xref: /linux/fs/inode.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static struct kmem_cache * inode_cachep __read_mostly;
101 
102 static void wake_up_inode(struct inode *inode)
103 {
104 	/*
105 	 * Prevent speculative execution through spin_unlock(&inode_lock);
106 	 */
107 	smp_mb();
108 	wake_up_bit(&inode->i_state, __I_LOCK);
109 }
110 
111 /**
112  * inode_init_always - perform inode structure intialisation
113  * @sb		- superblock inode belongs to.
114  * @inode	- inode to initialise
115  *
116  * These are initializations that need to be done on every inode
117  * allocation as the fields are not initialised by slab allocation.
118  */
119 struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
120 {
121 	static const struct address_space_operations empty_aops;
122 	static struct inode_operations empty_iops;
123 	static const struct file_operations empty_fops;
124 
125 	struct address_space * const mapping = &inode->i_data;
126 
127 	inode->i_sb = sb;
128 	inode->i_blkbits = sb->s_blocksize_bits;
129 	inode->i_flags = 0;
130 	atomic_set(&inode->i_count, 1);
131 	inode->i_op = &empty_iops;
132 	inode->i_fop = &empty_fops;
133 	inode->i_nlink = 1;
134 	inode->i_uid = 0;
135 	inode->i_gid = 0;
136 	atomic_set(&inode->i_writecount, 0);
137 	inode->i_size = 0;
138 	inode->i_blocks = 0;
139 	inode->i_bytes = 0;
140 	inode->i_generation = 0;
141 #ifdef CONFIG_QUOTA
142 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
143 #endif
144 	inode->i_pipe = NULL;
145 	inode->i_bdev = NULL;
146 	inode->i_cdev = NULL;
147 	inode->i_rdev = 0;
148 	inode->dirtied_when = 0;
149 	if (security_inode_alloc(inode)) {
150 		if (inode->i_sb->s_op->destroy_inode)
151 			inode->i_sb->s_op->destroy_inode(inode);
152 		else
153 			kmem_cache_free(inode_cachep, (inode));
154 		return NULL;
155 	}
156 
157 	spin_lock_init(&inode->i_lock);
158 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159 
160 	mutex_init(&inode->i_mutex);
161 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162 
163 	init_rwsem(&inode->i_alloc_sem);
164 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
165 
166 	mapping->a_ops = &empty_aops;
167 	mapping->host = inode;
168 	mapping->flags = 0;
169 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
170 	mapping->assoc_mapping = NULL;
171 	mapping->backing_dev_info = &default_backing_dev_info;
172 	mapping->writeback_index = 0;
173 
174 	/*
175 	 * If the block_device provides a backing_dev_info for client
176 	 * inodes then use that.  Otherwise the inode share the bdev's
177 	 * backing_dev_info.
178 	 */
179 	if (sb->s_bdev) {
180 		struct backing_dev_info *bdi;
181 
182 		bdi = sb->s_bdev->bd_inode_backing_dev_info;
183 		if (!bdi)
184 			bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
185 		mapping->backing_dev_info = bdi;
186 	}
187 	inode->i_private = NULL;
188 	inode->i_mapping = mapping;
189 
190 	return inode;
191 }
192 EXPORT_SYMBOL(inode_init_always);
193 
194 static struct inode *alloc_inode(struct super_block *sb)
195 {
196 	struct inode *inode;
197 
198 	if (sb->s_op->alloc_inode)
199 		inode = sb->s_op->alloc_inode(sb);
200 	else
201 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
202 
203 	if (inode)
204 		return inode_init_always(sb, inode);
205 	return NULL;
206 }
207 
208 void destroy_inode(struct inode *inode)
209 {
210 	BUG_ON(inode_has_buffers(inode));
211 	security_inode_free(inode);
212 	if (inode->i_sb->s_op->destroy_inode)
213 		inode->i_sb->s_op->destroy_inode(inode);
214 	else
215 		kmem_cache_free(inode_cachep, (inode));
216 }
217 EXPORT_SYMBOL(destroy_inode);
218 
219 
220 /*
221  * These are initializations that only need to be done
222  * once, because the fields are idempotent across use
223  * of the inode, so let the slab aware of that.
224  */
225 void inode_init_once(struct inode *inode)
226 {
227 	memset(inode, 0, sizeof(*inode));
228 	INIT_HLIST_NODE(&inode->i_hash);
229 	INIT_LIST_HEAD(&inode->i_dentry);
230 	INIT_LIST_HEAD(&inode->i_devices);
231 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
232 	spin_lock_init(&inode->i_data.tree_lock);
233 	spin_lock_init(&inode->i_data.i_mmap_lock);
234 	INIT_LIST_HEAD(&inode->i_data.private_list);
235 	spin_lock_init(&inode->i_data.private_lock);
236 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
237 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
238 	i_size_ordered_init(inode);
239 #ifdef CONFIG_INOTIFY
240 	INIT_LIST_HEAD(&inode->inotify_watches);
241 	mutex_init(&inode->inotify_mutex);
242 #endif
243 }
244 
245 EXPORT_SYMBOL(inode_init_once);
246 
247 static void init_once(void *foo)
248 {
249 	struct inode * inode = (struct inode *) foo;
250 
251 	inode_init_once(inode);
252 }
253 
254 /*
255  * inode_lock must be held
256  */
257 void __iget(struct inode * inode)
258 {
259 	if (atomic_read(&inode->i_count)) {
260 		atomic_inc(&inode->i_count);
261 		return;
262 	}
263 	atomic_inc(&inode->i_count);
264 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
265 		list_move(&inode->i_list, &inode_in_use);
266 	inodes_stat.nr_unused--;
267 }
268 
269 /**
270  * clear_inode - clear an inode
271  * @inode: inode to clear
272  *
273  * This is called by the filesystem to tell us
274  * that the inode is no longer useful. We just
275  * terminate it with extreme prejudice.
276  */
277 void clear_inode(struct inode *inode)
278 {
279 	might_sleep();
280 	invalidate_inode_buffers(inode);
281 
282 	BUG_ON(inode->i_data.nrpages);
283 	BUG_ON(!(inode->i_state & I_FREEING));
284 	BUG_ON(inode->i_state & I_CLEAR);
285 	inode_sync_wait(inode);
286 	DQUOT_DROP(inode);
287 	if (inode->i_sb->s_op->clear_inode)
288 		inode->i_sb->s_op->clear_inode(inode);
289 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
290 		bd_forget(inode);
291 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
292 		cd_forget(inode);
293 	inode->i_state = I_CLEAR;
294 }
295 
296 EXPORT_SYMBOL(clear_inode);
297 
298 /*
299  * dispose_list - dispose of the contents of a local list
300  * @head: the head of the list to free
301  *
302  * Dispose-list gets a local list with local inodes in it, so it doesn't
303  * need to worry about list corruption and SMP locks.
304  */
305 static void dispose_list(struct list_head *head)
306 {
307 	int nr_disposed = 0;
308 
309 	while (!list_empty(head)) {
310 		struct inode *inode;
311 
312 		inode = list_first_entry(head, struct inode, i_list);
313 		list_del(&inode->i_list);
314 
315 		if (inode->i_data.nrpages)
316 			truncate_inode_pages(&inode->i_data, 0);
317 		clear_inode(inode);
318 
319 		spin_lock(&inode_lock);
320 		hlist_del_init(&inode->i_hash);
321 		list_del_init(&inode->i_sb_list);
322 		spin_unlock(&inode_lock);
323 
324 		wake_up_inode(inode);
325 		destroy_inode(inode);
326 		nr_disposed++;
327 	}
328 	spin_lock(&inode_lock);
329 	inodes_stat.nr_inodes -= nr_disposed;
330 	spin_unlock(&inode_lock);
331 }
332 
333 /*
334  * Invalidate all inodes for a device.
335  */
336 static int invalidate_list(struct list_head *head, struct list_head *dispose)
337 {
338 	struct list_head *next;
339 	int busy = 0, count = 0;
340 
341 	next = head->next;
342 	for (;;) {
343 		struct list_head * tmp = next;
344 		struct inode * inode;
345 
346 		/*
347 		 * We can reschedule here without worrying about the list's
348 		 * consistency because the per-sb list of inodes must not
349 		 * change during umount anymore, and because iprune_mutex keeps
350 		 * shrink_icache_memory() away.
351 		 */
352 		cond_resched_lock(&inode_lock);
353 
354 		next = next->next;
355 		if (tmp == head)
356 			break;
357 		inode = list_entry(tmp, struct inode, i_sb_list);
358 		invalidate_inode_buffers(inode);
359 		if (!atomic_read(&inode->i_count)) {
360 			list_move(&inode->i_list, dispose);
361 			inode->i_state |= I_FREEING;
362 			count++;
363 			continue;
364 		}
365 		busy = 1;
366 	}
367 	/* only unused inodes may be cached with i_count zero */
368 	inodes_stat.nr_unused -= count;
369 	return busy;
370 }
371 
372 /**
373  *	invalidate_inodes	- discard the inodes on a device
374  *	@sb: superblock
375  *
376  *	Discard all of the inodes for a given superblock. If the discard
377  *	fails because there are busy inodes then a non zero value is returned.
378  *	If the discard is successful all the inodes have been discarded.
379  */
380 int invalidate_inodes(struct super_block * sb)
381 {
382 	int busy;
383 	LIST_HEAD(throw_away);
384 
385 	mutex_lock(&iprune_mutex);
386 	spin_lock(&inode_lock);
387 	inotify_unmount_inodes(&sb->s_inodes);
388 	busy = invalidate_list(&sb->s_inodes, &throw_away);
389 	spin_unlock(&inode_lock);
390 
391 	dispose_list(&throw_away);
392 	mutex_unlock(&iprune_mutex);
393 
394 	return busy;
395 }
396 
397 EXPORT_SYMBOL(invalidate_inodes);
398 
399 static int can_unuse(struct inode *inode)
400 {
401 	if (inode->i_state)
402 		return 0;
403 	if (inode_has_buffers(inode))
404 		return 0;
405 	if (atomic_read(&inode->i_count))
406 		return 0;
407 	if (inode->i_data.nrpages)
408 		return 0;
409 	return 1;
410 }
411 
412 /*
413  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
414  * a temporary list and then are freed outside inode_lock by dispose_list().
415  *
416  * Any inodes which are pinned purely because of attached pagecache have their
417  * pagecache removed.  We expect the final iput() on that inode to add it to
418  * the front of the inode_unused list.  So look for it there and if the
419  * inode is still freeable, proceed.  The right inode is found 99.9% of the
420  * time in testing on a 4-way.
421  *
422  * If the inode has metadata buffers attached to mapping->private_list then
423  * try to remove them.
424  */
425 static void prune_icache(int nr_to_scan)
426 {
427 	LIST_HEAD(freeable);
428 	int nr_pruned = 0;
429 	int nr_scanned;
430 	unsigned long reap = 0;
431 
432 	mutex_lock(&iprune_mutex);
433 	spin_lock(&inode_lock);
434 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
435 		struct inode *inode;
436 
437 		if (list_empty(&inode_unused))
438 			break;
439 
440 		inode = list_entry(inode_unused.prev, struct inode, i_list);
441 
442 		if (inode->i_state || atomic_read(&inode->i_count)) {
443 			list_move(&inode->i_list, &inode_unused);
444 			continue;
445 		}
446 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
447 			__iget(inode);
448 			spin_unlock(&inode_lock);
449 			if (remove_inode_buffers(inode))
450 				reap += invalidate_mapping_pages(&inode->i_data,
451 								0, -1);
452 			iput(inode);
453 			spin_lock(&inode_lock);
454 
455 			if (inode != list_entry(inode_unused.next,
456 						struct inode, i_list))
457 				continue;	/* wrong inode or list_empty */
458 			if (!can_unuse(inode))
459 				continue;
460 		}
461 		list_move(&inode->i_list, &freeable);
462 		inode->i_state |= I_FREEING;
463 		nr_pruned++;
464 	}
465 	inodes_stat.nr_unused -= nr_pruned;
466 	if (current_is_kswapd())
467 		__count_vm_events(KSWAPD_INODESTEAL, reap);
468 	else
469 		__count_vm_events(PGINODESTEAL, reap);
470 	spin_unlock(&inode_lock);
471 
472 	dispose_list(&freeable);
473 	mutex_unlock(&iprune_mutex);
474 }
475 
476 /*
477  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
478  * "unused" means that no dentries are referring to the inodes: the files are
479  * not open and the dcache references to those inodes have already been
480  * reclaimed.
481  *
482  * This function is passed the number of inodes to scan, and it returns the
483  * total number of remaining possibly-reclaimable inodes.
484  */
485 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
486 {
487 	if (nr) {
488 		/*
489 		 * Nasty deadlock avoidance.  We may hold various FS locks,
490 		 * and we don't want to recurse into the FS that called us
491 		 * in clear_inode() and friends..
492 	 	 */
493 		if (!(gfp_mask & __GFP_FS))
494 			return -1;
495 		prune_icache(nr);
496 	}
497 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
498 }
499 
500 static struct shrinker icache_shrinker = {
501 	.shrink = shrink_icache_memory,
502 	.seeks = DEFAULT_SEEKS,
503 };
504 
505 static void __wait_on_freeing_inode(struct inode *inode);
506 /*
507  * Called with the inode lock held.
508  * NOTE: we are not increasing the inode-refcount, you must call __iget()
509  * by hand after calling find_inode now! This simplifies iunique and won't
510  * add any additional branch in the common code.
511  */
512 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
513 {
514 	struct hlist_node *node;
515 	struct inode * inode = NULL;
516 
517 repeat:
518 	hlist_for_each_entry(inode, node, head, i_hash) {
519 		if (inode->i_sb != sb)
520 			continue;
521 		if (!test(inode, data))
522 			continue;
523 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
524 			__wait_on_freeing_inode(inode);
525 			goto repeat;
526 		}
527 		break;
528 	}
529 	return node ? inode : NULL;
530 }
531 
532 /*
533  * find_inode_fast is the fast path version of find_inode, see the comment at
534  * iget_locked for details.
535  */
536 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
537 {
538 	struct hlist_node *node;
539 	struct inode * inode = NULL;
540 
541 repeat:
542 	hlist_for_each_entry(inode, node, head, i_hash) {
543 		if (inode->i_ino != ino)
544 			continue;
545 		if (inode->i_sb != sb)
546 			continue;
547 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
548 			__wait_on_freeing_inode(inode);
549 			goto repeat;
550 		}
551 		break;
552 	}
553 	return node ? inode : NULL;
554 }
555 
556 static unsigned long hash(struct super_block *sb, unsigned long hashval)
557 {
558 	unsigned long tmp;
559 
560 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
561 			L1_CACHE_BYTES;
562 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
563 	return tmp & I_HASHMASK;
564 }
565 
566 static inline void
567 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
568 			struct inode *inode)
569 {
570 	inodes_stat.nr_inodes++;
571 	list_add(&inode->i_list, &inode_in_use);
572 	list_add(&inode->i_sb_list, &sb->s_inodes);
573 	if (head)
574 		hlist_add_head(&inode->i_hash, head);
575 }
576 
577 /**
578  * inode_add_to_lists - add a new inode to relevant lists
579  * @sb		- superblock inode belongs to.
580  * @inode	- inode to mark in use
581  *
582  * When an inode is allocated it needs to be accounted for, added to the in use
583  * list, the owning superblock and the inode hash. This needs to be done under
584  * the inode_lock, so export a function to do this rather than the inode lock
585  * itself. We calculate the hash list to add to here so it is all internal
586  * which requires the caller to have already set up the inode number in the
587  * inode to add.
588  */
589 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
590 {
591 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
592 
593 	spin_lock(&inode_lock);
594 	__inode_add_to_lists(sb, head, inode);
595 	spin_unlock(&inode_lock);
596 }
597 EXPORT_SYMBOL_GPL(inode_add_to_lists);
598 
599 /**
600  *	new_inode 	- obtain an inode
601  *	@sb: superblock
602  *
603  *	Allocates a new inode for given superblock. The default gfp_mask
604  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
605  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
606  *	for the page cache are not reclaimable or migratable,
607  *	mapping_set_gfp_mask() must be called with suitable flags on the
608  *	newly created inode's mapping
609  *
610  */
611 struct inode *new_inode(struct super_block *sb)
612 {
613 	/*
614 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
615 	 * error if st_ino won't fit in target struct field. Use 32bit counter
616 	 * here to attempt to avoid that.
617 	 */
618 	static unsigned int last_ino;
619 	struct inode * inode;
620 
621 	spin_lock_prefetch(&inode_lock);
622 
623 	inode = alloc_inode(sb);
624 	if (inode) {
625 		spin_lock(&inode_lock);
626 		__inode_add_to_lists(sb, NULL, inode);
627 		inode->i_ino = ++last_ino;
628 		inode->i_state = 0;
629 		spin_unlock(&inode_lock);
630 	}
631 	return inode;
632 }
633 
634 EXPORT_SYMBOL(new_inode);
635 
636 void unlock_new_inode(struct inode *inode)
637 {
638 #ifdef CONFIG_DEBUG_LOCK_ALLOC
639 	if (inode->i_mode & S_IFDIR) {
640 		struct file_system_type *type = inode->i_sb->s_type;
641 
642 		/*
643 		 * ensure nobody is actually holding i_mutex
644 		 */
645 		mutex_destroy(&inode->i_mutex);
646 		mutex_init(&inode->i_mutex);
647 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
648 	}
649 #endif
650 	/*
651 	 * This is special!  We do not need the spinlock
652 	 * when clearing I_LOCK, because we're guaranteed
653 	 * that nobody else tries to do anything about the
654 	 * state of the inode when it is locked, as we
655 	 * just created it (so there can be no old holders
656 	 * that haven't tested I_LOCK).
657 	 */
658 	inode->i_state &= ~(I_LOCK|I_NEW);
659 	wake_up_inode(inode);
660 }
661 
662 EXPORT_SYMBOL(unlock_new_inode);
663 
664 /*
665  * This is called without the inode lock held.. Be careful.
666  *
667  * We no longer cache the sb_flags in i_flags - see fs.h
668  *	-- rmk@arm.uk.linux.org
669  */
670 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
671 {
672 	struct inode * inode;
673 
674 	inode = alloc_inode(sb);
675 	if (inode) {
676 		struct inode * old;
677 
678 		spin_lock(&inode_lock);
679 		/* We released the lock, so.. */
680 		old = find_inode(sb, head, test, data);
681 		if (!old) {
682 			if (set(inode, data))
683 				goto set_failed;
684 
685 			__inode_add_to_lists(sb, head, inode);
686 			inode->i_state = I_LOCK|I_NEW;
687 			spin_unlock(&inode_lock);
688 
689 			/* Return the locked inode with I_NEW set, the
690 			 * caller is responsible for filling in the contents
691 			 */
692 			return inode;
693 		}
694 
695 		/*
696 		 * Uhhuh, somebody else created the same inode under
697 		 * us. Use the old inode instead of the one we just
698 		 * allocated.
699 		 */
700 		__iget(old);
701 		spin_unlock(&inode_lock);
702 		destroy_inode(inode);
703 		inode = old;
704 		wait_on_inode(inode);
705 	}
706 	return inode;
707 
708 set_failed:
709 	spin_unlock(&inode_lock);
710 	destroy_inode(inode);
711 	return NULL;
712 }
713 
714 /*
715  * get_new_inode_fast is the fast path version of get_new_inode, see the
716  * comment at iget_locked for details.
717  */
718 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
719 {
720 	struct inode * inode;
721 
722 	inode = alloc_inode(sb);
723 	if (inode) {
724 		struct inode * old;
725 
726 		spin_lock(&inode_lock);
727 		/* We released the lock, so.. */
728 		old = find_inode_fast(sb, head, ino);
729 		if (!old) {
730 			inode->i_ino = ino;
731 			__inode_add_to_lists(sb, head, inode);
732 			inode->i_state = I_LOCK|I_NEW;
733 			spin_unlock(&inode_lock);
734 
735 			/* Return the locked inode with I_NEW set, the
736 			 * caller is responsible for filling in the contents
737 			 */
738 			return inode;
739 		}
740 
741 		/*
742 		 * Uhhuh, somebody else created the same inode under
743 		 * us. Use the old inode instead of the one we just
744 		 * allocated.
745 		 */
746 		__iget(old);
747 		spin_unlock(&inode_lock);
748 		destroy_inode(inode);
749 		inode = old;
750 		wait_on_inode(inode);
751 	}
752 	return inode;
753 }
754 
755 /**
756  *	iunique - get a unique inode number
757  *	@sb: superblock
758  *	@max_reserved: highest reserved inode number
759  *
760  *	Obtain an inode number that is unique on the system for a given
761  *	superblock. This is used by file systems that have no natural
762  *	permanent inode numbering system. An inode number is returned that
763  *	is higher than the reserved limit but unique.
764  *
765  *	BUGS:
766  *	With a large number of inodes live on the file system this function
767  *	currently becomes quite slow.
768  */
769 ino_t iunique(struct super_block *sb, ino_t max_reserved)
770 {
771 	/*
772 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
773 	 * error if st_ino won't fit in target struct field. Use 32bit counter
774 	 * here to attempt to avoid that.
775 	 */
776 	static unsigned int counter;
777 	struct inode *inode;
778 	struct hlist_head *head;
779 	ino_t res;
780 
781 	spin_lock(&inode_lock);
782 	do {
783 		if (counter <= max_reserved)
784 			counter = max_reserved + 1;
785 		res = counter++;
786 		head = inode_hashtable + hash(sb, res);
787 		inode = find_inode_fast(sb, head, res);
788 	} while (inode != NULL);
789 	spin_unlock(&inode_lock);
790 
791 	return res;
792 }
793 EXPORT_SYMBOL(iunique);
794 
795 struct inode *igrab(struct inode *inode)
796 {
797 	spin_lock(&inode_lock);
798 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
799 		__iget(inode);
800 	else
801 		/*
802 		 * Handle the case where s_op->clear_inode is not been
803 		 * called yet, and somebody is calling igrab
804 		 * while the inode is getting freed.
805 		 */
806 		inode = NULL;
807 	spin_unlock(&inode_lock);
808 	return inode;
809 }
810 
811 EXPORT_SYMBOL(igrab);
812 
813 /**
814  * ifind - internal function, you want ilookup5() or iget5().
815  * @sb:		super block of file system to search
816  * @head:       the head of the list to search
817  * @test:	callback used for comparisons between inodes
818  * @data:	opaque data pointer to pass to @test
819  * @wait:	if true wait for the inode to be unlocked, if false do not
820  *
821  * ifind() searches for the inode specified by @data in the inode
822  * cache. This is a generalized version of ifind_fast() for file systems where
823  * the inode number is not sufficient for unique identification of an inode.
824  *
825  * If the inode is in the cache, the inode is returned with an incremented
826  * reference count.
827  *
828  * Otherwise NULL is returned.
829  *
830  * Note, @test is called with the inode_lock held, so can't sleep.
831  */
832 static struct inode *ifind(struct super_block *sb,
833 		struct hlist_head *head, int (*test)(struct inode *, void *),
834 		void *data, const int wait)
835 {
836 	struct inode *inode;
837 
838 	spin_lock(&inode_lock);
839 	inode = find_inode(sb, head, test, data);
840 	if (inode) {
841 		__iget(inode);
842 		spin_unlock(&inode_lock);
843 		if (likely(wait))
844 			wait_on_inode(inode);
845 		return inode;
846 	}
847 	spin_unlock(&inode_lock);
848 	return NULL;
849 }
850 
851 /**
852  * ifind_fast - internal function, you want ilookup() or iget().
853  * @sb:		super block of file system to search
854  * @head:       head of the list to search
855  * @ino:	inode number to search for
856  *
857  * ifind_fast() searches for the inode @ino in the inode cache. This is for
858  * file systems where the inode number is sufficient for unique identification
859  * of an inode.
860  *
861  * If the inode is in the cache, the inode is returned with an incremented
862  * reference count.
863  *
864  * Otherwise NULL is returned.
865  */
866 static struct inode *ifind_fast(struct super_block *sb,
867 		struct hlist_head *head, unsigned long ino)
868 {
869 	struct inode *inode;
870 
871 	spin_lock(&inode_lock);
872 	inode = find_inode_fast(sb, head, ino);
873 	if (inode) {
874 		__iget(inode);
875 		spin_unlock(&inode_lock);
876 		wait_on_inode(inode);
877 		return inode;
878 	}
879 	spin_unlock(&inode_lock);
880 	return NULL;
881 }
882 
883 /**
884  * ilookup5_nowait - search for an inode in the inode cache
885  * @sb:		super block of file system to search
886  * @hashval:	hash value (usually inode number) to search for
887  * @test:	callback used for comparisons between inodes
888  * @data:	opaque data pointer to pass to @test
889  *
890  * ilookup5() uses ifind() to search for the inode specified by @hashval and
891  * @data in the inode cache. This is a generalized version of ilookup() for
892  * file systems where the inode number is not sufficient for unique
893  * identification of an inode.
894  *
895  * If the inode is in the cache, the inode is returned with an incremented
896  * reference count.  Note, the inode lock is not waited upon so you have to be
897  * very careful what you do with the returned inode.  You probably should be
898  * using ilookup5() instead.
899  *
900  * Otherwise NULL is returned.
901  *
902  * Note, @test is called with the inode_lock held, so can't sleep.
903  */
904 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
905 		int (*test)(struct inode *, void *), void *data)
906 {
907 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
908 
909 	return ifind(sb, head, test, data, 0);
910 }
911 
912 EXPORT_SYMBOL(ilookup5_nowait);
913 
914 /**
915  * ilookup5 - search for an inode in the inode cache
916  * @sb:		super block of file system to search
917  * @hashval:	hash value (usually inode number) to search for
918  * @test:	callback used for comparisons between inodes
919  * @data:	opaque data pointer to pass to @test
920  *
921  * ilookup5() uses ifind() to search for the inode specified by @hashval and
922  * @data in the inode cache. This is a generalized version of ilookup() for
923  * file systems where the inode number is not sufficient for unique
924  * identification of an inode.
925  *
926  * If the inode is in the cache, the inode lock is waited upon and the inode is
927  * returned with an incremented reference count.
928  *
929  * Otherwise NULL is returned.
930  *
931  * Note, @test is called with the inode_lock held, so can't sleep.
932  */
933 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
934 		int (*test)(struct inode *, void *), void *data)
935 {
936 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
937 
938 	return ifind(sb, head, test, data, 1);
939 }
940 
941 EXPORT_SYMBOL(ilookup5);
942 
943 /**
944  * ilookup - search for an inode in the inode cache
945  * @sb:		super block of file system to search
946  * @ino:	inode number to search for
947  *
948  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
949  * This is for file systems where the inode number is sufficient for unique
950  * identification of an inode.
951  *
952  * If the inode is in the cache, the inode is returned with an incremented
953  * reference count.
954  *
955  * Otherwise NULL is returned.
956  */
957 struct inode *ilookup(struct super_block *sb, unsigned long ino)
958 {
959 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
960 
961 	return ifind_fast(sb, head, ino);
962 }
963 
964 EXPORT_SYMBOL(ilookup);
965 
966 /**
967  * iget5_locked - obtain an inode from a mounted file system
968  * @sb:		super block of file system
969  * @hashval:	hash value (usually inode number) to get
970  * @test:	callback used for comparisons between inodes
971  * @set:	callback used to initialize a new struct inode
972  * @data:	opaque data pointer to pass to @test and @set
973  *
974  * iget5_locked() uses ifind() to search for the inode specified by @hashval
975  * and @data in the inode cache and if present it is returned with an increased
976  * reference count. This is a generalized version of iget_locked() for file
977  * systems where the inode number is not sufficient for unique identification
978  * of an inode.
979  *
980  * If the inode is not in cache, get_new_inode() is called to allocate a new
981  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
982  * file system gets to fill it in before unlocking it via unlock_new_inode().
983  *
984  * Note both @test and @set are called with the inode_lock held, so can't sleep.
985  */
986 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
987 		int (*test)(struct inode *, void *),
988 		int (*set)(struct inode *, void *), void *data)
989 {
990 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
991 	struct inode *inode;
992 
993 	inode = ifind(sb, head, test, data, 1);
994 	if (inode)
995 		return inode;
996 	/*
997 	 * get_new_inode() will do the right thing, re-trying the search
998 	 * in case it had to block at any point.
999 	 */
1000 	return get_new_inode(sb, head, test, set, data);
1001 }
1002 
1003 EXPORT_SYMBOL(iget5_locked);
1004 
1005 /**
1006  * iget_locked - obtain an inode from a mounted file system
1007  * @sb:		super block of file system
1008  * @ino:	inode number to get
1009  *
1010  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1011  * the inode cache and if present it is returned with an increased reference
1012  * count. This is for file systems where the inode number is sufficient for
1013  * unique identification of an inode.
1014  *
1015  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1016  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1017  * The file system gets to fill it in before unlocking it via
1018  * unlock_new_inode().
1019  */
1020 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1021 {
1022 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1023 	struct inode *inode;
1024 
1025 	inode = ifind_fast(sb, head, ino);
1026 	if (inode)
1027 		return inode;
1028 	/*
1029 	 * get_new_inode_fast() will do the right thing, re-trying the search
1030 	 * in case it had to block at any point.
1031 	 */
1032 	return get_new_inode_fast(sb, head, ino);
1033 }
1034 
1035 EXPORT_SYMBOL(iget_locked);
1036 
1037 int insert_inode_locked(struct inode *inode)
1038 {
1039 	struct super_block *sb = inode->i_sb;
1040 	ino_t ino = inode->i_ino;
1041 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1042 	struct inode *old;
1043 
1044 	inode->i_state |= I_LOCK|I_NEW;
1045 	while (1) {
1046 		spin_lock(&inode_lock);
1047 		old = find_inode_fast(sb, head, ino);
1048 		if (likely(!old)) {
1049 			hlist_add_head(&inode->i_hash, head);
1050 			spin_unlock(&inode_lock);
1051 			return 0;
1052 		}
1053 		__iget(old);
1054 		spin_unlock(&inode_lock);
1055 		wait_on_inode(old);
1056 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1057 			iput(old);
1058 			return -EBUSY;
1059 		}
1060 		iput(old);
1061 	}
1062 }
1063 
1064 EXPORT_SYMBOL(insert_inode_locked);
1065 
1066 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1067 		int (*test)(struct inode *, void *), void *data)
1068 {
1069 	struct super_block *sb = inode->i_sb;
1070 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1071 	struct inode *old;
1072 
1073 	inode->i_state |= I_LOCK|I_NEW;
1074 
1075 	while (1) {
1076 		spin_lock(&inode_lock);
1077 		old = find_inode(sb, head, test, data);
1078 		if (likely(!old)) {
1079 			hlist_add_head(&inode->i_hash, head);
1080 			spin_unlock(&inode_lock);
1081 			return 0;
1082 		}
1083 		__iget(old);
1084 		spin_unlock(&inode_lock);
1085 		wait_on_inode(old);
1086 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1087 			iput(old);
1088 			return -EBUSY;
1089 		}
1090 		iput(old);
1091 	}
1092 }
1093 
1094 EXPORT_SYMBOL(insert_inode_locked4);
1095 
1096 /**
1097  *	__insert_inode_hash - hash an inode
1098  *	@inode: unhashed inode
1099  *	@hashval: unsigned long value used to locate this object in the
1100  *		inode_hashtable.
1101  *
1102  *	Add an inode to the inode hash for this superblock.
1103  */
1104 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1105 {
1106 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1107 	spin_lock(&inode_lock);
1108 	hlist_add_head(&inode->i_hash, head);
1109 	spin_unlock(&inode_lock);
1110 }
1111 
1112 EXPORT_SYMBOL(__insert_inode_hash);
1113 
1114 /**
1115  *	remove_inode_hash - remove an inode from the hash
1116  *	@inode: inode to unhash
1117  *
1118  *	Remove an inode from the superblock.
1119  */
1120 void remove_inode_hash(struct inode *inode)
1121 {
1122 	spin_lock(&inode_lock);
1123 	hlist_del_init(&inode->i_hash);
1124 	spin_unlock(&inode_lock);
1125 }
1126 
1127 EXPORT_SYMBOL(remove_inode_hash);
1128 
1129 /*
1130  * Tell the filesystem that this inode is no longer of any interest and should
1131  * be completely destroyed.
1132  *
1133  * We leave the inode in the inode hash table until *after* the filesystem's
1134  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1135  * instigate) will always find up-to-date information either in the hash or on
1136  * disk.
1137  *
1138  * I_FREEING is set so that no-one will take a new reference to the inode while
1139  * it is being deleted.
1140  */
1141 void generic_delete_inode(struct inode *inode)
1142 {
1143 	const struct super_operations *op = inode->i_sb->s_op;
1144 
1145 	list_del_init(&inode->i_list);
1146 	list_del_init(&inode->i_sb_list);
1147 	inode->i_state |= I_FREEING;
1148 	inodes_stat.nr_inodes--;
1149 	spin_unlock(&inode_lock);
1150 
1151 	security_inode_delete(inode);
1152 
1153 	if (op->delete_inode) {
1154 		void (*delete)(struct inode *) = op->delete_inode;
1155 		if (!is_bad_inode(inode))
1156 			DQUOT_INIT(inode);
1157 		/* Filesystems implementing their own
1158 		 * s_op->delete_inode are required to call
1159 		 * truncate_inode_pages and clear_inode()
1160 		 * internally */
1161 		delete(inode);
1162 	} else {
1163 		truncate_inode_pages(&inode->i_data, 0);
1164 		clear_inode(inode);
1165 	}
1166 	spin_lock(&inode_lock);
1167 	hlist_del_init(&inode->i_hash);
1168 	spin_unlock(&inode_lock);
1169 	wake_up_inode(inode);
1170 	BUG_ON(inode->i_state != I_CLEAR);
1171 	destroy_inode(inode);
1172 }
1173 
1174 EXPORT_SYMBOL(generic_delete_inode);
1175 
1176 static void generic_forget_inode(struct inode *inode)
1177 {
1178 	struct super_block *sb = inode->i_sb;
1179 
1180 	if (!hlist_unhashed(&inode->i_hash)) {
1181 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1182 			list_move(&inode->i_list, &inode_unused);
1183 		inodes_stat.nr_unused++;
1184 		if (sb->s_flags & MS_ACTIVE) {
1185 			spin_unlock(&inode_lock);
1186 			return;
1187 		}
1188 		inode->i_state |= I_WILL_FREE;
1189 		spin_unlock(&inode_lock);
1190 		write_inode_now(inode, 1);
1191 		spin_lock(&inode_lock);
1192 		inode->i_state &= ~I_WILL_FREE;
1193 		inodes_stat.nr_unused--;
1194 		hlist_del_init(&inode->i_hash);
1195 	}
1196 	list_del_init(&inode->i_list);
1197 	list_del_init(&inode->i_sb_list);
1198 	inode->i_state |= I_FREEING;
1199 	inodes_stat.nr_inodes--;
1200 	spin_unlock(&inode_lock);
1201 	if (inode->i_data.nrpages)
1202 		truncate_inode_pages(&inode->i_data, 0);
1203 	clear_inode(inode);
1204 	wake_up_inode(inode);
1205 	destroy_inode(inode);
1206 }
1207 
1208 /*
1209  * Normal UNIX filesystem behaviour: delete the
1210  * inode when the usage count drops to zero, and
1211  * i_nlink is zero.
1212  */
1213 void generic_drop_inode(struct inode *inode)
1214 {
1215 	if (!inode->i_nlink)
1216 		generic_delete_inode(inode);
1217 	else
1218 		generic_forget_inode(inode);
1219 }
1220 
1221 EXPORT_SYMBOL_GPL(generic_drop_inode);
1222 
1223 /*
1224  * Called when we're dropping the last reference
1225  * to an inode.
1226  *
1227  * Call the FS "drop()" function, defaulting to
1228  * the legacy UNIX filesystem behaviour..
1229  *
1230  * NOTE! NOTE! NOTE! We're called with the inode lock
1231  * held, and the drop function is supposed to release
1232  * the lock!
1233  */
1234 static inline void iput_final(struct inode *inode)
1235 {
1236 	const struct super_operations *op = inode->i_sb->s_op;
1237 	void (*drop)(struct inode *) = generic_drop_inode;
1238 
1239 	if (op && op->drop_inode)
1240 		drop = op->drop_inode;
1241 	drop(inode);
1242 }
1243 
1244 /**
1245  *	iput	- put an inode
1246  *	@inode: inode to put
1247  *
1248  *	Puts an inode, dropping its usage count. If the inode use count hits
1249  *	zero, the inode is then freed and may also be destroyed.
1250  *
1251  *	Consequently, iput() can sleep.
1252  */
1253 void iput(struct inode *inode)
1254 {
1255 	if (inode) {
1256 		BUG_ON(inode->i_state == I_CLEAR);
1257 
1258 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1259 			iput_final(inode);
1260 	}
1261 }
1262 
1263 EXPORT_SYMBOL(iput);
1264 
1265 /**
1266  *	bmap	- find a block number in a file
1267  *	@inode: inode of file
1268  *	@block: block to find
1269  *
1270  *	Returns the block number on the device holding the inode that
1271  *	is the disk block number for the block of the file requested.
1272  *	That is, asked for block 4 of inode 1 the function will return the
1273  *	disk block relative to the disk start that holds that block of the
1274  *	file.
1275  */
1276 sector_t bmap(struct inode * inode, sector_t block)
1277 {
1278 	sector_t res = 0;
1279 	if (inode->i_mapping->a_ops->bmap)
1280 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1281 	return res;
1282 }
1283 EXPORT_SYMBOL(bmap);
1284 
1285 /**
1286  *	touch_atime	-	update the access time
1287  *	@mnt: mount the inode is accessed on
1288  *	@dentry: dentry accessed
1289  *
1290  *	Update the accessed time on an inode and mark it for writeback.
1291  *	This function automatically handles read only file systems and media,
1292  *	as well as the "noatime" flag and inode specific "noatime" markers.
1293  */
1294 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1295 {
1296 	struct inode *inode = dentry->d_inode;
1297 	struct timespec now;
1298 
1299 	if (mnt_want_write(mnt))
1300 		return;
1301 	if (inode->i_flags & S_NOATIME)
1302 		goto out;
1303 	if (IS_NOATIME(inode))
1304 		goto out;
1305 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1306 		goto out;
1307 
1308 	if (mnt->mnt_flags & MNT_NOATIME)
1309 		goto out;
1310 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1311 		goto out;
1312 	if (mnt->mnt_flags & MNT_RELATIME) {
1313 		/*
1314 		 * With relative atime, only update atime if the previous
1315 		 * atime is earlier than either the ctime or mtime.
1316 		 */
1317 		if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 &&
1318 		    timespec_compare(&inode->i_ctime, &inode->i_atime) < 0)
1319 			goto out;
1320 	}
1321 
1322 	now = current_fs_time(inode->i_sb);
1323 	if (timespec_equal(&inode->i_atime, &now))
1324 		goto out;
1325 
1326 	inode->i_atime = now;
1327 	mark_inode_dirty_sync(inode);
1328 out:
1329 	mnt_drop_write(mnt);
1330 }
1331 EXPORT_SYMBOL(touch_atime);
1332 
1333 /**
1334  *	file_update_time	-	update mtime and ctime time
1335  *	@file: file accessed
1336  *
1337  *	Update the mtime and ctime members of an inode and mark the inode
1338  *	for writeback.  Note that this function is meant exclusively for
1339  *	usage in the file write path of filesystems, and filesystems may
1340  *	choose to explicitly ignore update via this function with the
1341  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1342  *	timestamps are handled by the server.
1343  */
1344 
1345 void file_update_time(struct file *file)
1346 {
1347 	struct inode *inode = file->f_path.dentry->d_inode;
1348 	struct timespec now;
1349 	int sync_it = 0;
1350 	int err;
1351 
1352 	if (IS_NOCMTIME(inode))
1353 		return;
1354 
1355 	err = mnt_want_write(file->f_path.mnt);
1356 	if (err)
1357 		return;
1358 
1359 	now = current_fs_time(inode->i_sb);
1360 	if (!timespec_equal(&inode->i_mtime, &now)) {
1361 		inode->i_mtime = now;
1362 		sync_it = 1;
1363 	}
1364 
1365 	if (!timespec_equal(&inode->i_ctime, &now)) {
1366 		inode->i_ctime = now;
1367 		sync_it = 1;
1368 	}
1369 
1370 	if (IS_I_VERSION(inode)) {
1371 		inode_inc_iversion(inode);
1372 		sync_it = 1;
1373 	}
1374 
1375 	if (sync_it)
1376 		mark_inode_dirty_sync(inode);
1377 	mnt_drop_write(file->f_path.mnt);
1378 }
1379 
1380 EXPORT_SYMBOL(file_update_time);
1381 
1382 int inode_needs_sync(struct inode *inode)
1383 {
1384 	if (IS_SYNC(inode))
1385 		return 1;
1386 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1387 		return 1;
1388 	return 0;
1389 }
1390 
1391 EXPORT_SYMBOL(inode_needs_sync);
1392 
1393 int inode_wait(void *word)
1394 {
1395 	schedule();
1396 	return 0;
1397 }
1398 EXPORT_SYMBOL(inode_wait);
1399 
1400 /*
1401  * If we try to find an inode in the inode hash while it is being
1402  * deleted, we have to wait until the filesystem completes its
1403  * deletion before reporting that it isn't found.  This function waits
1404  * until the deletion _might_ have completed.  Callers are responsible
1405  * to recheck inode state.
1406  *
1407  * It doesn't matter if I_LOCK is not set initially, a call to
1408  * wake_up_inode() after removing from the hash list will DTRT.
1409  *
1410  * This is called with inode_lock held.
1411  */
1412 static void __wait_on_freeing_inode(struct inode *inode)
1413 {
1414 	wait_queue_head_t *wq;
1415 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1416 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1417 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1418 	spin_unlock(&inode_lock);
1419 	schedule();
1420 	finish_wait(wq, &wait.wait);
1421 	spin_lock(&inode_lock);
1422 }
1423 
1424 /*
1425  * We rarely want to lock two inodes that do not have a parent/child
1426  * relationship (such as directory, child inode) simultaneously. The
1427  * vast majority of file systems should be able to get along fine
1428  * without this. Do not use these functions except as a last resort.
1429  */
1430 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1431 {
1432 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1433 		if (inode1)
1434 			mutex_lock(&inode1->i_mutex);
1435 		else if (inode2)
1436 			mutex_lock(&inode2->i_mutex);
1437 		return;
1438 	}
1439 
1440 	if (inode1 < inode2) {
1441 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1442 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1443 	} else {
1444 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1445 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1446 	}
1447 }
1448 EXPORT_SYMBOL(inode_double_lock);
1449 
1450 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1451 {
1452 	if (inode1)
1453 		mutex_unlock(&inode1->i_mutex);
1454 
1455 	if (inode2 && inode2 != inode1)
1456 		mutex_unlock(&inode2->i_mutex);
1457 }
1458 EXPORT_SYMBOL(inode_double_unlock);
1459 
1460 static __initdata unsigned long ihash_entries;
1461 static int __init set_ihash_entries(char *str)
1462 {
1463 	if (!str)
1464 		return 0;
1465 	ihash_entries = simple_strtoul(str, &str, 0);
1466 	return 1;
1467 }
1468 __setup("ihash_entries=", set_ihash_entries);
1469 
1470 /*
1471  * Initialize the waitqueues and inode hash table.
1472  */
1473 void __init inode_init_early(void)
1474 {
1475 	int loop;
1476 
1477 	/* If hashes are distributed across NUMA nodes, defer
1478 	 * hash allocation until vmalloc space is available.
1479 	 */
1480 	if (hashdist)
1481 		return;
1482 
1483 	inode_hashtable =
1484 		alloc_large_system_hash("Inode-cache",
1485 					sizeof(struct hlist_head),
1486 					ihash_entries,
1487 					14,
1488 					HASH_EARLY,
1489 					&i_hash_shift,
1490 					&i_hash_mask,
1491 					0);
1492 
1493 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1494 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1495 }
1496 
1497 void __init inode_init(void)
1498 {
1499 	int loop;
1500 
1501 	/* inode slab cache */
1502 	inode_cachep = kmem_cache_create("inode_cache",
1503 					 sizeof(struct inode),
1504 					 0,
1505 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1506 					 SLAB_MEM_SPREAD),
1507 					 init_once);
1508 	register_shrinker(&icache_shrinker);
1509 
1510 	/* Hash may have been set up in inode_init_early */
1511 	if (!hashdist)
1512 		return;
1513 
1514 	inode_hashtable =
1515 		alloc_large_system_hash("Inode-cache",
1516 					sizeof(struct hlist_head),
1517 					ihash_entries,
1518 					14,
1519 					0,
1520 					&i_hash_shift,
1521 					&i_hash_mask,
1522 					0);
1523 
1524 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1525 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1526 }
1527 
1528 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1529 {
1530 	inode->i_mode = mode;
1531 	if (S_ISCHR(mode)) {
1532 		inode->i_fop = &def_chr_fops;
1533 		inode->i_rdev = rdev;
1534 	} else if (S_ISBLK(mode)) {
1535 		inode->i_fop = &def_blk_fops;
1536 		inode->i_rdev = rdev;
1537 	} else if (S_ISFIFO(mode))
1538 		inode->i_fop = &def_fifo_fops;
1539 	else if (S_ISSOCK(mode))
1540 		inode->i_fop = &bad_sock_fops;
1541 	else
1542 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1543 		       mode);
1544 }
1545 EXPORT_SYMBOL(init_special_inode);
1546