xref: /linux/fs/inode.c (revision 7c43185138cf523b0810ffd2c9e18e2ecb356730)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include "internal.h"
30 
31 /*
32  * Inode locking rules:
33  *
34  * inode->i_lock protects:
35  *   inode->i_state, inode->i_hash, __iget()
36  * inode->i_sb->s_inode_lru_lock protects:
37  *   inode->i_sb->s_inode_lru, inode->i_lru
38  * inode_sb_list_lock protects:
39  *   sb->s_inodes, inode->i_sb_list
40  * bdi->wb.list_lock protects:
41  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42  * inode_hash_lock protects:
43  *   inode_hashtable, inode->i_hash
44  *
45  * Lock ordering:
46  *
47  * inode_sb_list_lock
48  *   inode->i_lock
49  *     inode->i_sb->s_inode_lru_lock
50  *
51  * bdi->wb.list_lock
52  *   inode->i_lock
53  *
54  * inode_hash_lock
55  *   inode_sb_list_lock
56  *   inode->i_lock
57  *
58  * iunique_lock
59  *   inode_hash_lock
60  */
61 
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 static struct hlist_head *inode_hashtable __read_mostly;
65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
66 
67 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
68 
69 /*
70  * Empty aops. Can be used for the cases where the user does not
71  * define any of the address_space operations.
72  */
73 const struct address_space_operations empty_aops = {
74 };
75 EXPORT_SYMBOL(empty_aops);
76 
77 /*
78  * Statistics gathering..
79  */
80 struct inodes_stat_t inodes_stat;
81 
82 static DEFINE_PER_CPU(unsigned int, nr_inodes);
83 static DEFINE_PER_CPU(unsigned int, nr_unused);
84 
85 static struct kmem_cache *inode_cachep __read_mostly;
86 
87 static int get_nr_inodes(void)
88 {
89 	int i;
90 	int sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_inodes, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 static inline int get_nr_inodes_unused(void)
97 {
98 	int i;
99 	int sum = 0;
100 	for_each_possible_cpu(i)
101 		sum += per_cpu(nr_unused, i);
102 	return sum < 0 ? 0 : sum;
103 }
104 
105 int get_nr_dirty_inodes(void)
106 {
107 	/* not actually dirty inodes, but a wild approximation */
108 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
109 	return nr_dirty > 0 ? nr_dirty : 0;
110 }
111 
112 /*
113  * Handle nr_inode sysctl
114  */
115 #ifdef CONFIG_SYSCTL
116 int proc_nr_inodes(ctl_table *table, int write,
117 		   void __user *buffer, size_t *lenp, loff_t *ppos)
118 {
119 	inodes_stat.nr_inodes = get_nr_inodes();
120 	inodes_stat.nr_unused = get_nr_inodes_unused();
121 	return proc_dointvec(table, write, buffer, lenp, ppos);
122 }
123 #endif
124 
125 /**
126  * inode_init_always - perform inode structure intialisation
127  * @sb: superblock inode belongs to
128  * @inode: inode to initialise
129  *
130  * These are initializations that need to be done on every inode
131  * allocation as the fields are not initialised by slab allocation.
132  */
133 int inode_init_always(struct super_block *sb, struct inode *inode)
134 {
135 	static const struct inode_operations empty_iops;
136 	static const struct file_operations empty_fops;
137 	struct address_space *const mapping = &inode->i_data;
138 
139 	inode->i_sb = sb;
140 	inode->i_blkbits = sb->s_blocksize_bits;
141 	inode->i_flags = 0;
142 	atomic_set(&inode->i_count, 1);
143 	inode->i_op = &empty_iops;
144 	inode->i_fop = &empty_fops;
145 	inode->i_nlink = 1;
146 	inode->i_opflags = 0;
147 	inode->i_uid = 0;
148 	inode->i_gid = 0;
149 	atomic_set(&inode->i_writecount, 0);
150 	inode->i_size = 0;
151 	inode->i_blocks = 0;
152 	inode->i_bytes = 0;
153 	inode->i_generation = 0;
154 #ifdef CONFIG_QUOTA
155 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
156 #endif
157 	inode->i_pipe = NULL;
158 	inode->i_bdev = NULL;
159 	inode->i_cdev = NULL;
160 	inode->i_rdev = 0;
161 	inode->dirtied_when = 0;
162 
163 	if (security_inode_alloc(inode))
164 		goto out;
165 	spin_lock_init(&inode->i_lock);
166 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
167 
168 	mutex_init(&inode->i_mutex);
169 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
170 
171 	atomic_set(&inode->i_dio_count, 0);
172 
173 	mapping->a_ops = &empty_aops;
174 	mapping->host = inode;
175 	mapping->flags = 0;
176 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
177 	mapping->assoc_mapping = NULL;
178 	mapping->backing_dev_info = &default_backing_dev_info;
179 	mapping->writeback_index = 0;
180 
181 	/*
182 	 * If the block_device provides a backing_dev_info for client
183 	 * inodes then use that.  Otherwise the inode share the bdev's
184 	 * backing_dev_info.
185 	 */
186 	if (sb->s_bdev) {
187 		struct backing_dev_info *bdi;
188 
189 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
190 		mapping->backing_dev_info = bdi;
191 	}
192 	inode->i_private = NULL;
193 	inode->i_mapping = mapping;
194 #ifdef CONFIG_FS_POSIX_ACL
195 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
196 #endif
197 
198 #ifdef CONFIG_FSNOTIFY
199 	inode->i_fsnotify_mask = 0;
200 #endif
201 
202 	this_cpu_inc(nr_inodes);
203 
204 	return 0;
205 out:
206 	return -ENOMEM;
207 }
208 EXPORT_SYMBOL(inode_init_always);
209 
210 static struct inode *alloc_inode(struct super_block *sb)
211 {
212 	struct inode *inode;
213 
214 	if (sb->s_op->alloc_inode)
215 		inode = sb->s_op->alloc_inode(sb);
216 	else
217 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
218 
219 	if (!inode)
220 		return NULL;
221 
222 	if (unlikely(inode_init_always(sb, inode))) {
223 		if (inode->i_sb->s_op->destroy_inode)
224 			inode->i_sb->s_op->destroy_inode(inode);
225 		else
226 			kmem_cache_free(inode_cachep, inode);
227 		return NULL;
228 	}
229 
230 	return inode;
231 }
232 
233 void free_inode_nonrcu(struct inode *inode)
234 {
235 	kmem_cache_free(inode_cachep, inode);
236 }
237 EXPORT_SYMBOL(free_inode_nonrcu);
238 
239 void __destroy_inode(struct inode *inode)
240 {
241 	BUG_ON(inode_has_buffers(inode));
242 	security_inode_free(inode);
243 	fsnotify_inode_delete(inode);
244 #ifdef CONFIG_FS_POSIX_ACL
245 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
246 		posix_acl_release(inode->i_acl);
247 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
248 		posix_acl_release(inode->i_default_acl);
249 #endif
250 	this_cpu_dec(nr_inodes);
251 }
252 EXPORT_SYMBOL(__destroy_inode);
253 
254 static void i_callback(struct rcu_head *head)
255 {
256 	struct inode *inode = container_of(head, struct inode, i_rcu);
257 	INIT_LIST_HEAD(&inode->i_dentry);
258 	kmem_cache_free(inode_cachep, inode);
259 }
260 
261 static void destroy_inode(struct inode *inode)
262 {
263 	BUG_ON(!list_empty(&inode->i_lru));
264 	__destroy_inode(inode);
265 	if (inode->i_sb->s_op->destroy_inode)
266 		inode->i_sb->s_op->destroy_inode(inode);
267 	else
268 		call_rcu(&inode->i_rcu, i_callback);
269 }
270 
271 void address_space_init_once(struct address_space *mapping)
272 {
273 	memset(mapping, 0, sizeof(*mapping));
274 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
275 	spin_lock_init(&mapping->tree_lock);
276 	mutex_init(&mapping->i_mmap_mutex);
277 	INIT_LIST_HEAD(&mapping->private_list);
278 	spin_lock_init(&mapping->private_lock);
279 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
280 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
281 }
282 EXPORT_SYMBOL(address_space_init_once);
283 
284 /*
285  * These are initializations that only need to be done
286  * once, because the fields are idempotent across use
287  * of the inode, so let the slab aware of that.
288  */
289 void inode_init_once(struct inode *inode)
290 {
291 	memset(inode, 0, sizeof(*inode));
292 	INIT_HLIST_NODE(&inode->i_hash);
293 	INIT_LIST_HEAD(&inode->i_dentry);
294 	INIT_LIST_HEAD(&inode->i_devices);
295 	INIT_LIST_HEAD(&inode->i_wb_list);
296 	INIT_LIST_HEAD(&inode->i_lru);
297 	address_space_init_once(&inode->i_data);
298 	i_size_ordered_init(inode);
299 #ifdef CONFIG_FSNOTIFY
300 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
301 #endif
302 }
303 EXPORT_SYMBOL(inode_init_once);
304 
305 static void init_once(void *foo)
306 {
307 	struct inode *inode = (struct inode *) foo;
308 
309 	inode_init_once(inode);
310 }
311 
312 /*
313  * inode->i_lock must be held
314  */
315 void __iget(struct inode *inode)
316 {
317 	atomic_inc(&inode->i_count);
318 }
319 
320 /*
321  * get additional reference to inode; caller must already hold one.
322  */
323 void ihold(struct inode *inode)
324 {
325 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
326 }
327 EXPORT_SYMBOL(ihold);
328 
329 static void inode_lru_list_add(struct inode *inode)
330 {
331 	spin_lock(&inode->i_sb->s_inode_lru_lock);
332 	if (list_empty(&inode->i_lru)) {
333 		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
334 		inode->i_sb->s_nr_inodes_unused++;
335 		this_cpu_inc(nr_unused);
336 	}
337 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
338 }
339 
340 static void inode_lru_list_del(struct inode *inode)
341 {
342 	spin_lock(&inode->i_sb->s_inode_lru_lock);
343 	if (!list_empty(&inode->i_lru)) {
344 		list_del_init(&inode->i_lru);
345 		inode->i_sb->s_nr_inodes_unused--;
346 		this_cpu_dec(nr_unused);
347 	}
348 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
349 }
350 
351 /**
352  * inode_sb_list_add - add inode to the superblock list of inodes
353  * @inode: inode to add
354  */
355 void inode_sb_list_add(struct inode *inode)
356 {
357 	spin_lock(&inode_sb_list_lock);
358 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
359 	spin_unlock(&inode_sb_list_lock);
360 }
361 EXPORT_SYMBOL_GPL(inode_sb_list_add);
362 
363 static inline void inode_sb_list_del(struct inode *inode)
364 {
365 	if (!list_empty(&inode->i_sb_list)) {
366 		spin_lock(&inode_sb_list_lock);
367 		list_del_init(&inode->i_sb_list);
368 		spin_unlock(&inode_sb_list_lock);
369 	}
370 }
371 
372 static unsigned long hash(struct super_block *sb, unsigned long hashval)
373 {
374 	unsigned long tmp;
375 
376 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
377 			L1_CACHE_BYTES;
378 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
379 	return tmp & i_hash_mask;
380 }
381 
382 /**
383  *	__insert_inode_hash - hash an inode
384  *	@inode: unhashed inode
385  *	@hashval: unsigned long value used to locate this object in the
386  *		inode_hashtable.
387  *
388  *	Add an inode to the inode hash for this superblock.
389  */
390 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
391 {
392 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
393 
394 	spin_lock(&inode_hash_lock);
395 	spin_lock(&inode->i_lock);
396 	hlist_add_head(&inode->i_hash, b);
397 	spin_unlock(&inode->i_lock);
398 	spin_unlock(&inode_hash_lock);
399 }
400 EXPORT_SYMBOL(__insert_inode_hash);
401 
402 /**
403  *	__remove_inode_hash - remove an inode from the hash
404  *	@inode: inode to unhash
405  *
406  *	Remove an inode from the superblock.
407  */
408 void __remove_inode_hash(struct inode *inode)
409 {
410 	spin_lock(&inode_hash_lock);
411 	spin_lock(&inode->i_lock);
412 	hlist_del_init(&inode->i_hash);
413 	spin_unlock(&inode->i_lock);
414 	spin_unlock(&inode_hash_lock);
415 }
416 EXPORT_SYMBOL(__remove_inode_hash);
417 
418 void end_writeback(struct inode *inode)
419 {
420 	might_sleep();
421 	/*
422 	 * We have to cycle tree_lock here because reclaim can be still in the
423 	 * process of removing the last page (in __delete_from_page_cache())
424 	 * and we must not free mapping under it.
425 	 */
426 	spin_lock_irq(&inode->i_data.tree_lock);
427 	BUG_ON(inode->i_data.nrpages);
428 	spin_unlock_irq(&inode->i_data.tree_lock);
429 	BUG_ON(!list_empty(&inode->i_data.private_list));
430 	BUG_ON(!(inode->i_state & I_FREEING));
431 	BUG_ON(inode->i_state & I_CLEAR);
432 	inode_sync_wait(inode);
433 	/* don't need i_lock here, no concurrent mods to i_state */
434 	inode->i_state = I_FREEING | I_CLEAR;
435 }
436 EXPORT_SYMBOL(end_writeback);
437 
438 /*
439  * Free the inode passed in, removing it from the lists it is still connected
440  * to. We remove any pages still attached to the inode and wait for any IO that
441  * is still in progress before finally destroying the inode.
442  *
443  * An inode must already be marked I_FREEING so that we avoid the inode being
444  * moved back onto lists if we race with other code that manipulates the lists
445  * (e.g. writeback_single_inode). The caller is responsible for setting this.
446  *
447  * An inode must already be removed from the LRU list before being evicted from
448  * the cache. This should occur atomically with setting the I_FREEING state
449  * flag, so no inodes here should ever be on the LRU when being evicted.
450  */
451 static void evict(struct inode *inode)
452 {
453 	const struct super_operations *op = inode->i_sb->s_op;
454 
455 	BUG_ON(!(inode->i_state & I_FREEING));
456 	BUG_ON(!list_empty(&inode->i_lru));
457 
458 	if (!list_empty(&inode->i_wb_list))
459 		inode_wb_list_del(inode);
460 
461 	inode_sb_list_del(inode);
462 
463 	if (op->evict_inode) {
464 		op->evict_inode(inode);
465 	} else {
466 		if (inode->i_data.nrpages)
467 			truncate_inode_pages(&inode->i_data, 0);
468 		end_writeback(inode);
469 	}
470 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
471 		bd_forget(inode);
472 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
473 		cd_forget(inode);
474 
475 	remove_inode_hash(inode);
476 
477 	spin_lock(&inode->i_lock);
478 	wake_up_bit(&inode->i_state, __I_NEW);
479 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
480 	spin_unlock(&inode->i_lock);
481 
482 	destroy_inode(inode);
483 }
484 
485 /*
486  * dispose_list - dispose of the contents of a local list
487  * @head: the head of the list to free
488  *
489  * Dispose-list gets a local list with local inodes in it, so it doesn't
490  * need to worry about list corruption and SMP locks.
491  */
492 static void dispose_list(struct list_head *head)
493 {
494 	while (!list_empty(head)) {
495 		struct inode *inode;
496 
497 		inode = list_first_entry(head, struct inode, i_lru);
498 		list_del_init(&inode->i_lru);
499 
500 		evict(inode);
501 	}
502 }
503 
504 /**
505  * evict_inodes	- evict all evictable inodes for a superblock
506  * @sb:		superblock to operate on
507  *
508  * Make sure that no inodes with zero refcount are retained.  This is
509  * called by superblock shutdown after having MS_ACTIVE flag removed,
510  * so any inode reaching zero refcount during or after that call will
511  * be immediately evicted.
512  */
513 void evict_inodes(struct super_block *sb)
514 {
515 	struct inode *inode, *next;
516 	LIST_HEAD(dispose);
517 
518 	spin_lock(&inode_sb_list_lock);
519 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
520 		if (atomic_read(&inode->i_count))
521 			continue;
522 
523 		spin_lock(&inode->i_lock);
524 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
525 			spin_unlock(&inode->i_lock);
526 			continue;
527 		}
528 
529 		inode->i_state |= I_FREEING;
530 		inode_lru_list_del(inode);
531 		spin_unlock(&inode->i_lock);
532 		list_add(&inode->i_lru, &dispose);
533 	}
534 	spin_unlock(&inode_sb_list_lock);
535 
536 	dispose_list(&dispose);
537 }
538 
539 /**
540  * invalidate_inodes	- attempt to free all inodes on a superblock
541  * @sb:		superblock to operate on
542  * @kill_dirty: flag to guide handling of dirty inodes
543  *
544  * Attempts to free all inodes for a given superblock.  If there were any
545  * busy inodes return a non-zero value, else zero.
546  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
547  * them as busy.
548  */
549 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
550 {
551 	int busy = 0;
552 	struct inode *inode, *next;
553 	LIST_HEAD(dispose);
554 
555 	spin_lock(&inode_sb_list_lock);
556 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
557 		spin_lock(&inode->i_lock);
558 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
559 			spin_unlock(&inode->i_lock);
560 			continue;
561 		}
562 		if (inode->i_state & I_DIRTY && !kill_dirty) {
563 			spin_unlock(&inode->i_lock);
564 			busy = 1;
565 			continue;
566 		}
567 		if (atomic_read(&inode->i_count)) {
568 			spin_unlock(&inode->i_lock);
569 			busy = 1;
570 			continue;
571 		}
572 
573 		inode->i_state |= I_FREEING;
574 		inode_lru_list_del(inode);
575 		spin_unlock(&inode->i_lock);
576 		list_add(&inode->i_lru, &dispose);
577 	}
578 	spin_unlock(&inode_sb_list_lock);
579 
580 	dispose_list(&dispose);
581 
582 	return busy;
583 }
584 
585 static int can_unuse(struct inode *inode)
586 {
587 	if (inode->i_state & ~I_REFERENCED)
588 		return 0;
589 	if (inode_has_buffers(inode))
590 		return 0;
591 	if (atomic_read(&inode->i_count))
592 		return 0;
593 	if (inode->i_data.nrpages)
594 		return 0;
595 	return 1;
596 }
597 
598 /*
599  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
600  * This is called from the superblock shrinker function with a number of inodes
601  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
602  * then are freed outside inode_lock by dispose_list().
603  *
604  * Any inodes which are pinned purely because of attached pagecache have their
605  * pagecache removed.  If the inode has metadata buffers attached to
606  * mapping->private_list then try to remove them.
607  *
608  * If the inode has the I_REFERENCED flag set, then it means that it has been
609  * used recently - the flag is set in iput_final(). When we encounter such an
610  * inode, clear the flag and move it to the back of the LRU so it gets another
611  * pass through the LRU before it gets reclaimed. This is necessary because of
612  * the fact we are doing lazy LRU updates to minimise lock contention so the
613  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
614  * with this flag set because they are the inodes that are out of order.
615  */
616 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
617 {
618 	LIST_HEAD(freeable);
619 	int nr_scanned;
620 	unsigned long reap = 0;
621 
622 	spin_lock(&sb->s_inode_lru_lock);
623 	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
624 		struct inode *inode;
625 
626 		if (list_empty(&sb->s_inode_lru))
627 			break;
628 
629 		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
630 
631 		/*
632 		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
633 		 * so use a trylock. If we fail to get the lock, just move the
634 		 * inode to the back of the list so we don't spin on it.
635 		 */
636 		if (!spin_trylock(&inode->i_lock)) {
637 			list_move(&inode->i_lru, &sb->s_inode_lru);
638 			continue;
639 		}
640 
641 		/*
642 		 * Referenced or dirty inodes are still in use. Give them
643 		 * another pass through the LRU as we canot reclaim them now.
644 		 */
645 		if (atomic_read(&inode->i_count) ||
646 		    (inode->i_state & ~I_REFERENCED)) {
647 			list_del_init(&inode->i_lru);
648 			spin_unlock(&inode->i_lock);
649 			sb->s_nr_inodes_unused--;
650 			this_cpu_dec(nr_unused);
651 			continue;
652 		}
653 
654 		/* recently referenced inodes get one more pass */
655 		if (inode->i_state & I_REFERENCED) {
656 			inode->i_state &= ~I_REFERENCED;
657 			list_move(&inode->i_lru, &sb->s_inode_lru);
658 			spin_unlock(&inode->i_lock);
659 			continue;
660 		}
661 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
662 			__iget(inode);
663 			spin_unlock(&inode->i_lock);
664 			spin_unlock(&sb->s_inode_lru_lock);
665 			if (remove_inode_buffers(inode))
666 				reap += invalidate_mapping_pages(&inode->i_data,
667 								0, -1);
668 			iput(inode);
669 			spin_lock(&sb->s_inode_lru_lock);
670 
671 			if (inode != list_entry(sb->s_inode_lru.next,
672 						struct inode, i_lru))
673 				continue;	/* wrong inode or list_empty */
674 			/* avoid lock inversions with trylock */
675 			if (!spin_trylock(&inode->i_lock))
676 				continue;
677 			if (!can_unuse(inode)) {
678 				spin_unlock(&inode->i_lock);
679 				continue;
680 			}
681 		}
682 		WARN_ON(inode->i_state & I_NEW);
683 		inode->i_state |= I_FREEING;
684 		spin_unlock(&inode->i_lock);
685 
686 		list_move(&inode->i_lru, &freeable);
687 		sb->s_nr_inodes_unused--;
688 		this_cpu_dec(nr_unused);
689 	}
690 	if (current_is_kswapd())
691 		__count_vm_events(KSWAPD_INODESTEAL, reap);
692 	else
693 		__count_vm_events(PGINODESTEAL, reap);
694 	spin_unlock(&sb->s_inode_lru_lock);
695 
696 	dispose_list(&freeable);
697 }
698 
699 static void __wait_on_freeing_inode(struct inode *inode);
700 /*
701  * Called with the inode lock held.
702  */
703 static struct inode *find_inode(struct super_block *sb,
704 				struct hlist_head *head,
705 				int (*test)(struct inode *, void *),
706 				void *data)
707 {
708 	struct hlist_node *node;
709 	struct inode *inode = NULL;
710 
711 repeat:
712 	hlist_for_each_entry(inode, node, head, i_hash) {
713 		spin_lock(&inode->i_lock);
714 		if (inode->i_sb != sb) {
715 			spin_unlock(&inode->i_lock);
716 			continue;
717 		}
718 		if (!test(inode, data)) {
719 			spin_unlock(&inode->i_lock);
720 			continue;
721 		}
722 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
723 			__wait_on_freeing_inode(inode);
724 			goto repeat;
725 		}
726 		__iget(inode);
727 		spin_unlock(&inode->i_lock);
728 		return inode;
729 	}
730 	return NULL;
731 }
732 
733 /*
734  * find_inode_fast is the fast path version of find_inode, see the comment at
735  * iget_locked for details.
736  */
737 static struct inode *find_inode_fast(struct super_block *sb,
738 				struct hlist_head *head, unsigned long ino)
739 {
740 	struct hlist_node *node;
741 	struct inode *inode = NULL;
742 
743 repeat:
744 	hlist_for_each_entry(inode, node, head, i_hash) {
745 		spin_lock(&inode->i_lock);
746 		if (inode->i_ino != ino) {
747 			spin_unlock(&inode->i_lock);
748 			continue;
749 		}
750 		if (inode->i_sb != sb) {
751 			spin_unlock(&inode->i_lock);
752 			continue;
753 		}
754 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
755 			__wait_on_freeing_inode(inode);
756 			goto repeat;
757 		}
758 		__iget(inode);
759 		spin_unlock(&inode->i_lock);
760 		return inode;
761 	}
762 	return NULL;
763 }
764 
765 /*
766  * Each cpu owns a range of LAST_INO_BATCH numbers.
767  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
768  * to renew the exhausted range.
769  *
770  * This does not significantly increase overflow rate because every CPU can
771  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
772  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
773  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
774  * overflow rate by 2x, which does not seem too significant.
775  *
776  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
777  * error if st_ino won't fit in target struct field. Use 32bit counter
778  * here to attempt to avoid that.
779  */
780 #define LAST_INO_BATCH 1024
781 static DEFINE_PER_CPU(unsigned int, last_ino);
782 
783 unsigned int get_next_ino(void)
784 {
785 	unsigned int *p = &get_cpu_var(last_ino);
786 	unsigned int res = *p;
787 
788 #ifdef CONFIG_SMP
789 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
790 		static atomic_t shared_last_ino;
791 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
792 
793 		res = next - LAST_INO_BATCH;
794 	}
795 #endif
796 
797 	*p = ++res;
798 	put_cpu_var(last_ino);
799 	return res;
800 }
801 EXPORT_SYMBOL(get_next_ino);
802 
803 /**
804  *	new_inode_pseudo 	- obtain an inode
805  *	@sb: superblock
806  *
807  *	Allocates a new inode for given superblock.
808  *	Inode wont be chained in superblock s_inodes list
809  *	This means :
810  *	- fs can't be unmount
811  *	- quotas, fsnotify, writeback can't work
812  */
813 struct inode *new_inode_pseudo(struct super_block *sb)
814 {
815 	struct inode *inode = alloc_inode(sb);
816 
817 	if (inode) {
818 		spin_lock(&inode->i_lock);
819 		inode->i_state = 0;
820 		spin_unlock(&inode->i_lock);
821 		INIT_LIST_HEAD(&inode->i_sb_list);
822 	}
823 	return inode;
824 }
825 
826 /**
827  *	new_inode 	- obtain an inode
828  *	@sb: superblock
829  *
830  *	Allocates a new inode for given superblock. The default gfp_mask
831  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
832  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
833  *	for the page cache are not reclaimable or migratable,
834  *	mapping_set_gfp_mask() must be called with suitable flags on the
835  *	newly created inode's mapping
836  *
837  */
838 struct inode *new_inode(struct super_block *sb)
839 {
840 	struct inode *inode;
841 
842 	spin_lock_prefetch(&inode_sb_list_lock);
843 
844 	inode = new_inode_pseudo(sb);
845 	if (inode)
846 		inode_sb_list_add(inode);
847 	return inode;
848 }
849 EXPORT_SYMBOL(new_inode);
850 
851 /**
852  * unlock_new_inode - clear the I_NEW state and wake up any waiters
853  * @inode:	new inode to unlock
854  *
855  * Called when the inode is fully initialised to clear the new state of the
856  * inode and wake up anyone waiting for the inode to finish initialisation.
857  */
858 void unlock_new_inode(struct inode *inode)
859 {
860 #ifdef CONFIG_DEBUG_LOCK_ALLOC
861 	if (S_ISDIR(inode->i_mode)) {
862 		struct file_system_type *type = inode->i_sb->s_type;
863 
864 		/* Set new key only if filesystem hasn't already changed it */
865 		if (!lockdep_match_class(&inode->i_mutex,
866 		    &type->i_mutex_key)) {
867 			/*
868 			 * ensure nobody is actually holding i_mutex
869 			 */
870 			mutex_destroy(&inode->i_mutex);
871 			mutex_init(&inode->i_mutex);
872 			lockdep_set_class(&inode->i_mutex,
873 					  &type->i_mutex_dir_key);
874 		}
875 	}
876 #endif
877 	spin_lock(&inode->i_lock);
878 	WARN_ON(!(inode->i_state & I_NEW));
879 	inode->i_state &= ~I_NEW;
880 	wake_up_bit(&inode->i_state, __I_NEW);
881 	spin_unlock(&inode->i_lock);
882 }
883 EXPORT_SYMBOL(unlock_new_inode);
884 
885 /**
886  * iget5_locked - obtain an inode from a mounted file system
887  * @sb:		super block of file system
888  * @hashval:	hash value (usually inode number) to get
889  * @test:	callback used for comparisons between inodes
890  * @set:	callback used to initialize a new struct inode
891  * @data:	opaque data pointer to pass to @test and @set
892  *
893  * Search for the inode specified by @hashval and @data in the inode cache,
894  * and if present it is return it with an increased reference count. This is
895  * a generalized version of iget_locked() for file systems where the inode
896  * number is not sufficient for unique identification of an inode.
897  *
898  * If the inode is not in cache, allocate a new inode and return it locked,
899  * hashed, and with the I_NEW flag set. The file system gets to fill it in
900  * before unlocking it via unlock_new_inode().
901  *
902  * Note both @test and @set are called with the inode_hash_lock held, so can't
903  * sleep.
904  */
905 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
906 		int (*test)(struct inode *, void *),
907 		int (*set)(struct inode *, void *), void *data)
908 {
909 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
910 	struct inode *inode;
911 
912 	spin_lock(&inode_hash_lock);
913 	inode = find_inode(sb, head, test, data);
914 	spin_unlock(&inode_hash_lock);
915 
916 	if (inode) {
917 		wait_on_inode(inode);
918 		return inode;
919 	}
920 
921 	inode = alloc_inode(sb);
922 	if (inode) {
923 		struct inode *old;
924 
925 		spin_lock(&inode_hash_lock);
926 		/* We released the lock, so.. */
927 		old = find_inode(sb, head, test, data);
928 		if (!old) {
929 			if (set(inode, data))
930 				goto set_failed;
931 
932 			spin_lock(&inode->i_lock);
933 			inode->i_state = I_NEW;
934 			hlist_add_head(&inode->i_hash, head);
935 			spin_unlock(&inode->i_lock);
936 			inode_sb_list_add(inode);
937 			spin_unlock(&inode_hash_lock);
938 
939 			/* Return the locked inode with I_NEW set, the
940 			 * caller is responsible for filling in the contents
941 			 */
942 			return inode;
943 		}
944 
945 		/*
946 		 * Uhhuh, somebody else created the same inode under
947 		 * us. Use the old inode instead of the one we just
948 		 * allocated.
949 		 */
950 		spin_unlock(&inode_hash_lock);
951 		destroy_inode(inode);
952 		inode = old;
953 		wait_on_inode(inode);
954 	}
955 	return inode;
956 
957 set_failed:
958 	spin_unlock(&inode_hash_lock);
959 	destroy_inode(inode);
960 	return NULL;
961 }
962 EXPORT_SYMBOL(iget5_locked);
963 
964 /**
965  * iget_locked - obtain an inode from a mounted file system
966  * @sb:		super block of file system
967  * @ino:	inode number to get
968  *
969  * Search for the inode specified by @ino in the inode cache and if present
970  * return it with an increased reference count. This is for file systems
971  * where the inode number is sufficient for unique identification of an inode.
972  *
973  * If the inode is not in cache, allocate a new inode and return it locked,
974  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
975  * before unlocking it via unlock_new_inode().
976  */
977 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
978 {
979 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
980 	struct inode *inode;
981 
982 	spin_lock(&inode_hash_lock);
983 	inode = find_inode_fast(sb, head, ino);
984 	spin_unlock(&inode_hash_lock);
985 	if (inode) {
986 		wait_on_inode(inode);
987 		return inode;
988 	}
989 
990 	inode = alloc_inode(sb);
991 	if (inode) {
992 		struct inode *old;
993 
994 		spin_lock(&inode_hash_lock);
995 		/* We released the lock, so.. */
996 		old = find_inode_fast(sb, head, ino);
997 		if (!old) {
998 			inode->i_ino = ino;
999 			spin_lock(&inode->i_lock);
1000 			inode->i_state = I_NEW;
1001 			hlist_add_head(&inode->i_hash, head);
1002 			spin_unlock(&inode->i_lock);
1003 			inode_sb_list_add(inode);
1004 			spin_unlock(&inode_hash_lock);
1005 
1006 			/* Return the locked inode with I_NEW set, the
1007 			 * caller is responsible for filling in the contents
1008 			 */
1009 			return inode;
1010 		}
1011 
1012 		/*
1013 		 * Uhhuh, somebody else created the same inode under
1014 		 * us. Use the old inode instead of the one we just
1015 		 * allocated.
1016 		 */
1017 		spin_unlock(&inode_hash_lock);
1018 		destroy_inode(inode);
1019 		inode = old;
1020 		wait_on_inode(inode);
1021 	}
1022 	return inode;
1023 }
1024 EXPORT_SYMBOL(iget_locked);
1025 
1026 /*
1027  * search the inode cache for a matching inode number.
1028  * If we find one, then the inode number we are trying to
1029  * allocate is not unique and so we should not use it.
1030  *
1031  * Returns 1 if the inode number is unique, 0 if it is not.
1032  */
1033 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1034 {
1035 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1036 	struct hlist_node *node;
1037 	struct inode *inode;
1038 
1039 	spin_lock(&inode_hash_lock);
1040 	hlist_for_each_entry(inode, node, b, i_hash) {
1041 		if (inode->i_ino == ino && inode->i_sb == sb) {
1042 			spin_unlock(&inode_hash_lock);
1043 			return 0;
1044 		}
1045 	}
1046 	spin_unlock(&inode_hash_lock);
1047 
1048 	return 1;
1049 }
1050 
1051 /**
1052  *	iunique - get a unique inode number
1053  *	@sb: superblock
1054  *	@max_reserved: highest reserved inode number
1055  *
1056  *	Obtain an inode number that is unique on the system for a given
1057  *	superblock. This is used by file systems that have no natural
1058  *	permanent inode numbering system. An inode number is returned that
1059  *	is higher than the reserved limit but unique.
1060  *
1061  *	BUGS:
1062  *	With a large number of inodes live on the file system this function
1063  *	currently becomes quite slow.
1064  */
1065 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1066 {
1067 	/*
1068 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1069 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1070 	 * here to attempt to avoid that.
1071 	 */
1072 	static DEFINE_SPINLOCK(iunique_lock);
1073 	static unsigned int counter;
1074 	ino_t res;
1075 
1076 	spin_lock(&iunique_lock);
1077 	do {
1078 		if (counter <= max_reserved)
1079 			counter = max_reserved + 1;
1080 		res = counter++;
1081 	} while (!test_inode_iunique(sb, res));
1082 	spin_unlock(&iunique_lock);
1083 
1084 	return res;
1085 }
1086 EXPORT_SYMBOL(iunique);
1087 
1088 struct inode *igrab(struct inode *inode)
1089 {
1090 	spin_lock(&inode->i_lock);
1091 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1092 		__iget(inode);
1093 		spin_unlock(&inode->i_lock);
1094 	} else {
1095 		spin_unlock(&inode->i_lock);
1096 		/*
1097 		 * Handle the case where s_op->clear_inode is not been
1098 		 * called yet, and somebody is calling igrab
1099 		 * while the inode is getting freed.
1100 		 */
1101 		inode = NULL;
1102 	}
1103 	return inode;
1104 }
1105 EXPORT_SYMBOL(igrab);
1106 
1107 /**
1108  * ilookup5_nowait - search for an inode in the inode cache
1109  * @sb:		super block of file system to search
1110  * @hashval:	hash value (usually inode number) to search for
1111  * @test:	callback used for comparisons between inodes
1112  * @data:	opaque data pointer to pass to @test
1113  *
1114  * Search for the inode specified by @hashval and @data in the inode cache.
1115  * If the inode is in the cache, the inode is returned with an incremented
1116  * reference count.
1117  *
1118  * Note: I_NEW is not waited upon so you have to be very careful what you do
1119  * with the returned inode.  You probably should be using ilookup5() instead.
1120  *
1121  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1122  */
1123 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1124 		int (*test)(struct inode *, void *), void *data)
1125 {
1126 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1127 	struct inode *inode;
1128 
1129 	spin_lock(&inode_hash_lock);
1130 	inode = find_inode(sb, head, test, data);
1131 	spin_unlock(&inode_hash_lock);
1132 
1133 	return inode;
1134 }
1135 EXPORT_SYMBOL(ilookup5_nowait);
1136 
1137 /**
1138  * ilookup5 - search for an inode in the inode cache
1139  * @sb:		super block of file system to search
1140  * @hashval:	hash value (usually inode number) to search for
1141  * @test:	callback used for comparisons between inodes
1142  * @data:	opaque data pointer to pass to @test
1143  *
1144  * Search for the inode specified by @hashval and @data in the inode cache,
1145  * and if the inode is in the cache, return the inode with an incremented
1146  * reference count.  Waits on I_NEW before returning the inode.
1147  * returned with an incremented reference count.
1148  *
1149  * This is a generalized version of ilookup() for file systems where the
1150  * inode number is not sufficient for unique identification of an inode.
1151  *
1152  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1153  */
1154 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1155 		int (*test)(struct inode *, void *), void *data)
1156 {
1157 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1158 
1159 	if (inode)
1160 		wait_on_inode(inode);
1161 	return inode;
1162 }
1163 EXPORT_SYMBOL(ilookup5);
1164 
1165 /**
1166  * ilookup - search for an inode in the inode cache
1167  * @sb:		super block of file system to search
1168  * @ino:	inode number to search for
1169  *
1170  * Search for the inode @ino in the inode cache, and if the inode is in the
1171  * cache, the inode is returned with an incremented reference count.
1172  */
1173 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1174 {
1175 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1176 	struct inode *inode;
1177 
1178 	spin_lock(&inode_hash_lock);
1179 	inode = find_inode_fast(sb, head, ino);
1180 	spin_unlock(&inode_hash_lock);
1181 
1182 	if (inode)
1183 		wait_on_inode(inode);
1184 	return inode;
1185 }
1186 EXPORT_SYMBOL(ilookup);
1187 
1188 int insert_inode_locked(struct inode *inode)
1189 {
1190 	struct super_block *sb = inode->i_sb;
1191 	ino_t ino = inode->i_ino;
1192 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1193 
1194 	while (1) {
1195 		struct hlist_node *node;
1196 		struct inode *old = NULL;
1197 		spin_lock(&inode_hash_lock);
1198 		hlist_for_each_entry(old, node, head, i_hash) {
1199 			if (old->i_ino != ino)
1200 				continue;
1201 			if (old->i_sb != sb)
1202 				continue;
1203 			spin_lock(&old->i_lock);
1204 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1205 				spin_unlock(&old->i_lock);
1206 				continue;
1207 			}
1208 			break;
1209 		}
1210 		if (likely(!node)) {
1211 			spin_lock(&inode->i_lock);
1212 			inode->i_state |= I_NEW;
1213 			hlist_add_head(&inode->i_hash, head);
1214 			spin_unlock(&inode->i_lock);
1215 			spin_unlock(&inode_hash_lock);
1216 			return 0;
1217 		}
1218 		__iget(old);
1219 		spin_unlock(&old->i_lock);
1220 		spin_unlock(&inode_hash_lock);
1221 		wait_on_inode(old);
1222 		if (unlikely(!inode_unhashed(old))) {
1223 			iput(old);
1224 			return -EBUSY;
1225 		}
1226 		iput(old);
1227 	}
1228 }
1229 EXPORT_SYMBOL(insert_inode_locked);
1230 
1231 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1232 		int (*test)(struct inode *, void *), void *data)
1233 {
1234 	struct super_block *sb = inode->i_sb;
1235 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1236 
1237 	while (1) {
1238 		struct hlist_node *node;
1239 		struct inode *old = NULL;
1240 
1241 		spin_lock(&inode_hash_lock);
1242 		hlist_for_each_entry(old, node, head, i_hash) {
1243 			if (old->i_sb != sb)
1244 				continue;
1245 			if (!test(old, data))
1246 				continue;
1247 			spin_lock(&old->i_lock);
1248 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1249 				spin_unlock(&old->i_lock);
1250 				continue;
1251 			}
1252 			break;
1253 		}
1254 		if (likely(!node)) {
1255 			spin_lock(&inode->i_lock);
1256 			inode->i_state |= I_NEW;
1257 			hlist_add_head(&inode->i_hash, head);
1258 			spin_unlock(&inode->i_lock);
1259 			spin_unlock(&inode_hash_lock);
1260 			return 0;
1261 		}
1262 		__iget(old);
1263 		spin_unlock(&old->i_lock);
1264 		spin_unlock(&inode_hash_lock);
1265 		wait_on_inode(old);
1266 		if (unlikely(!inode_unhashed(old))) {
1267 			iput(old);
1268 			return -EBUSY;
1269 		}
1270 		iput(old);
1271 	}
1272 }
1273 EXPORT_SYMBOL(insert_inode_locked4);
1274 
1275 
1276 int generic_delete_inode(struct inode *inode)
1277 {
1278 	return 1;
1279 }
1280 EXPORT_SYMBOL(generic_delete_inode);
1281 
1282 /*
1283  * Normal UNIX filesystem behaviour: delete the
1284  * inode when the usage count drops to zero, and
1285  * i_nlink is zero.
1286  */
1287 int generic_drop_inode(struct inode *inode)
1288 {
1289 	return !inode->i_nlink || inode_unhashed(inode);
1290 }
1291 EXPORT_SYMBOL_GPL(generic_drop_inode);
1292 
1293 /*
1294  * Called when we're dropping the last reference
1295  * to an inode.
1296  *
1297  * Call the FS "drop_inode()" function, defaulting to
1298  * the legacy UNIX filesystem behaviour.  If it tells
1299  * us to evict inode, do so.  Otherwise, retain inode
1300  * in cache if fs is alive, sync and evict if fs is
1301  * shutting down.
1302  */
1303 static void iput_final(struct inode *inode)
1304 {
1305 	struct super_block *sb = inode->i_sb;
1306 	const struct super_operations *op = inode->i_sb->s_op;
1307 	int drop;
1308 
1309 	WARN_ON(inode->i_state & I_NEW);
1310 
1311 	if (op->drop_inode)
1312 		drop = op->drop_inode(inode);
1313 	else
1314 		drop = generic_drop_inode(inode);
1315 
1316 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1317 		inode->i_state |= I_REFERENCED;
1318 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1319 			inode_lru_list_add(inode);
1320 		spin_unlock(&inode->i_lock);
1321 		return;
1322 	}
1323 
1324 	if (!drop) {
1325 		inode->i_state |= I_WILL_FREE;
1326 		spin_unlock(&inode->i_lock);
1327 		write_inode_now(inode, 1);
1328 		spin_lock(&inode->i_lock);
1329 		WARN_ON(inode->i_state & I_NEW);
1330 		inode->i_state &= ~I_WILL_FREE;
1331 	}
1332 
1333 	inode->i_state |= I_FREEING;
1334 	if (!list_empty(&inode->i_lru))
1335 		inode_lru_list_del(inode);
1336 	spin_unlock(&inode->i_lock);
1337 
1338 	evict(inode);
1339 }
1340 
1341 /**
1342  *	iput	- put an inode
1343  *	@inode: inode to put
1344  *
1345  *	Puts an inode, dropping its usage count. If the inode use count hits
1346  *	zero, the inode is then freed and may also be destroyed.
1347  *
1348  *	Consequently, iput() can sleep.
1349  */
1350 void iput(struct inode *inode)
1351 {
1352 	if (inode) {
1353 		BUG_ON(inode->i_state & I_CLEAR);
1354 
1355 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1356 			iput_final(inode);
1357 	}
1358 }
1359 EXPORT_SYMBOL(iput);
1360 
1361 /**
1362  *	bmap	- find a block number in a file
1363  *	@inode: inode of file
1364  *	@block: block to find
1365  *
1366  *	Returns the block number on the device holding the inode that
1367  *	is the disk block number for the block of the file requested.
1368  *	That is, asked for block 4 of inode 1 the function will return the
1369  *	disk block relative to the disk start that holds that block of the
1370  *	file.
1371  */
1372 sector_t bmap(struct inode *inode, sector_t block)
1373 {
1374 	sector_t res = 0;
1375 	if (inode->i_mapping->a_ops->bmap)
1376 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1377 	return res;
1378 }
1379 EXPORT_SYMBOL(bmap);
1380 
1381 /*
1382  * With relative atime, only update atime if the previous atime is
1383  * earlier than either the ctime or mtime or if at least a day has
1384  * passed since the last atime update.
1385  */
1386 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1387 			     struct timespec now)
1388 {
1389 
1390 	if (!(mnt->mnt_flags & MNT_RELATIME))
1391 		return 1;
1392 	/*
1393 	 * Is mtime younger than atime? If yes, update atime:
1394 	 */
1395 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1396 		return 1;
1397 	/*
1398 	 * Is ctime younger than atime? If yes, update atime:
1399 	 */
1400 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1401 		return 1;
1402 
1403 	/*
1404 	 * Is the previous atime value older than a day? If yes,
1405 	 * update atime:
1406 	 */
1407 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1408 		return 1;
1409 	/*
1410 	 * Good, we can skip the atime update:
1411 	 */
1412 	return 0;
1413 }
1414 
1415 /**
1416  *	touch_atime	-	update the access time
1417  *	@mnt: mount the inode is accessed on
1418  *	@dentry: dentry accessed
1419  *
1420  *	Update the accessed time on an inode and mark it for writeback.
1421  *	This function automatically handles read only file systems and media,
1422  *	as well as the "noatime" flag and inode specific "noatime" markers.
1423  */
1424 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1425 {
1426 	struct inode *inode = dentry->d_inode;
1427 	struct timespec now;
1428 
1429 	if (inode->i_flags & S_NOATIME)
1430 		return;
1431 	if (IS_NOATIME(inode))
1432 		return;
1433 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1434 		return;
1435 
1436 	if (mnt->mnt_flags & MNT_NOATIME)
1437 		return;
1438 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1439 		return;
1440 
1441 	now = current_fs_time(inode->i_sb);
1442 
1443 	if (!relatime_need_update(mnt, inode, now))
1444 		return;
1445 
1446 	if (timespec_equal(&inode->i_atime, &now))
1447 		return;
1448 
1449 	if (mnt_want_write(mnt))
1450 		return;
1451 
1452 	inode->i_atime = now;
1453 	mark_inode_dirty_sync(inode);
1454 	mnt_drop_write(mnt);
1455 }
1456 EXPORT_SYMBOL(touch_atime);
1457 
1458 /**
1459  *	file_update_time	-	update mtime and ctime time
1460  *	@file: file accessed
1461  *
1462  *	Update the mtime and ctime members of an inode and mark the inode
1463  *	for writeback.  Note that this function is meant exclusively for
1464  *	usage in the file write path of filesystems, and filesystems may
1465  *	choose to explicitly ignore update via this function with the
1466  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1467  *	timestamps are handled by the server.
1468  */
1469 
1470 void file_update_time(struct file *file)
1471 {
1472 	struct inode *inode = file->f_path.dentry->d_inode;
1473 	struct timespec now;
1474 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1475 
1476 	/* First try to exhaust all avenues to not sync */
1477 	if (IS_NOCMTIME(inode))
1478 		return;
1479 
1480 	now = current_fs_time(inode->i_sb);
1481 	if (!timespec_equal(&inode->i_mtime, &now))
1482 		sync_it = S_MTIME;
1483 
1484 	if (!timespec_equal(&inode->i_ctime, &now))
1485 		sync_it |= S_CTIME;
1486 
1487 	if (IS_I_VERSION(inode))
1488 		sync_it |= S_VERSION;
1489 
1490 	if (!sync_it)
1491 		return;
1492 
1493 	/* Finally allowed to write? Takes lock. */
1494 	if (mnt_want_write_file(file))
1495 		return;
1496 
1497 	/* Only change inode inside the lock region */
1498 	if (sync_it & S_VERSION)
1499 		inode_inc_iversion(inode);
1500 	if (sync_it & S_CTIME)
1501 		inode->i_ctime = now;
1502 	if (sync_it & S_MTIME)
1503 		inode->i_mtime = now;
1504 	mark_inode_dirty_sync(inode);
1505 	mnt_drop_write(file->f_path.mnt);
1506 }
1507 EXPORT_SYMBOL(file_update_time);
1508 
1509 int inode_needs_sync(struct inode *inode)
1510 {
1511 	if (IS_SYNC(inode))
1512 		return 1;
1513 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1514 		return 1;
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL(inode_needs_sync);
1518 
1519 int inode_wait(void *word)
1520 {
1521 	schedule();
1522 	return 0;
1523 }
1524 EXPORT_SYMBOL(inode_wait);
1525 
1526 /*
1527  * If we try to find an inode in the inode hash while it is being
1528  * deleted, we have to wait until the filesystem completes its
1529  * deletion before reporting that it isn't found.  This function waits
1530  * until the deletion _might_ have completed.  Callers are responsible
1531  * to recheck inode state.
1532  *
1533  * It doesn't matter if I_NEW is not set initially, a call to
1534  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1535  * will DTRT.
1536  */
1537 static void __wait_on_freeing_inode(struct inode *inode)
1538 {
1539 	wait_queue_head_t *wq;
1540 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1541 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1542 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1543 	spin_unlock(&inode->i_lock);
1544 	spin_unlock(&inode_hash_lock);
1545 	schedule();
1546 	finish_wait(wq, &wait.wait);
1547 	spin_lock(&inode_hash_lock);
1548 }
1549 
1550 static __initdata unsigned long ihash_entries;
1551 static int __init set_ihash_entries(char *str)
1552 {
1553 	if (!str)
1554 		return 0;
1555 	ihash_entries = simple_strtoul(str, &str, 0);
1556 	return 1;
1557 }
1558 __setup("ihash_entries=", set_ihash_entries);
1559 
1560 /*
1561  * Initialize the waitqueues and inode hash table.
1562  */
1563 void __init inode_init_early(void)
1564 {
1565 	int loop;
1566 
1567 	/* If hashes are distributed across NUMA nodes, defer
1568 	 * hash allocation until vmalloc space is available.
1569 	 */
1570 	if (hashdist)
1571 		return;
1572 
1573 	inode_hashtable =
1574 		alloc_large_system_hash("Inode-cache",
1575 					sizeof(struct hlist_head),
1576 					ihash_entries,
1577 					14,
1578 					HASH_EARLY,
1579 					&i_hash_shift,
1580 					&i_hash_mask,
1581 					0);
1582 
1583 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1584 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1585 }
1586 
1587 void __init inode_init(void)
1588 {
1589 	int loop;
1590 
1591 	/* inode slab cache */
1592 	inode_cachep = kmem_cache_create("inode_cache",
1593 					 sizeof(struct inode),
1594 					 0,
1595 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1596 					 SLAB_MEM_SPREAD),
1597 					 init_once);
1598 
1599 	/* Hash may have been set up in inode_init_early */
1600 	if (!hashdist)
1601 		return;
1602 
1603 	inode_hashtable =
1604 		alloc_large_system_hash("Inode-cache",
1605 					sizeof(struct hlist_head),
1606 					ihash_entries,
1607 					14,
1608 					0,
1609 					&i_hash_shift,
1610 					&i_hash_mask,
1611 					0);
1612 
1613 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1614 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1615 }
1616 
1617 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1618 {
1619 	inode->i_mode = mode;
1620 	if (S_ISCHR(mode)) {
1621 		inode->i_fop = &def_chr_fops;
1622 		inode->i_rdev = rdev;
1623 	} else if (S_ISBLK(mode)) {
1624 		inode->i_fop = &def_blk_fops;
1625 		inode->i_rdev = rdev;
1626 	} else if (S_ISFIFO(mode))
1627 		inode->i_fop = &def_fifo_fops;
1628 	else if (S_ISSOCK(mode))
1629 		inode->i_fop = &bad_sock_fops;
1630 	else
1631 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1632 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1633 				  inode->i_ino);
1634 }
1635 EXPORT_SYMBOL(init_special_inode);
1636 
1637 /**
1638  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1639  * @inode: New inode
1640  * @dir: Directory inode
1641  * @mode: mode of the new inode
1642  */
1643 void inode_init_owner(struct inode *inode, const struct inode *dir,
1644 			mode_t mode)
1645 {
1646 	inode->i_uid = current_fsuid();
1647 	if (dir && dir->i_mode & S_ISGID) {
1648 		inode->i_gid = dir->i_gid;
1649 		if (S_ISDIR(mode))
1650 			mode |= S_ISGID;
1651 	} else
1652 		inode->i_gid = current_fsgid();
1653 	inode->i_mode = mode;
1654 }
1655 EXPORT_SYMBOL(inode_init_owner);
1656 
1657 /**
1658  * inode_owner_or_capable - check current task permissions to inode
1659  * @inode: inode being checked
1660  *
1661  * Return true if current either has CAP_FOWNER to the inode, or
1662  * owns the file.
1663  */
1664 bool inode_owner_or_capable(const struct inode *inode)
1665 {
1666 	struct user_namespace *ns = inode_userns(inode);
1667 
1668 	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1669 		return true;
1670 	if (ns_capable(ns, CAP_FOWNER))
1671 		return true;
1672 	return false;
1673 }
1674 EXPORT_SYMBOL(inode_owner_or_capable);
1675