1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/mount.h> 25 26 /* 27 * This is needed for the following functions: 28 * - inode_has_buffers 29 * - invalidate_inode_buffers 30 * - invalidate_bdev 31 * 32 * FIXME: remove all knowledge of the buffer layer from this file 33 */ 34 #include <linux/buffer_head.h> 35 36 /* 37 * New inode.c implementation. 38 * 39 * This implementation has the basic premise of trying 40 * to be extremely low-overhead and SMP-safe, yet be 41 * simple enough to be "obviously correct". 42 * 43 * Famous last words. 44 */ 45 46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 47 48 /* #define INODE_PARANOIA 1 */ 49 /* #define INODE_DEBUG 1 */ 50 51 /* 52 * Inode lookup is no longer as critical as it used to be: 53 * most of the lookups are going to be through the dcache. 54 */ 55 #define I_HASHBITS i_hash_shift 56 #define I_HASHMASK i_hash_mask 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 61 /* 62 * Each inode can be on two separate lists. One is 63 * the hash list of the inode, used for lookups. The 64 * other linked list is the "type" list: 65 * "in_use" - valid inode, i_count > 0, i_nlink > 0 66 * "dirty" - as "in_use" but also dirty 67 * "unused" - valid inode, i_count = 0 68 * 69 * A "dirty" list is maintained for each super block, 70 * allowing for low-overhead inode sync() operations. 71 */ 72 73 LIST_HEAD(inode_in_use); 74 LIST_HEAD(inode_unused); 75 static struct hlist_head *inode_hashtable __read_mostly; 76 77 /* 78 * A simple spinlock to protect the list manipulations. 79 * 80 * NOTE! You also have to own the lock if you change 81 * the i_state of an inode while it is in use.. 82 */ 83 DEFINE_SPINLOCK(inode_lock); 84 85 /* 86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 87 * icache shrinking path, and the umount path. Without this exclusion, 88 * by the time prune_icache calls iput for the inode whose pages it has 89 * been invalidating, or by the time it calls clear_inode & destroy_inode 90 * from its final dispose_list, the struct super_block they refer to 91 * (for inode->i_sb->s_op) may already have been freed and reused. 92 */ 93 static DEFINE_MUTEX(iprune_mutex); 94 95 /* 96 * Statistics gathering.. 97 */ 98 struct inodes_stat_t inodes_stat; 99 100 static struct kmem_cache * inode_cachep __read_mostly; 101 102 static void wake_up_inode(struct inode *inode) 103 { 104 /* 105 * Prevent speculative execution through spin_unlock(&inode_lock); 106 */ 107 smp_mb(); 108 wake_up_bit(&inode->i_state, __I_LOCK); 109 } 110 111 /** 112 * inode_init_always - perform inode structure intialisation 113 * @sb - superblock inode belongs to. 114 * @inode - inode to initialise 115 * 116 * These are initializations that need to be done on every inode 117 * allocation as the fields are not initialised by slab allocation. 118 */ 119 struct inode *inode_init_always(struct super_block *sb, struct inode *inode) 120 { 121 static const struct address_space_operations empty_aops; 122 static struct inode_operations empty_iops; 123 static const struct file_operations empty_fops; 124 125 struct address_space * const mapping = &inode->i_data; 126 127 inode->i_sb = sb; 128 inode->i_blkbits = sb->s_blocksize_bits; 129 inode->i_flags = 0; 130 atomic_set(&inode->i_count, 1); 131 inode->i_op = &empty_iops; 132 inode->i_fop = &empty_fops; 133 inode->i_nlink = 1; 134 inode->i_uid = 0; 135 inode->i_gid = 0; 136 atomic_set(&inode->i_writecount, 0); 137 inode->i_size = 0; 138 inode->i_blocks = 0; 139 inode->i_bytes = 0; 140 inode->i_generation = 0; 141 #ifdef CONFIG_QUOTA 142 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 143 #endif 144 inode->i_pipe = NULL; 145 inode->i_bdev = NULL; 146 inode->i_cdev = NULL; 147 inode->i_rdev = 0; 148 inode->dirtied_when = 0; 149 if (security_inode_alloc(inode)) { 150 if (inode->i_sb->s_op->destroy_inode) 151 inode->i_sb->s_op->destroy_inode(inode); 152 else 153 kmem_cache_free(inode_cachep, (inode)); 154 return NULL; 155 } 156 157 spin_lock_init(&inode->i_lock); 158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 159 160 mutex_init(&inode->i_mutex); 161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 162 163 init_rwsem(&inode->i_alloc_sem); 164 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 165 166 mapping->a_ops = &empty_aops; 167 mapping->host = inode; 168 mapping->flags = 0; 169 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 170 mapping->assoc_mapping = NULL; 171 mapping->backing_dev_info = &default_backing_dev_info; 172 mapping->writeback_index = 0; 173 174 /* 175 * If the block_device provides a backing_dev_info for client 176 * inodes then use that. Otherwise the inode share the bdev's 177 * backing_dev_info. 178 */ 179 if (sb->s_bdev) { 180 struct backing_dev_info *bdi; 181 182 bdi = sb->s_bdev->bd_inode_backing_dev_info; 183 if (!bdi) 184 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 185 mapping->backing_dev_info = bdi; 186 } 187 inode->i_private = NULL; 188 inode->i_mapping = mapping; 189 190 return inode; 191 } 192 EXPORT_SYMBOL(inode_init_always); 193 194 static struct inode *alloc_inode(struct super_block *sb) 195 { 196 struct inode *inode; 197 198 if (sb->s_op->alloc_inode) 199 inode = sb->s_op->alloc_inode(sb); 200 else 201 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 202 203 if (inode) 204 return inode_init_always(sb, inode); 205 return NULL; 206 } 207 208 void destroy_inode(struct inode *inode) 209 { 210 BUG_ON(inode_has_buffers(inode)); 211 security_inode_free(inode); 212 if (inode->i_sb->s_op->destroy_inode) 213 inode->i_sb->s_op->destroy_inode(inode); 214 else 215 kmem_cache_free(inode_cachep, (inode)); 216 } 217 EXPORT_SYMBOL(destroy_inode); 218 219 220 /* 221 * These are initializations that only need to be done 222 * once, because the fields are idempotent across use 223 * of the inode, so let the slab aware of that. 224 */ 225 void inode_init_once(struct inode *inode) 226 { 227 memset(inode, 0, sizeof(*inode)); 228 INIT_HLIST_NODE(&inode->i_hash); 229 INIT_LIST_HEAD(&inode->i_dentry); 230 INIT_LIST_HEAD(&inode->i_devices); 231 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 232 spin_lock_init(&inode->i_data.tree_lock); 233 spin_lock_init(&inode->i_data.i_mmap_lock); 234 INIT_LIST_HEAD(&inode->i_data.private_list); 235 spin_lock_init(&inode->i_data.private_lock); 236 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 237 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 238 i_size_ordered_init(inode); 239 #ifdef CONFIG_INOTIFY 240 INIT_LIST_HEAD(&inode->inotify_watches); 241 mutex_init(&inode->inotify_mutex); 242 #endif 243 } 244 245 EXPORT_SYMBOL(inode_init_once); 246 247 static void init_once(void *foo) 248 { 249 struct inode * inode = (struct inode *) foo; 250 251 inode_init_once(inode); 252 } 253 254 /* 255 * inode_lock must be held 256 */ 257 void __iget(struct inode * inode) 258 { 259 if (atomic_read(&inode->i_count)) { 260 atomic_inc(&inode->i_count); 261 return; 262 } 263 atomic_inc(&inode->i_count); 264 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 265 list_move(&inode->i_list, &inode_in_use); 266 inodes_stat.nr_unused--; 267 } 268 269 /** 270 * clear_inode - clear an inode 271 * @inode: inode to clear 272 * 273 * This is called by the filesystem to tell us 274 * that the inode is no longer useful. We just 275 * terminate it with extreme prejudice. 276 */ 277 void clear_inode(struct inode *inode) 278 { 279 might_sleep(); 280 invalidate_inode_buffers(inode); 281 282 BUG_ON(inode->i_data.nrpages); 283 BUG_ON(!(inode->i_state & I_FREEING)); 284 BUG_ON(inode->i_state & I_CLEAR); 285 inode_sync_wait(inode); 286 DQUOT_DROP(inode); 287 if (inode->i_sb->s_op->clear_inode) 288 inode->i_sb->s_op->clear_inode(inode); 289 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 290 bd_forget(inode); 291 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 292 cd_forget(inode); 293 inode->i_state = I_CLEAR; 294 } 295 296 EXPORT_SYMBOL(clear_inode); 297 298 /* 299 * dispose_list - dispose of the contents of a local list 300 * @head: the head of the list to free 301 * 302 * Dispose-list gets a local list with local inodes in it, so it doesn't 303 * need to worry about list corruption and SMP locks. 304 */ 305 static void dispose_list(struct list_head *head) 306 { 307 int nr_disposed = 0; 308 309 while (!list_empty(head)) { 310 struct inode *inode; 311 312 inode = list_first_entry(head, struct inode, i_list); 313 list_del(&inode->i_list); 314 315 if (inode->i_data.nrpages) 316 truncate_inode_pages(&inode->i_data, 0); 317 clear_inode(inode); 318 319 spin_lock(&inode_lock); 320 hlist_del_init(&inode->i_hash); 321 list_del_init(&inode->i_sb_list); 322 spin_unlock(&inode_lock); 323 324 wake_up_inode(inode); 325 destroy_inode(inode); 326 nr_disposed++; 327 } 328 spin_lock(&inode_lock); 329 inodes_stat.nr_inodes -= nr_disposed; 330 spin_unlock(&inode_lock); 331 } 332 333 /* 334 * Invalidate all inodes for a device. 335 */ 336 static int invalidate_list(struct list_head *head, struct list_head *dispose) 337 { 338 struct list_head *next; 339 int busy = 0, count = 0; 340 341 next = head->next; 342 for (;;) { 343 struct list_head * tmp = next; 344 struct inode * inode; 345 346 /* 347 * We can reschedule here without worrying about the list's 348 * consistency because the per-sb list of inodes must not 349 * change during umount anymore, and because iprune_mutex keeps 350 * shrink_icache_memory() away. 351 */ 352 cond_resched_lock(&inode_lock); 353 354 next = next->next; 355 if (tmp == head) 356 break; 357 inode = list_entry(tmp, struct inode, i_sb_list); 358 invalidate_inode_buffers(inode); 359 if (!atomic_read(&inode->i_count)) { 360 list_move(&inode->i_list, dispose); 361 inode->i_state |= I_FREEING; 362 count++; 363 continue; 364 } 365 busy = 1; 366 } 367 /* only unused inodes may be cached with i_count zero */ 368 inodes_stat.nr_unused -= count; 369 return busy; 370 } 371 372 /** 373 * invalidate_inodes - discard the inodes on a device 374 * @sb: superblock 375 * 376 * Discard all of the inodes for a given superblock. If the discard 377 * fails because there are busy inodes then a non zero value is returned. 378 * If the discard is successful all the inodes have been discarded. 379 */ 380 int invalidate_inodes(struct super_block * sb) 381 { 382 int busy; 383 LIST_HEAD(throw_away); 384 385 mutex_lock(&iprune_mutex); 386 spin_lock(&inode_lock); 387 inotify_unmount_inodes(&sb->s_inodes); 388 busy = invalidate_list(&sb->s_inodes, &throw_away); 389 spin_unlock(&inode_lock); 390 391 dispose_list(&throw_away); 392 mutex_unlock(&iprune_mutex); 393 394 return busy; 395 } 396 397 EXPORT_SYMBOL(invalidate_inodes); 398 399 static int can_unuse(struct inode *inode) 400 { 401 if (inode->i_state) 402 return 0; 403 if (inode_has_buffers(inode)) 404 return 0; 405 if (atomic_read(&inode->i_count)) 406 return 0; 407 if (inode->i_data.nrpages) 408 return 0; 409 return 1; 410 } 411 412 /* 413 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 414 * a temporary list and then are freed outside inode_lock by dispose_list(). 415 * 416 * Any inodes which are pinned purely because of attached pagecache have their 417 * pagecache removed. We expect the final iput() on that inode to add it to 418 * the front of the inode_unused list. So look for it there and if the 419 * inode is still freeable, proceed. The right inode is found 99.9% of the 420 * time in testing on a 4-way. 421 * 422 * If the inode has metadata buffers attached to mapping->private_list then 423 * try to remove them. 424 */ 425 static void prune_icache(int nr_to_scan) 426 { 427 LIST_HEAD(freeable); 428 int nr_pruned = 0; 429 int nr_scanned; 430 unsigned long reap = 0; 431 432 mutex_lock(&iprune_mutex); 433 spin_lock(&inode_lock); 434 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 435 struct inode *inode; 436 437 if (list_empty(&inode_unused)) 438 break; 439 440 inode = list_entry(inode_unused.prev, struct inode, i_list); 441 442 if (inode->i_state || atomic_read(&inode->i_count)) { 443 list_move(&inode->i_list, &inode_unused); 444 continue; 445 } 446 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 447 __iget(inode); 448 spin_unlock(&inode_lock); 449 if (remove_inode_buffers(inode)) 450 reap += invalidate_mapping_pages(&inode->i_data, 451 0, -1); 452 iput(inode); 453 spin_lock(&inode_lock); 454 455 if (inode != list_entry(inode_unused.next, 456 struct inode, i_list)) 457 continue; /* wrong inode or list_empty */ 458 if (!can_unuse(inode)) 459 continue; 460 } 461 list_move(&inode->i_list, &freeable); 462 inode->i_state |= I_FREEING; 463 nr_pruned++; 464 } 465 inodes_stat.nr_unused -= nr_pruned; 466 if (current_is_kswapd()) 467 __count_vm_events(KSWAPD_INODESTEAL, reap); 468 else 469 __count_vm_events(PGINODESTEAL, reap); 470 spin_unlock(&inode_lock); 471 472 dispose_list(&freeable); 473 mutex_unlock(&iprune_mutex); 474 } 475 476 /* 477 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 478 * "unused" means that no dentries are referring to the inodes: the files are 479 * not open and the dcache references to those inodes have already been 480 * reclaimed. 481 * 482 * This function is passed the number of inodes to scan, and it returns the 483 * total number of remaining possibly-reclaimable inodes. 484 */ 485 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 486 { 487 if (nr) { 488 /* 489 * Nasty deadlock avoidance. We may hold various FS locks, 490 * and we don't want to recurse into the FS that called us 491 * in clear_inode() and friends.. 492 */ 493 if (!(gfp_mask & __GFP_FS)) 494 return -1; 495 prune_icache(nr); 496 } 497 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 498 } 499 500 static struct shrinker icache_shrinker = { 501 .shrink = shrink_icache_memory, 502 .seeks = DEFAULT_SEEKS, 503 }; 504 505 static void __wait_on_freeing_inode(struct inode *inode); 506 /* 507 * Called with the inode lock held. 508 * NOTE: we are not increasing the inode-refcount, you must call __iget() 509 * by hand after calling find_inode now! This simplifies iunique and won't 510 * add any additional branch in the common code. 511 */ 512 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 513 { 514 struct hlist_node *node; 515 struct inode * inode = NULL; 516 517 repeat: 518 hlist_for_each_entry(inode, node, head, i_hash) { 519 if (inode->i_sb != sb) 520 continue; 521 if (!test(inode, data)) 522 continue; 523 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 524 __wait_on_freeing_inode(inode); 525 goto repeat; 526 } 527 break; 528 } 529 return node ? inode : NULL; 530 } 531 532 /* 533 * find_inode_fast is the fast path version of find_inode, see the comment at 534 * iget_locked for details. 535 */ 536 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 537 { 538 struct hlist_node *node; 539 struct inode * inode = NULL; 540 541 repeat: 542 hlist_for_each_entry(inode, node, head, i_hash) { 543 if (inode->i_ino != ino) 544 continue; 545 if (inode->i_sb != sb) 546 continue; 547 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 548 __wait_on_freeing_inode(inode); 549 goto repeat; 550 } 551 break; 552 } 553 return node ? inode : NULL; 554 } 555 556 static unsigned long hash(struct super_block *sb, unsigned long hashval) 557 { 558 unsigned long tmp; 559 560 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 561 L1_CACHE_BYTES; 562 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 563 return tmp & I_HASHMASK; 564 } 565 566 static inline void 567 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 568 struct inode *inode) 569 { 570 inodes_stat.nr_inodes++; 571 list_add(&inode->i_list, &inode_in_use); 572 list_add(&inode->i_sb_list, &sb->s_inodes); 573 if (head) 574 hlist_add_head(&inode->i_hash, head); 575 } 576 577 /** 578 * inode_add_to_lists - add a new inode to relevant lists 579 * @sb - superblock inode belongs to. 580 * @inode - inode to mark in use 581 * 582 * When an inode is allocated it needs to be accounted for, added to the in use 583 * list, the owning superblock and the inode hash. This needs to be done under 584 * the inode_lock, so export a function to do this rather than the inode lock 585 * itself. We calculate the hash list to add to here so it is all internal 586 * which requires the caller to have already set up the inode number in the 587 * inode to add. 588 */ 589 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 590 { 591 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 592 593 spin_lock(&inode_lock); 594 __inode_add_to_lists(sb, head, inode); 595 spin_unlock(&inode_lock); 596 } 597 EXPORT_SYMBOL_GPL(inode_add_to_lists); 598 599 /** 600 * new_inode - obtain an inode 601 * @sb: superblock 602 * 603 * Allocates a new inode for given superblock. The default gfp_mask 604 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 605 * If HIGHMEM pages are unsuitable or it is known that pages allocated 606 * for the page cache are not reclaimable or migratable, 607 * mapping_set_gfp_mask() must be called with suitable flags on the 608 * newly created inode's mapping 609 * 610 */ 611 struct inode *new_inode(struct super_block *sb) 612 { 613 /* 614 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 615 * error if st_ino won't fit in target struct field. Use 32bit counter 616 * here to attempt to avoid that. 617 */ 618 static unsigned int last_ino; 619 struct inode * inode; 620 621 spin_lock_prefetch(&inode_lock); 622 623 inode = alloc_inode(sb); 624 if (inode) { 625 spin_lock(&inode_lock); 626 __inode_add_to_lists(sb, NULL, inode); 627 inode->i_ino = ++last_ino; 628 inode->i_state = 0; 629 spin_unlock(&inode_lock); 630 } 631 return inode; 632 } 633 634 EXPORT_SYMBOL(new_inode); 635 636 void unlock_new_inode(struct inode *inode) 637 { 638 #ifdef CONFIG_DEBUG_LOCK_ALLOC 639 if (inode->i_mode & S_IFDIR) { 640 struct file_system_type *type = inode->i_sb->s_type; 641 642 /* 643 * ensure nobody is actually holding i_mutex 644 */ 645 mutex_destroy(&inode->i_mutex); 646 mutex_init(&inode->i_mutex); 647 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 648 } 649 #endif 650 /* 651 * This is special! We do not need the spinlock 652 * when clearing I_LOCK, because we're guaranteed 653 * that nobody else tries to do anything about the 654 * state of the inode when it is locked, as we 655 * just created it (so there can be no old holders 656 * that haven't tested I_LOCK). 657 */ 658 inode->i_state &= ~(I_LOCK|I_NEW); 659 wake_up_inode(inode); 660 } 661 662 EXPORT_SYMBOL(unlock_new_inode); 663 664 /* 665 * This is called without the inode lock held.. Be careful. 666 * 667 * We no longer cache the sb_flags in i_flags - see fs.h 668 * -- rmk@arm.uk.linux.org 669 */ 670 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 671 { 672 struct inode * inode; 673 674 inode = alloc_inode(sb); 675 if (inode) { 676 struct inode * old; 677 678 spin_lock(&inode_lock); 679 /* We released the lock, so.. */ 680 old = find_inode(sb, head, test, data); 681 if (!old) { 682 if (set(inode, data)) 683 goto set_failed; 684 685 __inode_add_to_lists(sb, head, inode); 686 inode->i_state = I_LOCK|I_NEW; 687 spin_unlock(&inode_lock); 688 689 /* Return the locked inode with I_NEW set, the 690 * caller is responsible for filling in the contents 691 */ 692 return inode; 693 } 694 695 /* 696 * Uhhuh, somebody else created the same inode under 697 * us. Use the old inode instead of the one we just 698 * allocated. 699 */ 700 __iget(old); 701 spin_unlock(&inode_lock); 702 destroy_inode(inode); 703 inode = old; 704 wait_on_inode(inode); 705 } 706 return inode; 707 708 set_failed: 709 spin_unlock(&inode_lock); 710 destroy_inode(inode); 711 return NULL; 712 } 713 714 /* 715 * get_new_inode_fast is the fast path version of get_new_inode, see the 716 * comment at iget_locked for details. 717 */ 718 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 719 { 720 struct inode * inode; 721 722 inode = alloc_inode(sb); 723 if (inode) { 724 struct inode * old; 725 726 spin_lock(&inode_lock); 727 /* We released the lock, so.. */ 728 old = find_inode_fast(sb, head, ino); 729 if (!old) { 730 inode->i_ino = ino; 731 __inode_add_to_lists(sb, head, inode); 732 inode->i_state = I_LOCK|I_NEW; 733 spin_unlock(&inode_lock); 734 735 /* Return the locked inode with I_NEW set, the 736 * caller is responsible for filling in the contents 737 */ 738 return inode; 739 } 740 741 /* 742 * Uhhuh, somebody else created the same inode under 743 * us. Use the old inode instead of the one we just 744 * allocated. 745 */ 746 __iget(old); 747 spin_unlock(&inode_lock); 748 destroy_inode(inode); 749 inode = old; 750 wait_on_inode(inode); 751 } 752 return inode; 753 } 754 755 /** 756 * iunique - get a unique inode number 757 * @sb: superblock 758 * @max_reserved: highest reserved inode number 759 * 760 * Obtain an inode number that is unique on the system for a given 761 * superblock. This is used by file systems that have no natural 762 * permanent inode numbering system. An inode number is returned that 763 * is higher than the reserved limit but unique. 764 * 765 * BUGS: 766 * With a large number of inodes live on the file system this function 767 * currently becomes quite slow. 768 */ 769 ino_t iunique(struct super_block *sb, ino_t max_reserved) 770 { 771 /* 772 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 773 * error if st_ino won't fit in target struct field. Use 32bit counter 774 * here to attempt to avoid that. 775 */ 776 static unsigned int counter; 777 struct inode *inode; 778 struct hlist_head *head; 779 ino_t res; 780 781 spin_lock(&inode_lock); 782 do { 783 if (counter <= max_reserved) 784 counter = max_reserved + 1; 785 res = counter++; 786 head = inode_hashtable + hash(sb, res); 787 inode = find_inode_fast(sb, head, res); 788 } while (inode != NULL); 789 spin_unlock(&inode_lock); 790 791 return res; 792 } 793 EXPORT_SYMBOL(iunique); 794 795 struct inode *igrab(struct inode *inode) 796 { 797 spin_lock(&inode_lock); 798 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 799 __iget(inode); 800 else 801 /* 802 * Handle the case where s_op->clear_inode is not been 803 * called yet, and somebody is calling igrab 804 * while the inode is getting freed. 805 */ 806 inode = NULL; 807 spin_unlock(&inode_lock); 808 return inode; 809 } 810 811 EXPORT_SYMBOL(igrab); 812 813 /** 814 * ifind - internal function, you want ilookup5() or iget5(). 815 * @sb: super block of file system to search 816 * @head: the head of the list to search 817 * @test: callback used for comparisons between inodes 818 * @data: opaque data pointer to pass to @test 819 * @wait: if true wait for the inode to be unlocked, if false do not 820 * 821 * ifind() searches for the inode specified by @data in the inode 822 * cache. This is a generalized version of ifind_fast() for file systems where 823 * the inode number is not sufficient for unique identification of an inode. 824 * 825 * If the inode is in the cache, the inode is returned with an incremented 826 * reference count. 827 * 828 * Otherwise NULL is returned. 829 * 830 * Note, @test is called with the inode_lock held, so can't sleep. 831 */ 832 static struct inode *ifind(struct super_block *sb, 833 struct hlist_head *head, int (*test)(struct inode *, void *), 834 void *data, const int wait) 835 { 836 struct inode *inode; 837 838 spin_lock(&inode_lock); 839 inode = find_inode(sb, head, test, data); 840 if (inode) { 841 __iget(inode); 842 spin_unlock(&inode_lock); 843 if (likely(wait)) 844 wait_on_inode(inode); 845 return inode; 846 } 847 spin_unlock(&inode_lock); 848 return NULL; 849 } 850 851 /** 852 * ifind_fast - internal function, you want ilookup() or iget(). 853 * @sb: super block of file system to search 854 * @head: head of the list to search 855 * @ino: inode number to search for 856 * 857 * ifind_fast() searches for the inode @ino in the inode cache. This is for 858 * file systems where the inode number is sufficient for unique identification 859 * of an inode. 860 * 861 * If the inode is in the cache, the inode is returned with an incremented 862 * reference count. 863 * 864 * Otherwise NULL is returned. 865 */ 866 static struct inode *ifind_fast(struct super_block *sb, 867 struct hlist_head *head, unsigned long ino) 868 { 869 struct inode *inode; 870 871 spin_lock(&inode_lock); 872 inode = find_inode_fast(sb, head, ino); 873 if (inode) { 874 __iget(inode); 875 spin_unlock(&inode_lock); 876 wait_on_inode(inode); 877 return inode; 878 } 879 spin_unlock(&inode_lock); 880 return NULL; 881 } 882 883 /** 884 * ilookup5_nowait - search for an inode in the inode cache 885 * @sb: super block of file system to search 886 * @hashval: hash value (usually inode number) to search for 887 * @test: callback used for comparisons between inodes 888 * @data: opaque data pointer to pass to @test 889 * 890 * ilookup5() uses ifind() to search for the inode specified by @hashval and 891 * @data in the inode cache. This is a generalized version of ilookup() for 892 * file systems where the inode number is not sufficient for unique 893 * identification of an inode. 894 * 895 * If the inode is in the cache, the inode is returned with an incremented 896 * reference count. Note, the inode lock is not waited upon so you have to be 897 * very careful what you do with the returned inode. You probably should be 898 * using ilookup5() instead. 899 * 900 * Otherwise NULL is returned. 901 * 902 * Note, @test is called with the inode_lock held, so can't sleep. 903 */ 904 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 905 int (*test)(struct inode *, void *), void *data) 906 { 907 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 908 909 return ifind(sb, head, test, data, 0); 910 } 911 912 EXPORT_SYMBOL(ilookup5_nowait); 913 914 /** 915 * ilookup5 - search for an inode in the inode cache 916 * @sb: super block of file system to search 917 * @hashval: hash value (usually inode number) to search for 918 * @test: callback used for comparisons between inodes 919 * @data: opaque data pointer to pass to @test 920 * 921 * ilookup5() uses ifind() to search for the inode specified by @hashval and 922 * @data in the inode cache. This is a generalized version of ilookup() for 923 * file systems where the inode number is not sufficient for unique 924 * identification of an inode. 925 * 926 * If the inode is in the cache, the inode lock is waited upon and the inode is 927 * returned with an incremented reference count. 928 * 929 * Otherwise NULL is returned. 930 * 931 * Note, @test is called with the inode_lock held, so can't sleep. 932 */ 933 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 934 int (*test)(struct inode *, void *), void *data) 935 { 936 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 937 938 return ifind(sb, head, test, data, 1); 939 } 940 941 EXPORT_SYMBOL(ilookup5); 942 943 /** 944 * ilookup - search for an inode in the inode cache 945 * @sb: super block of file system to search 946 * @ino: inode number to search for 947 * 948 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 949 * This is for file systems where the inode number is sufficient for unique 950 * identification of an inode. 951 * 952 * If the inode is in the cache, the inode is returned with an incremented 953 * reference count. 954 * 955 * Otherwise NULL is returned. 956 */ 957 struct inode *ilookup(struct super_block *sb, unsigned long ino) 958 { 959 struct hlist_head *head = inode_hashtable + hash(sb, ino); 960 961 return ifind_fast(sb, head, ino); 962 } 963 964 EXPORT_SYMBOL(ilookup); 965 966 /** 967 * iget5_locked - obtain an inode from a mounted file system 968 * @sb: super block of file system 969 * @hashval: hash value (usually inode number) to get 970 * @test: callback used for comparisons between inodes 971 * @set: callback used to initialize a new struct inode 972 * @data: opaque data pointer to pass to @test and @set 973 * 974 * iget5_locked() uses ifind() to search for the inode specified by @hashval 975 * and @data in the inode cache and if present it is returned with an increased 976 * reference count. This is a generalized version of iget_locked() for file 977 * systems where the inode number is not sufficient for unique identification 978 * of an inode. 979 * 980 * If the inode is not in cache, get_new_inode() is called to allocate a new 981 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 982 * file system gets to fill it in before unlocking it via unlock_new_inode(). 983 * 984 * Note both @test and @set are called with the inode_lock held, so can't sleep. 985 */ 986 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 987 int (*test)(struct inode *, void *), 988 int (*set)(struct inode *, void *), void *data) 989 { 990 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 991 struct inode *inode; 992 993 inode = ifind(sb, head, test, data, 1); 994 if (inode) 995 return inode; 996 /* 997 * get_new_inode() will do the right thing, re-trying the search 998 * in case it had to block at any point. 999 */ 1000 return get_new_inode(sb, head, test, set, data); 1001 } 1002 1003 EXPORT_SYMBOL(iget5_locked); 1004 1005 /** 1006 * iget_locked - obtain an inode from a mounted file system 1007 * @sb: super block of file system 1008 * @ino: inode number to get 1009 * 1010 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1011 * the inode cache and if present it is returned with an increased reference 1012 * count. This is for file systems where the inode number is sufficient for 1013 * unique identification of an inode. 1014 * 1015 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1016 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1017 * The file system gets to fill it in before unlocking it via 1018 * unlock_new_inode(). 1019 */ 1020 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1021 { 1022 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1023 struct inode *inode; 1024 1025 inode = ifind_fast(sb, head, ino); 1026 if (inode) 1027 return inode; 1028 /* 1029 * get_new_inode_fast() will do the right thing, re-trying the search 1030 * in case it had to block at any point. 1031 */ 1032 return get_new_inode_fast(sb, head, ino); 1033 } 1034 1035 EXPORT_SYMBOL(iget_locked); 1036 1037 int insert_inode_locked(struct inode *inode) 1038 { 1039 struct super_block *sb = inode->i_sb; 1040 ino_t ino = inode->i_ino; 1041 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1042 struct inode *old; 1043 1044 inode->i_state |= I_LOCK|I_NEW; 1045 while (1) { 1046 spin_lock(&inode_lock); 1047 old = find_inode_fast(sb, head, ino); 1048 if (likely(!old)) { 1049 hlist_add_head(&inode->i_hash, head); 1050 spin_unlock(&inode_lock); 1051 return 0; 1052 } 1053 __iget(old); 1054 spin_unlock(&inode_lock); 1055 wait_on_inode(old); 1056 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1057 iput(old); 1058 return -EBUSY; 1059 } 1060 iput(old); 1061 } 1062 } 1063 1064 EXPORT_SYMBOL(insert_inode_locked); 1065 1066 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1067 int (*test)(struct inode *, void *), void *data) 1068 { 1069 struct super_block *sb = inode->i_sb; 1070 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1071 struct inode *old; 1072 1073 inode->i_state |= I_LOCK|I_NEW; 1074 1075 while (1) { 1076 spin_lock(&inode_lock); 1077 old = find_inode(sb, head, test, data); 1078 if (likely(!old)) { 1079 hlist_add_head(&inode->i_hash, head); 1080 spin_unlock(&inode_lock); 1081 return 0; 1082 } 1083 __iget(old); 1084 spin_unlock(&inode_lock); 1085 wait_on_inode(old); 1086 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1087 iput(old); 1088 return -EBUSY; 1089 } 1090 iput(old); 1091 } 1092 } 1093 1094 EXPORT_SYMBOL(insert_inode_locked4); 1095 1096 /** 1097 * __insert_inode_hash - hash an inode 1098 * @inode: unhashed inode 1099 * @hashval: unsigned long value used to locate this object in the 1100 * inode_hashtable. 1101 * 1102 * Add an inode to the inode hash for this superblock. 1103 */ 1104 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1105 { 1106 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1107 spin_lock(&inode_lock); 1108 hlist_add_head(&inode->i_hash, head); 1109 spin_unlock(&inode_lock); 1110 } 1111 1112 EXPORT_SYMBOL(__insert_inode_hash); 1113 1114 /** 1115 * remove_inode_hash - remove an inode from the hash 1116 * @inode: inode to unhash 1117 * 1118 * Remove an inode from the superblock. 1119 */ 1120 void remove_inode_hash(struct inode *inode) 1121 { 1122 spin_lock(&inode_lock); 1123 hlist_del_init(&inode->i_hash); 1124 spin_unlock(&inode_lock); 1125 } 1126 1127 EXPORT_SYMBOL(remove_inode_hash); 1128 1129 /* 1130 * Tell the filesystem that this inode is no longer of any interest and should 1131 * be completely destroyed. 1132 * 1133 * We leave the inode in the inode hash table until *after* the filesystem's 1134 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1135 * instigate) will always find up-to-date information either in the hash or on 1136 * disk. 1137 * 1138 * I_FREEING is set so that no-one will take a new reference to the inode while 1139 * it is being deleted. 1140 */ 1141 void generic_delete_inode(struct inode *inode) 1142 { 1143 const struct super_operations *op = inode->i_sb->s_op; 1144 1145 list_del_init(&inode->i_list); 1146 list_del_init(&inode->i_sb_list); 1147 inode->i_state |= I_FREEING; 1148 inodes_stat.nr_inodes--; 1149 spin_unlock(&inode_lock); 1150 1151 security_inode_delete(inode); 1152 1153 if (op->delete_inode) { 1154 void (*delete)(struct inode *) = op->delete_inode; 1155 if (!is_bad_inode(inode)) 1156 DQUOT_INIT(inode); 1157 /* Filesystems implementing their own 1158 * s_op->delete_inode are required to call 1159 * truncate_inode_pages and clear_inode() 1160 * internally */ 1161 delete(inode); 1162 } else { 1163 truncate_inode_pages(&inode->i_data, 0); 1164 clear_inode(inode); 1165 } 1166 spin_lock(&inode_lock); 1167 hlist_del_init(&inode->i_hash); 1168 spin_unlock(&inode_lock); 1169 wake_up_inode(inode); 1170 BUG_ON(inode->i_state != I_CLEAR); 1171 destroy_inode(inode); 1172 } 1173 1174 EXPORT_SYMBOL(generic_delete_inode); 1175 1176 static void generic_forget_inode(struct inode *inode) 1177 { 1178 struct super_block *sb = inode->i_sb; 1179 1180 if (!hlist_unhashed(&inode->i_hash)) { 1181 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1182 list_move(&inode->i_list, &inode_unused); 1183 inodes_stat.nr_unused++; 1184 if (sb->s_flags & MS_ACTIVE) { 1185 spin_unlock(&inode_lock); 1186 return; 1187 } 1188 inode->i_state |= I_WILL_FREE; 1189 spin_unlock(&inode_lock); 1190 write_inode_now(inode, 1); 1191 spin_lock(&inode_lock); 1192 inode->i_state &= ~I_WILL_FREE; 1193 inodes_stat.nr_unused--; 1194 hlist_del_init(&inode->i_hash); 1195 } 1196 list_del_init(&inode->i_list); 1197 list_del_init(&inode->i_sb_list); 1198 inode->i_state |= I_FREEING; 1199 inodes_stat.nr_inodes--; 1200 spin_unlock(&inode_lock); 1201 if (inode->i_data.nrpages) 1202 truncate_inode_pages(&inode->i_data, 0); 1203 clear_inode(inode); 1204 wake_up_inode(inode); 1205 destroy_inode(inode); 1206 } 1207 1208 /* 1209 * Normal UNIX filesystem behaviour: delete the 1210 * inode when the usage count drops to zero, and 1211 * i_nlink is zero. 1212 */ 1213 void generic_drop_inode(struct inode *inode) 1214 { 1215 if (!inode->i_nlink) 1216 generic_delete_inode(inode); 1217 else 1218 generic_forget_inode(inode); 1219 } 1220 1221 EXPORT_SYMBOL_GPL(generic_drop_inode); 1222 1223 /* 1224 * Called when we're dropping the last reference 1225 * to an inode. 1226 * 1227 * Call the FS "drop()" function, defaulting to 1228 * the legacy UNIX filesystem behaviour.. 1229 * 1230 * NOTE! NOTE! NOTE! We're called with the inode lock 1231 * held, and the drop function is supposed to release 1232 * the lock! 1233 */ 1234 static inline void iput_final(struct inode *inode) 1235 { 1236 const struct super_operations *op = inode->i_sb->s_op; 1237 void (*drop)(struct inode *) = generic_drop_inode; 1238 1239 if (op && op->drop_inode) 1240 drop = op->drop_inode; 1241 drop(inode); 1242 } 1243 1244 /** 1245 * iput - put an inode 1246 * @inode: inode to put 1247 * 1248 * Puts an inode, dropping its usage count. If the inode use count hits 1249 * zero, the inode is then freed and may also be destroyed. 1250 * 1251 * Consequently, iput() can sleep. 1252 */ 1253 void iput(struct inode *inode) 1254 { 1255 if (inode) { 1256 BUG_ON(inode->i_state == I_CLEAR); 1257 1258 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1259 iput_final(inode); 1260 } 1261 } 1262 1263 EXPORT_SYMBOL(iput); 1264 1265 /** 1266 * bmap - find a block number in a file 1267 * @inode: inode of file 1268 * @block: block to find 1269 * 1270 * Returns the block number on the device holding the inode that 1271 * is the disk block number for the block of the file requested. 1272 * That is, asked for block 4 of inode 1 the function will return the 1273 * disk block relative to the disk start that holds that block of the 1274 * file. 1275 */ 1276 sector_t bmap(struct inode * inode, sector_t block) 1277 { 1278 sector_t res = 0; 1279 if (inode->i_mapping->a_ops->bmap) 1280 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1281 return res; 1282 } 1283 EXPORT_SYMBOL(bmap); 1284 1285 /** 1286 * touch_atime - update the access time 1287 * @mnt: mount the inode is accessed on 1288 * @dentry: dentry accessed 1289 * 1290 * Update the accessed time on an inode and mark it for writeback. 1291 * This function automatically handles read only file systems and media, 1292 * as well as the "noatime" flag and inode specific "noatime" markers. 1293 */ 1294 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1295 { 1296 struct inode *inode = dentry->d_inode; 1297 struct timespec now; 1298 1299 if (mnt_want_write(mnt)) 1300 return; 1301 if (inode->i_flags & S_NOATIME) 1302 goto out; 1303 if (IS_NOATIME(inode)) 1304 goto out; 1305 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1306 goto out; 1307 1308 if (mnt->mnt_flags & MNT_NOATIME) 1309 goto out; 1310 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1311 goto out; 1312 if (mnt->mnt_flags & MNT_RELATIME) { 1313 /* 1314 * With relative atime, only update atime if the previous 1315 * atime is earlier than either the ctime or mtime. 1316 */ 1317 if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 && 1318 timespec_compare(&inode->i_ctime, &inode->i_atime) < 0) 1319 goto out; 1320 } 1321 1322 now = current_fs_time(inode->i_sb); 1323 if (timespec_equal(&inode->i_atime, &now)) 1324 goto out; 1325 1326 inode->i_atime = now; 1327 mark_inode_dirty_sync(inode); 1328 out: 1329 mnt_drop_write(mnt); 1330 } 1331 EXPORT_SYMBOL(touch_atime); 1332 1333 /** 1334 * file_update_time - update mtime and ctime time 1335 * @file: file accessed 1336 * 1337 * Update the mtime and ctime members of an inode and mark the inode 1338 * for writeback. Note that this function is meant exclusively for 1339 * usage in the file write path of filesystems, and filesystems may 1340 * choose to explicitly ignore update via this function with the 1341 * S_NOCTIME inode flag, e.g. for network filesystem where these 1342 * timestamps are handled by the server. 1343 */ 1344 1345 void file_update_time(struct file *file) 1346 { 1347 struct inode *inode = file->f_path.dentry->d_inode; 1348 struct timespec now; 1349 int sync_it = 0; 1350 int err; 1351 1352 if (IS_NOCMTIME(inode)) 1353 return; 1354 1355 err = mnt_want_write(file->f_path.mnt); 1356 if (err) 1357 return; 1358 1359 now = current_fs_time(inode->i_sb); 1360 if (!timespec_equal(&inode->i_mtime, &now)) { 1361 inode->i_mtime = now; 1362 sync_it = 1; 1363 } 1364 1365 if (!timespec_equal(&inode->i_ctime, &now)) { 1366 inode->i_ctime = now; 1367 sync_it = 1; 1368 } 1369 1370 if (IS_I_VERSION(inode)) { 1371 inode_inc_iversion(inode); 1372 sync_it = 1; 1373 } 1374 1375 if (sync_it) 1376 mark_inode_dirty_sync(inode); 1377 mnt_drop_write(file->f_path.mnt); 1378 } 1379 1380 EXPORT_SYMBOL(file_update_time); 1381 1382 int inode_needs_sync(struct inode *inode) 1383 { 1384 if (IS_SYNC(inode)) 1385 return 1; 1386 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1387 return 1; 1388 return 0; 1389 } 1390 1391 EXPORT_SYMBOL(inode_needs_sync); 1392 1393 int inode_wait(void *word) 1394 { 1395 schedule(); 1396 return 0; 1397 } 1398 EXPORT_SYMBOL(inode_wait); 1399 1400 /* 1401 * If we try to find an inode in the inode hash while it is being 1402 * deleted, we have to wait until the filesystem completes its 1403 * deletion before reporting that it isn't found. This function waits 1404 * until the deletion _might_ have completed. Callers are responsible 1405 * to recheck inode state. 1406 * 1407 * It doesn't matter if I_LOCK is not set initially, a call to 1408 * wake_up_inode() after removing from the hash list will DTRT. 1409 * 1410 * This is called with inode_lock held. 1411 */ 1412 static void __wait_on_freeing_inode(struct inode *inode) 1413 { 1414 wait_queue_head_t *wq; 1415 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1416 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1417 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1418 spin_unlock(&inode_lock); 1419 schedule(); 1420 finish_wait(wq, &wait.wait); 1421 spin_lock(&inode_lock); 1422 } 1423 1424 /* 1425 * We rarely want to lock two inodes that do not have a parent/child 1426 * relationship (such as directory, child inode) simultaneously. The 1427 * vast majority of file systems should be able to get along fine 1428 * without this. Do not use these functions except as a last resort. 1429 */ 1430 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1431 { 1432 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1433 if (inode1) 1434 mutex_lock(&inode1->i_mutex); 1435 else if (inode2) 1436 mutex_lock(&inode2->i_mutex); 1437 return; 1438 } 1439 1440 if (inode1 < inode2) { 1441 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1442 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1443 } else { 1444 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1445 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1446 } 1447 } 1448 EXPORT_SYMBOL(inode_double_lock); 1449 1450 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1451 { 1452 if (inode1) 1453 mutex_unlock(&inode1->i_mutex); 1454 1455 if (inode2 && inode2 != inode1) 1456 mutex_unlock(&inode2->i_mutex); 1457 } 1458 EXPORT_SYMBOL(inode_double_unlock); 1459 1460 static __initdata unsigned long ihash_entries; 1461 static int __init set_ihash_entries(char *str) 1462 { 1463 if (!str) 1464 return 0; 1465 ihash_entries = simple_strtoul(str, &str, 0); 1466 return 1; 1467 } 1468 __setup("ihash_entries=", set_ihash_entries); 1469 1470 /* 1471 * Initialize the waitqueues and inode hash table. 1472 */ 1473 void __init inode_init_early(void) 1474 { 1475 int loop; 1476 1477 /* If hashes are distributed across NUMA nodes, defer 1478 * hash allocation until vmalloc space is available. 1479 */ 1480 if (hashdist) 1481 return; 1482 1483 inode_hashtable = 1484 alloc_large_system_hash("Inode-cache", 1485 sizeof(struct hlist_head), 1486 ihash_entries, 1487 14, 1488 HASH_EARLY, 1489 &i_hash_shift, 1490 &i_hash_mask, 1491 0); 1492 1493 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1494 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1495 } 1496 1497 void __init inode_init(void) 1498 { 1499 int loop; 1500 1501 /* inode slab cache */ 1502 inode_cachep = kmem_cache_create("inode_cache", 1503 sizeof(struct inode), 1504 0, 1505 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1506 SLAB_MEM_SPREAD), 1507 init_once); 1508 register_shrinker(&icache_shrinker); 1509 1510 /* Hash may have been set up in inode_init_early */ 1511 if (!hashdist) 1512 return; 1513 1514 inode_hashtable = 1515 alloc_large_system_hash("Inode-cache", 1516 sizeof(struct hlist_head), 1517 ihash_entries, 1518 14, 1519 0, 1520 &i_hash_shift, 1521 &i_hash_mask, 1522 0); 1523 1524 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1525 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1526 } 1527 1528 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1529 { 1530 inode->i_mode = mode; 1531 if (S_ISCHR(mode)) { 1532 inode->i_fop = &def_chr_fops; 1533 inode->i_rdev = rdev; 1534 } else if (S_ISBLK(mode)) { 1535 inode->i_fop = &def_blk_fops; 1536 inode->i_rdev = rdev; 1537 } else if (S_ISFIFO(mode)) 1538 inode->i_fop = &def_fifo_fops; 1539 else if (S_ISSOCK(mode)) 1540 inode->i_fop = &bad_sock_fops; 1541 else 1542 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1543 mode); 1544 } 1545 EXPORT_SYMBOL(init_special_inode); 1546