigned int, last_ino); 1137 1138 unsigned int get_next_ino(void) 1139 { 1140 unsigned int *p = &get_cpu_var(last_ino); 1141 unsigned int res = *p; 1142 1143 #ifdef CONFIG_SMP 1144 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1145 static atomic_t shared_last_ino; 1146 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1147 1148 res = next - LAST_INO_BATCH; 1149 } 1150 #endif 1151 1152 res++; 1153 /* get_next_ino should not provide a 0 inode number */ 1154 if (unlikely(!res)) 1155 res++; 1156 *p = res; 1157 put_cpu_var(last_ino); 1158 return res; 1159 } 1160 EXPORT_SYMBOL(get_next_ino); 1161 1162 /** 1163 * new_inode_pseudo - obtain an inode 1164 * @sb: superblock 1165 * 1166 * Allocates a new inode for given superblock. 1167 * Inode wont be chained in superblock s_inodes list 1168 * This means : 1169 * - fs can't be unmount 1170 * - quotas, fsnotify, writeback can't work 1171 */ 1172 struct inode *new_inode_pseudo(struct super_block *sb) 1173 { 1174 return alloc_inode(sb); 1175 } 1176 1177 /** 1178 * new_inode - obtain an inode 1179 * @sb: superblock 1180 * 1181 * Allocates a new inode for given superblock. The default gfp_mask 1182 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1183 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1184 * for the page cache are not reclaimable or migratable, 1185 * mapping_set_gfp_mask() must be called with suitable flags on the 1186 * newly created inode's mapping 1187 * 1188 */ 1189 struct inode *new_inode(struct super_block *sb) 1190 { 1191 struct inode *inode; 1192 1193 inode = new_inode_pseudo(sb); 1194 if (inode) 1195 inode_sb_list_add(inode); 1196 return inode; 1197 } 1198 EXPORT_SYMBOL(new_inode); 1199 1200 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1201 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1202 { 1203 if (S_ISDIR(inode->i_mode)) { 1204 struct file_system_type *type = inode->i_sb->s_type; 1205 1206 /* Set new key only if filesystem hasn't already changed it */ 1207 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1208 /* 1209 * ensure nobody is actually holding i_mutex 1210 */ 1211 // mutex_destroy(&inode->i_mutex); 1212 init_rwsem(&inode->i_rwsem); 1213 lockdep_set_class(&inode->i_rwsem, 1214 &type->i_mutex_dir_key); 1215 } 1216 } 1217 } 1218 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1219 #endif 1220 1221 /** 1222 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1223 * @inode: new inode to unlock 1224 * 1225 * Called when the inode is fully initialised to clear the new state of the 1226 * inode and wake up anyone waiting for the inode to finish initialisation. 1227 */ 1228 void unlock_new_inode(struct inode *inode) 1229 { 1230 lockdep_annotate_inode_mutex_key(inode); 1231 spin_lock(&inode->i_lock); 1232 WARN_ON(!(inode->i_state & I_NEW)); 1233 inode->i_state &= ~I_NEW & ~I_CREATING; 1234 /* 1235 * Pairs with the barrier in prepare_to_wait_event() to make sure 1236 * ___wait_var_event() either sees the bit cleared or 1237 * waitqueue_active() check in wake_up_var() sees the waiter. 1238 */ 1239 smp_mb(); 1240 inode_wake_up_bit(inode, __I_NEW); 1241 spin_unlock(&inode->i_lock); 1242 } 1243 EXPORT_SYMBOL(unlock_new_inode); 1244 1245 void discard_new_inode(struct inode *inode) 1246 { 1247 lockdep_annotate_inode_mutex_key(inode); 1248 spin_lock(&inode->i_lock); 1249 WARN_ON(!(inode->i_state & I_NEW)); 1250 inode->i_state &= ~I_NEW; 1251 /* 1252 * Pairs with the barrier in prepare_to_wait_event() to make sure 1253 * ___wait_var_event() either sees the bit cleared or 1254 * waitqueue_active() check in wake_up_var() sees the waiter. 1255 */ 1256 smp_mb(); 1257 inode_wake_up_bit(inode, __I_NEW); 1258 spin_unlock(&inode->i_lock); 1259 iput(inode); 1260 } 1261 EXPORT_SYMBOL(discard_new_inode); 1262 1263 /** 1264 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1265 * 1266 * Lock any non-NULL argument. Passed objects must not be directories. 1267 * Zero, one or two objects may be locked by this function. 1268 * 1269 * @inode1: first inode to lock 1270 * @inode2: second inode to lock 1271 */ 1272 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1273 { 1274 if (inode1) 1275 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1276 if (inode2) 1277 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1278 if (inode1 > inode2) 1279 swap(inode1, inode2); 1280 if (inode1) 1281 inode_lock(inode1); 1282 if (inode2 && inode2 != inode1) 1283 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1284 } 1285 EXPORT_SYMBOL(lock_two_nondirectories); 1286 1287 /** 1288 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1289 * @inode1: first inode to unlock 1290 * @inode2: second inode to unlock 1291 */ 1292 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1293 { 1294 if (inode1) { 1295 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1296 inode_unlock(inode1); 1297 } 1298 if (inode2 && inode2 != inode1) { 1299 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1300 inode_unlock(inode2); 1301 } 1302 } 1303 EXPORT_SYMBOL(unlock_two_nondirectories); 1304 1305 /** 1306 * inode_insert5 - obtain an inode from a mounted file system 1307 * @inode: pre-allocated inode to use for insert to cache 1308 * @hashval: hash value (usually inode number) to get 1309 * @test: callback used for comparisons between inodes 1310 * @set: callback used to initialize a new struct inode 1311 * @data: opaque data pointer to pass to @test and @set 1312 * 1313 * Search for the inode specified by @hashval and @data in the inode cache, 1314 * and if present return it with an increased reference count. This is a 1315 * variant of iget5_locked() that doesn't allocate an inode. 1316 * 1317 * If the inode is not present in the cache, insert the pre-allocated inode and 1318 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1319 * to fill it in before unlocking it via unlock_new_inode(). 1320 * 1321 * Note that both @test and @set are called with the inode_hash_lock held, so 1322 * they can't sleep. 1323 */ 1324 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1325 int (*test)(struct inode *, void *), 1326 int (*set)(struct inode *, void *), void *data) 1327 { 1328 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1329 struct inode *old; 1330 1331 again: 1332 spin_lock(&inode_hash_lock); 1333 old = find_inode(inode->i_sb, head, test, data, true); 1334 if (unlikely(old)) { 1335 /* 1336 * Uhhuh, somebody else created the same inode under us. 1337 * Use the old inode instead of the preallocated one. 1338 */ 1339 spin_unlock(&inode_hash_lock); 1340 if (IS_ERR(old)) 1341 return NULL; 1342 wait_on_inode(old); 1343 if (unlikely(inode_unhashed(old))) { 1344 iput(old); 1345 goto again; 1346 } 1347 return old; 1348 } 1349 1350 if (set && unlikely(set(inode, data))) { 1351 inode = NULL; 1352 goto unlock; 1353 } 1354 1355 /* 1356 * Return the locked inode with I_NEW set, the 1357 * caller is responsible for filling in the contents 1358 */ 1359 spin_lock(&inode->i_lock); 1360 inode->i_state |= I_NEW; 1361 hlist_add_head_rcu(&inode->i_hash, head); 1362 spin_unlock(&inode->i_lock); 1363 1364 /* 1365 * Add inode to the sb list if it's not already. It has I_NEW at this 1366 * point, so it should be safe to test i_sb_list locklessly. 1367 */ 1368 if (list_empty(&inode->i_sb_list)) 1369 inode_sb_list_add(inode); 1370 unlock: 1371 spin_unlock(&inode_hash_lock); 1372 1373 return inode; 1374 } 1375 EXPORT_SYMBOL(inode_insert5); 1376 1377 /** 1378 * iget5_locked - obtain an inode from a mounted file system 1379 * @sb: super block of file system 1380 * @hashval: hash value (usually inode number) to get 1381 * @test: callback used for comparisons between inodes 1382 * @set: callback used to initialize a new struct inode 1383 * @data: opaque data pointer to pass to @test and @set 1384 * 1385 * Search for the inode specified by @hashval and @data in the inode cache, 1386 * and if present return it with an increased reference count. This is a 1387 * generalized version of iget_locked() for file systems where the inode 1388 * number is not sufficient for unique identification of an inode. 1389 * 1390 * If the inode is not present in the cache, allocate and insert a new inode 1391 * and return it locked, hashed, and with the I_NEW flag set. The file system 1392 * gets to fill it in before unlocking it via unlock_new_inode(). 1393 * 1394 * Note that both @test and @set are called with the inode_hash_lock held, so 1395 * they can't sleep. 1396 */ 1397 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1398 int (*test)(struct inode *, void *), 1399 int (*set)(struct inode *, void *), void *data) 1400 { 1401 struct inode *inode = ilookup5(sb, hashval, test, data); 1402 1403 if (!inode) { 1404 struct inode *new = alloc_inode(sb); 1405 1406 if (new) { 1407 inode = inode_insert5(new, hashval, test, set, data); 1408 if (unlikely(inode != new)) 1409 destroy_inode(new); 1410 } 1411 } 1412 return inode; 1413 } 1414 EXPORT_SYMBOL(iget5_locked); 1415 1416 /** 1417 * iget5_locked_rcu - obtain an inode from a mounted file system 1418 * @sb: super block of file system 1419 * @hashval: hash value (usually inode number) to get 1420 * @test: callback used for comparisons between inodes 1421 * @set: callback used to initialize a new struct inode 1422 * @data: opaque data pointer to pass to @test and @set 1423 * 1424 * This is equivalent to iget5_locked, except the @test callback must 1425 * tolerate the inode not being stable, including being mid-teardown. 1426 */ 1427 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1428 int (*test)(struct inode *, void *), 1429 int (*set)(struct inode *, void *), void *data) 1430 { 1431 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1432 struct inode *inode, *new; 1433 1434 again: 1435 inode = find_inode(sb, head, test, data, false); 1436 if (inode) { 1437 if (IS_ERR(inode)) 1438 return NULL; 1439 wait_on_inode(inode); 1440 if (unlikely(inode_unhashed(inode))) { 1441 iput(inode); 1442 goto again; 1443 } 1444 return inode; 1445 } 1446 1447 new = alloc_inode(sb); 1448 if (new) { 1449 inode = inode_insert5(new, hashval, test, set, data); 1450 if (unlikely(inode != new)) 1451 destroy_inode(new); 1452 } 1453 return inode; 1454 } 1455 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1456 1457 /** 1458 * iget_locked - obtain an inode from a mounted file system 1459 * @sb: super block of file system 1460 * @ino: inode number to get 1461 * 1462 * Search for the inode specified by @ino in the inode cache and if present 1463 * return it with an increased reference count. This is for file systems 1464 * where the inode number is sufficient for unique identification of an inode. 1465 * 1466 * If the inode is not in cache, allocate a new inode and return it locked, 1467 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1468 * before unlocking it via unlock_new_inode(). 1469 */ 1470 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1471 { 1472 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1473 struct inode *inode; 1474 again: 1475 inode = find_inode_fast(sb, head, ino, false); 1476 if (inode) { 1477 if (IS_ERR(inode)) 1478 return NULL; 1479 wait_on_inode(inode); 1480 if (unlikely(inode_unhashed(inode))) { 1481 iput(inode); 1482 goto again; 1483 } 1484 return inode; 1485 } 1486 1487 inode = alloc_inode(sb); 1488 if (inode) { 1489 struct inode *old; 1490 1491 spin_lock(&inode_hash_lock); 1492 /* We released the lock, so.. */ 1493 old = find_inode_fast(sb, head, ino, true); 1494 if (!old) { 1495 inode->i_ino = ino; 1496 spin_lock(&inode->i_lock); 1497 inode->i_state = I_NEW; 1498 hlist_add_head_rcu(&inode->i_hash, head); 1499 spin_unlock(&inode->i_lock); 1500 inode_sb_list_add(inode); 1501 spin_unlock(&inode_hash_lock); 1502 1503 /* Return the locked inode with I_NEW set, the 1504 * caller is responsible for filling in the contents 1505 */ 1506 return inode; 1507 } 1508 1509 /* 1510 * Uhhuh, somebody else created the same inode under 1511 * us. Use the old inode instead of the one we just 1512 * allocated. 1513 */ 1514 spin_unlock(&inode_hash_lock); 1515 destroy_inode(inode); 1516 if (IS_ERR(old)) 1517 return NULL; 1518 inode = old; 1519 wait_on_inode(inode); 1520 if (unlikely(inode_unhashed(inode))) { 1521 iput(inode); 1522 goto again; 1523 } 1524 } 1525 return inode; 1526 } 1527 EXPORT_SYMBOL(iget_locked); 1528 1529 /* 1530 * search the inode cache for a matching inode number. 1531 * If we find one, then the inode number we are trying to 1532 * allocate is not unique and so we should not use it. 1533 * 1534 * Returns 1 if the inode number is unique, 0 if it is not. 1535 */ 1536 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1537 { 1538 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1539 struct inode *inode; 1540 1541 hlist_for_each_entry_rcu(inode, b, i_hash) { 1542 if (inode->i_ino == ino && inode->i_sb == sb) 1543 return 0; 1544 } 1545 return 1; 1546 } 1547 1548 /** 1549 * iunique - get a unique inode number 1550 * @sb: superblock 1551 * @max_reserved: highest reserved inode number 1552 * 1553 * Obtain an inode number that is unique on the system for a given 1554 * superblock. This is used by file systems that have no natural 1555 * permanent inode numbering system. An inode number is returned that 1556 * is higher than the reserved limit but unique. 1557 * 1558 * BUGS: 1559 * With a large number of inodes live on the file system this function 1560 * currently becomes quite slow. 1561 */ 1562 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1563 { 1564 /* 1565 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1566 * error if st_ino won't fit in target struct field. Use 32bit counter 1567 * here to attempt to avoid that. 1568 */ 1569 static DEFINE_SPINLOCK(iunique_lock); 1570 static unsigned int counter; 1571 ino_t res; 1572 1573 rcu_read_lock(); 1574 spin_lock(&iunique_lock); 1575 do { 1576 if (counter <= max_reserved) 1577 counter = max_reserved + 1; 1578 res = counter++; 1579 } while (!test_inode_iunique(sb, res)); 1580 spin_unlock(&iunique_lock); 1581 rcu_read_unlock(); 1582 1583 return res; 1584 } 1585 EXPORT_SYMBOL(iunique); 1586 1587 struct inode *igrab(struct inode *inode) 1588 { 1589 spin_lock(&inode->i_lock); 1590 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1591 __iget(inode); 1592 spin_unlock(&inode->i_lock); 1593 } else { 1594 spin_unlock(&inode->i_lock); 1595 /* 1596 * Handle the case where s_op->clear_inode is not been 1597 * called yet, and somebody is calling igrab 1598 * while the inode is getting freed. 1599 */ 1600 inode = NULL; 1601 } 1602 return inode; 1603 } 1604 EXPORT_SYMBOL(igrab); 1605 1606 /** 1607 * ilookup5_nowait - search for an inode in the inode cache 1608 * @sb: super block of file system to search 1609 * @hashval: hash value (usually inode number) to search for 1610 * @test: callback used for comparisons between inodes 1611 * @data: opaque data pointer to pass to @test 1612 * 1613 * Search for the inode specified by @hashval and @data in the inode cache. 1614 * If the inode is in the cache, the inode is returned with an incremented 1615 * reference count. 1616 * 1617 * Note: I_NEW is not waited upon so you have to be very careful what you do 1618 * with the returned inode. You probably should be using ilookup5() instead. 1619 * 1620 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1621 */ 1622 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1623 int (*test)(struct inode *, void *), void *data) 1624 { 1625 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1626 struct inode *inode; 1627 1628 spin_lock(&inode_hash_lock); 1629 inode = find_inode(sb, head, test, data, true); 1630 spin_unlock(&inode_hash_lock); 1631 1632 return IS_ERR(inode) ? NULL : inode; 1633 } 1634 EXPORT_SYMBOL(ilookup5_nowait); 1635 1636 /** 1637 * ilookup5 - search for an inode in the inode cache 1638 * @sb: super block of file system to search 1639 * @hashval: hash value (usually inode number) to search for 1640 * @test: callback used for comparisons between inodes 1641 * @data: opaque data pointer to pass to @test 1642 * 1643 * Search for the inode specified by @hashval and @data in the inode cache, 1644 * and if the inode is in the cache, return the inode with an incremented 1645 * reference count. Waits on I_NEW before returning the inode. 1646 * returned with an incremented reference count. 1647 * 1648 * This is a generalized version of ilookup() for file systems where the 1649 * inode number is not sufficient for unique identification of an inode. 1650 * 1651 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1652 */ 1653 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1654 int (*test)(struct inode *, void *), void *data) 1655 { 1656 struct inode *inode; 1657 again: 1658 inode = ilookup5_nowait(sb, hashval, test, data); 1659 if (inode) { 1660 wait_on_inode(inode); 1661 if (unlikely(inode_unhashed(inode))) { 1662 iput(inode); 1663 goto again; 1664 } 1665 } 1666 return inode; 1667 } 1668 EXPORT_SYMBOL(ilookup5); 1669 1670 /** 1671 * ilookup - search for an inode in the inode cache 1672 * @sb: super block of file system to search 1673 * @ino: inode number to search for 1674 * 1675 * Search for the inode @ino in the inode cache, and if the inode is in the 1676 * cache, the inode is returned with an incremented reference count. 1677 */ 1678 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1679 { 1680 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1681 struct inode *inode; 1682 again: 1683 inode = find_inode_fast(sb, head, ino, false); 1684 1685 if (inode) { 1686 if (IS_ERR(inode)) 1687 return NULL; 1688 wait_on_inode(inode); 1689 if (unlikely(inode_unhashed(inode))) { 1690 iput(inode); 1691 goto again; 1692 } 1693 } 1694 return inode; 1695 } 1696 EXPORT_SYMBOL(ilookup); 1697 1698 /** 1699 * find_inode_nowait - find an inode in the inode cache 1700 * @sb: super block of file system to search 1701 * @hashval: hash value (usually inode number) to search for 1702 * @match: callback used for comparisons between inodes 1703 * @data: opaque data pointer to pass to @match 1704 * 1705 * Search for the inode specified by @hashval and @data in the inode 1706 * cache, where the helper function @match will return 0 if the inode 1707 * does not match, 1 if the inode does match, and -1 if the search 1708 * should be stopped. The @match function must be responsible for 1709 * taking the i_lock spin_lock and checking i_state for an inode being 1710 * freed or being initialized, and incrementing the reference count 1711 * before returning 1. It also must not sleep, since it is called with 1712 * the inode_hash_lock spinlock held. 1713 * 1714 * This is a even more generalized version of ilookup5() when the 1715 * function must never block --- find_inode() can block in 1716 * __wait_on_freeing_inode() --- or when the caller can not increment 1717 * the reference count because the resulting iput() might cause an 1718 * inode eviction. The tradeoff is that the @match funtion must be 1719 * very carefully implemented. 1720 */ 1721 struct inode *find_inode_nowait(struct super_block *sb, 1722 unsigned long hashval, 1723 int (*match)(struct inode *, unsigned long, 1724 void *), 1725 void *data) 1726 { 1727 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1728 struct inode *inode, *ret_inode = NULL; 1729 int mval; 1730 1731 spin_lock(&inode_hash_lock); 1732 hlist_for_each_entry(inode, head, i_hash) { 1733 if (inode->i_sb != sb) 1734 continue; 1735 mval = match(inode, hashval, data); 1736 if (mval == 0) 1737 continue; 1738 if (mval == 1) 1739 ret_inode = inode; 1740 goto out; 1741 } 1742 out: 1743 spin_unlock(&inode_hash_lock); 1744 return ret_inode; 1745 } 1746 EXPORT_SYMBOL(find_inode_nowait); 1747 1748 /** 1749 * find_inode_rcu - find an inode in the inode cache 1750 * @sb: Super block of file system to search 1751 * @hashval: Key to hash 1752 * @test: Function to test match on an inode 1753 * @data: Data for test function 1754 * 1755 * Search for the inode specified by @hashval and @data in the inode cache, 1756 * where the helper function @test will return 0 if the inode does not match 1757 * and 1 if it does. The @test function must be responsible for taking the 1758 * i_lock spin_lock and checking i_state for an inode being freed or being 1759 * initialized. 1760 * 1761 * If successful, this will return the inode for which the @test function 1762 * returned 1 and NULL otherwise. 1763 * 1764 * The @test function is not permitted to take a ref on any inode presented. 1765 * It is also not permitted to sleep. 1766 * 1767 * The caller must hold the RCU read lock. 1768 */ 1769 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1770 int (*test)(struct inode *, void *), void *data) 1771 { 1772 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1773 struct inode *inode; 1774 1775 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1776 "suspicious find_inode_rcu() usage"); 1777 1778 hlist_for_each_entry_rcu(inode, head, i_hash) { 1779 if (inode->i_sb == sb && 1780 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1781 test(inode, data)) 1782 return inode; 1783 } 1784 return NULL; 1785 } 1786 EXPORT_SYMBOL(find_inode_rcu); 1787 1788 /** 1789 * find_inode_by_ino_rcu - Find an inode in the inode cache 1790 * @sb: Super block of file system to search 1791 * @ino: The inode number to match 1792 * 1793 * Search for the inode specified by @hashval and @data in the inode cache, 1794 * where the helper function @test will return 0 if the inode does not match 1795 * and 1 if it does. The @test function must be responsible for taking the 1796 * i_lock spin_lock and checking i_state for an inode being freed or being 1797 * initialized. 1798 * 1799 * If successful, this will return the inode for which the @test function 1800 * returned 1 and NULL otherwise. 1801 * 1802 * The @test function is not permitted to take a ref on any inode presented. 1803 * It is also not permitted to sleep. 1804 * 1805 * The caller must hold the RCU read lock. 1806 */ 1807 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1808 unsigned long ino) 1809 { 1810 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1811 struct inode *inode; 1812 1813 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1814 "suspicious find_inode_by_ino_rcu() usage"); 1815 1816 hlist_for_each_entry_rcu(inode, head, i_hash) { 1817 if (inode->i_ino == ino && 1818 inode->i_sb == sb && 1819 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1820 return inode; 1821 } 1822 return NULL; 1823 } 1824 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1825 1826 int insert_inode_locked(struct inode *inode) 1827 { 1828 struct super_block *sb = inode->i_sb; 1829 ino_t ino = inode->i_ino; 1830 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1831 1832 while (1) { 1833 struct inode *old = NULL; 1834 spin_lock(&inode_hash_lock); 1835 hlist_for_each_entry(old, head, i_hash) { 1836 if (old->i_ino != ino) 1837 continue; 1838 if (old->i_sb != sb) 1839 continue; 1840 spin_lock(&old->i_lock); 1841 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1842 spin_unlock(&old->i_lock); 1843 continue; 1844 } 1845 break; 1846 } 1847 if (likely(!old)) { 1848 spin_lock(&inode->i_lock); 1849 inode->i_state |= I_NEW | I_CREATING; 1850 hlist_add_head_rcu(&inode->i_hash, head); 1851 spin_unlock(&inode->i_lock); 1852 spin_unlock(&inode_hash_lock); 1853 return 0; 1854 } 1855 if (unlikely(old->i_state & I_CREATING)) { 1856 spin_unlock(&old->i_lock); 1857 spin_unlock(&inode_hash_lock); 1858 return -EBUSY; 1859 } 1860 __iget(old); 1861 spin_unlock(&old->i_lock); 1862 spin_unlock(&inode_hash_lock); 1863 wait_on_inode(old); 1864 if (unlikely(!inode_unhashed(old))) { 1865 iput(old); 1866 return -EBUSY; 1867 } 1868 iput(old); 1869 } 1870 } 1871 EXPORT_SYMBOL(insert_inode_locked); 1872 1873 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1874 int (*test)(struct inode *, void *), void *data) 1875 { 1876 struct inode *old; 1877 1878 inode->i_state |= I_CREATING; 1879 old = inode_insert5(inode, hashval, test, NULL, data); 1880 1881 if (old != inode) { 1882 iput(old); 1883 return -EBUSY; 1884 } 1885 return 0; 1886 } 1887 EXPORT_SYMBOL(insert_inode_locked4); 1888 1889 1890 int generic_delete_inode(struct inode *inode) 1891 { 1892 return 1; 1893 } 1894 EXPORT_SYMBOL(generic_delete_inode); 1895 1896 /* 1897 * Called when we're dropping the last reference 1898 * to an inode. 1899 * 1900 * Call the FS "drop_inode()" function, defaulting to 1901 * the legacy UNIX filesystem behaviour. If it tells 1902 * us to evict inode, do so. Otherwise, retain inode 1903 * in cache if fs is alive, sync and evict if fs is 1904 * shutting down. 1905 */ 1906 static void iput_final(struct inode *inode) 1907 { 1908 struct super_block *sb = inode->i_sb; 1909 const struct super_operations *op = inode->i_sb->s_op; 1910 unsigned long state; 1911 int drop; 1912 1913 WARN_ON(inode->i_state & I_NEW); 1914 1915 if (op->drop_inode) 1916 drop = op->drop_inode(inode); 1917 else 1918 drop = generic_drop_inode(inode); 1919 1920 if (!drop && 1921 !(inode->i_state & I_DONTCACHE) && 1922 (sb->s_flags & SB_ACTIVE)) { 1923 __inode_add_lru(inode, true); 1924 spin_unlock(&inode->i_lock); 1925 return; 1926 } 1927 1928 state = inode->i_state; 1929 if (!drop) { 1930 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1931 spin_unlock(&inode->i_lock); 1932 1933 write_inode_now(inode, 1); 1934 1935 spin_lock(&inode->i_lock); 1936 state = inode->i_state; 1937 WARN_ON(state & I_NEW); 1938 state &= ~I_WILL_FREE; 1939 } 1940 1941 WRITE_ONCE(inode->i_state, state | I_FREEING); 1942 if (!list_empty(&inode->i_lru)) 1943 inode_lru_list_del(inode); 1944 spin_unlock(&inode->i_lock); 1945 1946 evict(inode); 1947 } 1948 1949 /** 1950 * iput - put an inode 1951 * @inode: inode to put 1952 * 1953 * Puts an inode, dropping its usage count. If the inode use count hits 1954 * zero, the inode is then freed and may also be destroyed. 1955 * 1956 * Consequently, iput() can sleep. 1957 */ 1958 void iput(struct inode *inode) 1959 { 1960 if (!inode) 1961 return; 1962 BUG_ON(inode->i_state & I_CLEAR); 1963 retry: 1964 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1965 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1966 atomic_inc(&inode->i_count); 1967 spin_unlock(&inode->i_lock); 1968 trace_writeback_lazytime_iput(inode); 1969 mark_inode_dirty_sync(inode); 1970 goto retry; 1971 } 1972 iput_final(inode); 1973 } 1974 } 1975 EXPORT_SYMBOL(iput); 1976 1977 #ifdef CONFIG_BLOCK 1978 /** 1979 * bmap - find a block number in a file 1980 * @inode: inode owning the block number being requested 1981 * @block: pointer containing the block to find 1982 * 1983 * Replaces the value in ``*block`` with the block number on the device holding 1984 * corresponding to the requested block number in the file. 1985 * That is, asked for block 4 of inode 1 the function will replace the 1986 * 4 in ``*block``, with disk block relative to the disk start that holds that 1987 * block of the file. 1988 * 1989 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1990 * hole, returns 0 and ``*block`` is also set to 0. 1991 */ 1992 int bmap(struct inode *inode, sector_t *block) 1993 { 1994 if (!inode->i_mapping->a_ops->bmap) 1995 return -EINVAL; 1996 1997 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1998 return 0; 1999 } 2000 EXPORT_SYMBOL(bmap); 2001 #endif 2002 2003 /* 2004 * With relative atime, only update atime if the previous atime is 2005 * earlier than or equal to either the ctime or mtime, 2006 * or if at least a day has passed since the last atime update. 2007 */ 2008 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 2009 struct timespec64 now) 2010 { 2011 struct timespec64 atime, mtime, ctime; 2012 2013 if (!(mnt->mnt_flags & MNT_RELATIME)) 2014 return true; 2015 /* 2016 * Is mtime younger than or equal to atime? If yes, update atime: 2017 */ 2018 atime = inode_get_atime(inode); 2019 mtime = inode_get_mtime(inode); 2020 if (timespec64_compare(&mtime, &atime) >= 0) 2021 return true; 2022 /* 2023 * Is ctime younger than or equal to atime? If yes, update atime: 2024 */ 2025 ctime = inode_get_ctime(inode); 2026 if (timespec64_compare(&ctime, &atime) >= 0) 2027 return true; 2028 2029 /* 2030 * Is the previous atime value older than a day? If yes, 2031 * update atime: 2032 */ 2033 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 2034 return true; 2035 /* 2036 * Good, we can skip the atime update: 2037 */ 2038 return false; 2039 } 2040 2041 /** 2042 * inode_update_timestamps - update the timestamps on the inode 2043 * @inode: inode to be updated 2044 * @flags: S_* flags that needed to be updated 2045 * 2046 * The update_time function is called when an inode's timestamps need to be 2047 * updated for a read or write operation. This function handles updating the 2048 * actual timestamps. It's up to the caller to ensure that the inode is marked 2049 * dirty appropriately. 2050 * 2051 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 2052 * attempt to update all three of them. S_ATIME updates can be handled 2053 * independently of the rest. 2054 * 2055 * Returns a set of S_* flags indicating which values changed. 2056 */ 2057 int inode_update_timestamps(struct inode *inode, int flags) 2058 { 2059 int updated = 0; 2060 struct timespec64 now; 2061 2062 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 2063 struct timespec64 ctime = inode_get_ctime(inode); 2064 struct timespec64 mtime = inode_get_mtime(inode); 2065 2066 now = inode_set_ctime_current(inode); 2067 if (!timespec64_equal(&now, &ctime)) 2068 updated |= S_CTIME; 2069 if (!timespec64_equal(&now, &mtime)) { 2070 inode_set_mtime_to_ts(inode, now); 2071 updated |= S_MTIME; 2072 } 2073 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 2074 updated |= S_VERSION; 2075 } else { 2076 now = current_time(inode); 2077 } 2078 2079 if (flags & S_ATIME) { 2080 struct timespec64 atime = inode_get_atime(inode); 2081 2082 if (!timespec64_equal(&now, &atime)) { 2083 inode_set_atime_to_ts(inode, now); 2084 updated |= S_ATIME; 2085 } 2086 } 2087 return updated; 2088 } 2089 EXPORT_SYMBOL(inode_update_timestamps); 2090 2091 /** 2092 * generic_update_time - update the timestamps on the inode 2093 * @inode: inode to be updated 2094 * @flags: S_* flags that needed to be updated 2095 * 2096 * The update_time function is called when an inode's timestamps need to be 2097 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 2098 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 2099 * updates can be handled done independently of the rest. 2100 * 2101 * Returns a S_* mask indicating which fields were updated. 2102 */ 2103 int generic_update_time(struct inode *inode, int flags) 2104 { 2105 int updated = inode_update_timestamps(inode, flags); 2106 int dirty_flags = 0; 2107 2108 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 2109 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 2110 if (updated & S_VERSION) 2111 dirty_flags |= I_DIRTY_SYNC; 2112 __mark_inode_dirty(inode, dirty_flags); 2113 return updated; 2114 } 2115 EXPORT_SYMBOL(generic_update_time); 2116 2117 /* 2118 * This does the actual work of updating an inodes time or version. Must have 2119 * had called mnt_want_write() before calling this. 2120 */ 2121 int inode_update_time(struct inode *inode, int flags) 2122 { 2123 if (inode->i_op->update_time) 2124 return inode->i_op->update_time(inode, flags); 2125 generic_update_time(inode, flags); 2126 return 0; 2127 } 2128 EXPORT_SYMBOL(inode_update_time); 2129 2130 /** 2131 * atime_needs_update - update the access time 2132 * @path: the &struct path to update 2133 * @inode: inode to update 2134 * 2135 * Update the accessed time on an inode and mark it for writeback. 2136 * This function automatically handles read only file systems and media, 2137 * as well as the "noatime" flag and inode specific "noatime" markers. 2138 */ 2139 bool atime_needs_update(const struct path *path, struct inode *inode) 2140 { 2141 struct vfsmount *mnt = path->mnt; 2142 struct timespec64 now, atime; 2143 2144 if (inode->i_flags & S_NOATIME) 2145 return false; 2146 2147 /* Atime updates will likely cause i_uid and i_gid to be written 2148 * back improprely if their true value is unknown to the vfs. 2149 */ 2150 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2151 return false; 2152 2153 if (IS_NOATIME(inode)) 2154 return false; 2155 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2156 return false; 2157 2158 if (mnt->mnt_flags & MNT_NOATIME) 2159 return false; 2160 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2161 return false; 2162 2163 now = current_time(inode); 2164 2165 if (!relatime_need_update(mnt, inode, now)) 2166 return false; 2167 2168 atime = inode_get_atime(inode); 2169 if (timespec64_equal(&atime, &now)) 2170 return false; 2171 2172 return true; 2173 } 2174 2175 void touch_atime(const struct path *path) 2176 { 2177 struct vfsmount *mnt = path->mnt; 2178 struct inode *inode = d_inode(path->dentry); 2179 2180 if (!atime_needs_update(path, inode)) 2181 return; 2182 2183 if (!sb_start_write_trylock(inode->i_sb)) 2184 return; 2185 2186 if (mnt_get_write_access(mnt) != 0) 2187 goto skip_update; 2188 /* 2189 * File systems can error out when updating inodes if they need to 2190 * allocate new space to modify an inode (such is the case for 2191 * Btrfs), but since we touch atime while walking down the path we 2192 * really don't care if we failed to update the atime of the file, 2193 * so just ignore the return value. 2194 * We may also fail on filesystems that have the ability to make parts 2195 * of the fs read only, e.g. subvolumes in Btrfs. 2196 */ 2197 inode_update_time(inode, S_ATIME); 2198 mnt_put_write_access(mnt); 2199 skip_update: 2200 sb_end_write(inode->i_sb); 2201 } 2202 EXPORT_SYMBOL(touch_atime); 2203 2204 /* 2205 * Return mask of changes for notify_change() that need to be done as a 2206 * response to write or truncate. Return 0 if nothing has to be changed. 2207 * Negative value on error (change should be denied). 2208 */ 2209 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2210 struct dentry *dentry) 2211 { 2212 struct inode *inode = d_inode(dentry); 2213 int mask = 0; 2214 int ret; 2215 2216 if (IS_NOSEC(inode)) 2217 return 0; 2218 2219 mask = setattr_should_drop_suidgid(idmap, inode); 2220 ret = security_inode_need_killpriv(dentry); 2221 if (ret < 0) 2222 return ret; 2223 if (ret) 2224 mask |= ATTR_KILL_PRIV; 2225 return mask; 2226 } 2227 2228 static int __remove_privs(struct mnt_idmap *idmap, 2229 struct dentry *dentry, int kill) 2230 { 2231 struct iattr newattrs; 2232 2233 newattrs.ia_valid = ATTR_FORCE | kill; 2234 /* 2235 * Note we call this on write, so notify_change will not 2236 * encounter any conflicting delegations: 2237 */ 2238 return notify_change(idmap, dentry, &newattrs, NULL); 2239 } 2240 2241 int file_remove_privs_flags(struct file *file, unsigned int flags) 2242 { 2243 struct dentry *dentry = file_dentry(file); 2244 struct inode *inode = file_inode(file); 2245 int error = 0; 2246 int kill; 2247 2248 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2249 return 0; 2250 2251 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2252 if (kill < 0) 2253 return kill; 2254 2255 if (kill) { 2256 if (flags & IOCB_NOWAIT) 2257 return -EAGAIN; 2258 2259 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2260 } 2261 2262 if (!error) 2263 inode_has_no_xattr(inode); 2264 return error; 2265 } 2266 EXPORT_SYMBOL_GPL(file_remove_privs_flags); 2267 2268 /** 2269 * file_remove_privs - remove special file privileges (suid, capabilities) 2270 * @file: file to remove privileges from 2271 * 2272 * When file is modified by a write or truncation ensure that special 2273 * file privileges are removed. 2274 * 2275 * Return: 0 on success, negative errno on failure. 2276 */ 2277 int file_remove_privs(struct file *file) 2278 { 2279 return file_remove_privs_flags(file, 0); 2280 } 2281 EXPORT_SYMBOL(file_remove_privs); 2282 2283 /** 2284 * current_time - Return FS time (possibly fine-grained) 2285 * @inode: inode. 2286 * 2287 * Return the current time truncated to the time granularity supported by 2288 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged 2289 * as having been QUERIED, get a fine-grained timestamp, but don't update 2290 * the floor. 2291 * 2292 * For a multigrain inode, this is effectively an estimate of the timestamp 2293 * that a file would receive. An actual update must go through 2294 * inode_set_ctime_current(). 2295 */ 2296 struct timespec64 current_time(struct inode *inode) 2297 { 2298 struct timespec64 now; 2299 u32 cns; 2300 2301 ktime_get_coarse_real_ts64_mg(&now); 2302 2303 if (!is_mgtime(inode)) 2304 goto out; 2305 2306 /* If nothing has queried it, then coarse time is fine */ 2307 cns = smp_load_acquire(&inode->i_ctime_nsec); 2308 if (cns & I_CTIME_QUERIED) { 2309 /* 2310 * If there is no apparent change, then get a fine-grained 2311 * timestamp. 2312 */ 2313 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED)) 2314 ktime_get_real_ts64(&now); 2315 } 2316 out: 2317 return timestamp_truncate(now, inode); 2318 } 2319 EXPORT_SYMBOL(current_time); 2320 2321 static int inode_needs_update_time(struct inode *inode) 2322 { 2323 struct timespec64 now, ts; 2324 int sync_it = 0; 2325 2326 /* First try to exhaust all avenues to not sync */ 2327 if (IS_NOCMTIME(inode)) 2328 return 0; 2329 2330 now = current_time(inode); 2331 2332 ts = inode_get_mtime(inode); 2333 if (!timespec64_equal(&ts, &now)) 2334 sync_it |= S_MTIME; 2335 2336 ts = inode_get_ctime(inode); 2337 if (!timespec64_equal(&ts, &now)) 2338 sync_it |= S_CTIME; 2339 2340 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2341 sync_it |= S_VERSION; 2342 2343 return sync_it; 2344 } 2345 2346 static int __file_update_time(struct file *file, int sync_mode) 2347 { 2348 int ret = 0; 2349 struct inode *inode = file_inode(file); 2350 2351 /* try to update time settings */ 2352 if (!mnt_get_write_access_file(file)) { 2353 ret = inode_update_time(inode, sync_mode); 2354 mnt_put_write_access_file(file); 2355 } 2356 2357 return ret; 2358 } 2359 2360 /** 2361 * file_update_time - update mtime and ctime time 2362 * @file: file accessed 2363 * 2364 * Update the mtime and ctime members of an inode and mark the inode for 2365 * writeback. Note that this function is meant exclusively for usage in 2366 * the file write path of filesystems, and filesystems may choose to 2367 * explicitly ignore updates via this function with the _NOCMTIME inode 2368 * flag, e.g. for network filesystem where these imestamps are handled 2369 * by the server. This can return an error for file systems who need to 2370 * allocate space in order to update an inode. 2371 * 2372 * Return: 0 on success, negative errno on failure. 2373 */ 2374 int file_update_time(struct file *file) 2375 { 2376 int ret; 2377 struct inode *inode = file_inode(file); 2378 2379 ret = inode_needs_update_time(inode); 2380 if (ret <= 0) 2381 return ret; 2382 2383 return __file_update_time(file, ret); 2384 } 2385 EXPORT_SYMBOL(file_update_time); 2386 2387 /** 2388 * file_modified_flags - handle mandated vfs changes when modifying a file 2389 * @file: file that was modified 2390 * @flags: kiocb flags 2391 * 2392 * When file has been modified ensure that special 2393 * file privileges are removed and time settings are updated. 2394 * 2395 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2396 * time settings will not be updated. It will return -EAGAIN. 2397 * 2398 * Context: Caller must hold the file's inode lock. 2399 * 2400 * Return: 0 on success, negative errno on failure. 2401 */ 2402 static int file_modified_flags(struct file *file, int flags) 2403 { 2404 int ret; 2405 struct inode *inode = file_inode(file); 2406 2407 /* 2408 * Clear the security bits if the process is not being run by root. 2409 * This keeps people from modifying setuid and setgid binaries. 2410 */ 2411 ret = file_remove_privs_flags(file, flags); 2412 if (ret) 2413 return ret; 2414 2415 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2416 return 0; 2417 2418 ret = inode_needs_update_time(inode); 2419 if (ret <= 0) 2420 return ret; 2421 if (flags & IOCB_NOWAIT) 2422 return -EAGAIN; 2423 2424 return __file_update_time(file, ret); 2425 } 2426 2427 /** 2428 * file_modified - handle mandated vfs changes when modifying a file 2429 * @file: file that was modified 2430 * 2431 * When file has been modified ensure that special 2432 * file privileges are removed and time settings are updated. 2433 * 2434 * Context: Caller must hold the file's inode lock. 2435 * 2436 * Return: 0 on success, negative errno on failure. 2437 */ 2438 int file_modified(struct file *file) 2439 { 2440 return file_modified_flags(file, 0); 2441 } 2442 EXPORT_SYMBOL(file_modified); 2443 2444 /** 2445 * kiocb_modified - handle mandated vfs changes when modifying a file 2446 * @iocb: iocb that was modified 2447 * 2448 * When file has been modified ensure that special 2449 * file privileges are removed and time settings are updated. 2450 * 2451 * Context: Caller must hold the file's inode lock. 2452 * 2453 * Return: 0 on success, negative errno on failure. 2454 */ 2455 int kiocb_modified(struct kiocb *iocb) 2456 { 2457 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2458 } 2459 EXPORT_SYMBOL_GPL(kiocb_modified); 2460 2461 int inode_needs_sync(struct inode *inode) 2462 { 2463 if (IS_SYNC(inode)) 2464 return 1; 2465 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2466 return 1; 2467 return 0; 2468 } 2469 EXPORT_SYMBOL(inode_needs_sync); 2470 2471 /* 2472 * If we try to find an inode in the inode hash while it is being 2473 * deleted, we have to wait until the filesystem completes its 2474 * deletion before reporting that it isn't found. This function waits 2475 * until the deletion _might_ have completed. Callers are responsible 2476 * to recheck inode state. 2477 * 2478 * It doesn't matter if I_NEW is not set initially, a call to 2479 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2480 * will DTRT. 2481 */ 2482 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) 2483 { 2484 struct wait_bit_queue_entry wqe; 2485 struct wait_queue_head *wq_head; 2486 2487 /* 2488 * Handle racing against evict(), see that routine for more details. 2489 */ 2490 if (unlikely(inode_unhashed(inode))) { 2491 WARN_ON(is_inode_hash_locked); 2492 spin_unlock(&inode->i_lock); 2493 return; 2494 } 2495 2496 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 2497 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 2498 spin_unlock(&inode->i_lock); 2499 rcu_read_unlock(); 2500 if (is_inode_hash_locked) 2501 spin_unlock(&inode_hash_lock); 2502 schedule(); 2503 finish_wait(wq_head, &wqe.wq_entry); 2504 if (is_inode_hash_locked) 2505 spin_lock(&inode_hash_lock); 2506 rcu_read_lock(); 2507 } 2508 2509 static __initdata unsigned long ihash_entries; 2510 static int __init set_ihash_entries(char *str) 2511 { 2512 if (!str) 2513 return 0; 2514 ihash_entries = simple_strtoul(str, &str, 0); 2515 return 1; 2516 } 2517 __setup("ihash_entries=", set_ihash_entries); 2518 2519 /* 2520 * Initialize the waitqueues and inode hash table. 2521 */ 2522 void __init inode_init_early(void) 2523 { 2524 /* If hashes are distributed across NUMA nodes, defer 2525 * hash allocation until vmalloc space is available. 2526 */ 2527 if (hashdist) 2528 return; 2529 2530 inode_hashtable = 2531 alloc_large_system_hash("Inode-cache", 2532 sizeof(struct hlist_head), 2533 ihash_entries, 2534 14, 2535 HASH_EARLY | HASH_ZERO, 2536 &i_hash_shift, 2537 &i_hash_mask, 2538 0, 2539 0); 2540 } 2541 2542 void __init inode_init(void) 2543 { 2544 /* inode slab cache */ 2545 inode_cachep = kmem_cache_create("inode_cache", 2546 sizeof(struct inode), 2547 0, 2548 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2549 SLAB_ACCOUNT), 2550 init_once); 2551 2552 /* Hash may have been set up in inode_init_early */ 2553 if (!hashdist) 2554 return; 2555 2556 inode_hashtable = 2557 alloc_large_system_hash("Inode-cache", 2558 sizeof(struct hlist_head), 2559 ihash_entries, 2560 14, 2561 HASH_ZERO, 2562 &i_hash_shift, 2563 &i_hash_mask, 2564 0, 2565 0); 2566 } 2567 2568 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2569 { 2570 inode->i_mode = mode; 2571 if (S_ISCHR(mode)) { 2572 inode->i_fop = &def_chr_fops; 2573 inode->i_rdev = rdev; 2574 } else if (S_ISBLK(mode)) { 2575 if (IS_ENABLED(CONFIG_BLOCK)) 2576 inode->i_fop = &def_blk_fops; 2577 inode->i_rdev = rdev; 2578 } else if (S_ISFIFO(mode)) 2579 inode->i_fop = &pipefifo_fops; 2580 else if (S_ISSOCK(mode)) 2581 ; /* leave it no_open_fops */ 2582 else 2583 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2584 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2585 inode->i_ino); 2586 } 2587 EXPORT_SYMBOL(init_special_inode); 2588 2589 /** 2590 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2591 * @idmap: idmap of the mount the inode was created from 2592 * @inode: New inode 2593 * @dir: Directory inode 2594 * @mode: mode of the new inode 2595 * 2596 * If the inode has been created through an idmapped mount the idmap of 2597 * the vfsmount must be passed through @idmap. This function will then take 2598 * care to map the inode according to @idmap before checking permissions 2599 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2600 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2601 */ 2602 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2603 const struct inode *dir, umode_t mode) 2604 { 2605 inode_fsuid_set(inode, idmap); 2606 if (dir && dir->i_mode & S_ISGID) { 2607 inode->i_gid = dir->i_gid; 2608 2609 /* Directories are special, and always inherit S_ISGID */ 2610 if (S_ISDIR(mode)) 2611 mode |= S_ISGID; 2612 } else 2613 inode_fsgid_set(inode, idmap); 2614 inode->i_mode = mode; 2615 } 2616 EXPORT_SYMBOL(inode_init_owner); 2617 2618 /** 2619 * inode_owner_or_capable - check current task permissions to inode 2620 * @idmap: idmap of the mount the inode was found from 2621 * @inode: inode being checked 2622 * 2623 * Return true if current either has CAP_FOWNER in a namespace with the 2624 * inode owner uid mapped, or owns the file. 2625 * 2626 * If the inode has been found through an idmapped mount the idmap of 2627 * the vfsmount must be passed through @idmap. This function will then take 2628 * care to map the inode according to @idmap before checking permissions. 2629 * On non-idmapped mounts or if permission checking is to be performed on the 2630 * raw inode simply pass @nop_mnt_idmap. 2631 */ 2632 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2633 const struct inode *inode) 2634 { 2635 vfsuid_t vfsuid; 2636 struct user_namespace *ns; 2637 2638 vfsuid = i_uid_into_vfsuid(idmap, inode); 2639 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2640 return true; 2641 2642 ns = current_user_ns(); 2643 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2644 return true; 2645 return false; 2646 } 2647 EXPORT_SYMBOL(inode_owner_or_capable); 2648 2649 /* 2650 * Direct i/o helper functions 2651 */ 2652 bool inode_dio_finished(const struct inode *inode) 2653 { 2654 return atomic_read(&inode->i_dio_count) == 0; 2655 } 2656 EXPORT_SYMBOL(inode_dio_finished); 2657 2658 /** 2659 * inode_dio_wait - wait for outstanding DIO requests to finish 2660 * @inode: inode to wait for 2661 * 2662 * Waits for all pending direct I/O requests to finish so that we can 2663 * proceed with a truncate or equivalent operation. 2664 * 2665 * Must be called under a lock that serializes taking new references 2666 * to i_dio_count, usually by inode->i_mutex. 2667 */ 2668 void inode_dio_wait(struct inode *inode) 2669 { 2670 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode)); 2671 } 2672 EXPORT_SYMBOL(inode_dio_wait); 2673 2674 void inode_dio_wait_interruptible(struct inode *inode) 2675 { 2676 wait_var_event_interruptible(&inode->i_dio_count, 2677 inode_dio_finished(inode)); 2678 } 2679 EXPORT_SYMBOL(inode_dio_wait_interruptible); 2680 2681 /* 2682 * inode_set_flags - atomically set some inode flags 2683 * 2684 * Note: the caller should be holding i_mutex, or else be sure that 2685 * they have exclusive access to the inode structure (i.e., while the 2686 * inode is being instantiated). The reason for the cmpxchg() loop 2687 * --- which wouldn't be necessary if all code paths which modify 2688 * i_flags actually followed this rule, is that there is at least one 2689 * code path which doesn't today so we use cmpxchg() out of an abundance 2690 * of caution. 2691 * 2692 * In the long run, i_mutex is overkill, and we should probably look 2693 * at using the i_lock spinlock to protect i_flags, and then make sure 2694 * it is so documented in include/linux/fs.h and that all code follows 2695 * the locking convention!! 2696 */ 2697 void inode_set_flags(struct inode *inode, unsigned int flags, 2698 unsigned int mask) 2699 { 2700 WARN_ON_ONCE(flags & ~mask); 2701 set_mask_bits(&inode->i_flags, mask, flags); 2702 } 2703 EXPORT_SYMBOL(inode_set_flags); 2704 2705 void inode_nohighmem(struct inode *inode) 2706 { 2707 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2708 } 2709 EXPORT_SYMBOL(inode_nohighmem); 2710 2711 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts) 2712 { 2713 trace_inode_set_ctime_to_ts(inode, &ts); 2714 set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec); 2715 inode->i_ctime_sec = ts.tv_sec; 2716 inode->i_ctime_nsec = ts.tv_nsec; 2717 return ts; 2718 } 2719 EXPORT_SYMBOL(inode_set_ctime_to_ts); 2720 2721 /** 2722 * timestamp_truncate - Truncate timespec to a granularity 2723 * @t: Timespec 2724 * @inode: inode being updated 2725 * 2726 * Truncate a timespec to the granularity supported by the fs 2727 * containing the inode. Always rounds down. gran must 2728 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2729 */ 2730 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2731 { 2732 struct super_block *sb = inode->i_sb; 2733 unsigned int gran = sb->s_time_gran; 2734 2735 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2736 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2737 t.tv_nsec = 0; 2738 2739 /* Avoid division in the common cases 1 ns and 1 s. */ 2740 if (gran == 1) 2741 ; /* nothing */ 2742 else if (gran == NSEC_PER_SEC) 2743 t.tv_nsec = 0; 2744 else if (gran > 1 && gran < NSEC_PER_SEC) 2745 t.tv_nsec -= t.tv_nsec % gran; 2746 else 2747 WARN(1, "invalid file time granularity: %u", gran); 2748 return t; 2749 } 2750 EXPORT_SYMBOL(timestamp_truncate); 2751 2752 /** 2753 * inode_set_ctime_current - set the ctime to current_time 2754 * @inode: inode 2755 * 2756 * Set the inode's ctime to the current value for the inode. Returns the 2757 * current value that was assigned. If this is not a multigrain inode, then we 2758 * set it to the later of the coarse time and floor value. 2759 * 2760 * If it is multigrain, then we first see if the coarse-grained timestamp is 2761 * distinct from what is already there. If so, then use that. Otherwise, get a 2762 * fine-grained timestamp. 2763 * 2764 * After that, try to swap the new value into i_ctime_nsec. Accept the 2765 * resulting ctime, regardless of the outcome of the swap. If it has 2766 * already been replaced, then that timestamp is later than the earlier 2767 * unacceptable one, and is thus acceptable. 2768 */ 2769 struct timespec64 inode_set_ctime_current(struct inode *inode) 2770 { 2771 struct timespec64 now; 2772 u32 cns, cur; 2773 2774 ktime_get_coarse_real_ts64_mg(&now); 2775 now = timestamp_truncate(now, inode); 2776 2777 /* Just return that if this is not a multigrain fs */ 2778 if (!is_mgtime(inode)) { 2779 inode_set_ctime_to_ts(inode, now); 2780 goto out; 2781 } 2782 2783 /* 2784 * A fine-grained time is only needed if someone has queried 2785 * for timestamps, and the current coarse grained time isn't 2786 * later than what's already there. 2787 */ 2788 cns = smp_load_acquire(&inode->i_ctime_nsec); 2789 if (cns & I_CTIME_QUERIED) { 2790 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec, 2791 .tv_nsec = cns & ~I_CTIME_QUERIED }; 2792 2793 if (timespec64_compare(&now, &ctime) <= 0) { 2794 ktime_get_real_ts64_mg(&now); 2795 now = timestamp_truncate(now, inode); 2796 mgtime_counter_inc(mg_fine_stamps); 2797 } 2798 } 2799 mgtime_counter_inc(mg_ctime_updates); 2800 2801 /* No need to cmpxchg if it's exactly the same */ 2802 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) { 2803 trace_ctime_xchg_skip(inode, &now); 2804 goto out; 2805 } 2806 cur = cns; 2807 retry: 2808 /* Try to swap the nsec value into place. */ 2809 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) { 2810 /* If swap occurred, then we're (mostly) done */ 2811 inode->i_ctime_sec = now.tv_sec; 2812 trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur); 2813 mgtime_counter_inc(mg_ctime_swaps); 2814 } else { 2815 /* 2816 * Was the change due to someone marking the old ctime QUERIED? 2817 * If so then retry the swap. This can only happen once since 2818 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2819 * with a new ctime. 2820 */ 2821 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) { 2822 cns = cur; 2823 goto retry; 2824 } 2825 /* Otherwise, keep the existing ctime */ 2826 now.tv_sec = inode->i_ctime_sec; 2827 now.tv_nsec = cur & ~I_CTIME_QUERIED; 2828 } 2829 out: 2830 return now; 2831 } 2832 EXPORT_SYMBOL(inode_set_ctime_current); 2833 2834 /** 2835 * inode_set_ctime_deleg - try to update the ctime on a delegated inode 2836 * @inode: inode to update 2837 * @update: timespec64 to set the ctime 2838 * 2839 * Attempt to atomically update the ctime on behalf of a delegation holder. 2840 * 2841 * The nfs server can call back the holder of a delegation to get updated 2842 * inode attributes, including the mtime. When updating the mtime, update 2843 * the ctime to a value at least equal to that. 2844 * 2845 * This can race with concurrent updates to the inode, in which 2846 * case the update is skipped. 2847 * 2848 * Note that this works even when multigrain timestamps are not enabled, 2849 * so it is used in either case. 2850 */ 2851 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update) 2852 { 2853 struct timespec64 now, cur_ts; 2854 u32 cur, old; 2855 2856 /* pairs with try_cmpxchg below */ 2857 cur = smp_load_acquire(&inode->i_ctime_nsec); 2858 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2859 cur_ts.tv_sec = inode->i_ctime_sec; 2860 2861 /* If the update is older than the existing value, skip it. */ 2862 if (timespec64_compare(&update, &cur_ts) <= 0) 2863 return cur_ts; 2864 2865 ktime_get_coarse_real_ts64_mg(&now); 2866 2867 /* Clamp the update to "now" if it's in the future */ 2868 if (timespec64_compare(&update, &now) > 0) 2869 update = now; 2870 2871 update = timestamp_truncate(update, inode); 2872 2873 /* No need to update if the values are already the same */ 2874 if (timespec64_equal(&update, &cur_ts)) 2875 return cur_ts; 2876 2877 /* 2878 * Try to swap the nsec value into place. If it fails, that means 2879 * it raced with an update due to a write or similar activity. That 2880 * stamp takes precedence, so just skip the update. 2881 */ 2882 retry: 2883 old = cur; 2884 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) { 2885 inode->i_ctime_sec = update.tv_sec; 2886 mgtime_counter_inc(mg_ctime_swaps); 2887 return update; 2888 } 2889 2890 /* 2891 * Was the change due to another task marking the old ctime QUERIED? 2892 * 2893 * If so, then retry the swap. This can only happen once since 2894 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2895 * with a new ctime. 2896 */ 2897 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED))) 2898 goto retry; 2899 2900 /* Otherwise, it was a new timestamp. */ 2901 cur_ts.tv_sec = inode->i_ctime_sec; 2902 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2903 return cur_ts; 2904 } 2905 EXPORT_SYMBOL(inode_set_ctime_deleg); 2906 2907 /** 2908 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2909 * @idmap: idmap of the mount @inode was found from 2910 * @inode: inode to check 2911 * @vfsgid: the new/current vfsgid of @inode 2912 * 2913 * Check whether @vfsgid is in the caller's group list or if the caller is 2914 * privileged with CAP_FSETID over @inode. This can be used to determine 2915 * whether the setgid bit can be kept or must be dropped. 2916 * 2917 * Return: true if the caller is sufficiently privileged, false if not. 2918 */ 2919 bool in_group_or_capable(struct mnt_idmap *idmap, 2920 const struct inode *inode, vfsgid_t vfsgid) 2921 { 2922 if (vfsgid_in_group_p(vfsgid)) 2923 return true; 2924 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2925 return true; 2926 return false; 2927 } 2928 EXPORT_SYMBOL(in_group_or_capable); 2929 2930 /** 2931 * mode_strip_sgid - handle the sgid bit for non-directories 2932 * @idmap: idmap of the mount the inode was created from 2933 * @dir: parent directory inode 2934 * @mode: mode of the file to be created in @dir 2935 * 2936 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2937 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2938 * either in the group of the parent directory or they have CAP_FSETID 2939 * in their user namespace and are privileged over the parent directory. 2940 * In all other cases, strip the S_ISGID bit from @mode. 2941 * 2942 * Return: the new mode to use for the file 2943 */ 2944 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2945 const struct inode *dir, umode_t mode) 2946 { 2947 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2948 return mode; 2949 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2950 return mode; 2951 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2952 return mode; 2953 return mode & ~S_ISGID; 2954 } 2955 EXPORT_SYMBOL(mode_strip_sgid); 2956