1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/dcache.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/writeback.h> 11 #include <linux/module.h> 12 #include <linux/backing-dev.h> 13 #include <linux/wait.h> 14 #include <linux/rwsem.h> 15 #include <linux/hash.h> 16 #include <linux/swap.h> 17 #include <linux/security.h> 18 #include <linux/pagemap.h> 19 #include <linux/cdev.h> 20 #include <linux/bootmem.h> 21 #include <linux/fsnotify.h> 22 #include <linux/mount.h> 23 #include <linux/async.h> 24 #include <linux/posix_acl.h> 25 #include <linux/prefetch.h> 26 #include <linux/ima.h> 27 #include <linux/cred.h> 28 #include <linux/buffer_head.h> /* for inode_has_buffers */ 29 #include "internal.h" 30 31 /* 32 * Inode locking rules: 33 * 34 * inode->i_lock protects: 35 * inode->i_state, inode->i_hash, __iget() 36 * inode->i_sb->s_inode_lru_lock protects: 37 * inode->i_sb->s_inode_lru, inode->i_lru 38 * inode_sb_list_lock protects: 39 * sb->s_inodes, inode->i_sb_list 40 * bdi->wb.list_lock protects: 41 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 42 * inode_hash_lock protects: 43 * inode_hashtable, inode->i_hash 44 * 45 * Lock ordering: 46 * 47 * inode_sb_list_lock 48 * inode->i_lock 49 * inode->i_sb->s_inode_lru_lock 50 * 51 * bdi->wb.list_lock 52 * inode->i_lock 53 * 54 * inode_hash_lock 55 * inode_sb_list_lock 56 * inode->i_lock 57 * 58 * iunique_lock 59 * inode_hash_lock 60 */ 61 62 static unsigned int i_hash_mask __read_mostly; 63 static unsigned int i_hash_shift __read_mostly; 64 static struct hlist_head *inode_hashtable __read_mostly; 65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 66 67 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 68 69 /* 70 * Empty aops. Can be used for the cases where the user does not 71 * define any of the address_space operations. 72 */ 73 const struct address_space_operations empty_aops = { 74 }; 75 EXPORT_SYMBOL(empty_aops); 76 77 /* 78 * Statistics gathering.. 79 */ 80 struct inodes_stat_t inodes_stat; 81 82 static DEFINE_PER_CPU(unsigned int, nr_inodes); 83 static DEFINE_PER_CPU(unsigned int, nr_unused); 84 85 static struct kmem_cache *inode_cachep __read_mostly; 86 87 static int get_nr_inodes(void) 88 { 89 int i; 90 int sum = 0; 91 for_each_possible_cpu(i) 92 sum += per_cpu(nr_inodes, i); 93 return sum < 0 ? 0 : sum; 94 } 95 96 static inline int get_nr_inodes_unused(void) 97 { 98 int i; 99 int sum = 0; 100 for_each_possible_cpu(i) 101 sum += per_cpu(nr_unused, i); 102 return sum < 0 ? 0 : sum; 103 } 104 105 int get_nr_dirty_inodes(void) 106 { 107 /* not actually dirty inodes, but a wild approximation */ 108 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 109 return nr_dirty > 0 ? nr_dirty : 0; 110 } 111 112 /* 113 * Handle nr_inode sysctl 114 */ 115 #ifdef CONFIG_SYSCTL 116 int proc_nr_inodes(ctl_table *table, int write, 117 void __user *buffer, size_t *lenp, loff_t *ppos) 118 { 119 inodes_stat.nr_inodes = get_nr_inodes(); 120 inodes_stat.nr_unused = get_nr_inodes_unused(); 121 return proc_dointvec(table, write, buffer, lenp, ppos); 122 } 123 #endif 124 125 /** 126 * inode_init_always - perform inode structure intialisation 127 * @sb: superblock inode belongs to 128 * @inode: inode to initialise 129 * 130 * These are initializations that need to be done on every inode 131 * allocation as the fields are not initialised by slab allocation. 132 */ 133 int inode_init_always(struct super_block *sb, struct inode *inode) 134 { 135 static const struct inode_operations empty_iops; 136 static const struct file_operations empty_fops; 137 struct address_space *const mapping = &inode->i_data; 138 139 inode->i_sb = sb; 140 inode->i_blkbits = sb->s_blocksize_bits; 141 inode->i_flags = 0; 142 atomic_set(&inode->i_count, 1); 143 inode->i_op = &empty_iops; 144 inode->i_fop = &empty_fops; 145 inode->i_nlink = 1; 146 inode->i_opflags = 0; 147 inode->i_uid = 0; 148 inode->i_gid = 0; 149 atomic_set(&inode->i_writecount, 0); 150 inode->i_size = 0; 151 inode->i_blocks = 0; 152 inode->i_bytes = 0; 153 inode->i_generation = 0; 154 #ifdef CONFIG_QUOTA 155 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 156 #endif 157 inode->i_pipe = NULL; 158 inode->i_bdev = NULL; 159 inode->i_cdev = NULL; 160 inode->i_rdev = 0; 161 inode->dirtied_when = 0; 162 163 if (security_inode_alloc(inode)) 164 goto out; 165 spin_lock_init(&inode->i_lock); 166 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 167 168 mutex_init(&inode->i_mutex); 169 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 170 171 atomic_set(&inode->i_dio_count, 0); 172 173 mapping->a_ops = &empty_aops; 174 mapping->host = inode; 175 mapping->flags = 0; 176 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 177 mapping->assoc_mapping = NULL; 178 mapping->backing_dev_info = &default_backing_dev_info; 179 mapping->writeback_index = 0; 180 181 /* 182 * If the block_device provides a backing_dev_info for client 183 * inodes then use that. Otherwise the inode share the bdev's 184 * backing_dev_info. 185 */ 186 if (sb->s_bdev) { 187 struct backing_dev_info *bdi; 188 189 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 190 mapping->backing_dev_info = bdi; 191 } 192 inode->i_private = NULL; 193 inode->i_mapping = mapping; 194 #ifdef CONFIG_FS_POSIX_ACL 195 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 196 #endif 197 198 #ifdef CONFIG_FSNOTIFY 199 inode->i_fsnotify_mask = 0; 200 #endif 201 202 this_cpu_inc(nr_inodes); 203 204 return 0; 205 out: 206 return -ENOMEM; 207 } 208 EXPORT_SYMBOL(inode_init_always); 209 210 static struct inode *alloc_inode(struct super_block *sb) 211 { 212 struct inode *inode; 213 214 if (sb->s_op->alloc_inode) 215 inode = sb->s_op->alloc_inode(sb); 216 else 217 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 218 219 if (!inode) 220 return NULL; 221 222 if (unlikely(inode_init_always(sb, inode))) { 223 if (inode->i_sb->s_op->destroy_inode) 224 inode->i_sb->s_op->destroy_inode(inode); 225 else 226 kmem_cache_free(inode_cachep, inode); 227 return NULL; 228 } 229 230 return inode; 231 } 232 233 void free_inode_nonrcu(struct inode *inode) 234 { 235 kmem_cache_free(inode_cachep, inode); 236 } 237 EXPORT_SYMBOL(free_inode_nonrcu); 238 239 void __destroy_inode(struct inode *inode) 240 { 241 BUG_ON(inode_has_buffers(inode)); 242 security_inode_free(inode); 243 fsnotify_inode_delete(inode); 244 #ifdef CONFIG_FS_POSIX_ACL 245 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 246 posix_acl_release(inode->i_acl); 247 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 248 posix_acl_release(inode->i_default_acl); 249 #endif 250 this_cpu_dec(nr_inodes); 251 } 252 EXPORT_SYMBOL(__destroy_inode); 253 254 static void i_callback(struct rcu_head *head) 255 { 256 struct inode *inode = container_of(head, struct inode, i_rcu); 257 INIT_LIST_HEAD(&inode->i_dentry); 258 kmem_cache_free(inode_cachep, inode); 259 } 260 261 static void destroy_inode(struct inode *inode) 262 { 263 BUG_ON(!list_empty(&inode->i_lru)); 264 __destroy_inode(inode); 265 if (inode->i_sb->s_op->destroy_inode) 266 inode->i_sb->s_op->destroy_inode(inode); 267 else 268 call_rcu(&inode->i_rcu, i_callback); 269 } 270 271 void address_space_init_once(struct address_space *mapping) 272 { 273 memset(mapping, 0, sizeof(*mapping)); 274 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 275 spin_lock_init(&mapping->tree_lock); 276 mutex_init(&mapping->i_mmap_mutex); 277 INIT_LIST_HEAD(&mapping->private_list); 278 spin_lock_init(&mapping->private_lock); 279 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); 280 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 281 } 282 EXPORT_SYMBOL(address_space_init_once); 283 284 /* 285 * These are initializations that only need to be done 286 * once, because the fields are idempotent across use 287 * of the inode, so let the slab aware of that. 288 */ 289 void inode_init_once(struct inode *inode) 290 { 291 memset(inode, 0, sizeof(*inode)); 292 INIT_HLIST_NODE(&inode->i_hash); 293 INIT_LIST_HEAD(&inode->i_dentry); 294 INIT_LIST_HEAD(&inode->i_devices); 295 INIT_LIST_HEAD(&inode->i_wb_list); 296 INIT_LIST_HEAD(&inode->i_lru); 297 address_space_init_once(&inode->i_data); 298 i_size_ordered_init(inode); 299 #ifdef CONFIG_FSNOTIFY 300 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 301 #endif 302 } 303 EXPORT_SYMBOL(inode_init_once); 304 305 static void init_once(void *foo) 306 { 307 struct inode *inode = (struct inode *) foo; 308 309 inode_init_once(inode); 310 } 311 312 /* 313 * inode->i_lock must be held 314 */ 315 void __iget(struct inode *inode) 316 { 317 atomic_inc(&inode->i_count); 318 } 319 320 /* 321 * get additional reference to inode; caller must already hold one. 322 */ 323 void ihold(struct inode *inode) 324 { 325 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 326 } 327 EXPORT_SYMBOL(ihold); 328 329 static void inode_lru_list_add(struct inode *inode) 330 { 331 spin_lock(&inode->i_sb->s_inode_lru_lock); 332 if (list_empty(&inode->i_lru)) { 333 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru); 334 inode->i_sb->s_nr_inodes_unused++; 335 this_cpu_inc(nr_unused); 336 } 337 spin_unlock(&inode->i_sb->s_inode_lru_lock); 338 } 339 340 static void inode_lru_list_del(struct inode *inode) 341 { 342 spin_lock(&inode->i_sb->s_inode_lru_lock); 343 if (!list_empty(&inode->i_lru)) { 344 list_del_init(&inode->i_lru); 345 inode->i_sb->s_nr_inodes_unused--; 346 this_cpu_dec(nr_unused); 347 } 348 spin_unlock(&inode->i_sb->s_inode_lru_lock); 349 } 350 351 /** 352 * inode_sb_list_add - add inode to the superblock list of inodes 353 * @inode: inode to add 354 */ 355 void inode_sb_list_add(struct inode *inode) 356 { 357 spin_lock(&inode_sb_list_lock); 358 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 359 spin_unlock(&inode_sb_list_lock); 360 } 361 EXPORT_SYMBOL_GPL(inode_sb_list_add); 362 363 static inline void inode_sb_list_del(struct inode *inode) 364 { 365 if (!list_empty(&inode->i_sb_list)) { 366 spin_lock(&inode_sb_list_lock); 367 list_del_init(&inode->i_sb_list); 368 spin_unlock(&inode_sb_list_lock); 369 } 370 } 371 372 static unsigned long hash(struct super_block *sb, unsigned long hashval) 373 { 374 unsigned long tmp; 375 376 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 377 L1_CACHE_BYTES; 378 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 379 return tmp & i_hash_mask; 380 } 381 382 /** 383 * __insert_inode_hash - hash an inode 384 * @inode: unhashed inode 385 * @hashval: unsigned long value used to locate this object in the 386 * inode_hashtable. 387 * 388 * Add an inode to the inode hash for this superblock. 389 */ 390 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 391 { 392 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 393 394 spin_lock(&inode_hash_lock); 395 spin_lock(&inode->i_lock); 396 hlist_add_head(&inode->i_hash, b); 397 spin_unlock(&inode->i_lock); 398 spin_unlock(&inode_hash_lock); 399 } 400 EXPORT_SYMBOL(__insert_inode_hash); 401 402 /** 403 * __remove_inode_hash - remove an inode from the hash 404 * @inode: inode to unhash 405 * 406 * Remove an inode from the superblock. 407 */ 408 void __remove_inode_hash(struct inode *inode) 409 { 410 spin_lock(&inode_hash_lock); 411 spin_lock(&inode->i_lock); 412 hlist_del_init(&inode->i_hash); 413 spin_unlock(&inode->i_lock); 414 spin_unlock(&inode_hash_lock); 415 } 416 EXPORT_SYMBOL(__remove_inode_hash); 417 418 void end_writeback(struct inode *inode) 419 { 420 might_sleep(); 421 /* 422 * We have to cycle tree_lock here because reclaim can be still in the 423 * process of removing the last page (in __delete_from_page_cache()) 424 * and we must not free mapping under it. 425 */ 426 spin_lock_irq(&inode->i_data.tree_lock); 427 BUG_ON(inode->i_data.nrpages); 428 spin_unlock_irq(&inode->i_data.tree_lock); 429 BUG_ON(!list_empty(&inode->i_data.private_list)); 430 BUG_ON(!(inode->i_state & I_FREEING)); 431 BUG_ON(inode->i_state & I_CLEAR); 432 inode_sync_wait(inode); 433 /* don't need i_lock here, no concurrent mods to i_state */ 434 inode->i_state = I_FREEING | I_CLEAR; 435 } 436 EXPORT_SYMBOL(end_writeback); 437 438 /* 439 * Free the inode passed in, removing it from the lists it is still connected 440 * to. We remove any pages still attached to the inode and wait for any IO that 441 * is still in progress before finally destroying the inode. 442 * 443 * An inode must already be marked I_FREEING so that we avoid the inode being 444 * moved back onto lists if we race with other code that manipulates the lists 445 * (e.g. writeback_single_inode). The caller is responsible for setting this. 446 * 447 * An inode must already be removed from the LRU list before being evicted from 448 * the cache. This should occur atomically with setting the I_FREEING state 449 * flag, so no inodes here should ever be on the LRU when being evicted. 450 */ 451 static void evict(struct inode *inode) 452 { 453 const struct super_operations *op = inode->i_sb->s_op; 454 455 BUG_ON(!(inode->i_state & I_FREEING)); 456 BUG_ON(!list_empty(&inode->i_lru)); 457 458 if (!list_empty(&inode->i_wb_list)) 459 inode_wb_list_del(inode); 460 461 inode_sb_list_del(inode); 462 463 if (op->evict_inode) { 464 op->evict_inode(inode); 465 } else { 466 if (inode->i_data.nrpages) 467 truncate_inode_pages(&inode->i_data, 0); 468 end_writeback(inode); 469 } 470 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 471 bd_forget(inode); 472 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 473 cd_forget(inode); 474 475 remove_inode_hash(inode); 476 477 spin_lock(&inode->i_lock); 478 wake_up_bit(&inode->i_state, __I_NEW); 479 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 480 spin_unlock(&inode->i_lock); 481 482 destroy_inode(inode); 483 } 484 485 /* 486 * dispose_list - dispose of the contents of a local list 487 * @head: the head of the list to free 488 * 489 * Dispose-list gets a local list with local inodes in it, so it doesn't 490 * need to worry about list corruption and SMP locks. 491 */ 492 static void dispose_list(struct list_head *head) 493 { 494 while (!list_empty(head)) { 495 struct inode *inode; 496 497 inode = list_first_entry(head, struct inode, i_lru); 498 list_del_init(&inode->i_lru); 499 500 evict(inode); 501 } 502 } 503 504 /** 505 * evict_inodes - evict all evictable inodes for a superblock 506 * @sb: superblock to operate on 507 * 508 * Make sure that no inodes with zero refcount are retained. This is 509 * called by superblock shutdown after having MS_ACTIVE flag removed, 510 * so any inode reaching zero refcount during or after that call will 511 * be immediately evicted. 512 */ 513 void evict_inodes(struct super_block *sb) 514 { 515 struct inode *inode, *next; 516 LIST_HEAD(dispose); 517 518 spin_lock(&inode_sb_list_lock); 519 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 520 if (atomic_read(&inode->i_count)) 521 continue; 522 523 spin_lock(&inode->i_lock); 524 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 525 spin_unlock(&inode->i_lock); 526 continue; 527 } 528 529 inode->i_state |= I_FREEING; 530 inode_lru_list_del(inode); 531 spin_unlock(&inode->i_lock); 532 list_add(&inode->i_lru, &dispose); 533 } 534 spin_unlock(&inode_sb_list_lock); 535 536 dispose_list(&dispose); 537 } 538 539 /** 540 * invalidate_inodes - attempt to free all inodes on a superblock 541 * @sb: superblock to operate on 542 * @kill_dirty: flag to guide handling of dirty inodes 543 * 544 * Attempts to free all inodes for a given superblock. If there were any 545 * busy inodes return a non-zero value, else zero. 546 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 547 * them as busy. 548 */ 549 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 550 { 551 int busy = 0; 552 struct inode *inode, *next; 553 LIST_HEAD(dispose); 554 555 spin_lock(&inode_sb_list_lock); 556 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 557 spin_lock(&inode->i_lock); 558 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 559 spin_unlock(&inode->i_lock); 560 continue; 561 } 562 if (inode->i_state & I_DIRTY && !kill_dirty) { 563 spin_unlock(&inode->i_lock); 564 busy = 1; 565 continue; 566 } 567 if (atomic_read(&inode->i_count)) { 568 spin_unlock(&inode->i_lock); 569 busy = 1; 570 continue; 571 } 572 573 inode->i_state |= I_FREEING; 574 inode_lru_list_del(inode); 575 spin_unlock(&inode->i_lock); 576 list_add(&inode->i_lru, &dispose); 577 } 578 spin_unlock(&inode_sb_list_lock); 579 580 dispose_list(&dispose); 581 582 return busy; 583 } 584 585 static int can_unuse(struct inode *inode) 586 { 587 if (inode->i_state & ~I_REFERENCED) 588 return 0; 589 if (inode_has_buffers(inode)) 590 return 0; 591 if (atomic_read(&inode->i_count)) 592 return 0; 593 if (inode->i_data.nrpages) 594 return 0; 595 return 1; 596 } 597 598 /* 599 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 600 * This is called from the superblock shrinker function with a number of inodes 601 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 602 * then are freed outside inode_lock by dispose_list(). 603 * 604 * Any inodes which are pinned purely because of attached pagecache have their 605 * pagecache removed. If the inode has metadata buffers attached to 606 * mapping->private_list then try to remove them. 607 * 608 * If the inode has the I_REFERENCED flag set, then it means that it has been 609 * used recently - the flag is set in iput_final(). When we encounter such an 610 * inode, clear the flag and move it to the back of the LRU so it gets another 611 * pass through the LRU before it gets reclaimed. This is necessary because of 612 * the fact we are doing lazy LRU updates to minimise lock contention so the 613 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 614 * with this flag set because they are the inodes that are out of order. 615 */ 616 void prune_icache_sb(struct super_block *sb, int nr_to_scan) 617 { 618 LIST_HEAD(freeable); 619 int nr_scanned; 620 unsigned long reap = 0; 621 622 spin_lock(&sb->s_inode_lru_lock); 623 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) { 624 struct inode *inode; 625 626 if (list_empty(&sb->s_inode_lru)) 627 break; 628 629 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru); 630 631 /* 632 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here, 633 * so use a trylock. If we fail to get the lock, just move the 634 * inode to the back of the list so we don't spin on it. 635 */ 636 if (!spin_trylock(&inode->i_lock)) { 637 list_move(&inode->i_lru, &sb->s_inode_lru); 638 continue; 639 } 640 641 /* 642 * Referenced or dirty inodes are still in use. Give them 643 * another pass through the LRU as we canot reclaim them now. 644 */ 645 if (atomic_read(&inode->i_count) || 646 (inode->i_state & ~I_REFERENCED)) { 647 list_del_init(&inode->i_lru); 648 spin_unlock(&inode->i_lock); 649 sb->s_nr_inodes_unused--; 650 this_cpu_dec(nr_unused); 651 continue; 652 } 653 654 /* recently referenced inodes get one more pass */ 655 if (inode->i_state & I_REFERENCED) { 656 inode->i_state &= ~I_REFERENCED; 657 list_move(&inode->i_lru, &sb->s_inode_lru); 658 spin_unlock(&inode->i_lock); 659 continue; 660 } 661 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 662 __iget(inode); 663 spin_unlock(&inode->i_lock); 664 spin_unlock(&sb->s_inode_lru_lock); 665 if (remove_inode_buffers(inode)) 666 reap += invalidate_mapping_pages(&inode->i_data, 667 0, -1); 668 iput(inode); 669 spin_lock(&sb->s_inode_lru_lock); 670 671 if (inode != list_entry(sb->s_inode_lru.next, 672 struct inode, i_lru)) 673 continue; /* wrong inode or list_empty */ 674 /* avoid lock inversions with trylock */ 675 if (!spin_trylock(&inode->i_lock)) 676 continue; 677 if (!can_unuse(inode)) { 678 spin_unlock(&inode->i_lock); 679 continue; 680 } 681 } 682 WARN_ON(inode->i_state & I_NEW); 683 inode->i_state |= I_FREEING; 684 spin_unlock(&inode->i_lock); 685 686 list_move(&inode->i_lru, &freeable); 687 sb->s_nr_inodes_unused--; 688 this_cpu_dec(nr_unused); 689 } 690 if (current_is_kswapd()) 691 __count_vm_events(KSWAPD_INODESTEAL, reap); 692 else 693 __count_vm_events(PGINODESTEAL, reap); 694 spin_unlock(&sb->s_inode_lru_lock); 695 696 dispose_list(&freeable); 697 } 698 699 static void __wait_on_freeing_inode(struct inode *inode); 700 /* 701 * Called with the inode lock held. 702 */ 703 static struct inode *find_inode(struct super_block *sb, 704 struct hlist_head *head, 705 int (*test)(struct inode *, void *), 706 void *data) 707 { 708 struct hlist_node *node; 709 struct inode *inode = NULL; 710 711 repeat: 712 hlist_for_each_entry(inode, node, head, i_hash) { 713 spin_lock(&inode->i_lock); 714 if (inode->i_sb != sb) { 715 spin_unlock(&inode->i_lock); 716 continue; 717 } 718 if (!test(inode, data)) { 719 spin_unlock(&inode->i_lock); 720 continue; 721 } 722 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 723 __wait_on_freeing_inode(inode); 724 goto repeat; 725 } 726 __iget(inode); 727 spin_unlock(&inode->i_lock); 728 return inode; 729 } 730 return NULL; 731 } 732 733 /* 734 * find_inode_fast is the fast path version of find_inode, see the comment at 735 * iget_locked for details. 736 */ 737 static struct inode *find_inode_fast(struct super_block *sb, 738 struct hlist_head *head, unsigned long ino) 739 { 740 struct hlist_node *node; 741 struct inode *inode = NULL; 742 743 repeat: 744 hlist_for_each_entry(inode, node, head, i_hash) { 745 spin_lock(&inode->i_lock); 746 if (inode->i_ino != ino) { 747 spin_unlock(&inode->i_lock); 748 continue; 749 } 750 if (inode->i_sb != sb) { 751 spin_unlock(&inode->i_lock); 752 continue; 753 } 754 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 755 __wait_on_freeing_inode(inode); 756 goto repeat; 757 } 758 __iget(inode); 759 spin_unlock(&inode->i_lock); 760 return inode; 761 } 762 return NULL; 763 } 764 765 /* 766 * Each cpu owns a range of LAST_INO_BATCH numbers. 767 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 768 * to renew the exhausted range. 769 * 770 * This does not significantly increase overflow rate because every CPU can 771 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 772 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 773 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 774 * overflow rate by 2x, which does not seem too significant. 775 * 776 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 777 * error if st_ino won't fit in target struct field. Use 32bit counter 778 * here to attempt to avoid that. 779 */ 780 #define LAST_INO_BATCH 1024 781 static DEFINE_PER_CPU(unsigned int, last_ino); 782 783 unsigned int get_next_ino(void) 784 { 785 unsigned int *p = &get_cpu_var(last_ino); 786 unsigned int res = *p; 787 788 #ifdef CONFIG_SMP 789 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 790 static atomic_t shared_last_ino; 791 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 792 793 res = next - LAST_INO_BATCH; 794 } 795 #endif 796 797 *p = ++res; 798 put_cpu_var(last_ino); 799 return res; 800 } 801 EXPORT_SYMBOL(get_next_ino); 802 803 /** 804 * new_inode_pseudo - obtain an inode 805 * @sb: superblock 806 * 807 * Allocates a new inode for given superblock. 808 * Inode wont be chained in superblock s_inodes list 809 * This means : 810 * - fs can't be unmount 811 * - quotas, fsnotify, writeback can't work 812 */ 813 struct inode *new_inode_pseudo(struct super_block *sb) 814 { 815 struct inode *inode = alloc_inode(sb); 816 817 if (inode) { 818 spin_lock(&inode->i_lock); 819 inode->i_state = 0; 820 spin_unlock(&inode->i_lock); 821 INIT_LIST_HEAD(&inode->i_sb_list); 822 } 823 return inode; 824 } 825 826 /** 827 * new_inode - obtain an inode 828 * @sb: superblock 829 * 830 * Allocates a new inode for given superblock. The default gfp_mask 831 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 832 * If HIGHMEM pages are unsuitable or it is known that pages allocated 833 * for the page cache are not reclaimable or migratable, 834 * mapping_set_gfp_mask() must be called with suitable flags on the 835 * newly created inode's mapping 836 * 837 */ 838 struct inode *new_inode(struct super_block *sb) 839 { 840 struct inode *inode; 841 842 spin_lock_prefetch(&inode_sb_list_lock); 843 844 inode = new_inode_pseudo(sb); 845 if (inode) 846 inode_sb_list_add(inode); 847 return inode; 848 } 849 EXPORT_SYMBOL(new_inode); 850 851 /** 852 * unlock_new_inode - clear the I_NEW state and wake up any waiters 853 * @inode: new inode to unlock 854 * 855 * Called when the inode is fully initialised to clear the new state of the 856 * inode and wake up anyone waiting for the inode to finish initialisation. 857 */ 858 void unlock_new_inode(struct inode *inode) 859 { 860 #ifdef CONFIG_DEBUG_LOCK_ALLOC 861 if (S_ISDIR(inode->i_mode)) { 862 struct file_system_type *type = inode->i_sb->s_type; 863 864 /* Set new key only if filesystem hasn't already changed it */ 865 if (!lockdep_match_class(&inode->i_mutex, 866 &type->i_mutex_key)) { 867 /* 868 * ensure nobody is actually holding i_mutex 869 */ 870 mutex_destroy(&inode->i_mutex); 871 mutex_init(&inode->i_mutex); 872 lockdep_set_class(&inode->i_mutex, 873 &type->i_mutex_dir_key); 874 } 875 } 876 #endif 877 spin_lock(&inode->i_lock); 878 WARN_ON(!(inode->i_state & I_NEW)); 879 inode->i_state &= ~I_NEW; 880 wake_up_bit(&inode->i_state, __I_NEW); 881 spin_unlock(&inode->i_lock); 882 } 883 EXPORT_SYMBOL(unlock_new_inode); 884 885 /** 886 * iget5_locked - obtain an inode from a mounted file system 887 * @sb: super block of file system 888 * @hashval: hash value (usually inode number) to get 889 * @test: callback used for comparisons between inodes 890 * @set: callback used to initialize a new struct inode 891 * @data: opaque data pointer to pass to @test and @set 892 * 893 * Search for the inode specified by @hashval and @data in the inode cache, 894 * and if present it is return it with an increased reference count. This is 895 * a generalized version of iget_locked() for file systems where the inode 896 * number is not sufficient for unique identification of an inode. 897 * 898 * If the inode is not in cache, allocate a new inode and return it locked, 899 * hashed, and with the I_NEW flag set. The file system gets to fill it in 900 * before unlocking it via unlock_new_inode(). 901 * 902 * Note both @test and @set are called with the inode_hash_lock held, so can't 903 * sleep. 904 */ 905 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 906 int (*test)(struct inode *, void *), 907 int (*set)(struct inode *, void *), void *data) 908 { 909 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 910 struct inode *inode; 911 912 spin_lock(&inode_hash_lock); 913 inode = find_inode(sb, head, test, data); 914 spin_unlock(&inode_hash_lock); 915 916 if (inode) { 917 wait_on_inode(inode); 918 return inode; 919 } 920 921 inode = alloc_inode(sb); 922 if (inode) { 923 struct inode *old; 924 925 spin_lock(&inode_hash_lock); 926 /* We released the lock, so.. */ 927 old = find_inode(sb, head, test, data); 928 if (!old) { 929 if (set(inode, data)) 930 goto set_failed; 931 932 spin_lock(&inode->i_lock); 933 inode->i_state = I_NEW; 934 hlist_add_head(&inode->i_hash, head); 935 spin_unlock(&inode->i_lock); 936 inode_sb_list_add(inode); 937 spin_unlock(&inode_hash_lock); 938 939 /* Return the locked inode with I_NEW set, the 940 * caller is responsible for filling in the contents 941 */ 942 return inode; 943 } 944 945 /* 946 * Uhhuh, somebody else created the same inode under 947 * us. Use the old inode instead of the one we just 948 * allocated. 949 */ 950 spin_unlock(&inode_hash_lock); 951 destroy_inode(inode); 952 inode = old; 953 wait_on_inode(inode); 954 } 955 return inode; 956 957 set_failed: 958 spin_unlock(&inode_hash_lock); 959 destroy_inode(inode); 960 return NULL; 961 } 962 EXPORT_SYMBOL(iget5_locked); 963 964 /** 965 * iget_locked - obtain an inode from a mounted file system 966 * @sb: super block of file system 967 * @ino: inode number to get 968 * 969 * Search for the inode specified by @ino in the inode cache and if present 970 * return it with an increased reference count. This is for file systems 971 * where the inode number is sufficient for unique identification of an inode. 972 * 973 * If the inode is not in cache, allocate a new inode and return it locked, 974 * hashed, and with the I_NEW flag set. The file system gets to fill it in 975 * before unlocking it via unlock_new_inode(). 976 */ 977 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 978 { 979 struct hlist_head *head = inode_hashtable + hash(sb, ino); 980 struct inode *inode; 981 982 spin_lock(&inode_hash_lock); 983 inode = find_inode_fast(sb, head, ino); 984 spin_unlock(&inode_hash_lock); 985 if (inode) { 986 wait_on_inode(inode); 987 return inode; 988 } 989 990 inode = alloc_inode(sb); 991 if (inode) { 992 struct inode *old; 993 994 spin_lock(&inode_hash_lock); 995 /* We released the lock, so.. */ 996 old = find_inode_fast(sb, head, ino); 997 if (!old) { 998 inode->i_ino = ino; 999 spin_lock(&inode->i_lock); 1000 inode->i_state = I_NEW; 1001 hlist_add_head(&inode->i_hash, head); 1002 spin_unlock(&inode->i_lock); 1003 inode_sb_list_add(inode); 1004 spin_unlock(&inode_hash_lock); 1005 1006 /* Return the locked inode with I_NEW set, the 1007 * caller is responsible for filling in the contents 1008 */ 1009 return inode; 1010 } 1011 1012 /* 1013 * Uhhuh, somebody else created the same inode under 1014 * us. Use the old inode instead of the one we just 1015 * allocated. 1016 */ 1017 spin_unlock(&inode_hash_lock); 1018 destroy_inode(inode); 1019 inode = old; 1020 wait_on_inode(inode); 1021 } 1022 return inode; 1023 } 1024 EXPORT_SYMBOL(iget_locked); 1025 1026 /* 1027 * search the inode cache for a matching inode number. 1028 * If we find one, then the inode number we are trying to 1029 * allocate is not unique and so we should not use it. 1030 * 1031 * Returns 1 if the inode number is unique, 0 if it is not. 1032 */ 1033 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1034 { 1035 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1036 struct hlist_node *node; 1037 struct inode *inode; 1038 1039 spin_lock(&inode_hash_lock); 1040 hlist_for_each_entry(inode, node, b, i_hash) { 1041 if (inode->i_ino == ino && inode->i_sb == sb) { 1042 spin_unlock(&inode_hash_lock); 1043 return 0; 1044 } 1045 } 1046 spin_unlock(&inode_hash_lock); 1047 1048 return 1; 1049 } 1050 1051 /** 1052 * iunique - get a unique inode number 1053 * @sb: superblock 1054 * @max_reserved: highest reserved inode number 1055 * 1056 * Obtain an inode number that is unique on the system for a given 1057 * superblock. This is used by file systems that have no natural 1058 * permanent inode numbering system. An inode number is returned that 1059 * is higher than the reserved limit but unique. 1060 * 1061 * BUGS: 1062 * With a large number of inodes live on the file system this function 1063 * currently becomes quite slow. 1064 */ 1065 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1066 { 1067 /* 1068 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1069 * error if st_ino won't fit in target struct field. Use 32bit counter 1070 * here to attempt to avoid that. 1071 */ 1072 static DEFINE_SPINLOCK(iunique_lock); 1073 static unsigned int counter; 1074 ino_t res; 1075 1076 spin_lock(&iunique_lock); 1077 do { 1078 if (counter <= max_reserved) 1079 counter = max_reserved + 1; 1080 res = counter++; 1081 } while (!test_inode_iunique(sb, res)); 1082 spin_unlock(&iunique_lock); 1083 1084 return res; 1085 } 1086 EXPORT_SYMBOL(iunique); 1087 1088 struct inode *igrab(struct inode *inode) 1089 { 1090 spin_lock(&inode->i_lock); 1091 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1092 __iget(inode); 1093 spin_unlock(&inode->i_lock); 1094 } else { 1095 spin_unlock(&inode->i_lock); 1096 /* 1097 * Handle the case where s_op->clear_inode is not been 1098 * called yet, and somebody is calling igrab 1099 * while the inode is getting freed. 1100 */ 1101 inode = NULL; 1102 } 1103 return inode; 1104 } 1105 EXPORT_SYMBOL(igrab); 1106 1107 /** 1108 * ilookup5_nowait - search for an inode in the inode cache 1109 * @sb: super block of file system to search 1110 * @hashval: hash value (usually inode number) to search for 1111 * @test: callback used for comparisons between inodes 1112 * @data: opaque data pointer to pass to @test 1113 * 1114 * Search for the inode specified by @hashval and @data in the inode cache. 1115 * If the inode is in the cache, the inode is returned with an incremented 1116 * reference count. 1117 * 1118 * Note: I_NEW is not waited upon so you have to be very careful what you do 1119 * with the returned inode. You probably should be using ilookup5() instead. 1120 * 1121 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1122 */ 1123 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1124 int (*test)(struct inode *, void *), void *data) 1125 { 1126 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1127 struct inode *inode; 1128 1129 spin_lock(&inode_hash_lock); 1130 inode = find_inode(sb, head, test, data); 1131 spin_unlock(&inode_hash_lock); 1132 1133 return inode; 1134 } 1135 EXPORT_SYMBOL(ilookup5_nowait); 1136 1137 /** 1138 * ilookup5 - search for an inode in the inode cache 1139 * @sb: super block of file system to search 1140 * @hashval: hash value (usually inode number) to search for 1141 * @test: callback used for comparisons between inodes 1142 * @data: opaque data pointer to pass to @test 1143 * 1144 * Search for the inode specified by @hashval and @data in the inode cache, 1145 * and if the inode is in the cache, return the inode with an incremented 1146 * reference count. Waits on I_NEW before returning the inode. 1147 * returned with an incremented reference count. 1148 * 1149 * This is a generalized version of ilookup() for file systems where the 1150 * inode number is not sufficient for unique identification of an inode. 1151 * 1152 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1153 */ 1154 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1155 int (*test)(struct inode *, void *), void *data) 1156 { 1157 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1158 1159 if (inode) 1160 wait_on_inode(inode); 1161 return inode; 1162 } 1163 EXPORT_SYMBOL(ilookup5); 1164 1165 /** 1166 * ilookup - search for an inode in the inode cache 1167 * @sb: super block of file system to search 1168 * @ino: inode number to search for 1169 * 1170 * Search for the inode @ino in the inode cache, and if the inode is in the 1171 * cache, the inode is returned with an incremented reference count. 1172 */ 1173 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1174 { 1175 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1176 struct inode *inode; 1177 1178 spin_lock(&inode_hash_lock); 1179 inode = find_inode_fast(sb, head, ino); 1180 spin_unlock(&inode_hash_lock); 1181 1182 if (inode) 1183 wait_on_inode(inode); 1184 return inode; 1185 } 1186 EXPORT_SYMBOL(ilookup); 1187 1188 int insert_inode_locked(struct inode *inode) 1189 { 1190 struct super_block *sb = inode->i_sb; 1191 ino_t ino = inode->i_ino; 1192 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1193 1194 while (1) { 1195 struct hlist_node *node; 1196 struct inode *old = NULL; 1197 spin_lock(&inode_hash_lock); 1198 hlist_for_each_entry(old, node, head, i_hash) { 1199 if (old->i_ino != ino) 1200 continue; 1201 if (old->i_sb != sb) 1202 continue; 1203 spin_lock(&old->i_lock); 1204 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1205 spin_unlock(&old->i_lock); 1206 continue; 1207 } 1208 break; 1209 } 1210 if (likely(!node)) { 1211 spin_lock(&inode->i_lock); 1212 inode->i_state |= I_NEW; 1213 hlist_add_head(&inode->i_hash, head); 1214 spin_unlock(&inode->i_lock); 1215 spin_unlock(&inode_hash_lock); 1216 return 0; 1217 } 1218 __iget(old); 1219 spin_unlock(&old->i_lock); 1220 spin_unlock(&inode_hash_lock); 1221 wait_on_inode(old); 1222 if (unlikely(!inode_unhashed(old))) { 1223 iput(old); 1224 return -EBUSY; 1225 } 1226 iput(old); 1227 } 1228 } 1229 EXPORT_SYMBOL(insert_inode_locked); 1230 1231 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1232 int (*test)(struct inode *, void *), void *data) 1233 { 1234 struct super_block *sb = inode->i_sb; 1235 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1236 1237 while (1) { 1238 struct hlist_node *node; 1239 struct inode *old = NULL; 1240 1241 spin_lock(&inode_hash_lock); 1242 hlist_for_each_entry(old, node, head, i_hash) { 1243 if (old->i_sb != sb) 1244 continue; 1245 if (!test(old, data)) 1246 continue; 1247 spin_lock(&old->i_lock); 1248 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1249 spin_unlock(&old->i_lock); 1250 continue; 1251 } 1252 break; 1253 } 1254 if (likely(!node)) { 1255 spin_lock(&inode->i_lock); 1256 inode->i_state |= I_NEW; 1257 hlist_add_head(&inode->i_hash, head); 1258 spin_unlock(&inode->i_lock); 1259 spin_unlock(&inode_hash_lock); 1260 return 0; 1261 } 1262 __iget(old); 1263 spin_unlock(&old->i_lock); 1264 spin_unlock(&inode_hash_lock); 1265 wait_on_inode(old); 1266 if (unlikely(!inode_unhashed(old))) { 1267 iput(old); 1268 return -EBUSY; 1269 } 1270 iput(old); 1271 } 1272 } 1273 EXPORT_SYMBOL(insert_inode_locked4); 1274 1275 1276 int generic_delete_inode(struct inode *inode) 1277 { 1278 return 1; 1279 } 1280 EXPORT_SYMBOL(generic_delete_inode); 1281 1282 /* 1283 * Normal UNIX filesystem behaviour: delete the 1284 * inode when the usage count drops to zero, and 1285 * i_nlink is zero. 1286 */ 1287 int generic_drop_inode(struct inode *inode) 1288 { 1289 return !inode->i_nlink || inode_unhashed(inode); 1290 } 1291 EXPORT_SYMBOL_GPL(generic_drop_inode); 1292 1293 /* 1294 * Called when we're dropping the last reference 1295 * to an inode. 1296 * 1297 * Call the FS "drop_inode()" function, defaulting to 1298 * the legacy UNIX filesystem behaviour. If it tells 1299 * us to evict inode, do so. Otherwise, retain inode 1300 * in cache if fs is alive, sync and evict if fs is 1301 * shutting down. 1302 */ 1303 static void iput_final(struct inode *inode) 1304 { 1305 struct super_block *sb = inode->i_sb; 1306 const struct super_operations *op = inode->i_sb->s_op; 1307 int drop; 1308 1309 WARN_ON(inode->i_state & I_NEW); 1310 1311 if (op->drop_inode) 1312 drop = op->drop_inode(inode); 1313 else 1314 drop = generic_drop_inode(inode); 1315 1316 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1317 inode->i_state |= I_REFERENCED; 1318 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1319 inode_lru_list_add(inode); 1320 spin_unlock(&inode->i_lock); 1321 return; 1322 } 1323 1324 if (!drop) { 1325 inode->i_state |= I_WILL_FREE; 1326 spin_unlock(&inode->i_lock); 1327 write_inode_now(inode, 1); 1328 spin_lock(&inode->i_lock); 1329 WARN_ON(inode->i_state & I_NEW); 1330 inode->i_state &= ~I_WILL_FREE; 1331 } 1332 1333 inode->i_state |= I_FREEING; 1334 if (!list_empty(&inode->i_lru)) 1335 inode_lru_list_del(inode); 1336 spin_unlock(&inode->i_lock); 1337 1338 evict(inode); 1339 } 1340 1341 /** 1342 * iput - put an inode 1343 * @inode: inode to put 1344 * 1345 * Puts an inode, dropping its usage count. If the inode use count hits 1346 * zero, the inode is then freed and may also be destroyed. 1347 * 1348 * Consequently, iput() can sleep. 1349 */ 1350 void iput(struct inode *inode) 1351 { 1352 if (inode) { 1353 BUG_ON(inode->i_state & I_CLEAR); 1354 1355 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1356 iput_final(inode); 1357 } 1358 } 1359 EXPORT_SYMBOL(iput); 1360 1361 /** 1362 * bmap - find a block number in a file 1363 * @inode: inode of file 1364 * @block: block to find 1365 * 1366 * Returns the block number on the device holding the inode that 1367 * is the disk block number for the block of the file requested. 1368 * That is, asked for block 4 of inode 1 the function will return the 1369 * disk block relative to the disk start that holds that block of the 1370 * file. 1371 */ 1372 sector_t bmap(struct inode *inode, sector_t block) 1373 { 1374 sector_t res = 0; 1375 if (inode->i_mapping->a_ops->bmap) 1376 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1377 return res; 1378 } 1379 EXPORT_SYMBOL(bmap); 1380 1381 /* 1382 * With relative atime, only update atime if the previous atime is 1383 * earlier than either the ctime or mtime or if at least a day has 1384 * passed since the last atime update. 1385 */ 1386 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1387 struct timespec now) 1388 { 1389 1390 if (!(mnt->mnt_flags & MNT_RELATIME)) 1391 return 1; 1392 /* 1393 * Is mtime younger than atime? If yes, update atime: 1394 */ 1395 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1396 return 1; 1397 /* 1398 * Is ctime younger than atime? If yes, update atime: 1399 */ 1400 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1401 return 1; 1402 1403 /* 1404 * Is the previous atime value older than a day? If yes, 1405 * update atime: 1406 */ 1407 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1408 return 1; 1409 /* 1410 * Good, we can skip the atime update: 1411 */ 1412 return 0; 1413 } 1414 1415 /** 1416 * touch_atime - update the access time 1417 * @mnt: mount the inode is accessed on 1418 * @dentry: dentry accessed 1419 * 1420 * Update the accessed time on an inode and mark it for writeback. 1421 * This function automatically handles read only file systems and media, 1422 * as well as the "noatime" flag and inode specific "noatime" markers. 1423 */ 1424 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1425 { 1426 struct inode *inode = dentry->d_inode; 1427 struct timespec now; 1428 1429 if (inode->i_flags & S_NOATIME) 1430 return; 1431 if (IS_NOATIME(inode)) 1432 return; 1433 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1434 return; 1435 1436 if (mnt->mnt_flags & MNT_NOATIME) 1437 return; 1438 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1439 return; 1440 1441 now = current_fs_time(inode->i_sb); 1442 1443 if (!relatime_need_update(mnt, inode, now)) 1444 return; 1445 1446 if (timespec_equal(&inode->i_atime, &now)) 1447 return; 1448 1449 if (mnt_want_write(mnt)) 1450 return; 1451 1452 inode->i_atime = now; 1453 mark_inode_dirty_sync(inode); 1454 mnt_drop_write(mnt); 1455 } 1456 EXPORT_SYMBOL(touch_atime); 1457 1458 /** 1459 * file_update_time - update mtime and ctime time 1460 * @file: file accessed 1461 * 1462 * Update the mtime and ctime members of an inode and mark the inode 1463 * for writeback. Note that this function is meant exclusively for 1464 * usage in the file write path of filesystems, and filesystems may 1465 * choose to explicitly ignore update via this function with the 1466 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1467 * timestamps are handled by the server. 1468 */ 1469 1470 void file_update_time(struct file *file) 1471 { 1472 struct inode *inode = file->f_path.dentry->d_inode; 1473 struct timespec now; 1474 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1475 1476 /* First try to exhaust all avenues to not sync */ 1477 if (IS_NOCMTIME(inode)) 1478 return; 1479 1480 now = current_fs_time(inode->i_sb); 1481 if (!timespec_equal(&inode->i_mtime, &now)) 1482 sync_it = S_MTIME; 1483 1484 if (!timespec_equal(&inode->i_ctime, &now)) 1485 sync_it |= S_CTIME; 1486 1487 if (IS_I_VERSION(inode)) 1488 sync_it |= S_VERSION; 1489 1490 if (!sync_it) 1491 return; 1492 1493 /* Finally allowed to write? Takes lock. */ 1494 if (mnt_want_write_file(file)) 1495 return; 1496 1497 /* Only change inode inside the lock region */ 1498 if (sync_it & S_VERSION) 1499 inode_inc_iversion(inode); 1500 if (sync_it & S_CTIME) 1501 inode->i_ctime = now; 1502 if (sync_it & S_MTIME) 1503 inode->i_mtime = now; 1504 mark_inode_dirty_sync(inode); 1505 mnt_drop_write(file->f_path.mnt); 1506 } 1507 EXPORT_SYMBOL(file_update_time); 1508 1509 int inode_needs_sync(struct inode *inode) 1510 { 1511 if (IS_SYNC(inode)) 1512 return 1; 1513 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1514 return 1; 1515 return 0; 1516 } 1517 EXPORT_SYMBOL(inode_needs_sync); 1518 1519 int inode_wait(void *word) 1520 { 1521 schedule(); 1522 return 0; 1523 } 1524 EXPORT_SYMBOL(inode_wait); 1525 1526 /* 1527 * If we try to find an inode in the inode hash while it is being 1528 * deleted, we have to wait until the filesystem completes its 1529 * deletion before reporting that it isn't found. This function waits 1530 * until the deletion _might_ have completed. Callers are responsible 1531 * to recheck inode state. 1532 * 1533 * It doesn't matter if I_NEW is not set initially, a call to 1534 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1535 * will DTRT. 1536 */ 1537 static void __wait_on_freeing_inode(struct inode *inode) 1538 { 1539 wait_queue_head_t *wq; 1540 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1541 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1542 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1543 spin_unlock(&inode->i_lock); 1544 spin_unlock(&inode_hash_lock); 1545 schedule(); 1546 finish_wait(wq, &wait.wait); 1547 spin_lock(&inode_hash_lock); 1548 } 1549 1550 static __initdata unsigned long ihash_entries; 1551 static int __init set_ihash_entries(char *str) 1552 { 1553 if (!str) 1554 return 0; 1555 ihash_entries = simple_strtoul(str, &str, 0); 1556 return 1; 1557 } 1558 __setup("ihash_entries=", set_ihash_entries); 1559 1560 /* 1561 * Initialize the waitqueues and inode hash table. 1562 */ 1563 void __init inode_init_early(void) 1564 { 1565 int loop; 1566 1567 /* If hashes are distributed across NUMA nodes, defer 1568 * hash allocation until vmalloc space is available. 1569 */ 1570 if (hashdist) 1571 return; 1572 1573 inode_hashtable = 1574 alloc_large_system_hash("Inode-cache", 1575 sizeof(struct hlist_head), 1576 ihash_entries, 1577 14, 1578 HASH_EARLY, 1579 &i_hash_shift, 1580 &i_hash_mask, 1581 0); 1582 1583 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1584 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1585 } 1586 1587 void __init inode_init(void) 1588 { 1589 int loop; 1590 1591 /* inode slab cache */ 1592 inode_cachep = kmem_cache_create("inode_cache", 1593 sizeof(struct inode), 1594 0, 1595 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1596 SLAB_MEM_SPREAD), 1597 init_once); 1598 1599 /* Hash may have been set up in inode_init_early */ 1600 if (!hashdist) 1601 return; 1602 1603 inode_hashtable = 1604 alloc_large_system_hash("Inode-cache", 1605 sizeof(struct hlist_head), 1606 ihash_entries, 1607 14, 1608 0, 1609 &i_hash_shift, 1610 &i_hash_mask, 1611 0); 1612 1613 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1614 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1615 } 1616 1617 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1618 { 1619 inode->i_mode = mode; 1620 if (S_ISCHR(mode)) { 1621 inode->i_fop = &def_chr_fops; 1622 inode->i_rdev = rdev; 1623 } else if (S_ISBLK(mode)) { 1624 inode->i_fop = &def_blk_fops; 1625 inode->i_rdev = rdev; 1626 } else if (S_ISFIFO(mode)) 1627 inode->i_fop = &def_fifo_fops; 1628 else if (S_ISSOCK(mode)) 1629 inode->i_fop = &bad_sock_fops; 1630 else 1631 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1632 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1633 inode->i_ino); 1634 } 1635 EXPORT_SYMBOL(init_special_inode); 1636 1637 /** 1638 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1639 * @inode: New inode 1640 * @dir: Directory inode 1641 * @mode: mode of the new inode 1642 */ 1643 void inode_init_owner(struct inode *inode, const struct inode *dir, 1644 mode_t mode) 1645 { 1646 inode->i_uid = current_fsuid(); 1647 if (dir && dir->i_mode & S_ISGID) { 1648 inode->i_gid = dir->i_gid; 1649 if (S_ISDIR(mode)) 1650 mode |= S_ISGID; 1651 } else 1652 inode->i_gid = current_fsgid(); 1653 inode->i_mode = mode; 1654 } 1655 EXPORT_SYMBOL(inode_init_owner); 1656 1657 /** 1658 * inode_owner_or_capable - check current task permissions to inode 1659 * @inode: inode being checked 1660 * 1661 * Return true if current either has CAP_FOWNER to the inode, or 1662 * owns the file. 1663 */ 1664 bool inode_owner_or_capable(const struct inode *inode) 1665 { 1666 struct user_namespace *ns = inode_userns(inode); 1667 1668 if (current_user_ns() == ns && current_fsuid() == inode->i_uid) 1669 return true; 1670 if (ns_capable(ns, CAP_FOWNER)) 1671 return true; 1672 return false; 1673 } 1674 EXPORT_SYMBOL(inode_owner_or_capable); 1675