xref: /linux/fs/inode.c (revision 7a75c6c23a2ea8dd22d90805b3a42bd65c53830e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __ro_after_init;
59 static unsigned int i_hash_shift __ro_after_init;
60 static struct hlist_head *inode_hashtable __ro_after_init;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 static DEFINE_PER_CPU(unsigned long, nr_inodes);
72 static DEFINE_PER_CPU(unsigned long, nr_unused);
73 
74 static struct kmem_cache *inode_cachep __ro_after_init;
75 
76 static long get_nr_inodes(void)
77 {
78 	int i;
79 	long sum = 0;
80 	for_each_possible_cpu(i)
81 		sum += per_cpu(nr_inodes, i);
82 	return sum < 0 ? 0 : sum;
83 }
84 
85 static inline long get_nr_inodes_unused(void)
86 {
87 	int i;
88 	long sum = 0;
89 	for_each_possible_cpu(i)
90 		sum += per_cpu(nr_unused, i);
91 	return sum < 0 ? 0 : sum;
92 }
93 
94 long get_nr_dirty_inodes(void)
95 {
96 	/* not actually dirty inodes, but a wild approximation */
97 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
98 	return nr_dirty > 0 ? nr_dirty : 0;
99 }
100 
101 /*
102  * Handle nr_inode sysctl
103  */
104 #ifdef CONFIG_SYSCTL
105 /*
106  * Statistics gathering..
107  */
108 static struct inodes_stat_t inodes_stat;
109 
110 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
111 			  size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 
118 static struct ctl_table inodes_sysctls[] = {
119 	{
120 		.procname	= "inode-nr",
121 		.data		= &inodes_stat,
122 		.maxlen		= 2*sizeof(long),
123 		.mode		= 0444,
124 		.proc_handler	= proc_nr_inodes,
125 	},
126 	{
127 		.procname	= "inode-state",
128 		.data		= &inodes_stat,
129 		.maxlen		= 7*sizeof(long),
130 		.mode		= 0444,
131 		.proc_handler	= proc_nr_inodes,
132 	},
133 };
134 
135 static int __init init_fs_inode_sysctls(void)
136 {
137 	register_sysctl_init("fs", inodes_sysctls);
138 	return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142 
143 static int no_open(struct inode *inode, struct file *file)
144 {
145 	return -ENXIO;
146 }
147 
148 /**
149  * inode_init_always - perform inode structure initialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 	static const struct inode_operations empty_iops;
159 	static const struct file_operations no_open_fops = {.open = no_open};
160 	struct address_space *const mapping = &inode->i_data;
161 
162 	inode->i_sb = sb;
163 	inode->i_blkbits = sb->s_blocksize_bits;
164 	inode->i_flags = 0;
165 	inode->i_state = 0;
166 	atomic64_set(&inode->i_sequence, 0);
167 	atomic_set(&inode->i_count, 1);
168 	inode->i_op = &empty_iops;
169 	inode->i_fop = &no_open_fops;
170 	inode->i_ino = 0;
171 	inode->__i_nlink = 1;
172 	inode->i_opflags = 0;
173 	if (sb->s_xattr)
174 		inode->i_opflags |= IOP_XATTR;
175 	i_uid_write(inode, 0);
176 	i_gid_write(inode, 0);
177 	atomic_set(&inode->i_writecount, 0);
178 	inode->i_size = 0;
179 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
180 	inode->i_blocks = 0;
181 	inode->i_bytes = 0;
182 	inode->i_generation = 0;
183 	inode->i_pipe = NULL;
184 	inode->i_cdev = NULL;
185 	inode->i_link = NULL;
186 	inode->i_dir_seq = 0;
187 	inode->i_rdev = 0;
188 	inode->dirtied_when = 0;
189 
190 #ifdef CONFIG_CGROUP_WRITEBACK
191 	inode->i_wb_frn_winner = 0;
192 	inode->i_wb_frn_avg_time = 0;
193 	inode->i_wb_frn_history = 0;
194 #endif
195 
196 	spin_lock_init(&inode->i_lock);
197 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
198 
199 	init_rwsem(&inode->i_rwsem);
200 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
201 
202 	atomic_set(&inode->i_dio_count, 0);
203 
204 	mapping->a_ops = &empty_aops;
205 	mapping->host = inode;
206 	mapping->flags = 0;
207 	mapping->wb_err = 0;
208 	atomic_set(&mapping->i_mmap_writable, 0);
209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
210 	atomic_set(&mapping->nr_thps, 0);
211 #endif
212 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
213 	mapping->i_private_data = NULL;
214 	mapping->writeback_index = 0;
215 	init_rwsem(&mapping->invalidate_lock);
216 	lockdep_set_class_and_name(&mapping->invalidate_lock,
217 				   &sb->s_type->invalidate_lock_key,
218 				   "mapping.invalidate_lock");
219 	if (sb->s_iflags & SB_I_STABLE_WRITES)
220 		mapping_set_stable_writes(mapping);
221 	inode->i_private = NULL;
222 	inode->i_mapping = mapping;
223 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
224 #ifdef CONFIG_FS_POSIX_ACL
225 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
226 #endif
227 
228 #ifdef CONFIG_FSNOTIFY
229 	inode->i_fsnotify_mask = 0;
230 #endif
231 	inode->i_flctx = NULL;
232 
233 	if (unlikely(security_inode_alloc(inode)))
234 		return -ENOMEM;
235 
236 	this_cpu_inc(nr_inodes);
237 
238 	return 0;
239 }
240 EXPORT_SYMBOL(inode_init_always);
241 
242 void free_inode_nonrcu(struct inode *inode)
243 {
244 	kmem_cache_free(inode_cachep, inode);
245 }
246 EXPORT_SYMBOL(free_inode_nonrcu);
247 
248 static void i_callback(struct rcu_head *head)
249 {
250 	struct inode *inode = container_of(head, struct inode, i_rcu);
251 	if (inode->free_inode)
252 		inode->free_inode(inode);
253 	else
254 		free_inode_nonrcu(inode);
255 }
256 
257 static struct inode *alloc_inode(struct super_block *sb)
258 {
259 	const struct super_operations *ops = sb->s_op;
260 	struct inode *inode;
261 
262 	if (ops->alloc_inode)
263 		inode = ops->alloc_inode(sb);
264 	else
265 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
266 
267 	if (!inode)
268 		return NULL;
269 
270 	if (unlikely(inode_init_always(sb, inode))) {
271 		if (ops->destroy_inode) {
272 			ops->destroy_inode(inode);
273 			if (!ops->free_inode)
274 				return NULL;
275 		}
276 		inode->free_inode = ops->free_inode;
277 		i_callback(&inode->i_rcu);
278 		return NULL;
279 	}
280 
281 	return inode;
282 }
283 
284 void __destroy_inode(struct inode *inode)
285 {
286 	BUG_ON(inode_has_buffers(inode));
287 	inode_detach_wb(inode);
288 	security_inode_free(inode);
289 	fsnotify_inode_delete(inode);
290 	locks_free_lock_context(inode);
291 	if (!inode->i_nlink) {
292 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
293 		atomic_long_dec(&inode->i_sb->s_remove_count);
294 	}
295 
296 #ifdef CONFIG_FS_POSIX_ACL
297 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
298 		posix_acl_release(inode->i_acl);
299 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
300 		posix_acl_release(inode->i_default_acl);
301 #endif
302 	this_cpu_dec(nr_inodes);
303 }
304 EXPORT_SYMBOL(__destroy_inode);
305 
306 static void destroy_inode(struct inode *inode)
307 {
308 	const struct super_operations *ops = inode->i_sb->s_op;
309 
310 	BUG_ON(!list_empty(&inode->i_lru));
311 	__destroy_inode(inode);
312 	if (ops->destroy_inode) {
313 		ops->destroy_inode(inode);
314 		if (!ops->free_inode)
315 			return;
316 	}
317 	inode->free_inode = ops->free_inode;
318 	call_rcu(&inode->i_rcu, i_callback);
319 }
320 
321 /**
322  * drop_nlink - directly drop an inode's link count
323  * @inode: inode
324  *
325  * This is a low-level filesystem helper to replace any
326  * direct filesystem manipulation of i_nlink.  In cases
327  * where we are attempting to track writes to the
328  * filesystem, a decrement to zero means an imminent
329  * write when the file is truncated and actually unlinked
330  * on the filesystem.
331  */
332 void drop_nlink(struct inode *inode)
333 {
334 	WARN_ON(inode->i_nlink == 0);
335 	inode->__i_nlink--;
336 	if (!inode->i_nlink)
337 		atomic_long_inc(&inode->i_sb->s_remove_count);
338 }
339 EXPORT_SYMBOL(drop_nlink);
340 
341 /**
342  * clear_nlink - directly zero an inode's link count
343  * @inode: inode
344  *
345  * This is a low-level filesystem helper to replace any
346  * direct filesystem manipulation of i_nlink.  See
347  * drop_nlink() for why we care about i_nlink hitting zero.
348  */
349 void clear_nlink(struct inode *inode)
350 {
351 	if (inode->i_nlink) {
352 		inode->__i_nlink = 0;
353 		atomic_long_inc(&inode->i_sb->s_remove_count);
354 	}
355 }
356 EXPORT_SYMBOL(clear_nlink);
357 
358 /**
359  * set_nlink - directly set an inode's link count
360  * @inode: inode
361  * @nlink: new nlink (should be non-zero)
362  *
363  * This is a low-level filesystem helper to replace any
364  * direct filesystem manipulation of i_nlink.
365  */
366 void set_nlink(struct inode *inode, unsigned int nlink)
367 {
368 	if (!nlink) {
369 		clear_nlink(inode);
370 	} else {
371 		/* Yes, some filesystems do change nlink from zero to one */
372 		if (inode->i_nlink == 0)
373 			atomic_long_dec(&inode->i_sb->s_remove_count);
374 
375 		inode->__i_nlink = nlink;
376 	}
377 }
378 EXPORT_SYMBOL(set_nlink);
379 
380 /**
381  * inc_nlink - directly increment an inode's link count
382  * @inode: inode
383  *
384  * This is a low-level filesystem helper to replace any
385  * direct filesystem manipulation of i_nlink.  Currently,
386  * it is only here for parity with dec_nlink().
387  */
388 void inc_nlink(struct inode *inode)
389 {
390 	if (unlikely(inode->i_nlink == 0)) {
391 		WARN_ON(!(inode->i_state & I_LINKABLE));
392 		atomic_long_dec(&inode->i_sb->s_remove_count);
393 	}
394 
395 	inode->__i_nlink++;
396 }
397 EXPORT_SYMBOL(inc_nlink);
398 
399 static void __address_space_init_once(struct address_space *mapping)
400 {
401 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
402 	init_rwsem(&mapping->i_mmap_rwsem);
403 	INIT_LIST_HEAD(&mapping->i_private_list);
404 	spin_lock_init(&mapping->i_private_lock);
405 	mapping->i_mmap = RB_ROOT_CACHED;
406 }
407 
408 void address_space_init_once(struct address_space *mapping)
409 {
410 	memset(mapping, 0, sizeof(*mapping));
411 	__address_space_init_once(mapping);
412 }
413 EXPORT_SYMBOL(address_space_init_once);
414 
415 /*
416  * These are initializations that only need to be done
417  * once, because the fields are idempotent across use
418  * of the inode, so let the slab aware of that.
419  */
420 void inode_init_once(struct inode *inode)
421 {
422 	memset(inode, 0, sizeof(*inode));
423 	INIT_HLIST_NODE(&inode->i_hash);
424 	INIT_LIST_HEAD(&inode->i_devices);
425 	INIT_LIST_HEAD(&inode->i_io_list);
426 	INIT_LIST_HEAD(&inode->i_wb_list);
427 	INIT_LIST_HEAD(&inode->i_lru);
428 	INIT_LIST_HEAD(&inode->i_sb_list);
429 	__address_space_init_once(&inode->i_data);
430 	i_size_ordered_init(inode);
431 }
432 EXPORT_SYMBOL(inode_init_once);
433 
434 static void init_once(void *foo)
435 {
436 	struct inode *inode = (struct inode *) foo;
437 
438 	inode_init_once(inode);
439 }
440 
441 /*
442  * inode->i_lock must be held
443  */
444 void __iget(struct inode *inode)
445 {
446 	atomic_inc(&inode->i_count);
447 }
448 
449 /*
450  * get additional reference to inode; caller must already hold one.
451  */
452 void ihold(struct inode *inode)
453 {
454 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
455 }
456 EXPORT_SYMBOL(ihold);
457 
458 static void __inode_add_lru(struct inode *inode, bool rotate)
459 {
460 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
461 		return;
462 	if (atomic_read(&inode->i_count))
463 		return;
464 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
465 		return;
466 	if (!mapping_shrinkable(&inode->i_data))
467 		return;
468 
469 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
470 		this_cpu_inc(nr_unused);
471 	else if (rotate)
472 		inode->i_state |= I_REFERENCED;
473 }
474 
475 /*
476  * Add inode to LRU if needed (inode is unused and clean).
477  *
478  * Needs inode->i_lock held.
479  */
480 void inode_add_lru(struct inode *inode)
481 {
482 	__inode_add_lru(inode, false);
483 }
484 
485 static void inode_lru_list_del(struct inode *inode)
486 {
487 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
488 		this_cpu_dec(nr_unused);
489 }
490 
491 /**
492  * inode_sb_list_add - add inode to the superblock list of inodes
493  * @inode: inode to add
494  */
495 void inode_sb_list_add(struct inode *inode)
496 {
497 	spin_lock(&inode->i_sb->s_inode_list_lock);
498 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
499 	spin_unlock(&inode->i_sb->s_inode_list_lock);
500 }
501 EXPORT_SYMBOL_GPL(inode_sb_list_add);
502 
503 static inline void inode_sb_list_del(struct inode *inode)
504 {
505 	if (!list_empty(&inode->i_sb_list)) {
506 		spin_lock(&inode->i_sb->s_inode_list_lock);
507 		list_del_init(&inode->i_sb_list);
508 		spin_unlock(&inode->i_sb->s_inode_list_lock);
509 	}
510 }
511 
512 static unsigned long hash(struct super_block *sb, unsigned long hashval)
513 {
514 	unsigned long tmp;
515 
516 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
517 			L1_CACHE_BYTES;
518 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
519 	return tmp & i_hash_mask;
520 }
521 
522 /**
523  *	__insert_inode_hash - hash an inode
524  *	@inode: unhashed inode
525  *	@hashval: unsigned long value used to locate this object in the
526  *		inode_hashtable.
527  *
528  *	Add an inode to the inode hash for this superblock.
529  */
530 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
531 {
532 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
533 
534 	spin_lock(&inode_hash_lock);
535 	spin_lock(&inode->i_lock);
536 	hlist_add_head_rcu(&inode->i_hash, b);
537 	spin_unlock(&inode->i_lock);
538 	spin_unlock(&inode_hash_lock);
539 }
540 EXPORT_SYMBOL(__insert_inode_hash);
541 
542 /**
543  *	__remove_inode_hash - remove an inode from the hash
544  *	@inode: inode to unhash
545  *
546  *	Remove an inode from the superblock.
547  */
548 void __remove_inode_hash(struct inode *inode)
549 {
550 	spin_lock(&inode_hash_lock);
551 	spin_lock(&inode->i_lock);
552 	hlist_del_init_rcu(&inode->i_hash);
553 	spin_unlock(&inode->i_lock);
554 	spin_unlock(&inode_hash_lock);
555 }
556 EXPORT_SYMBOL(__remove_inode_hash);
557 
558 void dump_mapping(const struct address_space *mapping)
559 {
560 	struct inode *host;
561 	const struct address_space_operations *a_ops;
562 	struct hlist_node *dentry_first;
563 	struct dentry *dentry_ptr;
564 	struct dentry dentry;
565 	unsigned long ino;
566 
567 	/*
568 	 * If mapping is an invalid pointer, we don't want to crash
569 	 * accessing it, so probe everything depending on it carefully.
570 	 */
571 	if (get_kernel_nofault(host, &mapping->host) ||
572 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
573 		pr_warn("invalid mapping:%px\n", mapping);
574 		return;
575 	}
576 
577 	if (!host) {
578 		pr_warn("aops:%ps\n", a_ops);
579 		return;
580 	}
581 
582 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
583 	    get_kernel_nofault(ino, &host->i_ino)) {
584 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
585 		return;
586 	}
587 
588 	if (!dentry_first) {
589 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
590 		return;
591 	}
592 
593 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
594 	if (get_kernel_nofault(dentry, dentry_ptr) ||
595 	    !dentry.d_parent || !dentry.d_name.name) {
596 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
597 				a_ops, ino, dentry_ptr);
598 		return;
599 	}
600 
601 	/*
602 	 * if dentry is corrupted, the %pd handler may still crash,
603 	 * but it's unlikely that we reach here with a corrupt mapping
604 	 */
605 	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
606 }
607 
608 void clear_inode(struct inode *inode)
609 {
610 	/*
611 	 * We have to cycle the i_pages lock here because reclaim can be in the
612 	 * process of removing the last page (in __filemap_remove_folio())
613 	 * and we must not free the mapping under it.
614 	 */
615 	xa_lock_irq(&inode->i_data.i_pages);
616 	BUG_ON(inode->i_data.nrpages);
617 	/*
618 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
619 	 * two known and long-standing ways in which nodes may get left behind
620 	 * (when deep radix-tree node allocation failed partway; or when THP
621 	 * collapse_file() failed). Until those two known cases are cleaned up,
622 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
623 	 * nor even WARN_ON(!mapping_empty).
624 	 */
625 	xa_unlock_irq(&inode->i_data.i_pages);
626 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
627 	BUG_ON(!(inode->i_state & I_FREEING));
628 	BUG_ON(inode->i_state & I_CLEAR);
629 	BUG_ON(!list_empty(&inode->i_wb_list));
630 	/* don't need i_lock here, no concurrent mods to i_state */
631 	inode->i_state = I_FREEING | I_CLEAR;
632 }
633 EXPORT_SYMBOL(clear_inode);
634 
635 /*
636  * Free the inode passed in, removing it from the lists it is still connected
637  * to. We remove any pages still attached to the inode and wait for any IO that
638  * is still in progress before finally destroying the inode.
639  *
640  * An inode must already be marked I_FREEING so that we avoid the inode being
641  * moved back onto lists if we race with other code that manipulates the lists
642  * (e.g. writeback_single_inode). The caller is responsible for setting this.
643  *
644  * An inode must already be removed from the LRU list before being evicted from
645  * the cache. This should occur atomically with setting the I_FREEING state
646  * flag, so no inodes here should ever be on the LRU when being evicted.
647  */
648 static void evict(struct inode *inode)
649 {
650 	const struct super_operations *op = inode->i_sb->s_op;
651 
652 	BUG_ON(!(inode->i_state & I_FREEING));
653 	BUG_ON(!list_empty(&inode->i_lru));
654 
655 	if (!list_empty(&inode->i_io_list))
656 		inode_io_list_del(inode);
657 
658 	inode_sb_list_del(inode);
659 
660 	/*
661 	 * Wait for flusher thread to be done with the inode so that filesystem
662 	 * does not start destroying it while writeback is still running. Since
663 	 * the inode has I_FREEING set, flusher thread won't start new work on
664 	 * the inode.  We just have to wait for running writeback to finish.
665 	 */
666 	inode_wait_for_writeback(inode);
667 
668 	if (op->evict_inode) {
669 		op->evict_inode(inode);
670 	} else {
671 		truncate_inode_pages_final(&inode->i_data);
672 		clear_inode(inode);
673 	}
674 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
675 		cd_forget(inode);
676 
677 	remove_inode_hash(inode);
678 
679 	/*
680 	 * Wake up waiters in __wait_on_freeing_inode().
681 	 *
682 	 * Lockless hash lookup may end up finding the inode before we removed
683 	 * it above, but only lock it *after* we are done with the wakeup below.
684 	 * In this case the potential waiter cannot safely block.
685 	 *
686 	 * The inode being unhashed after the call to remove_inode_hash() is
687 	 * used as an indicator whether blocking on it is safe.
688 	 */
689 	spin_lock(&inode->i_lock);
690 	wake_up_bit(&inode->i_state, __I_NEW);
691 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
692 	spin_unlock(&inode->i_lock);
693 
694 	destroy_inode(inode);
695 }
696 
697 /*
698  * dispose_list - dispose of the contents of a local list
699  * @head: the head of the list to free
700  *
701  * Dispose-list gets a local list with local inodes in it, so it doesn't
702  * need to worry about list corruption and SMP locks.
703  */
704 static void dispose_list(struct list_head *head)
705 {
706 	while (!list_empty(head)) {
707 		struct inode *inode;
708 
709 		inode = list_first_entry(head, struct inode, i_lru);
710 		list_del_init(&inode->i_lru);
711 
712 		evict(inode);
713 		cond_resched();
714 	}
715 }
716 
717 /**
718  * evict_inodes	- evict all evictable inodes for a superblock
719  * @sb:		superblock to operate on
720  *
721  * Make sure that no inodes with zero refcount are retained.  This is
722  * called by superblock shutdown after having SB_ACTIVE flag removed,
723  * so any inode reaching zero refcount during or after that call will
724  * be immediately evicted.
725  */
726 void evict_inodes(struct super_block *sb)
727 {
728 	struct inode *inode, *next;
729 	LIST_HEAD(dispose);
730 
731 again:
732 	spin_lock(&sb->s_inode_list_lock);
733 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
734 		if (atomic_read(&inode->i_count))
735 			continue;
736 
737 		spin_lock(&inode->i_lock);
738 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
739 			spin_unlock(&inode->i_lock);
740 			continue;
741 		}
742 
743 		inode->i_state |= I_FREEING;
744 		inode_lru_list_del(inode);
745 		spin_unlock(&inode->i_lock);
746 		list_add(&inode->i_lru, &dispose);
747 
748 		/*
749 		 * We can have a ton of inodes to evict at unmount time given
750 		 * enough memory, check to see if we need to go to sleep for a
751 		 * bit so we don't livelock.
752 		 */
753 		if (need_resched()) {
754 			spin_unlock(&sb->s_inode_list_lock);
755 			cond_resched();
756 			dispose_list(&dispose);
757 			goto again;
758 		}
759 	}
760 	spin_unlock(&sb->s_inode_list_lock);
761 
762 	dispose_list(&dispose);
763 }
764 EXPORT_SYMBOL_GPL(evict_inodes);
765 
766 /**
767  * invalidate_inodes	- attempt to free all inodes on a superblock
768  * @sb:		superblock to operate on
769  *
770  * Attempts to free all inodes (including dirty inodes) for a given superblock.
771  */
772 void invalidate_inodes(struct super_block *sb)
773 {
774 	struct inode *inode, *next;
775 	LIST_HEAD(dispose);
776 
777 again:
778 	spin_lock(&sb->s_inode_list_lock);
779 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
780 		spin_lock(&inode->i_lock);
781 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
782 			spin_unlock(&inode->i_lock);
783 			continue;
784 		}
785 		if (atomic_read(&inode->i_count)) {
786 			spin_unlock(&inode->i_lock);
787 			continue;
788 		}
789 
790 		inode->i_state |= I_FREEING;
791 		inode_lru_list_del(inode);
792 		spin_unlock(&inode->i_lock);
793 		list_add(&inode->i_lru, &dispose);
794 		if (need_resched()) {
795 			spin_unlock(&sb->s_inode_list_lock);
796 			cond_resched();
797 			dispose_list(&dispose);
798 			goto again;
799 		}
800 	}
801 	spin_unlock(&sb->s_inode_list_lock);
802 
803 	dispose_list(&dispose);
804 }
805 
806 /*
807  * Isolate the inode from the LRU in preparation for freeing it.
808  *
809  * If the inode has the I_REFERENCED flag set, then it means that it has been
810  * used recently - the flag is set in iput_final(). When we encounter such an
811  * inode, clear the flag and move it to the back of the LRU so it gets another
812  * pass through the LRU before it gets reclaimed. This is necessary because of
813  * the fact we are doing lazy LRU updates to minimise lock contention so the
814  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
815  * with this flag set because they are the inodes that are out of order.
816  */
817 static enum lru_status inode_lru_isolate(struct list_head *item,
818 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
819 {
820 	struct list_head *freeable = arg;
821 	struct inode	*inode = container_of(item, struct inode, i_lru);
822 
823 	/*
824 	 * We are inverting the lru lock/inode->i_lock here, so use a
825 	 * trylock. If we fail to get the lock, just skip it.
826 	 */
827 	if (!spin_trylock(&inode->i_lock))
828 		return LRU_SKIP;
829 
830 	/*
831 	 * Inodes can get referenced, redirtied, or repopulated while
832 	 * they're already on the LRU, and this can make them
833 	 * unreclaimable for a while. Remove them lazily here; iput,
834 	 * sync, or the last page cache deletion will requeue them.
835 	 */
836 	if (atomic_read(&inode->i_count) ||
837 	    (inode->i_state & ~I_REFERENCED) ||
838 	    !mapping_shrinkable(&inode->i_data)) {
839 		list_lru_isolate(lru, &inode->i_lru);
840 		spin_unlock(&inode->i_lock);
841 		this_cpu_dec(nr_unused);
842 		return LRU_REMOVED;
843 	}
844 
845 	/* Recently referenced inodes get one more pass */
846 	if (inode->i_state & I_REFERENCED) {
847 		inode->i_state &= ~I_REFERENCED;
848 		spin_unlock(&inode->i_lock);
849 		return LRU_ROTATE;
850 	}
851 
852 	/*
853 	 * On highmem systems, mapping_shrinkable() permits dropping
854 	 * page cache in order to free up struct inodes: lowmem might
855 	 * be under pressure before the cache inside the highmem zone.
856 	 */
857 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
858 		__iget(inode);
859 		spin_unlock(&inode->i_lock);
860 		spin_unlock(lru_lock);
861 		if (remove_inode_buffers(inode)) {
862 			unsigned long reap;
863 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
864 			if (current_is_kswapd())
865 				__count_vm_events(KSWAPD_INODESTEAL, reap);
866 			else
867 				__count_vm_events(PGINODESTEAL, reap);
868 			mm_account_reclaimed_pages(reap);
869 		}
870 		iput(inode);
871 		spin_lock(lru_lock);
872 		return LRU_RETRY;
873 	}
874 
875 	WARN_ON(inode->i_state & I_NEW);
876 	inode->i_state |= I_FREEING;
877 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
878 	spin_unlock(&inode->i_lock);
879 
880 	this_cpu_dec(nr_unused);
881 	return LRU_REMOVED;
882 }
883 
884 /*
885  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
886  * This is called from the superblock shrinker function with a number of inodes
887  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
888  * then are freed outside inode_lock by dispose_list().
889  */
890 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
891 {
892 	LIST_HEAD(freeable);
893 	long freed;
894 
895 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
896 				     inode_lru_isolate, &freeable);
897 	dispose_list(&freeable);
898 	return freed;
899 }
900 
901 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
902 /*
903  * Called with the inode lock held.
904  */
905 static struct inode *find_inode(struct super_block *sb,
906 				struct hlist_head *head,
907 				int (*test)(struct inode *, void *),
908 				void *data, bool is_inode_hash_locked)
909 {
910 	struct inode *inode = NULL;
911 
912 	if (is_inode_hash_locked)
913 		lockdep_assert_held(&inode_hash_lock);
914 	else
915 		lockdep_assert_not_held(&inode_hash_lock);
916 
917 	rcu_read_lock();
918 repeat:
919 	hlist_for_each_entry_rcu(inode, head, i_hash) {
920 		if (inode->i_sb != sb)
921 			continue;
922 		if (!test(inode, data))
923 			continue;
924 		spin_lock(&inode->i_lock);
925 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
926 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
927 			goto repeat;
928 		}
929 		if (unlikely(inode->i_state & I_CREATING)) {
930 			spin_unlock(&inode->i_lock);
931 			rcu_read_unlock();
932 			return ERR_PTR(-ESTALE);
933 		}
934 		__iget(inode);
935 		spin_unlock(&inode->i_lock);
936 		rcu_read_unlock();
937 		return inode;
938 	}
939 	rcu_read_unlock();
940 	return NULL;
941 }
942 
943 /*
944  * find_inode_fast is the fast path version of find_inode, see the comment at
945  * iget_locked for details.
946  */
947 static struct inode *find_inode_fast(struct super_block *sb,
948 				struct hlist_head *head, unsigned long ino,
949 				bool is_inode_hash_locked)
950 {
951 	struct inode *inode = NULL;
952 
953 	if (is_inode_hash_locked)
954 		lockdep_assert_held(&inode_hash_lock);
955 	else
956 		lockdep_assert_not_held(&inode_hash_lock);
957 
958 	rcu_read_lock();
959 repeat:
960 	hlist_for_each_entry_rcu(inode, head, i_hash) {
961 		if (inode->i_ino != ino)
962 			continue;
963 		if (inode->i_sb != sb)
964 			continue;
965 		spin_lock(&inode->i_lock);
966 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
967 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
968 			goto repeat;
969 		}
970 		if (unlikely(inode->i_state & I_CREATING)) {
971 			spin_unlock(&inode->i_lock);
972 			rcu_read_unlock();
973 			return ERR_PTR(-ESTALE);
974 		}
975 		__iget(inode);
976 		spin_unlock(&inode->i_lock);
977 		rcu_read_unlock();
978 		return inode;
979 	}
980 	rcu_read_unlock();
981 	return NULL;
982 }
983 
984 /*
985  * Each cpu owns a range of LAST_INO_BATCH numbers.
986  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
987  * to renew the exhausted range.
988  *
989  * This does not significantly increase overflow rate because every CPU can
990  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
991  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
992  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
993  * overflow rate by 2x, which does not seem too significant.
994  *
995  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
996  * error if st_ino won't fit in target struct field. Use 32bit counter
997  * here to attempt to avoid that.
998  */
999 #define LAST_INO_BATCH 1024
1000 static DEFINE_PER_CPU(unsigned int, last_ino);
1001 
1002 unsigned int get_next_ino(void)
1003 {
1004 	unsigned int *p = &get_cpu_var(last_ino);
1005 	unsigned int res = *p;
1006 
1007 #ifdef CONFIG_SMP
1008 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1009 		static atomic_t shared_last_ino;
1010 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1011 
1012 		res = next - LAST_INO_BATCH;
1013 	}
1014 #endif
1015 
1016 	res++;
1017 	/* get_next_ino should not provide a 0 inode number */
1018 	if (unlikely(!res))
1019 		res++;
1020 	*p = res;
1021 	put_cpu_var(last_ino);
1022 	return res;
1023 }
1024 EXPORT_SYMBOL(get_next_ino);
1025 
1026 /**
1027  *	new_inode_pseudo 	- obtain an inode
1028  *	@sb: superblock
1029  *
1030  *	Allocates a new inode for given superblock.
1031  *	Inode wont be chained in superblock s_inodes list
1032  *	This means :
1033  *	- fs can't be unmount
1034  *	- quotas, fsnotify, writeback can't work
1035  */
1036 struct inode *new_inode_pseudo(struct super_block *sb)
1037 {
1038 	return alloc_inode(sb);
1039 }
1040 
1041 /**
1042  *	new_inode 	- obtain an inode
1043  *	@sb: superblock
1044  *
1045  *	Allocates a new inode for given superblock. The default gfp_mask
1046  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1047  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1048  *	for the page cache are not reclaimable or migratable,
1049  *	mapping_set_gfp_mask() must be called with suitable flags on the
1050  *	newly created inode's mapping
1051  *
1052  */
1053 struct inode *new_inode(struct super_block *sb)
1054 {
1055 	struct inode *inode;
1056 
1057 	inode = new_inode_pseudo(sb);
1058 	if (inode)
1059 		inode_sb_list_add(inode);
1060 	return inode;
1061 }
1062 EXPORT_SYMBOL(new_inode);
1063 
1064 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1065 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1066 {
1067 	if (S_ISDIR(inode->i_mode)) {
1068 		struct file_system_type *type = inode->i_sb->s_type;
1069 
1070 		/* Set new key only if filesystem hasn't already changed it */
1071 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1072 			/*
1073 			 * ensure nobody is actually holding i_mutex
1074 			 */
1075 			// mutex_destroy(&inode->i_mutex);
1076 			init_rwsem(&inode->i_rwsem);
1077 			lockdep_set_class(&inode->i_rwsem,
1078 					  &type->i_mutex_dir_key);
1079 		}
1080 	}
1081 }
1082 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1083 #endif
1084 
1085 /**
1086  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1087  * @inode:	new inode to unlock
1088  *
1089  * Called when the inode is fully initialised to clear the new state of the
1090  * inode and wake up anyone waiting for the inode to finish initialisation.
1091  */
1092 void unlock_new_inode(struct inode *inode)
1093 {
1094 	lockdep_annotate_inode_mutex_key(inode);
1095 	spin_lock(&inode->i_lock);
1096 	WARN_ON(!(inode->i_state & I_NEW));
1097 	inode->i_state &= ~I_NEW & ~I_CREATING;
1098 	smp_mb();
1099 	wake_up_bit(&inode->i_state, __I_NEW);
1100 	spin_unlock(&inode->i_lock);
1101 }
1102 EXPORT_SYMBOL(unlock_new_inode);
1103 
1104 void discard_new_inode(struct inode *inode)
1105 {
1106 	lockdep_annotate_inode_mutex_key(inode);
1107 	spin_lock(&inode->i_lock);
1108 	WARN_ON(!(inode->i_state & I_NEW));
1109 	inode->i_state &= ~I_NEW;
1110 	smp_mb();
1111 	wake_up_bit(&inode->i_state, __I_NEW);
1112 	spin_unlock(&inode->i_lock);
1113 	iput(inode);
1114 }
1115 EXPORT_SYMBOL(discard_new_inode);
1116 
1117 /**
1118  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1119  *
1120  * Lock any non-NULL argument. Passed objects must not be directories.
1121  * Zero, one or two objects may be locked by this function.
1122  *
1123  * @inode1: first inode to lock
1124  * @inode2: second inode to lock
1125  */
1126 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1127 {
1128 	if (inode1)
1129 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1130 	if (inode2)
1131 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1132 	if (inode1 > inode2)
1133 		swap(inode1, inode2);
1134 	if (inode1)
1135 		inode_lock(inode1);
1136 	if (inode2 && inode2 != inode1)
1137 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1138 }
1139 EXPORT_SYMBOL(lock_two_nondirectories);
1140 
1141 /**
1142  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1143  * @inode1: first inode to unlock
1144  * @inode2: second inode to unlock
1145  */
1146 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1147 {
1148 	if (inode1) {
1149 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1150 		inode_unlock(inode1);
1151 	}
1152 	if (inode2 && inode2 != inode1) {
1153 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1154 		inode_unlock(inode2);
1155 	}
1156 }
1157 EXPORT_SYMBOL(unlock_two_nondirectories);
1158 
1159 /**
1160  * inode_insert5 - obtain an inode from a mounted file system
1161  * @inode:	pre-allocated inode to use for insert to cache
1162  * @hashval:	hash value (usually inode number) to get
1163  * @test:	callback used for comparisons between inodes
1164  * @set:	callback used to initialize a new struct inode
1165  * @data:	opaque data pointer to pass to @test and @set
1166  *
1167  * Search for the inode specified by @hashval and @data in the inode cache,
1168  * and if present it is return it with an increased reference count. This is
1169  * a variant of iget5_locked() for callers that don't want to fail on memory
1170  * allocation of inode.
1171  *
1172  * If the inode is not in cache, insert the pre-allocated inode to cache and
1173  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1174  * to fill it in before unlocking it via unlock_new_inode().
1175  *
1176  * Note both @test and @set are called with the inode_hash_lock held, so can't
1177  * sleep.
1178  */
1179 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1180 			    int (*test)(struct inode *, void *),
1181 			    int (*set)(struct inode *, void *), void *data)
1182 {
1183 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1184 	struct inode *old;
1185 
1186 again:
1187 	spin_lock(&inode_hash_lock);
1188 	old = find_inode(inode->i_sb, head, test, data, true);
1189 	if (unlikely(old)) {
1190 		/*
1191 		 * Uhhuh, somebody else created the same inode under us.
1192 		 * Use the old inode instead of the preallocated one.
1193 		 */
1194 		spin_unlock(&inode_hash_lock);
1195 		if (IS_ERR(old))
1196 			return NULL;
1197 		wait_on_inode(old);
1198 		if (unlikely(inode_unhashed(old))) {
1199 			iput(old);
1200 			goto again;
1201 		}
1202 		return old;
1203 	}
1204 
1205 	if (set && unlikely(set(inode, data))) {
1206 		inode = NULL;
1207 		goto unlock;
1208 	}
1209 
1210 	/*
1211 	 * Return the locked inode with I_NEW set, the
1212 	 * caller is responsible for filling in the contents
1213 	 */
1214 	spin_lock(&inode->i_lock);
1215 	inode->i_state |= I_NEW;
1216 	hlist_add_head_rcu(&inode->i_hash, head);
1217 	spin_unlock(&inode->i_lock);
1218 
1219 	/*
1220 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1221 	 * point, so it should be safe to test i_sb_list locklessly.
1222 	 */
1223 	if (list_empty(&inode->i_sb_list))
1224 		inode_sb_list_add(inode);
1225 unlock:
1226 	spin_unlock(&inode_hash_lock);
1227 
1228 	return inode;
1229 }
1230 EXPORT_SYMBOL(inode_insert5);
1231 
1232 /**
1233  * iget5_locked - obtain an inode from a mounted file system
1234  * @sb:		super block of file system
1235  * @hashval:	hash value (usually inode number) to get
1236  * @test:	callback used for comparisons between inodes
1237  * @set:	callback used to initialize a new struct inode
1238  * @data:	opaque data pointer to pass to @test and @set
1239  *
1240  * Search for the inode specified by @hashval and @data in the inode cache,
1241  * and if present it is return it with an increased reference count. This is
1242  * a generalized version of iget_locked() for file systems where the inode
1243  * number is not sufficient for unique identification of an inode.
1244  *
1245  * If the inode is not in cache, allocate a new inode and return it locked,
1246  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1247  * before unlocking it via unlock_new_inode().
1248  *
1249  * Note both @test and @set are called with the inode_hash_lock held, so can't
1250  * sleep.
1251  */
1252 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1253 		int (*test)(struct inode *, void *),
1254 		int (*set)(struct inode *, void *), void *data)
1255 {
1256 	struct inode *inode = ilookup5(sb, hashval, test, data);
1257 
1258 	if (!inode) {
1259 		struct inode *new = alloc_inode(sb);
1260 
1261 		if (new) {
1262 			inode = inode_insert5(new, hashval, test, set, data);
1263 			if (unlikely(inode != new))
1264 				destroy_inode(new);
1265 		}
1266 	}
1267 	return inode;
1268 }
1269 EXPORT_SYMBOL(iget5_locked);
1270 
1271 /**
1272  * iget5_locked_rcu - obtain an inode from a mounted file system
1273  * @sb:		super block of file system
1274  * @hashval:	hash value (usually inode number) to get
1275  * @test:	callback used for comparisons between inodes
1276  * @set:	callback used to initialize a new struct inode
1277  * @data:	opaque data pointer to pass to @test and @set
1278  *
1279  * This is equivalent to iget5_locked, except the @test callback must
1280  * tolerate the inode not being stable, including being mid-teardown.
1281  */
1282 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1283 		int (*test)(struct inode *, void *),
1284 		int (*set)(struct inode *, void *), void *data)
1285 {
1286 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1287 	struct inode *inode, *new;
1288 
1289 again:
1290 	inode = find_inode(sb, head, test, data, false);
1291 	if (inode) {
1292 		if (IS_ERR(inode))
1293 			return NULL;
1294 		wait_on_inode(inode);
1295 		if (unlikely(inode_unhashed(inode))) {
1296 			iput(inode);
1297 			goto again;
1298 		}
1299 		return inode;
1300 	}
1301 
1302 	new = alloc_inode(sb);
1303 	if (new) {
1304 		inode = inode_insert5(new, hashval, test, set, data);
1305 		if (unlikely(inode != new))
1306 			destroy_inode(new);
1307 	}
1308 	return inode;
1309 }
1310 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1311 
1312 /**
1313  * iget_locked - obtain an inode from a mounted file system
1314  * @sb:		super block of file system
1315  * @ino:	inode number to get
1316  *
1317  * Search for the inode specified by @ino in the inode cache and if present
1318  * return it with an increased reference count. This is for file systems
1319  * where the inode number is sufficient for unique identification of an inode.
1320  *
1321  * If the inode is not in cache, allocate a new inode and return it locked,
1322  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1323  * before unlocking it via unlock_new_inode().
1324  */
1325 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1326 {
1327 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1328 	struct inode *inode;
1329 again:
1330 	inode = find_inode_fast(sb, head, ino, false);
1331 	if (inode) {
1332 		if (IS_ERR(inode))
1333 			return NULL;
1334 		wait_on_inode(inode);
1335 		if (unlikely(inode_unhashed(inode))) {
1336 			iput(inode);
1337 			goto again;
1338 		}
1339 		return inode;
1340 	}
1341 
1342 	inode = alloc_inode(sb);
1343 	if (inode) {
1344 		struct inode *old;
1345 
1346 		spin_lock(&inode_hash_lock);
1347 		/* We released the lock, so.. */
1348 		old = find_inode_fast(sb, head, ino, true);
1349 		if (!old) {
1350 			inode->i_ino = ino;
1351 			spin_lock(&inode->i_lock);
1352 			inode->i_state = I_NEW;
1353 			hlist_add_head_rcu(&inode->i_hash, head);
1354 			spin_unlock(&inode->i_lock);
1355 			inode_sb_list_add(inode);
1356 			spin_unlock(&inode_hash_lock);
1357 
1358 			/* Return the locked inode with I_NEW set, the
1359 			 * caller is responsible for filling in the contents
1360 			 */
1361 			return inode;
1362 		}
1363 
1364 		/*
1365 		 * Uhhuh, somebody else created the same inode under
1366 		 * us. Use the old inode instead of the one we just
1367 		 * allocated.
1368 		 */
1369 		spin_unlock(&inode_hash_lock);
1370 		destroy_inode(inode);
1371 		if (IS_ERR(old))
1372 			return NULL;
1373 		inode = old;
1374 		wait_on_inode(inode);
1375 		if (unlikely(inode_unhashed(inode))) {
1376 			iput(inode);
1377 			goto again;
1378 		}
1379 	}
1380 	return inode;
1381 }
1382 EXPORT_SYMBOL(iget_locked);
1383 
1384 /*
1385  * search the inode cache for a matching inode number.
1386  * If we find one, then the inode number we are trying to
1387  * allocate is not unique and so we should not use it.
1388  *
1389  * Returns 1 if the inode number is unique, 0 if it is not.
1390  */
1391 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1392 {
1393 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1394 	struct inode *inode;
1395 
1396 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1397 		if (inode->i_ino == ino && inode->i_sb == sb)
1398 			return 0;
1399 	}
1400 	return 1;
1401 }
1402 
1403 /**
1404  *	iunique - get a unique inode number
1405  *	@sb: superblock
1406  *	@max_reserved: highest reserved inode number
1407  *
1408  *	Obtain an inode number that is unique on the system for a given
1409  *	superblock. This is used by file systems that have no natural
1410  *	permanent inode numbering system. An inode number is returned that
1411  *	is higher than the reserved limit but unique.
1412  *
1413  *	BUGS:
1414  *	With a large number of inodes live on the file system this function
1415  *	currently becomes quite slow.
1416  */
1417 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1418 {
1419 	/*
1420 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1421 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1422 	 * here to attempt to avoid that.
1423 	 */
1424 	static DEFINE_SPINLOCK(iunique_lock);
1425 	static unsigned int counter;
1426 	ino_t res;
1427 
1428 	rcu_read_lock();
1429 	spin_lock(&iunique_lock);
1430 	do {
1431 		if (counter <= max_reserved)
1432 			counter = max_reserved + 1;
1433 		res = counter++;
1434 	} while (!test_inode_iunique(sb, res));
1435 	spin_unlock(&iunique_lock);
1436 	rcu_read_unlock();
1437 
1438 	return res;
1439 }
1440 EXPORT_SYMBOL(iunique);
1441 
1442 struct inode *igrab(struct inode *inode)
1443 {
1444 	spin_lock(&inode->i_lock);
1445 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1446 		__iget(inode);
1447 		spin_unlock(&inode->i_lock);
1448 	} else {
1449 		spin_unlock(&inode->i_lock);
1450 		/*
1451 		 * Handle the case where s_op->clear_inode is not been
1452 		 * called yet, and somebody is calling igrab
1453 		 * while the inode is getting freed.
1454 		 */
1455 		inode = NULL;
1456 	}
1457 	return inode;
1458 }
1459 EXPORT_SYMBOL(igrab);
1460 
1461 /**
1462  * ilookup5_nowait - search for an inode in the inode cache
1463  * @sb:		super block of file system to search
1464  * @hashval:	hash value (usually inode number) to search for
1465  * @test:	callback used for comparisons between inodes
1466  * @data:	opaque data pointer to pass to @test
1467  *
1468  * Search for the inode specified by @hashval and @data in the inode cache.
1469  * If the inode is in the cache, the inode is returned with an incremented
1470  * reference count.
1471  *
1472  * Note: I_NEW is not waited upon so you have to be very careful what you do
1473  * with the returned inode.  You probably should be using ilookup5() instead.
1474  *
1475  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1476  */
1477 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1478 		int (*test)(struct inode *, void *), void *data)
1479 {
1480 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1481 	struct inode *inode;
1482 
1483 	spin_lock(&inode_hash_lock);
1484 	inode = find_inode(sb, head, test, data, true);
1485 	spin_unlock(&inode_hash_lock);
1486 
1487 	return IS_ERR(inode) ? NULL : inode;
1488 }
1489 EXPORT_SYMBOL(ilookup5_nowait);
1490 
1491 /**
1492  * ilookup5 - search for an inode in the inode cache
1493  * @sb:		super block of file system to search
1494  * @hashval:	hash value (usually inode number) to search for
1495  * @test:	callback used for comparisons between inodes
1496  * @data:	opaque data pointer to pass to @test
1497  *
1498  * Search for the inode specified by @hashval and @data in the inode cache,
1499  * and if the inode is in the cache, return the inode with an incremented
1500  * reference count.  Waits on I_NEW before returning the inode.
1501  * returned with an incremented reference count.
1502  *
1503  * This is a generalized version of ilookup() for file systems where the
1504  * inode number is not sufficient for unique identification of an inode.
1505  *
1506  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1507  */
1508 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1509 		int (*test)(struct inode *, void *), void *data)
1510 {
1511 	struct inode *inode;
1512 again:
1513 	inode = ilookup5_nowait(sb, hashval, test, data);
1514 	if (inode) {
1515 		wait_on_inode(inode);
1516 		if (unlikely(inode_unhashed(inode))) {
1517 			iput(inode);
1518 			goto again;
1519 		}
1520 	}
1521 	return inode;
1522 }
1523 EXPORT_SYMBOL(ilookup5);
1524 
1525 /**
1526  * ilookup - search for an inode in the inode cache
1527  * @sb:		super block of file system to search
1528  * @ino:	inode number to search for
1529  *
1530  * Search for the inode @ino in the inode cache, and if the inode is in the
1531  * cache, the inode is returned with an incremented reference count.
1532  */
1533 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1534 {
1535 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1536 	struct inode *inode;
1537 again:
1538 	spin_lock(&inode_hash_lock);
1539 	inode = find_inode_fast(sb, head, ino, true);
1540 	spin_unlock(&inode_hash_lock);
1541 
1542 	if (inode) {
1543 		if (IS_ERR(inode))
1544 			return NULL;
1545 		wait_on_inode(inode);
1546 		if (unlikely(inode_unhashed(inode))) {
1547 			iput(inode);
1548 			goto again;
1549 		}
1550 	}
1551 	return inode;
1552 }
1553 EXPORT_SYMBOL(ilookup);
1554 
1555 /**
1556  * find_inode_nowait - find an inode in the inode cache
1557  * @sb:		super block of file system to search
1558  * @hashval:	hash value (usually inode number) to search for
1559  * @match:	callback used for comparisons between inodes
1560  * @data:	opaque data pointer to pass to @match
1561  *
1562  * Search for the inode specified by @hashval and @data in the inode
1563  * cache, where the helper function @match will return 0 if the inode
1564  * does not match, 1 if the inode does match, and -1 if the search
1565  * should be stopped.  The @match function must be responsible for
1566  * taking the i_lock spin_lock and checking i_state for an inode being
1567  * freed or being initialized, and incrementing the reference count
1568  * before returning 1.  It also must not sleep, since it is called with
1569  * the inode_hash_lock spinlock held.
1570  *
1571  * This is a even more generalized version of ilookup5() when the
1572  * function must never block --- find_inode() can block in
1573  * __wait_on_freeing_inode() --- or when the caller can not increment
1574  * the reference count because the resulting iput() might cause an
1575  * inode eviction.  The tradeoff is that the @match funtion must be
1576  * very carefully implemented.
1577  */
1578 struct inode *find_inode_nowait(struct super_block *sb,
1579 				unsigned long hashval,
1580 				int (*match)(struct inode *, unsigned long,
1581 					     void *),
1582 				void *data)
1583 {
1584 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1585 	struct inode *inode, *ret_inode = NULL;
1586 	int mval;
1587 
1588 	spin_lock(&inode_hash_lock);
1589 	hlist_for_each_entry(inode, head, i_hash) {
1590 		if (inode->i_sb != sb)
1591 			continue;
1592 		mval = match(inode, hashval, data);
1593 		if (mval == 0)
1594 			continue;
1595 		if (mval == 1)
1596 			ret_inode = inode;
1597 		goto out;
1598 	}
1599 out:
1600 	spin_unlock(&inode_hash_lock);
1601 	return ret_inode;
1602 }
1603 EXPORT_SYMBOL(find_inode_nowait);
1604 
1605 /**
1606  * find_inode_rcu - find an inode in the inode cache
1607  * @sb:		Super block of file system to search
1608  * @hashval:	Key to hash
1609  * @test:	Function to test match on an inode
1610  * @data:	Data for test function
1611  *
1612  * Search for the inode specified by @hashval and @data in the inode cache,
1613  * where the helper function @test will return 0 if the inode does not match
1614  * and 1 if it does.  The @test function must be responsible for taking the
1615  * i_lock spin_lock and checking i_state for an inode being freed or being
1616  * initialized.
1617  *
1618  * If successful, this will return the inode for which the @test function
1619  * returned 1 and NULL otherwise.
1620  *
1621  * The @test function is not permitted to take a ref on any inode presented.
1622  * It is also not permitted to sleep.
1623  *
1624  * The caller must hold the RCU read lock.
1625  */
1626 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1627 			     int (*test)(struct inode *, void *), void *data)
1628 {
1629 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1630 	struct inode *inode;
1631 
1632 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1633 			 "suspicious find_inode_rcu() usage");
1634 
1635 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1636 		if (inode->i_sb == sb &&
1637 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1638 		    test(inode, data))
1639 			return inode;
1640 	}
1641 	return NULL;
1642 }
1643 EXPORT_SYMBOL(find_inode_rcu);
1644 
1645 /**
1646  * find_inode_by_ino_rcu - Find an inode in the inode cache
1647  * @sb:		Super block of file system to search
1648  * @ino:	The inode number to match
1649  *
1650  * Search for the inode specified by @hashval and @data in the inode cache,
1651  * where the helper function @test will return 0 if the inode does not match
1652  * and 1 if it does.  The @test function must be responsible for taking the
1653  * i_lock spin_lock and checking i_state for an inode being freed or being
1654  * initialized.
1655  *
1656  * If successful, this will return the inode for which the @test function
1657  * returned 1 and NULL otherwise.
1658  *
1659  * The @test function is not permitted to take a ref on any inode presented.
1660  * It is also not permitted to sleep.
1661  *
1662  * The caller must hold the RCU read lock.
1663  */
1664 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1665 				    unsigned long ino)
1666 {
1667 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1668 	struct inode *inode;
1669 
1670 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1671 			 "suspicious find_inode_by_ino_rcu() usage");
1672 
1673 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1674 		if (inode->i_ino == ino &&
1675 		    inode->i_sb == sb &&
1676 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1677 		    return inode;
1678 	}
1679 	return NULL;
1680 }
1681 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1682 
1683 int insert_inode_locked(struct inode *inode)
1684 {
1685 	struct super_block *sb = inode->i_sb;
1686 	ino_t ino = inode->i_ino;
1687 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1688 
1689 	while (1) {
1690 		struct inode *old = NULL;
1691 		spin_lock(&inode_hash_lock);
1692 		hlist_for_each_entry(old, head, i_hash) {
1693 			if (old->i_ino != ino)
1694 				continue;
1695 			if (old->i_sb != sb)
1696 				continue;
1697 			spin_lock(&old->i_lock);
1698 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1699 				spin_unlock(&old->i_lock);
1700 				continue;
1701 			}
1702 			break;
1703 		}
1704 		if (likely(!old)) {
1705 			spin_lock(&inode->i_lock);
1706 			inode->i_state |= I_NEW | I_CREATING;
1707 			hlist_add_head_rcu(&inode->i_hash, head);
1708 			spin_unlock(&inode->i_lock);
1709 			spin_unlock(&inode_hash_lock);
1710 			return 0;
1711 		}
1712 		if (unlikely(old->i_state & I_CREATING)) {
1713 			spin_unlock(&old->i_lock);
1714 			spin_unlock(&inode_hash_lock);
1715 			return -EBUSY;
1716 		}
1717 		__iget(old);
1718 		spin_unlock(&old->i_lock);
1719 		spin_unlock(&inode_hash_lock);
1720 		wait_on_inode(old);
1721 		if (unlikely(!inode_unhashed(old))) {
1722 			iput(old);
1723 			return -EBUSY;
1724 		}
1725 		iput(old);
1726 	}
1727 }
1728 EXPORT_SYMBOL(insert_inode_locked);
1729 
1730 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1731 		int (*test)(struct inode *, void *), void *data)
1732 {
1733 	struct inode *old;
1734 
1735 	inode->i_state |= I_CREATING;
1736 	old = inode_insert5(inode, hashval, test, NULL, data);
1737 
1738 	if (old != inode) {
1739 		iput(old);
1740 		return -EBUSY;
1741 	}
1742 	return 0;
1743 }
1744 EXPORT_SYMBOL(insert_inode_locked4);
1745 
1746 
1747 int generic_delete_inode(struct inode *inode)
1748 {
1749 	return 1;
1750 }
1751 EXPORT_SYMBOL(generic_delete_inode);
1752 
1753 /*
1754  * Called when we're dropping the last reference
1755  * to an inode.
1756  *
1757  * Call the FS "drop_inode()" function, defaulting to
1758  * the legacy UNIX filesystem behaviour.  If it tells
1759  * us to evict inode, do so.  Otherwise, retain inode
1760  * in cache if fs is alive, sync and evict if fs is
1761  * shutting down.
1762  */
1763 static void iput_final(struct inode *inode)
1764 {
1765 	struct super_block *sb = inode->i_sb;
1766 	const struct super_operations *op = inode->i_sb->s_op;
1767 	unsigned long state;
1768 	int drop;
1769 
1770 	WARN_ON(inode->i_state & I_NEW);
1771 
1772 	if (op->drop_inode)
1773 		drop = op->drop_inode(inode);
1774 	else
1775 		drop = generic_drop_inode(inode);
1776 
1777 	if (!drop &&
1778 	    !(inode->i_state & I_DONTCACHE) &&
1779 	    (sb->s_flags & SB_ACTIVE)) {
1780 		__inode_add_lru(inode, true);
1781 		spin_unlock(&inode->i_lock);
1782 		return;
1783 	}
1784 
1785 	state = inode->i_state;
1786 	if (!drop) {
1787 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1788 		spin_unlock(&inode->i_lock);
1789 
1790 		write_inode_now(inode, 1);
1791 
1792 		spin_lock(&inode->i_lock);
1793 		state = inode->i_state;
1794 		WARN_ON(state & I_NEW);
1795 		state &= ~I_WILL_FREE;
1796 	}
1797 
1798 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1799 	if (!list_empty(&inode->i_lru))
1800 		inode_lru_list_del(inode);
1801 	spin_unlock(&inode->i_lock);
1802 
1803 	evict(inode);
1804 }
1805 
1806 /**
1807  *	iput	- put an inode
1808  *	@inode: inode to put
1809  *
1810  *	Puts an inode, dropping its usage count. If the inode use count hits
1811  *	zero, the inode is then freed and may also be destroyed.
1812  *
1813  *	Consequently, iput() can sleep.
1814  */
1815 void iput(struct inode *inode)
1816 {
1817 	if (!inode)
1818 		return;
1819 	BUG_ON(inode->i_state & I_CLEAR);
1820 retry:
1821 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1822 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1823 			atomic_inc(&inode->i_count);
1824 			spin_unlock(&inode->i_lock);
1825 			trace_writeback_lazytime_iput(inode);
1826 			mark_inode_dirty_sync(inode);
1827 			goto retry;
1828 		}
1829 		iput_final(inode);
1830 	}
1831 }
1832 EXPORT_SYMBOL(iput);
1833 
1834 #ifdef CONFIG_BLOCK
1835 /**
1836  *	bmap	- find a block number in a file
1837  *	@inode:  inode owning the block number being requested
1838  *	@block: pointer containing the block to find
1839  *
1840  *	Replaces the value in ``*block`` with the block number on the device holding
1841  *	corresponding to the requested block number in the file.
1842  *	That is, asked for block 4 of inode 1 the function will replace the
1843  *	4 in ``*block``, with disk block relative to the disk start that holds that
1844  *	block of the file.
1845  *
1846  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1847  *	hole, returns 0 and ``*block`` is also set to 0.
1848  */
1849 int bmap(struct inode *inode, sector_t *block)
1850 {
1851 	if (!inode->i_mapping->a_ops->bmap)
1852 		return -EINVAL;
1853 
1854 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1855 	return 0;
1856 }
1857 EXPORT_SYMBOL(bmap);
1858 #endif
1859 
1860 /*
1861  * With relative atime, only update atime if the previous atime is
1862  * earlier than or equal to either the ctime or mtime,
1863  * or if at least a day has passed since the last atime update.
1864  */
1865 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1866 			     struct timespec64 now)
1867 {
1868 	struct timespec64 atime, mtime, ctime;
1869 
1870 	if (!(mnt->mnt_flags & MNT_RELATIME))
1871 		return true;
1872 	/*
1873 	 * Is mtime younger than or equal to atime? If yes, update atime:
1874 	 */
1875 	atime = inode_get_atime(inode);
1876 	mtime = inode_get_mtime(inode);
1877 	if (timespec64_compare(&mtime, &atime) >= 0)
1878 		return true;
1879 	/*
1880 	 * Is ctime younger than or equal to atime? If yes, update atime:
1881 	 */
1882 	ctime = inode_get_ctime(inode);
1883 	if (timespec64_compare(&ctime, &atime) >= 0)
1884 		return true;
1885 
1886 	/*
1887 	 * Is the previous atime value older than a day? If yes,
1888 	 * update atime:
1889 	 */
1890 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1891 		return true;
1892 	/*
1893 	 * Good, we can skip the atime update:
1894 	 */
1895 	return false;
1896 }
1897 
1898 /**
1899  * inode_update_timestamps - update the timestamps on the inode
1900  * @inode: inode to be updated
1901  * @flags: S_* flags that needed to be updated
1902  *
1903  * The update_time function is called when an inode's timestamps need to be
1904  * updated for a read or write operation. This function handles updating the
1905  * actual timestamps. It's up to the caller to ensure that the inode is marked
1906  * dirty appropriately.
1907  *
1908  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1909  * attempt to update all three of them. S_ATIME updates can be handled
1910  * independently of the rest.
1911  *
1912  * Returns a set of S_* flags indicating which values changed.
1913  */
1914 int inode_update_timestamps(struct inode *inode, int flags)
1915 {
1916 	int updated = 0;
1917 	struct timespec64 now;
1918 
1919 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1920 		struct timespec64 ctime = inode_get_ctime(inode);
1921 		struct timespec64 mtime = inode_get_mtime(inode);
1922 
1923 		now = inode_set_ctime_current(inode);
1924 		if (!timespec64_equal(&now, &ctime))
1925 			updated |= S_CTIME;
1926 		if (!timespec64_equal(&now, &mtime)) {
1927 			inode_set_mtime_to_ts(inode, now);
1928 			updated |= S_MTIME;
1929 		}
1930 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1931 			updated |= S_VERSION;
1932 	} else {
1933 		now = current_time(inode);
1934 	}
1935 
1936 	if (flags & S_ATIME) {
1937 		struct timespec64 atime = inode_get_atime(inode);
1938 
1939 		if (!timespec64_equal(&now, &atime)) {
1940 			inode_set_atime_to_ts(inode, now);
1941 			updated |= S_ATIME;
1942 		}
1943 	}
1944 	return updated;
1945 }
1946 EXPORT_SYMBOL(inode_update_timestamps);
1947 
1948 /**
1949  * generic_update_time - update the timestamps on the inode
1950  * @inode: inode to be updated
1951  * @flags: S_* flags that needed to be updated
1952  *
1953  * The update_time function is called when an inode's timestamps need to be
1954  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1955  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1956  * updates can be handled done independently of the rest.
1957  *
1958  * Returns a S_* mask indicating which fields were updated.
1959  */
1960 int generic_update_time(struct inode *inode, int flags)
1961 {
1962 	int updated = inode_update_timestamps(inode, flags);
1963 	int dirty_flags = 0;
1964 
1965 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1966 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1967 	if (updated & S_VERSION)
1968 		dirty_flags |= I_DIRTY_SYNC;
1969 	__mark_inode_dirty(inode, dirty_flags);
1970 	return updated;
1971 }
1972 EXPORT_SYMBOL(generic_update_time);
1973 
1974 /*
1975  * This does the actual work of updating an inodes time or version.  Must have
1976  * had called mnt_want_write() before calling this.
1977  */
1978 int inode_update_time(struct inode *inode, int flags)
1979 {
1980 	if (inode->i_op->update_time)
1981 		return inode->i_op->update_time(inode, flags);
1982 	generic_update_time(inode, flags);
1983 	return 0;
1984 }
1985 EXPORT_SYMBOL(inode_update_time);
1986 
1987 /**
1988  *	atime_needs_update	-	update the access time
1989  *	@path: the &struct path to update
1990  *	@inode: inode to update
1991  *
1992  *	Update the accessed time on an inode and mark it for writeback.
1993  *	This function automatically handles read only file systems and media,
1994  *	as well as the "noatime" flag and inode specific "noatime" markers.
1995  */
1996 bool atime_needs_update(const struct path *path, struct inode *inode)
1997 {
1998 	struct vfsmount *mnt = path->mnt;
1999 	struct timespec64 now, atime;
2000 
2001 	if (inode->i_flags & S_NOATIME)
2002 		return false;
2003 
2004 	/* Atime updates will likely cause i_uid and i_gid to be written
2005 	 * back improprely if their true value is unknown to the vfs.
2006 	 */
2007 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2008 		return false;
2009 
2010 	if (IS_NOATIME(inode))
2011 		return false;
2012 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2013 		return false;
2014 
2015 	if (mnt->mnt_flags & MNT_NOATIME)
2016 		return false;
2017 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2018 		return false;
2019 
2020 	now = current_time(inode);
2021 
2022 	if (!relatime_need_update(mnt, inode, now))
2023 		return false;
2024 
2025 	atime = inode_get_atime(inode);
2026 	if (timespec64_equal(&atime, &now))
2027 		return false;
2028 
2029 	return true;
2030 }
2031 
2032 void touch_atime(const struct path *path)
2033 {
2034 	struct vfsmount *mnt = path->mnt;
2035 	struct inode *inode = d_inode(path->dentry);
2036 
2037 	if (!atime_needs_update(path, inode))
2038 		return;
2039 
2040 	if (!sb_start_write_trylock(inode->i_sb))
2041 		return;
2042 
2043 	if (mnt_get_write_access(mnt) != 0)
2044 		goto skip_update;
2045 	/*
2046 	 * File systems can error out when updating inodes if they need to
2047 	 * allocate new space to modify an inode (such is the case for
2048 	 * Btrfs), but since we touch atime while walking down the path we
2049 	 * really don't care if we failed to update the atime of the file,
2050 	 * so just ignore the return value.
2051 	 * We may also fail on filesystems that have the ability to make parts
2052 	 * of the fs read only, e.g. subvolumes in Btrfs.
2053 	 */
2054 	inode_update_time(inode, S_ATIME);
2055 	mnt_put_write_access(mnt);
2056 skip_update:
2057 	sb_end_write(inode->i_sb);
2058 }
2059 EXPORT_SYMBOL(touch_atime);
2060 
2061 /*
2062  * Return mask of changes for notify_change() that need to be done as a
2063  * response to write or truncate. Return 0 if nothing has to be changed.
2064  * Negative value on error (change should be denied).
2065  */
2066 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2067 			      struct dentry *dentry)
2068 {
2069 	struct inode *inode = d_inode(dentry);
2070 	int mask = 0;
2071 	int ret;
2072 
2073 	if (IS_NOSEC(inode))
2074 		return 0;
2075 
2076 	mask = setattr_should_drop_suidgid(idmap, inode);
2077 	ret = security_inode_need_killpriv(dentry);
2078 	if (ret < 0)
2079 		return ret;
2080 	if (ret)
2081 		mask |= ATTR_KILL_PRIV;
2082 	return mask;
2083 }
2084 
2085 static int __remove_privs(struct mnt_idmap *idmap,
2086 			  struct dentry *dentry, int kill)
2087 {
2088 	struct iattr newattrs;
2089 
2090 	newattrs.ia_valid = ATTR_FORCE | kill;
2091 	/*
2092 	 * Note we call this on write, so notify_change will not
2093 	 * encounter any conflicting delegations:
2094 	 */
2095 	return notify_change(idmap, dentry, &newattrs, NULL);
2096 }
2097 
2098 int file_remove_privs_flags(struct file *file, unsigned int flags)
2099 {
2100 	struct dentry *dentry = file_dentry(file);
2101 	struct inode *inode = file_inode(file);
2102 	int error = 0;
2103 	int kill;
2104 
2105 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2106 		return 0;
2107 
2108 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2109 	if (kill < 0)
2110 		return kill;
2111 
2112 	if (kill) {
2113 		if (flags & IOCB_NOWAIT)
2114 			return -EAGAIN;
2115 
2116 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2117 	}
2118 
2119 	if (!error)
2120 		inode_has_no_xattr(inode);
2121 	return error;
2122 }
2123 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2124 
2125 /**
2126  * file_remove_privs - remove special file privileges (suid, capabilities)
2127  * @file: file to remove privileges from
2128  *
2129  * When file is modified by a write or truncation ensure that special
2130  * file privileges are removed.
2131  *
2132  * Return: 0 on success, negative errno on failure.
2133  */
2134 int file_remove_privs(struct file *file)
2135 {
2136 	return file_remove_privs_flags(file, 0);
2137 }
2138 EXPORT_SYMBOL(file_remove_privs);
2139 
2140 static int inode_needs_update_time(struct inode *inode)
2141 {
2142 	int sync_it = 0;
2143 	struct timespec64 now = current_time(inode);
2144 	struct timespec64 ts;
2145 
2146 	/* First try to exhaust all avenues to not sync */
2147 	if (IS_NOCMTIME(inode))
2148 		return 0;
2149 
2150 	ts = inode_get_mtime(inode);
2151 	if (!timespec64_equal(&ts, &now))
2152 		sync_it = S_MTIME;
2153 
2154 	ts = inode_get_ctime(inode);
2155 	if (!timespec64_equal(&ts, &now))
2156 		sync_it |= S_CTIME;
2157 
2158 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2159 		sync_it |= S_VERSION;
2160 
2161 	return sync_it;
2162 }
2163 
2164 static int __file_update_time(struct file *file, int sync_mode)
2165 {
2166 	int ret = 0;
2167 	struct inode *inode = file_inode(file);
2168 
2169 	/* try to update time settings */
2170 	if (!mnt_get_write_access_file(file)) {
2171 		ret = inode_update_time(inode, sync_mode);
2172 		mnt_put_write_access_file(file);
2173 	}
2174 
2175 	return ret;
2176 }
2177 
2178 /**
2179  * file_update_time - update mtime and ctime time
2180  * @file: file accessed
2181  *
2182  * Update the mtime and ctime members of an inode and mark the inode for
2183  * writeback. Note that this function is meant exclusively for usage in
2184  * the file write path of filesystems, and filesystems may choose to
2185  * explicitly ignore updates via this function with the _NOCMTIME inode
2186  * flag, e.g. for network filesystem where these imestamps are handled
2187  * by the server. This can return an error for file systems who need to
2188  * allocate space in order to update an inode.
2189  *
2190  * Return: 0 on success, negative errno on failure.
2191  */
2192 int file_update_time(struct file *file)
2193 {
2194 	int ret;
2195 	struct inode *inode = file_inode(file);
2196 
2197 	ret = inode_needs_update_time(inode);
2198 	if (ret <= 0)
2199 		return ret;
2200 
2201 	return __file_update_time(file, ret);
2202 }
2203 EXPORT_SYMBOL(file_update_time);
2204 
2205 /**
2206  * file_modified_flags - handle mandated vfs changes when modifying a file
2207  * @file: file that was modified
2208  * @flags: kiocb flags
2209  *
2210  * When file has been modified ensure that special
2211  * file privileges are removed and time settings are updated.
2212  *
2213  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2214  * time settings will not be updated. It will return -EAGAIN.
2215  *
2216  * Context: Caller must hold the file's inode lock.
2217  *
2218  * Return: 0 on success, negative errno on failure.
2219  */
2220 static int file_modified_flags(struct file *file, int flags)
2221 {
2222 	int ret;
2223 	struct inode *inode = file_inode(file);
2224 
2225 	/*
2226 	 * Clear the security bits if the process is not being run by root.
2227 	 * This keeps people from modifying setuid and setgid binaries.
2228 	 */
2229 	ret = file_remove_privs_flags(file, flags);
2230 	if (ret)
2231 		return ret;
2232 
2233 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2234 		return 0;
2235 
2236 	ret = inode_needs_update_time(inode);
2237 	if (ret <= 0)
2238 		return ret;
2239 	if (flags & IOCB_NOWAIT)
2240 		return -EAGAIN;
2241 
2242 	return __file_update_time(file, ret);
2243 }
2244 
2245 /**
2246  * file_modified - handle mandated vfs changes when modifying a file
2247  * @file: file that was modified
2248  *
2249  * When file has been modified ensure that special
2250  * file privileges are removed and time settings are updated.
2251  *
2252  * Context: Caller must hold the file's inode lock.
2253  *
2254  * Return: 0 on success, negative errno on failure.
2255  */
2256 int file_modified(struct file *file)
2257 {
2258 	return file_modified_flags(file, 0);
2259 }
2260 EXPORT_SYMBOL(file_modified);
2261 
2262 /**
2263  * kiocb_modified - handle mandated vfs changes when modifying a file
2264  * @iocb: iocb that was modified
2265  *
2266  * When file has been modified ensure that special
2267  * file privileges are removed and time settings are updated.
2268  *
2269  * Context: Caller must hold the file's inode lock.
2270  *
2271  * Return: 0 on success, negative errno on failure.
2272  */
2273 int kiocb_modified(struct kiocb *iocb)
2274 {
2275 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2276 }
2277 EXPORT_SYMBOL_GPL(kiocb_modified);
2278 
2279 int inode_needs_sync(struct inode *inode)
2280 {
2281 	if (IS_SYNC(inode))
2282 		return 1;
2283 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2284 		return 1;
2285 	return 0;
2286 }
2287 EXPORT_SYMBOL(inode_needs_sync);
2288 
2289 /*
2290  * If we try to find an inode in the inode hash while it is being
2291  * deleted, we have to wait until the filesystem completes its
2292  * deletion before reporting that it isn't found.  This function waits
2293  * until the deletion _might_ have completed.  Callers are responsible
2294  * to recheck inode state.
2295  *
2296  * It doesn't matter if I_NEW is not set initially, a call to
2297  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2298  * will DTRT.
2299  */
2300 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2301 {
2302 	wait_queue_head_t *wq;
2303 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2304 
2305 	/*
2306 	 * Handle racing against evict(), see that routine for more details.
2307 	 */
2308 	if (unlikely(inode_unhashed(inode))) {
2309 		WARN_ON(is_inode_hash_locked);
2310 		spin_unlock(&inode->i_lock);
2311 		return;
2312 	}
2313 
2314 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2315 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2316 	spin_unlock(&inode->i_lock);
2317 	rcu_read_unlock();
2318 	if (is_inode_hash_locked)
2319 		spin_unlock(&inode_hash_lock);
2320 	schedule();
2321 	finish_wait(wq, &wait.wq_entry);
2322 	if (is_inode_hash_locked)
2323 		spin_lock(&inode_hash_lock);
2324 	rcu_read_lock();
2325 }
2326 
2327 static __initdata unsigned long ihash_entries;
2328 static int __init set_ihash_entries(char *str)
2329 {
2330 	if (!str)
2331 		return 0;
2332 	ihash_entries = simple_strtoul(str, &str, 0);
2333 	return 1;
2334 }
2335 __setup("ihash_entries=", set_ihash_entries);
2336 
2337 /*
2338  * Initialize the waitqueues and inode hash table.
2339  */
2340 void __init inode_init_early(void)
2341 {
2342 	/* If hashes are distributed across NUMA nodes, defer
2343 	 * hash allocation until vmalloc space is available.
2344 	 */
2345 	if (hashdist)
2346 		return;
2347 
2348 	inode_hashtable =
2349 		alloc_large_system_hash("Inode-cache",
2350 					sizeof(struct hlist_head),
2351 					ihash_entries,
2352 					14,
2353 					HASH_EARLY | HASH_ZERO,
2354 					&i_hash_shift,
2355 					&i_hash_mask,
2356 					0,
2357 					0);
2358 }
2359 
2360 void __init inode_init(void)
2361 {
2362 	/* inode slab cache */
2363 	inode_cachep = kmem_cache_create("inode_cache",
2364 					 sizeof(struct inode),
2365 					 0,
2366 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2367 					 SLAB_ACCOUNT),
2368 					 init_once);
2369 
2370 	/* Hash may have been set up in inode_init_early */
2371 	if (!hashdist)
2372 		return;
2373 
2374 	inode_hashtable =
2375 		alloc_large_system_hash("Inode-cache",
2376 					sizeof(struct hlist_head),
2377 					ihash_entries,
2378 					14,
2379 					HASH_ZERO,
2380 					&i_hash_shift,
2381 					&i_hash_mask,
2382 					0,
2383 					0);
2384 }
2385 
2386 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2387 {
2388 	inode->i_mode = mode;
2389 	if (S_ISCHR(mode)) {
2390 		inode->i_fop = &def_chr_fops;
2391 		inode->i_rdev = rdev;
2392 	} else if (S_ISBLK(mode)) {
2393 		if (IS_ENABLED(CONFIG_BLOCK))
2394 			inode->i_fop = &def_blk_fops;
2395 		inode->i_rdev = rdev;
2396 	} else if (S_ISFIFO(mode))
2397 		inode->i_fop = &pipefifo_fops;
2398 	else if (S_ISSOCK(mode))
2399 		;	/* leave it no_open_fops */
2400 	else
2401 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2402 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2403 				  inode->i_ino);
2404 }
2405 EXPORT_SYMBOL(init_special_inode);
2406 
2407 /**
2408  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2409  * @idmap: idmap of the mount the inode was created from
2410  * @inode: New inode
2411  * @dir: Directory inode
2412  * @mode: mode of the new inode
2413  *
2414  * If the inode has been created through an idmapped mount the idmap of
2415  * the vfsmount must be passed through @idmap. This function will then take
2416  * care to map the inode according to @idmap before checking permissions
2417  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2418  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2419  */
2420 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2421 		      const struct inode *dir, umode_t mode)
2422 {
2423 	inode_fsuid_set(inode, idmap);
2424 	if (dir && dir->i_mode & S_ISGID) {
2425 		inode->i_gid = dir->i_gid;
2426 
2427 		/* Directories are special, and always inherit S_ISGID */
2428 		if (S_ISDIR(mode))
2429 			mode |= S_ISGID;
2430 	} else
2431 		inode_fsgid_set(inode, idmap);
2432 	inode->i_mode = mode;
2433 }
2434 EXPORT_SYMBOL(inode_init_owner);
2435 
2436 /**
2437  * inode_owner_or_capable - check current task permissions to inode
2438  * @idmap: idmap of the mount the inode was found from
2439  * @inode: inode being checked
2440  *
2441  * Return true if current either has CAP_FOWNER in a namespace with the
2442  * inode owner uid mapped, or owns the file.
2443  *
2444  * If the inode has been found through an idmapped mount the idmap of
2445  * the vfsmount must be passed through @idmap. This function will then take
2446  * care to map the inode according to @idmap before checking permissions.
2447  * On non-idmapped mounts or if permission checking is to be performed on the
2448  * raw inode simply pass @nop_mnt_idmap.
2449  */
2450 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2451 			    const struct inode *inode)
2452 {
2453 	vfsuid_t vfsuid;
2454 	struct user_namespace *ns;
2455 
2456 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2457 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2458 		return true;
2459 
2460 	ns = current_user_ns();
2461 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2462 		return true;
2463 	return false;
2464 }
2465 EXPORT_SYMBOL(inode_owner_or_capable);
2466 
2467 /*
2468  * Direct i/o helper functions
2469  */
2470 static void __inode_dio_wait(struct inode *inode)
2471 {
2472 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2473 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2474 
2475 	do {
2476 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2477 		if (atomic_read(&inode->i_dio_count))
2478 			schedule();
2479 	} while (atomic_read(&inode->i_dio_count));
2480 	finish_wait(wq, &q.wq_entry);
2481 }
2482 
2483 /**
2484  * inode_dio_wait - wait for outstanding DIO requests to finish
2485  * @inode: inode to wait for
2486  *
2487  * Waits for all pending direct I/O requests to finish so that we can
2488  * proceed with a truncate or equivalent operation.
2489  *
2490  * Must be called under a lock that serializes taking new references
2491  * to i_dio_count, usually by inode->i_mutex.
2492  */
2493 void inode_dio_wait(struct inode *inode)
2494 {
2495 	if (atomic_read(&inode->i_dio_count))
2496 		__inode_dio_wait(inode);
2497 }
2498 EXPORT_SYMBOL(inode_dio_wait);
2499 
2500 /*
2501  * inode_set_flags - atomically set some inode flags
2502  *
2503  * Note: the caller should be holding i_mutex, or else be sure that
2504  * they have exclusive access to the inode structure (i.e., while the
2505  * inode is being instantiated).  The reason for the cmpxchg() loop
2506  * --- which wouldn't be necessary if all code paths which modify
2507  * i_flags actually followed this rule, is that there is at least one
2508  * code path which doesn't today so we use cmpxchg() out of an abundance
2509  * of caution.
2510  *
2511  * In the long run, i_mutex is overkill, and we should probably look
2512  * at using the i_lock spinlock to protect i_flags, and then make sure
2513  * it is so documented in include/linux/fs.h and that all code follows
2514  * the locking convention!!
2515  */
2516 void inode_set_flags(struct inode *inode, unsigned int flags,
2517 		     unsigned int mask)
2518 {
2519 	WARN_ON_ONCE(flags & ~mask);
2520 	set_mask_bits(&inode->i_flags, mask, flags);
2521 }
2522 EXPORT_SYMBOL(inode_set_flags);
2523 
2524 void inode_nohighmem(struct inode *inode)
2525 {
2526 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2527 }
2528 EXPORT_SYMBOL(inode_nohighmem);
2529 
2530 /**
2531  * timestamp_truncate - Truncate timespec to a granularity
2532  * @t: Timespec
2533  * @inode: inode being updated
2534  *
2535  * Truncate a timespec to the granularity supported by the fs
2536  * containing the inode. Always rounds down. gran must
2537  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2538  */
2539 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2540 {
2541 	struct super_block *sb = inode->i_sb;
2542 	unsigned int gran = sb->s_time_gran;
2543 
2544 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2545 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2546 		t.tv_nsec = 0;
2547 
2548 	/* Avoid division in the common cases 1 ns and 1 s. */
2549 	if (gran == 1)
2550 		; /* nothing */
2551 	else if (gran == NSEC_PER_SEC)
2552 		t.tv_nsec = 0;
2553 	else if (gran > 1 && gran < NSEC_PER_SEC)
2554 		t.tv_nsec -= t.tv_nsec % gran;
2555 	else
2556 		WARN(1, "invalid file time granularity: %u", gran);
2557 	return t;
2558 }
2559 EXPORT_SYMBOL(timestamp_truncate);
2560 
2561 /**
2562  * current_time - Return FS time
2563  * @inode: inode.
2564  *
2565  * Return the current time truncated to the time granularity supported by
2566  * the fs.
2567  *
2568  * Note that inode and inode->sb cannot be NULL.
2569  * Otherwise, the function warns and returns time without truncation.
2570  */
2571 struct timespec64 current_time(struct inode *inode)
2572 {
2573 	struct timespec64 now;
2574 
2575 	ktime_get_coarse_real_ts64(&now);
2576 	return timestamp_truncate(now, inode);
2577 }
2578 EXPORT_SYMBOL(current_time);
2579 
2580 /**
2581  * inode_set_ctime_current - set the ctime to current_time
2582  * @inode: inode
2583  *
2584  * Set the inode->i_ctime to the current value for the inode. Returns
2585  * the current value that was assigned to i_ctime.
2586  */
2587 struct timespec64 inode_set_ctime_current(struct inode *inode)
2588 {
2589 	struct timespec64 now = current_time(inode);
2590 
2591 	inode_set_ctime_to_ts(inode, now);
2592 	return now;
2593 }
2594 EXPORT_SYMBOL(inode_set_ctime_current);
2595 
2596 /**
2597  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2598  * @idmap:	idmap of the mount @inode was found from
2599  * @inode:	inode to check
2600  * @vfsgid:	the new/current vfsgid of @inode
2601  *
2602  * Check wether @vfsgid is in the caller's group list or if the caller is
2603  * privileged with CAP_FSETID over @inode. This can be used to determine
2604  * whether the setgid bit can be kept or must be dropped.
2605  *
2606  * Return: true if the caller is sufficiently privileged, false if not.
2607  */
2608 bool in_group_or_capable(struct mnt_idmap *idmap,
2609 			 const struct inode *inode, vfsgid_t vfsgid)
2610 {
2611 	if (vfsgid_in_group_p(vfsgid))
2612 		return true;
2613 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2614 		return true;
2615 	return false;
2616 }
2617 EXPORT_SYMBOL(in_group_or_capable);
2618 
2619 /**
2620  * mode_strip_sgid - handle the sgid bit for non-directories
2621  * @idmap: idmap of the mount the inode was created from
2622  * @dir: parent directory inode
2623  * @mode: mode of the file to be created in @dir
2624  *
2625  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2626  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2627  * either in the group of the parent directory or they have CAP_FSETID
2628  * in their user namespace and are privileged over the parent directory.
2629  * In all other cases, strip the S_ISGID bit from @mode.
2630  *
2631  * Return: the new mode to use for the file
2632  */
2633 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2634 			const struct inode *dir, umode_t mode)
2635 {
2636 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2637 		return mode;
2638 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2639 		return mode;
2640 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2641 		return mode;
2642 	return mode & ~S_ISGID;
2643 }
2644 EXPORT_SYMBOL(mode_strip_sgid);
2645