1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/memblock.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <linux/iversion.h> 22 #include <trace/events/writeback.h> 23 #include "internal.h" 24 25 /* 26 * Inode locking rules: 27 * 28 * inode->i_lock protects: 29 * inode->i_state, inode->i_hash, __iget() 30 * Inode LRU list locks protect: 31 * inode->i_sb->s_inode_lru, inode->i_lru 32 * inode->i_sb->s_inode_list_lock protects: 33 * inode->i_sb->s_inodes, inode->i_sb_list 34 * bdi->wb.list_lock protects: 35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 36 * inode_hash_lock protects: 37 * inode_hashtable, inode->i_hash 38 * 39 * Lock ordering: 40 * 41 * inode->i_sb->s_inode_list_lock 42 * inode->i_lock 43 * Inode LRU list locks 44 * 45 * bdi->wb.list_lock 46 * inode->i_lock 47 * 48 * inode_hash_lock 49 * inode->i_sb->s_inode_list_lock 50 * inode->i_lock 51 * 52 * iunique_lock 53 * inode_hash_lock 54 */ 55 56 static unsigned int i_hash_mask __read_mostly; 57 static unsigned int i_hash_shift __read_mostly; 58 static struct hlist_head *inode_hashtable __read_mostly; 59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(struct ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 static int no_open(struct inode *inode, struct file *file) 118 { 119 return -ENXIO; 120 } 121 122 /** 123 * inode_init_always - perform inode structure initialisation 124 * @sb: superblock inode belongs to 125 * @inode: inode to initialise 126 * 127 * These are initializations that need to be done on every inode 128 * allocation as the fields are not initialised by slab allocation. 129 */ 130 int inode_init_always(struct super_block *sb, struct inode *inode) 131 { 132 static const struct inode_operations empty_iops; 133 static const struct file_operations no_open_fops = {.open = no_open}; 134 struct address_space *const mapping = &inode->i_data; 135 136 inode->i_sb = sb; 137 inode->i_blkbits = sb->s_blocksize_bits; 138 inode->i_flags = 0; 139 atomic_set(&inode->i_count, 1); 140 inode->i_op = &empty_iops; 141 inode->i_fop = &no_open_fops; 142 inode->__i_nlink = 1; 143 inode->i_opflags = 0; 144 if (sb->s_xattr) 145 inode->i_opflags |= IOP_XATTR; 146 i_uid_write(inode, 0); 147 i_gid_write(inode, 0); 148 atomic_set(&inode->i_writecount, 0); 149 inode->i_size = 0; 150 inode->i_write_hint = WRITE_LIFE_NOT_SET; 151 inode->i_blocks = 0; 152 inode->i_bytes = 0; 153 inode->i_generation = 0; 154 inode->i_pipe = NULL; 155 inode->i_bdev = NULL; 156 inode->i_cdev = NULL; 157 inode->i_link = NULL; 158 inode->i_dir_seq = 0; 159 inode->i_rdev = 0; 160 inode->dirtied_when = 0; 161 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 inode->i_wb_frn_winner = 0; 164 inode->i_wb_frn_avg_time = 0; 165 inode->i_wb_frn_history = 0; 166 #endif 167 168 if (security_inode_alloc(inode)) 169 goto out; 170 spin_lock_init(&inode->i_lock); 171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 172 173 init_rwsem(&inode->i_rwsem); 174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 175 176 atomic_set(&inode->i_dio_count, 0); 177 178 mapping->a_ops = &empty_aops; 179 mapping->host = inode; 180 mapping->flags = 0; 181 mapping->wb_err = 0; 182 atomic_set(&mapping->i_mmap_writable, 0); 183 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 184 mapping->private_data = NULL; 185 mapping->writeback_index = 0; 186 inode->i_private = NULL; 187 inode->i_mapping = mapping; 188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 189 #ifdef CONFIG_FS_POSIX_ACL 190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 191 #endif 192 193 #ifdef CONFIG_FSNOTIFY 194 inode->i_fsnotify_mask = 0; 195 #endif 196 inode->i_flctx = NULL; 197 this_cpu_inc(nr_inodes); 198 199 return 0; 200 out: 201 return -ENOMEM; 202 } 203 EXPORT_SYMBOL(inode_init_always); 204 205 static struct inode *alloc_inode(struct super_block *sb) 206 { 207 struct inode *inode; 208 209 if (sb->s_op->alloc_inode) 210 inode = sb->s_op->alloc_inode(sb); 211 else 212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 213 214 if (!inode) 215 return NULL; 216 217 if (unlikely(inode_init_always(sb, inode))) { 218 if (inode->i_sb->s_op->destroy_inode) 219 inode->i_sb->s_op->destroy_inode(inode); 220 else 221 kmem_cache_free(inode_cachep, inode); 222 return NULL; 223 } 224 225 return inode; 226 } 227 228 void free_inode_nonrcu(struct inode *inode) 229 { 230 kmem_cache_free(inode_cachep, inode); 231 } 232 EXPORT_SYMBOL(free_inode_nonrcu); 233 234 void __destroy_inode(struct inode *inode) 235 { 236 BUG_ON(inode_has_buffers(inode)); 237 inode_detach_wb(inode); 238 security_inode_free(inode); 239 fsnotify_inode_delete(inode); 240 locks_free_lock_context(inode); 241 if (!inode->i_nlink) { 242 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 243 atomic_long_dec(&inode->i_sb->s_remove_count); 244 } 245 246 #ifdef CONFIG_FS_POSIX_ACL 247 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 248 posix_acl_release(inode->i_acl); 249 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 250 posix_acl_release(inode->i_default_acl); 251 #endif 252 this_cpu_dec(nr_inodes); 253 } 254 EXPORT_SYMBOL(__destroy_inode); 255 256 static void i_callback(struct rcu_head *head) 257 { 258 struct inode *inode = container_of(head, struct inode, i_rcu); 259 kmem_cache_free(inode_cachep, inode); 260 } 261 262 static void destroy_inode(struct inode *inode) 263 { 264 BUG_ON(!list_empty(&inode->i_lru)); 265 __destroy_inode(inode); 266 if (inode->i_sb->s_op->destroy_inode) 267 inode->i_sb->s_op->destroy_inode(inode); 268 else 269 call_rcu(&inode->i_rcu, i_callback); 270 } 271 272 /** 273 * drop_nlink - directly drop an inode's link count 274 * @inode: inode 275 * 276 * This is a low-level filesystem helper to replace any 277 * direct filesystem manipulation of i_nlink. In cases 278 * where we are attempting to track writes to the 279 * filesystem, a decrement to zero means an imminent 280 * write when the file is truncated and actually unlinked 281 * on the filesystem. 282 */ 283 void drop_nlink(struct inode *inode) 284 { 285 WARN_ON(inode->i_nlink == 0); 286 inode->__i_nlink--; 287 if (!inode->i_nlink) 288 atomic_long_inc(&inode->i_sb->s_remove_count); 289 } 290 EXPORT_SYMBOL(drop_nlink); 291 292 /** 293 * clear_nlink - directly zero an inode's link count 294 * @inode: inode 295 * 296 * This is a low-level filesystem helper to replace any 297 * direct filesystem manipulation of i_nlink. See 298 * drop_nlink() for why we care about i_nlink hitting zero. 299 */ 300 void clear_nlink(struct inode *inode) 301 { 302 if (inode->i_nlink) { 303 inode->__i_nlink = 0; 304 atomic_long_inc(&inode->i_sb->s_remove_count); 305 } 306 } 307 EXPORT_SYMBOL(clear_nlink); 308 309 /** 310 * set_nlink - directly set an inode's link count 311 * @inode: inode 312 * @nlink: new nlink (should be non-zero) 313 * 314 * This is a low-level filesystem helper to replace any 315 * direct filesystem manipulation of i_nlink. 316 */ 317 void set_nlink(struct inode *inode, unsigned int nlink) 318 { 319 if (!nlink) { 320 clear_nlink(inode); 321 } else { 322 /* Yes, some filesystems do change nlink from zero to one */ 323 if (inode->i_nlink == 0) 324 atomic_long_dec(&inode->i_sb->s_remove_count); 325 326 inode->__i_nlink = nlink; 327 } 328 } 329 EXPORT_SYMBOL(set_nlink); 330 331 /** 332 * inc_nlink - directly increment an inode's link count 333 * @inode: inode 334 * 335 * This is a low-level filesystem helper to replace any 336 * direct filesystem manipulation of i_nlink. Currently, 337 * it is only here for parity with dec_nlink(). 338 */ 339 void inc_nlink(struct inode *inode) 340 { 341 if (unlikely(inode->i_nlink == 0)) { 342 WARN_ON(!(inode->i_state & I_LINKABLE)); 343 atomic_long_dec(&inode->i_sb->s_remove_count); 344 } 345 346 inode->__i_nlink++; 347 } 348 EXPORT_SYMBOL(inc_nlink); 349 350 static void __address_space_init_once(struct address_space *mapping) 351 { 352 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ); 353 init_rwsem(&mapping->i_mmap_rwsem); 354 INIT_LIST_HEAD(&mapping->private_list); 355 spin_lock_init(&mapping->private_lock); 356 mapping->i_mmap = RB_ROOT_CACHED; 357 } 358 359 void address_space_init_once(struct address_space *mapping) 360 { 361 memset(mapping, 0, sizeof(*mapping)); 362 __address_space_init_once(mapping); 363 } 364 EXPORT_SYMBOL(address_space_init_once); 365 366 /* 367 * These are initializations that only need to be done 368 * once, because the fields are idempotent across use 369 * of the inode, so let the slab aware of that. 370 */ 371 void inode_init_once(struct inode *inode) 372 { 373 memset(inode, 0, sizeof(*inode)); 374 INIT_HLIST_NODE(&inode->i_hash); 375 INIT_LIST_HEAD(&inode->i_devices); 376 INIT_LIST_HEAD(&inode->i_io_list); 377 INIT_LIST_HEAD(&inode->i_wb_list); 378 INIT_LIST_HEAD(&inode->i_lru); 379 __address_space_init_once(&inode->i_data); 380 i_size_ordered_init(inode); 381 } 382 EXPORT_SYMBOL(inode_init_once); 383 384 static void init_once(void *foo) 385 { 386 struct inode *inode = (struct inode *) foo; 387 388 inode_init_once(inode); 389 } 390 391 /* 392 * inode->i_lock must be held 393 */ 394 void __iget(struct inode *inode) 395 { 396 atomic_inc(&inode->i_count); 397 } 398 399 /* 400 * get additional reference to inode; caller must already hold one. 401 */ 402 void ihold(struct inode *inode) 403 { 404 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 405 } 406 EXPORT_SYMBOL(ihold); 407 408 static void inode_lru_list_add(struct inode *inode) 409 { 410 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 411 this_cpu_inc(nr_unused); 412 else 413 inode->i_state |= I_REFERENCED; 414 } 415 416 /* 417 * Add inode to LRU if needed (inode is unused and clean). 418 * 419 * Needs inode->i_lock held. 420 */ 421 void inode_add_lru(struct inode *inode) 422 { 423 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 424 I_FREEING | I_WILL_FREE)) && 425 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 426 inode_lru_list_add(inode); 427 } 428 429 430 static void inode_lru_list_del(struct inode *inode) 431 { 432 433 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 434 this_cpu_dec(nr_unused); 435 } 436 437 /** 438 * inode_sb_list_add - add inode to the superblock list of inodes 439 * @inode: inode to add 440 */ 441 void inode_sb_list_add(struct inode *inode) 442 { 443 spin_lock(&inode->i_sb->s_inode_list_lock); 444 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 445 spin_unlock(&inode->i_sb->s_inode_list_lock); 446 } 447 EXPORT_SYMBOL_GPL(inode_sb_list_add); 448 449 static inline void inode_sb_list_del(struct inode *inode) 450 { 451 if (!list_empty(&inode->i_sb_list)) { 452 spin_lock(&inode->i_sb->s_inode_list_lock); 453 list_del_init(&inode->i_sb_list); 454 spin_unlock(&inode->i_sb->s_inode_list_lock); 455 } 456 } 457 458 static unsigned long hash(struct super_block *sb, unsigned long hashval) 459 { 460 unsigned long tmp; 461 462 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 463 L1_CACHE_BYTES; 464 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 465 return tmp & i_hash_mask; 466 } 467 468 /** 469 * __insert_inode_hash - hash an inode 470 * @inode: unhashed inode 471 * @hashval: unsigned long value used to locate this object in the 472 * inode_hashtable. 473 * 474 * Add an inode to the inode hash for this superblock. 475 */ 476 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 477 { 478 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 479 480 spin_lock(&inode_hash_lock); 481 spin_lock(&inode->i_lock); 482 hlist_add_head(&inode->i_hash, b); 483 spin_unlock(&inode->i_lock); 484 spin_unlock(&inode_hash_lock); 485 } 486 EXPORT_SYMBOL(__insert_inode_hash); 487 488 /** 489 * __remove_inode_hash - remove an inode from the hash 490 * @inode: inode to unhash 491 * 492 * Remove an inode from the superblock. 493 */ 494 void __remove_inode_hash(struct inode *inode) 495 { 496 spin_lock(&inode_hash_lock); 497 spin_lock(&inode->i_lock); 498 hlist_del_init(&inode->i_hash); 499 spin_unlock(&inode->i_lock); 500 spin_unlock(&inode_hash_lock); 501 } 502 EXPORT_SYMBOL(__remove_inode_hash); 503 504 void clear_inode(struct inode *inode) 505 { 506 /* 507 * We have to cycle the i_pages lock here because reclaim can be in the 508 * process of removing the last page (in __delete_from_page_cache()) 509 * and we must not free the mapping under it. 510 */ 511 xa_lock_irq(&inode->i_data.i_pages); 512 BUG_ON(inode->i_data.nrpages); 513 BUG_ON(inode->i_data.nrexceptional); 514 xa_unlock_irq(&inode->i_data.i_pages); 515 BUG_ON(!list_empty(&inode->i_data.private_list)); 516 BUG_ON(!(inode->i_state & I_FREEING)); 517 BUG_ON(inode->i_state & I_CLEAR); 518 BUG_ON(!list_empty(&inode->i_wb_list)); 519 /* don't need i_lock here, no concurrent mods to i_state */ 520 inode->i_state = I_FREEING | I_CLEAR; 521 } 522 EXPORT_SYMBOL(clear_inode); 523 524 /* 525 * Free the inode passed in, removing it from the lists it is still connected 526 * to. We remove any pages still attached to the inode and wait for any IO that 527 * is still in progress before finally destroying the inode. 528 * 529 * An inode must already be marked I_FREEING so that we avoid the inode being 530 * moved back onto lists if we race with other code that manipulates the lists 531 * (e.g. writeback_single_inode). The caller is responsible for setting this. 532 * 533 * An inode must already be removed from the LRU list before being evicted from 534 * the cache. This should occur atomically with setting the I_FREEING state 535 * flag, so no inodes here should ever be on the LRU when being evicted. 536 */ 537 static void evict(struct inode *inode) 538 { 539 const struct super_operations *op = inode->i_sb->s_op; 540 541 BUG_ON(!(inode->i_state & I_FREEING)); 542 BUG_ON(!list_empty(&inode->i_lru)); 543 544 if (!list_empty(&inode->i_io_list)) 545 inode_io_list_del(inode); 546 547 inode_sb_list_del(inode); 548 549 /* 550 * Wait for flusher thread to be done with the inode so that filesystem 551 * does not start destroying it while writeback is still running. Since 552 * the inode has I_FREEING set, flusher thread won't start new work on 553 * the inode. We just have to wait for running writeback to finish. 554 */ 555 inode_wait_for_writeback(inode); 556 557 if (op->evict_inode) { 558 op->evict_inode(inode); 559 } else { 560 truncate_inode_pages_final(&inode->i_data); 561 clear_inode(inode); 562 } 563 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 564 bd_forget(inode); 565 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 566 cd_forget(inode); 567 568 remove_inode_hash(inode); 569 570 spin_lock(&inode->i_lock); 571 wake_up_bit(&inode->i_state, __I_NEW); 572 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 573 spin_unlock(&inode->i_lock); 574 575 destroy_inode(inode); 576 } 577 578 /* 579 * dispose_list - dispose of the contents of a local list 580 * @head: the head of the list to free 581 * 582 * Dispose-list gets a local list with local inodes in it, so it doesn't 583 * need to worry about list corruption and SMP locks. 584 */ 585 static void dispose_list(struct list_head *head) 586 { 587 while (!list_empty(head)) { 588 struct inode *inode; 589 590 inode = list_first_entry(head, struct inode, i_lru); 591 list_del_init(&inode->i_lru); 592 593 evict(inode); 594 cond_resched(); 595 } 596 } 597 598 /** 599 * evict_inodes - evict all evictable inodes for a superblock 600 * @sb: superblock to operate on 601 * 602 * Make sure that no inodes with zero refcount are retained. This is 603 * called by superblock shutdown after having SB_ACTIVE flag removed, 604 * so any inode reaching zero refcount during or after that call will 605 * be immediately evicted. 606 */ 607 void evict_inodes(struct super_block *sb) 608 { 609 struct inode *inode, *next; 610 LIST_HEAD(dispose); 611 612 again: 613 spin_lock(&sb->s_inode_list_lock); 614 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 615 if (atomic_read(&inode->i_count)) 616 continue; 617 618 spin_lock(&inode->i_lock); 619 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 620 spin_unlock(&inode->i_lock); 621 continue; 622 } 623 624 inode->i_state |= I_FREEING; 625 inode_lru_list_del(inode); 626 spin_unlock(&inode->i_lock); 627 list_add(&inode->i_lru, &dispose); 628 629 /* 630 * We can have a ton of inodes to evict at unmount time given 631 * enough memory, check to see if we need to go to sleep for a 632 * bit so we don't livelock. 633 */ 634 if (need_resched()) { 635 spin_unlock(&sb->s_inode_list_lock); 636 cond_resched(); 637 dispose_list(&dispose); 638 goto again; 639 } 640 } 641 spin_unlock(&sb->s_inode_list_lock); 642 643 dispose_list(&dispose); 644 } 645 EXPORT_SYMBOL_GPL(evict_inodes); 646 647 /** 648 * invalidate_inodes - attempt to free all inodes on a superblock 649 * @sb: superblock to operate on 650 * @kill_dirty: flag to guide handling of dirty inodes 651 * 652 * Attempts to free all inodes for a given superblock. If there were any 653 * busy inodes return a non-zero value, else zero. 654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 655 * them as busy. 656 */ 657 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 658 { 659 int busy = 0; 660 struct inode *inode, *next; 661 LIST_HEAD(dispose); 662 663 spin_lock(&sb->s_inode_list_lock); 664 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 665 spin_lock(&inode->i_lock); 666 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 667 spin_unlock(&inode->i_lock); 668 continue; 669 } 670 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 671 spin_unlock(&inode->i_lock); 672 busy = 1; 673 continue; 674 } 675 if (atomic_read(&inode->i_count)) { 676 spin_unlock(&inode->i_lock); 677 busy = 1; 678 continue; 679 } 680 681 inode->i_state |= I_FREEING; 682 inode_lru_list_del(inode); 683 spin_unlock(&inode->i_lock); 684 list_add(&inode->i_lru, &dispose); 685 } 686 spin_unlock(&sb->s_inode_list_lock); 687 688 dispose_list(&dispose); 689 690 return busy; 691 } 692 693 /* 694 * Isolate the inode from the LRU in preparation for freeing it. 695 * 696 * Any inodes which are pinned purely because of attached pagecache have their 697 * pagecache removed. If the inode has metadata buffers attached to 698 * mapping->private_list then try to remove them. 699 * 700 * If the inode has the I_REFERENCED flag set, then it means that it has been 701 * used recently - the flag is set in iput_final(). When we encounter such an 702 * inode, clear the flag and move it to the back of the LRU so it gets another 703 * pass through the LRU before it gets reclaimed. This is necessary because of 704 * the fact we are doing lazy LRU updates to minimise lock contention so the 705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 706 * with this flag set because they are the inodes that are out of order. 707 */ 708 static enum lru_status inode_lru_isolate(struct list_head *item, 709 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 710 { 711 struct list_head *freeable = arg; 712 struct inode *inode = container_of(item, struct inode, i_lru); 713 714 /* 715 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 716 * If we fail to get the lock, just skip it. 717 */ 718 if (!spin_trylock(&inode->i_lock)) 719 return LRU_SKIP; 720 721 /* 722 * Referenced or dirty inodes are still in use. Give them another pass 723 * through the LRU as we canot reclaim them now. 724 */ 725 if (atomic_read(&inode->i_count) || 726 (inode->i_state & ~I_REFERENCED)) { 727 list_lru_isolate(lru, &inode->i_lru); 728 spin_unlock(&inode->i_lock); 729 this_cpu_dec(nr_unused); 730 return LRU_REMOVED; 731 } 732 733 /* 734 * Recently referenced inodes and inodes with many attached pages 735 * get one more pass. 736 */ 737 if (inode->i_state & I_REFERENCED || inode->i_data.nrpages > 1) { 738 inode->i_state &= ~I_REFERENCED; 739 spin_unlock(&inode->i_lock); 740 return LRU_ROTATE; 741 } 742 743 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 744 __iget(inode); 745 spin_unlock(&inode->i_lock); 746 spin_unlock(lru_lock); 747 if (remove_inode_buffers(inode)) { 748 unsigned long reap; 749 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 750 if (current_is_kswapd()) 751 __count_vm_events(KSWAPD_INODESTEAL, reap); 752 else 753 __count_vm_events(PGINODESTEAL, reap); 754 if (current->reclaim_state) 755 current->reclaim_state->reclaimed_slab += reap; 756 } 757 iput(inode); 758 spin_lock(lru_lock); 759 return LRU_RETRY; 760 } 761 762 WARN_ON(inode->i_state & I_NEW); 763 inode->i_state |= I_FREEING; 764 list_lru_isolate_move(lru, &inode->i_lru, freeable); 765 spin_unlock(&inode->i_lock); 766 767 this_cpu_dec(nr_unused); 768 return LRU_REMOVED; 769 } 770 771 /* 772 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 773 * This is called from the superblock shrinker function with a number of inodes 774 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 775 * then are freed outside inode_lock by dispose_list(). 776 */ 777 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 778 { 779 LIST_HEAD(freeable); 780 long freed; 781 782 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 783 inode_lru_isolate, &freeable); 784 dispose_list(&freeable); 785 return freed; 786 } 787 788 static void __wait_on_freeing_inode(struct inode *inode); 789 /* 790 * Called with the inode lock held. 791 */ 792 static struct inode *find_inode(struct super_block *sb, 793 struct hlist_head *head, 794 int (*test)(struct inode *, void *), 795 void *data) 796 { 797 struct inode *inode = NULL; 798 799 repeat: 800 hlist_for_each_entry(inode, head, i_hash) { 801 if (inode->i_sb != sb) 802 continue; 803 if (!test(inode, data)) 804 continue; 805 spin_lock(&inode->i_lock); 806 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 807 __wait_on_freeing_inode(inode); 808 goto repeat; 809 } 810 if (unlikely(inode->i_state & I_CREATING)) { 811 spin_unlock(&inode->i_lock); 812 return ERR_PTR(-ESTALE); 813 } 814 __iget(inode); 815 spin_unlock(&inode->i_lock); 816 return inode; 817 } 818 return NULL; 819 } 820 821 /* 822 * find_inode_fast is the fast path version of find_inode, see the comment at 823 * iget_locked for details. 824 */ 825 static struct inode *find_inode_fast(struct super_block *sb, 826 struct hlist_head *head, unsigned long ino) 827 { 828 struct inode *inode = NULL; 829 830 repeat: 831 hlist_for_each_entry(inode, head, i_hash) { 832 if (inode->i_ino != ino) 833 continue; 834 if (inode->i_sb != sb) 835 continue; 836 spin_lock(&inode->i_lock); 837 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 838 __wait_on_freeing_inode(inode); 839 goto repeat; 840 } 841 if (unlikely(inode->i_state & I_CREATING)) { 842 spin_unlock(&inode->i_lock); 843 return ERR_PTR(-ESTALE); 844 } 845 __iget(inode); 846 spin_unlock(&inode->i_lock); 847 return inode; 848 } 849 return NULL; 850 } 851 852 /* 853 * Each cpu owns a range of LAST_INO_BATCH numbers. 854 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 855 * to renew the exhausted range. 856 * 857 * This does not significantly increase overflow rate because every CPU can 858 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 859 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 860 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 861 * overflow rate by 2x, which does not seem too significant. 862 * 863 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 864 * error if st_ino won't fit in target struct field. Use 32bit counter 865 * here to attempt to avoid that. 866 */ 867 #define LAST_INO_BATCH 1024 868 static DEFINE_PER_CPU(unsigned int, last_ino); 869 870 unsigned int get_next_ino(void) 871 { 872 unsigned int *p = &get_cpu_var(last_ino); 873 unsigned int res = *p; 874 875 #ifdef CONFIG_SMP 876 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 877 static atomic_t shared_last_ino; 878 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 879 880 res = next - LAST_INO_BATCH; 881 } 882 #endif 883 884 res++; 885 /* get_next_ino should not provide a 0 inode number */ 886 if (unlikely(!res)) 887 res++; 888 *p = res; 889 put_cpu_var(last_ino); 890 return res; 891 } 892 EXPORT_SYMBOL(get_next_ino); 893 894 /** 895 * new_inode_pseudo - obtain an inode 896 * @sb: superblock 897 * 898 * Allocates a new inode for given superblock. 899 * Inode wont be chained in superblock s_inodes list 900 * This means : 901 * - fs can't be unmount 902 * - quotas, fsnotify, writeback can't work 903 */ 904 struct inode *new_inode_pseudo(struct super_block *sb) 905 { 906 struct inode *inode = alloc_inode(sb); 907 908 if (inode) { 909 spin_lock(&inode->i_lock); 910 inode->i_state = 0; 911 spin_unlock(&inode->i_lock); 912 INIT_LIST_HEAD(&inode->i_sb_list); 913 } 914 return inode; 915 } 916 917 /** 918 * new_inode - obtain an inode 919 * @sb: superblock 920 * 921 * Allocates a new inode for given superblock. The default gfp_mask 922 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 923 * If HIGHMEM pages are unsuitable or it is known that pages allocated 924 * for the page cache are not reclaimable or migratable, 925 * mapping_set_gfp_mask() must be called with suitable flags on the 926 * newly created inode's mapping 927 * 928 */ 929 struct inode *new_inode(struct super_block *sb) 930 { 931 struct inode *inode; 932 933 spin_lock_prefetch(&sb->s_inode_list_lock); 934 935 inode = new_inode_pseudo(sb); 936 if (inode) 937 inode_sb_list_add(inode); 938 return inode; 939 } 940 EXPORT_SYMBOL(new_inode); 941 942 #ifdef CONFIG_DEBUG_LOCK_ALLOC 943 void lockdep_annotate_inode_mutex_key(struct inode *inode) 944 { 945 if (S_ISDIR(inode->i_mode)) { 946 struct file_system_type *type = inode->i_sb->s_type; 947 948 /* Set new key only if filesystem hasn't already changed it */ 949 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 950 /* 951 * ensure nobody is actually holding i_mutex 952 */ 953 // mutex_destroy(&inode->i_mutex); 954 init_rwsem(&inode->i_rwsem); 955 lockdep_set_class(&inode->i_rwsem, 956 &type->i_mutex_dir_key); 957 } 958 } 959 } 960 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 961 #endif 962 963 /** 964 * unlock_new_inode - clear the I_NEW state and wake up any waiters 965 * @inode: new inode to unlock 966 * 967 * Called when the inode is fully initialised to clear the new state of the 968 * inode and wake up anyone waiting for the inode to finish initialisation. 969 */ 970 void unlock_new_inode(struct inode *inode) 971 { 972 lockdep_annotate_inode_mutex_key(inode); 973 spin_lock(&inode->i_lock); 974 WARN_ON(!(inode->i_state & I_NEW)); 975 inode->i_state &= ~I_NEW & ~I_CREATING; 976 smp_mb(); 977 wake_up_bit(&inode->i_state, __I_NEW); 978 spin_unlock(&inode->i_lock); 979 } 980 EXPORT_SYMBOL(unlock_new_inode); 981 982 void discard_new_inode(struct inode *inode) 983 { 984 lockdep_annotate_inode_mutex_key(inode); 985 spin_lock(&inode->i_lock); 986 WARN_ON(!(inode->i_state & I_NEW)); 987 inode->i_state &= ~I_NEW; 988 smp_mb(); 989 wake_up_bit(&inode->i_state, __I_NEW); 990 spin_unlock(&inode->i_lock); 991 iput(inode); 992 } 993 EXPORT_SYMBOL(discard_new_inode); 994 995 /** 996 * lock_two_nondirectories - take two i_mutexes on non-directory objects 997 * 998 * Lock any non-NULL argument that is not a directory. 999 * Zero, one or two objects may be locked by this function. 1000 * 1001 * @inode1: first inode to lock 1002 * @inode2: second inode to lock 1003 */ 1004 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1005 { 1006 if (inode1 > inode2) 1007 swap(inode1, inode2); 1008 1009 if (inode1 && !S_ISDIR(inode1->i_mode)) 1010 inode_lock(inode1); 1011 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1012 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1013 } 1014 EXPORT_SYMBOL(lock_two_nondirectories); 1015 1016 /** 1017 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1018 * @inode1: first inode to unlock 1019 * @inode2: second inode to unlock 1020 */ 1021 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1022 { 1023 if (inode1 && !S_ISDIR(inode1->i_mode)) 1024 inode_unlock(inode1); 1025 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1026 inode_unlock(inode2); 1027 } 1028 EXPORT_SYMBOL(unlock_two_nondirectories); 1029 1030 /** 1031 * inode_insert5 - obtain an inode from a mounted file system 1032 * @inode: pre-allocated inode to use for insert to cache 1033 * @hashval: hash value (usually inode number) to get 1034 * @test: callback used for comparisons between inodes 1035 * @set: callback used to initialize a new struct inode 1036 * @data: opaque data pointer to pass to @test and @set 1037 * 1038 * Search for the inode specified by @hashval and @data in the inode cache, 1039 * and if present it is return it with an increased reference count. This is 1040 * a variant of iget5_locked() for callers that don't want to fail on memory 1041 * allocation of inode. 1042 * 1043 * If the inode is not in cache, insert the pre-allocated inode to cache and 1044 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1045 * to fill it in before unlocking it via unlock_new_inode(). 1046 * 1047 * Note both @test and @set are called with the inode_hash_lock held, so can't 1048 * sleep. 1049 */ 1050 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1051 int (*test)(struct inode *, void *), 1052 int (*set)(struct inode *, void *), void *data) 1053 { 1054 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1055 struct inode *old; 1056 bool creating = inode->i_state & I_CREATING; 1057 1058 again: 1059 spin_lock(&inode_hash_lock); 1060 old = find_inode(inode->i_sb, head, test, data); 1061 if (unlikely(old)) { 1062 /* 1063 * Uhhuh, somebody else created the same inode under us. 1064 * Use the old inode instead of the preallocated one. 1065 */ 1066 spin_unlock(&inode_hash_lock); 1067 if (IS_ERR(old)) 1068 return NULL; 1069 wait_on_inode(old); 1070 if (unlikely(inode_unhashed(old))) { 1071 iput(old); 1072 goto again; 1073 } 1074 return old; 1075 } 1076 1077 if (set && unlikely(set(inode, data))) { 1078 inode = NULL; 1079 goto unlock; 1080 } 1081 1082 /* 1083 * Return the locked inode with I_NEW set, the 1084 * caller is responsible for filling in the contents 1085 */ 1086 spin_lock(&inode->i_lock); 1087 inode->i_state |= I_NEW; 1088 hlist_add_head(&inode->i_hash, head); 1089 spin_unlock(&inode->i_lock); 1090 if (!creating) 1091 inode_sb_list_add(inode); 1092 unlock: 1093 spin_unlock(&inode_hash_lock); 1094 1095 return inode; 1096 } 1097 EXPORT_SYMBOL(inode_insert5); 1098 1099 /** 1100 * iget5_locked - obtain an inode from a mounted file system 1101 * @sb: super block of file system 1102 * @hashval: hash value (usually inode number) to get 1103 * @test: callback used for comparisons between inodes 1104 * @set: callback used to initialize a new struct inode 1105 * @data: opaque data pointer to pass to @test and @set 1106 * 1107 * Search for the inode specified by @hashval and @data in the inode cache, 1108 * and if present it is return it with an increased reference count. This is 1109 * a generalized version of iget_locked() for file systems where the inode 1110 * number is not sufficient for unique identification of an inode. 1111 * 1112 * If the inode is not in cache, allocate a new inode and return it locked, 1113 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1114 * before unlocking it via unlock_new_inode(). 1115 * 1116 * Note both @test and @set are called with the inode_hash_lock held, so can't 1117 * sleep. 1118 */ 1119 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1120 int (*test)(struct inode *, void *), 1121 int (*set)(struct inode *, void *), void *data) 1122 { 1123 struct inode *inode = ilookup5(sb, hashval, test, data); 1124 1125 if (!inode) { 1126 struct inode *new = alloc_inode(sb); 1127 1128 if (new) { 1129 new->i_state = 0; 1130 inode = inode_insert5(new, hashval, test, set, data); 1131 if (unlikely(inode != new)) 1132 destroy_inode(new); 1133 } 1134 } 1135 return inode; 1136 } 1137 EXPORT_SYMBOL(iget5_locked); 1138 1139 /** 1140 * iget_locked - obtain an inode from a mounted file system 1141 * @sb: super block of file system 1142 * @ino: inode number to get 1143 * 1144 * Search for the inode specified by @ino in the inode cache and if present 1145 * return it with an increased reference count. This is for file systems 1146 * where the inode number is sufficient for unique identification of an inode. 1147 * 1148 * If the inode is not in cache, allocate a new inode and return it locked, 1149 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1150 * before unlocking it via unlock_new_inode(). 1151 */ 1152 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1153 { 1154 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1155 struct inode *inode; 1156 again: 1157 spin_lock(&inode_hash_lock); 1158 inode = find_inode_fast(sb, head, ino); 1159 spin_unlock(&inode_hash_lock); 1160 if (inode) { 1161 if (IS_ERR(inode)) 1162 return NULL; 1163 wait_on_inode(inode); 1164 if (unlikely(inode_unhashed(inode))) { 1165 iput(inode); 1166 goto again; 1167 } 1168 return inode; 1169 } 1170 1171 inode = alloc_inode(sb); 1172 if (inode) { 1173 struct inode *old; 1174 1175 spin_lock(&inode_hash_lock); 1176 /* We released the lock, so.. */ 1177 old = find_inode_fast(sb, head, ino); 1178 if (!old) { 1179 inode->i_ino = ino; 1180 spin_lock(&inode->i_lock); 1181 inode->i_state = I_NEW; 1182 hlist_add_head(&inode->i_hash, head); 1183 spin_unlock(&inode->i_lock); 1184 inode_sb_list_add(inode); 1185 spin_unlock(&inode_hash_lock); 1186 1187 /* Return the locked inode with I_NEW set, the 1188 * caller is responsible for filling in the contents 1189 */ 1190 return inode; 1191 } 1192 1193 /* 1194 * Uhhuh, somebody else created the same inode under 1195 * us. Use the old inode instead of the one we just 1196 * allocated. 1197 */ 1198 spin_unlock(&inode_hash_lock); 1199 destroy_inode(inode); 1200 if (IS_ERR(old)) 1201 return NULL; 1202 inode = old; 1203 wait_on_inode(inode); 1204 if (unlikely(inode_unhashed(inode))) { 1205 iput(inode); 1206 goto again; 1207 } 1208 } 1209 return inode; 1210 } 1211 EXPORT_SYMBOL(iget_locked); 1212 1213 /* 1214 * search the inode cache for a matching inode number. 1215 * If we find one, then the inode number we are trying to 1216 * allocate is not unique and so we should not use it. 1217 * 1218 * Returns 1 if the inode number is unique, 0 if it is not. 1219 */ 1220 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1221 { 1222 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1223 struct inode *inode; 1224 1225 spin_lock(&inode_hash_lock); 1226 hlist_for_each_entry(inode, b, i_hash) { 1227 if (inode->i_ino == ino && inode->i_sb == sb) { 1228 spin_unlock(&inode_hash_lock); 1229 return 0; 1230 } 1231 } 1232 spin_unlock(&inode_hash_lock); 1233 1234 return 1; 1235 } 1236 1237 /** 1238 * iunique - get a unique inode number 1239 * @sb: superblock 1240 * @max_reserved: highest reserved inode number 1241 * 1242 * Obtain an inode number that is unique on the system for a given 1243 * superblock. This is used by file systems that have no natural 1244 * permanent inode numbering system. An inode number is returned that 1245 * is higher than the reserved limit but unique. 1246 * 1247 * BUGS: 1248 * With a large number of inodes live on the file system this function 1249 * currently becomes quite slow. 1250 */ 1251 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1252 { 1253 /* 1254 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1255 * error if st_ino won't fit in target struct field. Use 32bit counter 1256 * here to attempt to avoid that. 1257 */ 1258 static DEFINE_SPINLOCK(iunique_lock); 1259 static unsigned int counter; 1260 ino_t res; 1261 1262 spin_lock(&iunique_lock); 1263 do { 1264 if (counter <= max_reserved) 1265 counter = max_reserved + 1; 1266 res = counter++; 1267 } while (!test_inode_iunique(sb, res)); 1268 spin_unlock(&iunique_lock); 1269 1270 return res; 1271 } 1272 EXPORT_SYMBOL(iunique); 1273 1274 struct inode *igrab(struct inode *inode) 1275 { 1276 spin_lock(&inode->i_lock); 1277 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1278 __iget(inode); 1279 spin_unlock(&inode->i_lock); 1280 } else { 1281 spin_unlock(&inode->i_lock); 1282 /* 1283 * Handle the case where s_op->clear_inode is not been 1284 * called yet, and somebody is calling igrab 1285 * while the inode is getting freed. 1286 */ 1287 inode = NULL; 1288 } 1289 return inode; 1290 } 1291 EXPORT_SYMBOL(igrab); 1292 1293 /** 1294 * ilookup5_nowait - search for an inode in the inode cache 1295 * @sb: super block of file system to search 1296 * @hashval: hash value (usually inode number) to search for 1297 * @test: callback used for comparisons between inodes 1298 * @data: opaque data pointer to pass to @test 1299 * 1300 * Search for the inode specified by @hashval and @data in the inode cache. 1301 * If the inode is in the cache, the inode is returned with an incremented 1302 * reference count. 1303 * 1304 * Note: I_NEW is not waited upon so you have to be very careful what you do 1305 * with the returned inode. You probably should be using ilookup5() instead. 1306 * 1307 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1308 */ 1309 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1310 int (*test)(struct inode *, void *), void *data) 1311 { 1312 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1313 struct inode *inode; 1314 1315 spin_lock(&inode_hash_lock); 1316 inode = find_inode(sb, head, test, data); 1317 spin_unlock(&inode_hash_lock); 1318 1319 return IS_ERR(inode) ? NULL : inode; 1320 } 1321 EXPORT_SYMBOL(ilookup5_nowait); 1322 1323 /** 1324 * ilookup5 - search for an inode in the inode cache 1325 * @sb: super block of file system to search 1326 * @hashval: hash value (usually inode number) to search for 1327 * @test: callback used for comparisons between inodes 1328 * @data: opaque data pointer to pass to @test 1329 * 1330 * Search for the inode specified by @hashval and @data in the inode cache, 1331 * and if the inode is in the cache, return the inode with an incremented 1332 * reference count. Waits on I_NEW before returning the inode. 1333 * returned with an incremented reference count. 1334 * 1335 * This is a generalized version of ilookup() for file systems where the 1336 * inode number is not sufficient for unique identification of an inode. 1337 * 1338 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1339 */ 1340 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1341 int (*test)(struct inode *, void *), void *data) 1342 { 1343 struct inode *inode; 1344 again: 1345 inode = ilookup5_nowait(sb, hashval, test, data); 1346 if (inode) { 1347 wait_on_inode(inode); 1348 if (unlikely(inode_unhashed(inode))) { 1349 iput(inode); 1350 goto again; 1351 } 1352 } 1353 return inode; 1354 } 1355 EXPORT_SYMBOL(ilookup5); 1356 1357 /** 1358 * ilookup - search for an inode in the inode cache 1359 * @sb: super block of file system to search 1360 * @ino: inode number to search for 1361 * 1362 * Search for the inode @ino in the inode cache, and if the inode is in the 1363 * cache, the inode is returned with an incremented reference count. 1364 */ 1365 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1366 { 1367 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1368 struct inode *inode; 1369 again: 1370 spin_lock(&inode_hash_lock); 1371 inode = find_inode_fast(sb, head, ino); 1372 spin_unlock(&inode_hash_lock); 1373 1374 if (inode) { 1375 if (IS_ERR(inode)) 1376 return NULL; 1377 wait_on_inode(inode); 1378 if (unlikely(inode_unhashed(inode))) { 1379 iput(inode); 1380 goto again; 1381 } 1382 } 1383 return inode; 1384 } 1385 EXPORT_SYMBOL(ilookup); 1386 1387 /** 1388 * find_inode_nowait - find an inode in the inode cache 1389 * @sb: super block of file system to search 1390 * @hashval: hash value (usually inode number) to search for 1391 * @match: callback used for comparisons between inodes 1392 * @data: opaque data pointer to pass to @match 1393 * 1394 * Search for the inode specified by @hashval and @data in the inode 1395 * cache, where the helper function @match will return 0 if the inode 1396 * does not match, 1 if the inode does match, and -1 if the search 1397 * should be stopped. The @match function must be responsible for 1398 * taking the i_lock spin_lock and checking i_state for an inode being 1399 * freed or being initialized, and incrementing the reference count 1400 * before returning 1. It also must not sleep, since it is called with 1401 * the inode_hash_lock spinlock held. 1402 * 1403 * This is a even more generalized version of ilookup5() when the 1404 * function must never block --- find_inode() can block in 1405 * __wait_on_freeing_inode() --- or when the caller can not increment 1406 * the reference count because the resulting iput() might cause an 1407 * inode eviction. The tradeoff is that the @match funtion must be 1408 * very carefully implemented. 1409 */ 1410 struct inode *find_inode_nowait(struct super_block *sb, 1411 unsigned long hashval, 1412 int (*match)(struct inode *, unsigned long, 1413 void *), 1414 void *data) 1415 { 1416 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1417 struct inode *inode, *ret_inode = NULL; 1418 int mval; 1419 1420 spin_lock(&inode_hash_lock); 1421 hlist_for_each_entry(inode, head, i_hash) { 1422 if (inode->i_sb != sb) 1423 continue; 1424 mval = match(inode, hashval, data); 1425 if (mval == 0) 1426 continue; 1427 if (mval == 1) 1428 ret_inode = inode; 1429 goto out; 1430 } 1431 out: 1432 spin_unlock(&inode_hash_lock); 1433 return ret_inode; 1434 } 1435 EXPORT_SYMBOL(find_inode_nowait); 1436 1437 int insert_inode_locked(struct inode *inode) 1438 { 1439 struct super_block *sb = inode->i_sb; 1440 ino_t ino = inode->i_ino; 1441 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1442 1443 while (1) { 1444 struct inode *old = NULL; 1445 spin_lock(&inode_hash_lock); 1446 hlist_for_each_entry(old, head, i_hash) { 1447 if (old->i_ino != ino) 1448 continue; 1449 if (old->i_sb != sb) 1450 continue; 1451 spin_lock(&old->i_lock); 1452 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1453 spin_unlock(&old->i_lock); 1454 continue; 1455 } 1456 break; 1457 } 1458 if (likely(!old)) { 1459 spin_lock(&inode->i_lock); 1460 inode->i_state |= I_NEW | I_CREATING; 1461 hlist_add_head(&inode->i_hash, head); 1462 spin_unlock(&inode->i_lock); 1463 spin_unlock(&inode_hash_lock); 1464 return 0; 1465 } 1466 if (unlikely(old->i_state & I_CREATING)) { 1467 spin_unlock(&old->i_lock); 1468 spin_unlock(&inode_hash_lock); 1469 return -EBUSY; 1470 } 1471 __iget(old); 1472 spin_unlock(&old->i_lock); 1473 spin_unlock(&inode_hash_lock); 1474 wait_on_inode(old); 1475 if (unlikely(!inode_unhashed(old))) { 1476 iput(old); 1477 return -EBUSY; 1478 } 1479 iput(old); 1480 } 1481 } 1482 EXPORT_SYMBOL(insert_inode_locked); 1483 1484 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1485 int (*test)(struct inode *, void *), void *data) 1486 { 1487 struct inode *old; 1488 1489 inode->i_state |= I_CREATING; 1490 old = inode_insert5(inode, hashval, test, NULL, data); 1491 1492 if (old != inode) { 1493 iput(old); 1494 return -EBUSY; 1495 } 1496 return 0; 1497 } 1498 EXPORT_SYMBOL(insert_inode_locked4); 1499 1500 1501 int generic_delete_inode(struct inode *inode) 1502 { 1503 return 1; 1504 } 1505 EXPORT_SYMBOL(generic_delete_inode); 1506 1507 /* 1508 * Called when we're dropping the last reference 1509 * to an inode. 1510 * 1511 * Call the FS "drop_inode()" function, defaulting to 1512 * the legacy UNIX filesystem behaviour. If it tells 1513 * us to evict inode, do so. Otherwise, retain inode 1514 * in cache if fs is alive, sync and evict if fs is 1515 * shutting down. 1516 */ 1517 static void iput_final(struct inode *inode) 1518 { 1519 struct super_block *sb = inode->i_sb; 1520 const struct super_operations *op = inode->i_sb->s_op; 1521 int drop; 1522 1523 WARN_ON(inode->i_state & I_NEW); 1524 1525 if (op->drop_inode) 1526 drop = op->drop_inode(inode); 1527 else 1528 drop = generic_drop_inode(inode); 1529 1530 if (!drop && (sb->s_flags & SB_ACTIVE)) { 1531 inode_add_lru(inode); 1532 spin_unlock(&inode->i_lock); 1533 return; 1534 } 1535 1536 if (!drop) { 1537 inode->i_state |= I_WILL_FREE; 1538 spin_unlock(&inode->i_lock); 1539 write_inode_now(inode, 1); 1540 spin_lock(&inode->i_lock); 1541 WARN_ON(inode->i_state & I_NEW); 1542 inode->i_state &= ~I_WILL_FREE; 1543 } 1544 1545 inode->i_state |= I_FREEING; 1546 if (!list_empty(&inode->i_lru)) 1547 inode_lru_list_del(inode); 1548 spin_unlock(&inode->i_lock); 1549 1550 evict(inode); 1551 } 1552 1553 /** 1554 * iput - put an inode 1555 * @inode: inode to put 1556 * 1557 * Puts an inode, dropping its usage count. If the inode use count hits 1558 * zero, the inode is then freed and may also be destroyed. 1559 * 1560 * Consequently, iput() can sleep. 1561 */ 1562 void iput(struct inode *inode) 1563 { 1564 if (!inode) 1565 return; 1566 BUG_ON(inode->i_state & I_CLEAR); 1567 retry: 1568 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1569 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1570 atomic_inc(&inode->i_count); 1571 spin_unlock(&inode->i_lock); 1572 trace_writeback_lazytime_iput(inode); 1573 mark_inode_dirty_sync(inode); 1574 goto retry; 1575 } 1576 iput_final(inode); 1577 } 1578 } 1579 EXPORT_SYMBOL(iput); 1580 1581 /** 1582 * bmap - find a block number in a file 1583 * @inode: inode of file 1584 * @block: block to find 1585 * 1586 * Returns the block number on the device holding the inode that 1587 * is the disk block number for the block of the file requested. 1588 * That is, asked for block 4 of inode 1 the function will return the 1589 * disk block relative to the disk start that holds that block of the 1590 * file. 1591 */ 1592 sector_t bmap(struct inode *inode, sector_t block) 1593 { 1594 sector_t res = 0; 1595 if (inode->i_mapping->a_ops->bmap) 1596 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1597 return res; 1598 } 1599 EXPORT_SYMBOL(bmap); 1600 1601 /* 1602 * With relative atime, only update atime if the previous atime is 1603 * earlier than either the ctime or mtime or if at least a day has 1604 * passed since the last atime update. 1605 */ 1606 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1607 struct timespec now) 1608 { 1609 1610 if (!(mnt->mnt_flags & MNT_RELATIME)) 1611 return 1; 1612 /* 1613 * Is mtime younger than atime? If yes, update atime: 1614 */ 1615 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1616 return 1; 1617 /* 1618 * Is ctime younger than atime? If yes, update atime: 1619 */ 1620 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1621 return 1; 1622 1623 /* 1624 * Is the previous atime value older than a day? If yes, 1625 * update atime: 1626 */ 1627 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1628 return 1; 1629 /* 1630 * Good, we can skip the atime update: 1631 */ 1632 return 0; 1633 } 1634 1635 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1636 { 1637 int iflags = I_DIRTY_TIME; 1638 bool dirty = false; 1639 1640 if (flags & S_ATIME) 1641 inode->i_atime = *time; 1642 if (flags & S_VERSION) 1643 dirty = inode_maybe_inc_iversion(inode, false); 1644 if (flags & S_CTIME) 1645 inode->i_ctime = *time; 1646 if (flags & S_MTIME) 1647 inode->i_mtime = *time; 1648 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && 1649 !(inode->i_sb->s_flags & SB_LAZYTIME)) 1650 dirty = true; 1651 1652 if (dirty) 1653 iflags |= I_DIRTY_SYNC; 1654 __mark_inode_dirty(inode, iflags); 1655 return 0; 1656 } 1657 EXPORT_SYMBOL(generic_update_time); 1658 1659 /* 1660 * This does the actual work of updating an inodes time or version. Must have 1661 * had called mnt_want_write() before calling this. 1662 */ 1663 static int update_time(struct inode *inode, struct timespec64 *time, int flags) 1664 { 1665 int (*update_time)(struct inode *, struct timespec64 *, int); 1666 1667 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1668 generic_update_time; 1669 1670 return update_time(inode, time, flags); 1671 } 1672 1673 /** 1674 * touch_atime - update the access time 1675 * @path: the &struct path to update 1676 * @inode: inode to update 1677 * 1678 * Update the accessed time on an inode and mark it for writeback. 1679 * This function automatically handles read only file systems and media, 1680 * as well as the "noatime" flag and inode specific "noatime" markers. 1681 */ 1682 bool atime_needs_update(const struct path *path, struct inode *inode) 1683 { 1684 struct vfsmount *mnt = path->mnt; 1685 struct timespec64 now; 1686 1687 if (inode->i_flags & S_NOATIME) 1688 return false; 1689 1690 /* Atime updates will likely cause i_uid and i_gid to be written 1691 * back improprely if their true value is unknown to the vfs. 1692 */ 1693 if (HAS_UNMAPPED_ID(inode)) 1694 return false; 1695 1696 if (IS_NOATIME(inode)) 1697 return false; 1698 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1699 return false; 1700 1701 if (mnt->mnt_flags & MNT_NOATIME) 1702 return false; 1703 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1704 return false; 1705 1706 now = current_time(inode); 1707 1708 if (!relatime_need_update(mnt, inode, timespec64_to_timespec(now))) 1709 return false; 1710 1711 if (timespec64_equal(&inode->i_atime, &now)) 1712 return false; 1713 1714 return true; 1715 } 1716 1717 void touch_atime(const struct path *path) 1718 { 1719 struct vfsmount *mnt = path->mnt; 1720 struct inode *inode = d_inode(path->dentry); 1721 struct timespec64 now; 1722 1723 if (!atime_needs_update(path, inode)) 1724 return; 1725 1726 if (!sb_start_write_trylock(inode->i_sb)) 1727 return; 1728 1729 if (__mnt_want_write(mnt) != 0) 1730 goto skip_update; 1731 /* 1732 * File systems can error out when updating inodes if they need to 1733 * allocate new space to modify an inode (such is the case for 1734 * Btrfs), but since we touch atime while walking down the path we 1735 * really don't care if we failed to update the atime of the file, 1736 * so just ignore the return value. 1737 * We may also fail on filesystems that have the ability to make parts 1738 * of the fs read only, e.g. subvolumes in Btrfs. 1739 */ 1740 now = current_time(inode); 1741 update_time(inode, &now, S_ATIME); 1742 __mnt_drop_write(mnt); 1743 skip_update: 1744 sb_end_write(inode->i_sb); 1745 } 1746 EXPORT_SYMBOL(touch_atime); 1747 1748 /* 1749 * The logic we want is 1750 * 1751 * if suid or (sgid and xgrp) 1752 * remove privs 1753 */ 1754 int should_remove_suid(struct dentry *dentry) 1755 { 1756 umode_t mode = d_inode(dentry)->i_mode; 1757 int kill = 0; 1758 1759 /* suid always must be killed */ 1760 if (unlikely(mode & S_ISUID)) 1761 kill = ATTR_KILL_SUID; 1762 1763 /* 1764 * sgid without any exec bits is just a mandatory locking mark; leave 1765 * it alone. If some exec bits are set, it's a real sgid; kill it. 1766 */ 1767 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1768 kill |= ATTR_KILL_SGID; 1769 1770 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1771 return kill; 1772 1773 return 0; 1774 } 1775 EXPORT_SYMBOL(should_remove_suid); 1776 1777 /* 1778 * Return mask of changes for notify_change() that need to be done as a 1779 * response to write or truncate. Return 0 if nothing has to be changed. 1780 * Negative value on error (change should be denied). 1781 */ 1782 int dentry_needs_remove_privs(struct dentry *dentry) 1783 { 1784 struct inode *inode = d_inode(dentry); 1785 int mask = 0; 1786 int ret; 1787 1788 if (IS_NOSEC(inode)) 1789 return 0; 1790 1791 mask = should_remove_suid(dentry); 1792 ret = security_inode_need_killpriv(dentry); 1793 if (ret < 0) 1794 return ret; 1795 if (ret) 1796 mask |= ATTR_KILL_PRIV; 1797 return mask; 1798 } 1799 1800 static int __remove_privs(struct dentry *dentry, int kill) 1801 { 1802 struct iattr newattrs; 1803 1804 newattrs.ia_valid = ATTR_FORCE | kill; 1805 /* 1806 * Note we call this on write, so notify_change will not 1807 * encounter any conflicting delegations: 1808 */ 1809 return notify_change(dentry, &newattrs, NULL); 1810 } 1811 1812 /* 1813 * Remove special file priviledges (suid, capabilities) when file is written 1814 * to or truncated. 1815 */ 1816 int file_remove_privs(struct file *file) 1817 { 1818 struct dentry *dentry = file_dentry(file); 1819 struct inode *inode = file_inode(file); 1820 int kill; 1821 int error = 0; 1822 1823 /* Fast path for nothing security related */ 1824 if (IS_NOSEC(inode)) 1825 return 0; 1826 1827 kill = dentry_needs_remove_privs(dentry); 1828 if (kill < 0) 1829 return kill; 1830 if (kill) 1831 error = __remove_privs(dentry, kill); 1832 if (!error) 1833 inode_has_no_xattr(inode); 1834 1835 return error; 1836 } 1837 EXPORT_SYMBOL(file_remove_privs); 1838 1839 /** 1840 * file_update_time - update mtime and ctime time 1841 * @file: file accessed 1842 * 1843 * Update the mtime and ctime members of an inode and mark the inode 1844 * for writeback. Note that this function is meant exclusively for 1845 * usage in the file write path of filesystems, and filesystems may 1846 * choose to explicitly ignore update via this function with the 1847 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1848 * timestamps are handled by the server. This can return an error for 1849 * file systems who need to allocate space in order to update an inode. 1850 */ 1851 1852 int file_update_time(struct file *file) 1853 { 1854 struct inode *inode = file_inode(file); 1855 struct timespec64 now; 1856 int sync_it = 0; 1857 int ret; 1858 1859 /* First try to exhaust all avenues to not sync */ 1860 if (IS_NOCMTIME(inode)) 1861 return 0; 1862 1863 now = current_time(inode); 1864 if (!timespec64_equal(&inode->i_mtime, &now)) 1865 sync_it = S_MTIME; 1866 1867 if (!timespec64_equal(&inode->i_ctime, &now)) 1868 sync_it |= S_CTIME; 1869 1870 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1871 sync_it |= S_VERSION; 1872 1873 if (!sync_it) 1874 return 0; 1875 1876 /* Finally allowed to write? Takes lock. */ 1877 if (__mnt_want_write_file(file)) 1878 return 0; 1879 1880 ret = update_time(inode, &now, sync_it); 1881 __mnt_drop_write_file(file); 1882 1883 return ret; 1884 } 1885 EXPORT_SYMBOL(file_update_time); 1886 1887 int inode_needs_sync(struct inode *inode) 1888 { 1889 if (IS_SYNC(inode)) 1890 return 1; 1891 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1892 return 1; 1893 return 0; 1894 } 1895 EXPORT_SYMBOL(inode_needs_sync); 1896 1897 /* 1898 * If we try to find an inode in the inode hash while it is being 1899 * deleted, we have to wait until the filesystem completes its 1900 * deletion before reporting that it isn't found. This function waits 1901 * until the deletion _might_ have completed. Callers are responsible 1902 * to recheck inode state. 1903 * 1904 * It doesn't matter if I_NEW is not set initially, a call to 1905 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1906 * will DTRT. 1907 */ 1908 static void __wait_on_freeing_inode(struct inode *inode) 1909 { 1910 wait_queue_head_t *wq; 1911 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1912 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1913 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1914 spin_unlock(&inode->i_lock); 1915 spin_unlock(&inode_hash_lock); 1916 schedule(); 1917 finish_wait(wq, &wait.wq_entry); 1918 spin_lock(&inode_hash_lock); 1919 } 1920 1921 static __initdata unsigned long ihash_entries; 1922 static int __init set_ihash_entries(char *str) 1923 { 1924 if (!str) 1925 return 0; 1926 ihash_entries = simple_strtoul(str, &str, 0); 1927 return 1; 1928 } 1929 __setup("ihash_entries=", set_ihash_entries); 1930 1931 /* 1932 * Initialize the waitqueues and inode hash table. 1933 */ 1934 void __init inode_init_early(void) 1935 { 1936 /* If hashes are distributed across NUMA nodes, defer 1937 * hash allocation until vmalloc space is available. 1938 */ 1939 if (hashdist) 1940 return; 1941 1942 inode_hashtable = 1943 alloc_large_system_hash("Inode-cache", 1944 sizeof(struct hlist_head), 1945 ihash_entries, 1946 14, 1947 HASH_EARLY | HASH_ZERO, 1948 &i_hash_shift, 1949 &i_hash_mask, 1950 0, 1951 0); 1952 } 1953 1954 void __init inode_init(void) 1955 { 1956 /* inode slab cache */ 1957 inode_cachep = kmem_cache_create("inode_cache", 1958 sizeof(struct inode), 1959 0, 1960 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1961 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1962 init_once); 1963 1964 /* Hash may have been set up in inode_init_early */ 1965 if (!hashdist) 1966 return; 1967 1968 inode_hashtable = 1969 alloc_large_system_hash("Inode-cache", 1970 sizeof(struct hlist_head), 1971 ihash_entries, 1972 14, 1973 HASH_ZERO, 1974 &i_hash_shift, 1975 &i_hash_mask, 1976 0, 1977 0); 1978 } 1979 1980 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1981 { 1982 inode->i_mode = mode; 1983 if (S_ISCHR(mode)) { 1984 inode->i_fop = &def_chr_fops; 1985 inode->i_rdev = rdev; 1986 } else if (S_ISBLK(mode)) { 1987 inode->i_fop = &def_blk_fops; 1988 inode->i_rdev = rdev; 1989 } else if (S_ISFIFO(mode)) 1990 inode->i_fop = &pipefifo_fops; 1991 else if (S_ISSOCK(mode)) 1992 ; /* leave it no_open_fops */ 1993 else 1994 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1995 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1996 inode->i_ino); 1997 } 1998 EXPORT_SYMBOL(init_special_inode); 1999 2000 /** 2001 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2002 * @inode: New inode 2003 * @dir: Directory inode 2004 * @mode: mode of the new inode 2005 */ 2006 void inode_init_owner(struct inode *inode, const struct inode *dir, 2007 umode_t mode) 2008 { 2009 inode->i_uid = current_fsuid(); 2010 if (dir && dir->i_mode & S_ISGID) { 2011 inode->i_gid = dir->i_gid; 2012 2013 /* Directories are special, and always inherit S_ISGID */ 2014 if (S_ISDIR(mode)) 2015 mode |= S_ISGID; 2016 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2017 !in_group_p(inode->i_gid) && 2018 !capable_wrt_inode_uidgid(dir, CAP_FSETID)) 2019 mode &= ~S_ISGID; 2020 } else 2021 inode->i_gid = current_fsgid(); 2022 inode->i_mode = mode; 2023 } 2024 EXPORT_SYMBOL(inode_init_owner); 2025 2026 /** 2027 * inode_owner_or_capable - check current task permissions to inode 2028 * @inode: inode being checked 2029 * 2030 * Return true if current either has CAP_FOWNER in a namespace with the 2031 * inode owner uid mapped, or owns the file. 2032 */ 2033 bool inode_owner_or_capable(const struct inode *inode) 2034 { 2035 struct user_namespace *ns; 2036 2037 if (uid_eq(current_fsuid(), inode->i_uid)) 2038 return true; 2039 2040 ns = current_user_ns(); 2041 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2042 return true; 2043 return false; 2044 } 2045 EXPORT_SYMBOL(inode_owner_or_capable); 2046 2047 /* 2048 * Direct i/o helper functions 2049 */ 2050 static void __inode_dio_wait(struct inode *inode) 2051 { 2052 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2053 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2054 2055 do { 2056 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2057 if (atomic_read(&inode->i_dio_count)) 2058 schedule(); 2059 } while (atomic_read(&inode->i_dio_count)); 2060 finish_wait(wq, &q.wq_entry); 2061 } 2062 2063 /** 2064 * inode_dio_wait - wait for outstanding DIO requests to finish 2065 * @inode: inode to wait for 2066 * 2067 * Waits for all pending direct I/O requests to finish so that we can 2068 * proceed with a truncate or equivalent operation. 2069 * 2070 * Must be called under a lock that serializes taking new references 2071 * to i_dio_count, usually by inode->i_mutex. 2072 */ 2073 void inode_dio_wait(struct inode *inode) 2074 { 2075 if (atomic_read(&inode->i_dio_count)) 2076 __inode_dio_wait(inode); 2077 } 2078 EXPORT_SYMBOL(inode_dio_wait); 2079 2080 /* 2081 * inode_set_flags - atomically set some inode flags 2082 * 2083 * Note: the caller should be holding i_mutex, or else be sure that 2084 * they have exclusive access to the inode structure (i.e., while the 2085 * inode is being instantiated). The reason for the cmpxchg() loop 2086 * --- which wouldn't be necessary if all code paths which modify 2087 * i_flags actually followed this rule, is that there is at least one 2088 * code path which doesn't today so we use cmpxchg() out of an abundance 2089 * of caution. 2090 * 2091 * In the long run, i_mutex is overkill, and we should probably look 2092 * at using the i_lock spinlock to protect i_flags, and then make sure 2093 * it is so documented in include/linux/fs.h and that all code follows 2094 * the locking convention!! 2095 */ 2096 void inode_set_flags(struct inode *inode, unsigned int flags, 2097 unsigned int mask) 2098 { 2099 unsigned int old_flags, new_flags; 2100 2101 WARN_ON_ONCE(flags & ~mask); 2102 do { 2103 old_flags = READ_ONCE(inode->i_flags); 2104 new_flags = (old_flags & ~mask) | flags; 2105 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2106 new_flags) != old_flags)); 2107 } 2108 EXPORT_SYMBOL(inode_set_flags); 2109 2110 void inode_nohighmem(struct inode *inode) 2111 { 2112 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2113 } 2114 EXPORT_SYMBOL(inode_nohighmem); 2115 2116 /** 2117 * timespec64_trunc - Truncate timespec64 to a granularity 2118 * @t: Timespec64 2119 * @gran: Granularity in ns. 2120 * 2121 * Truncate a timespec64 to a granularity. Always rounds down. gran must 2122 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2123 */ 2124 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran) 2125 { 2126 /* Avoid division in the common cases 1 ns and 1 s. */ 2127 if (gran == 1) { 2128 /* nothing */ 2129 } else if (gran == NSEC_PER_SEC) { 2130 t.tv_nsec = 0; 2131 } else if (gran > 1 && gran < NSEC_PER_SEC) { 2132 t.tv_nsec -= t.tv_nsec % gran; 2133 } else { 2134 WARN(1, "illegal file time granularity: %u", gran); 2135 } 2136 return t; 2137 } 2138 EXPORT_SYMBOL(timespec64_trunc); 2139 2140 /** 2141 * current_time - Return FS time 2142 * @inode: inode. 2143 * 2144 * Return the current time truncated to the time granularity supported by 2145 * the fs. 2146 * 2147 * Note that inode and inode->sb cannot be NULL. 2148 * Otherwise, the function warns and returns time without truncation. 2149 */ 2150 struct timespec64 current_time(struct inode *inode) 2151 { 2152 struct timespec64 now = current_kernel_time64(); 2153 2154 if (unlikely(!inode->i_sb)) { 2155 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2156 return now; 2157 } 2158 2159 return timespec64_trunc(now, inode->i_sb->s_time_gran); 2160 } 2161 EXPORT_SYMBOL(current_time); 2162