1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <trace/events/writeback.h> 25 #include "internal.h" 26 27 /* 28 * Inode locking rules: 29 * 30 * inode->i_lock protects: 31 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 32 * Inode LRU list locks protect: 33 * inode->i_sb->s_inode_lru, inode->i_lru 34 * inode->i_sb->s_inode_list_lock protects: 35 * inode->i_sb->s_inodes, inode->i_sb_list 36 * bdi->wb.list_lock protects: 37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 38 * inode_hash_lock protects: 39 * inode_hashtable, inode->i_hash 40 * 41 * Lock ordering: 42 * 43 * inode->i_sb->s_inode_list_lock 44 * inode->i_lock 45 * Inode LRU list locks 46 * 47 * bdi->wb.list_lock 48 * inode->i_lock 49 * 50 * inode_hash_lock 51 * inode->i_sb->s_inode_list_lock 52 * inode->i_lock 53 * 54 * iunique_lock 55 * inode_hash_lock 56 */ 57 58 static unsigned int i_hash_mask __ro_after_init; 59 static unsigned int i_hash_shift __ro_after_init; 60 static struct hlist_head *inode_hashtable __ro_after_init; 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 62 63 /* 64 * Empty aops. Can be used for the cases where the user does not 65 * define any of the address_space operations. 66 */ 67 const struct address_space_operations empty_aops = { 68 }; 69 EXPORT_SYMBOL(empty_aops); 70 71 static DEFINE_PER_CPU(unsigned long, nr_inodes); 72 static DEFINE_PER_CPU(unsigned long, nr_unused); 73 74 static struct kmem_cache *inode_cachep __ro_after_init; 75 76 static long get_nr_inodes(void) 77 { 78 int i; 79 long sum = 0; 80 for_each_possible_cpu(i) 81 sum += per_cpu(nr_inodes, i); 82 return sum < 0 ? 0 : sum; 83 } 84 85 static inline long get_nr_inodes_unused(void) 86 { 87 int i; 88 long sum = 0; 89 for_each_possible_cpu(i) 90 sum += per_cpu(nr_unused, i); 91 return sum < 0 ? 0 : sum; 92 } 93 94 long get_nr_dirty_inodes(void) 95 { 96 /* not actually dirty inodes, but a wild approximation */ 97 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 98 return nr_dirty > 0 ? nr_dirty : 0; 99 } 100 101 /* 102 * Handle nr_inode sysctl 103 */ 104 #ifdef CONFIG_SYSCTL 105 /* 106 * Statistics gathering.. 107 */ 108 static struct inodes_stat_t inodes_stat; 109 110 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, 111 size_t *lenp, loff_t *ppos) 112 { 113 inodes_stat.nr_inodes = get_nr_inodes(); 114 inodes_stat.nr_unused = get_nr_inodes_unused(); 115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 116 } 117 118 static struct ctl_table inodes_sysctls[] = { 119 { 120 .procname = "inode-nr", 121 .data = &inodes_stat, 122 .maxlen = 2*sizeof(long), 123 .mode = 0444, 124 .proc_handler = proc_nr_inodes, 125 }, 126 { 127 .procname = "inode-state", 128 .data = &inodes_stat, 129 .maxlen = 7*sizeof(long), 130 .mode = 0444, 131 .proc_handler = proc_nr_inodes, 132 }, 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 inode->i_state = 0; 166 atomic64_set(&inode->i_sequence, 0); 167 atomic_set(&inode->i_count, 1); 168 inode->i_op = &empty_iops; 169 inode->i_fop = &no_open_fops; 170 inode->i_ino = 0; 171 inode->__i_nlink = 1; 172 inode->i_opflags = 0; 173 if (sb->s_xattr) 174 inode->i_opflags |= IOP_XATTR; 175 i_uid_write(inode, 0); 176 i_gid_write(inode, 0); 177 atomic_set(&inode->i_writecount, 0); 178 inode->i_size = 0; 179 inode->i_write_hint = WRITE_LIFE_NOT_SET; 180 inode->i_blocks = 0; 181 inode->i_bytes = 0; 182 inode->i_generation = 0; 183 inode->i_pipe = NULL; 184 inode->i_cdev = NULL; 185 inode->i_link = NULL; 186 inode->i_dir_seq = 0; 187 inode->i_rdev = 0; 188 inode->dirtied_when = 0; 189 190 #ifdef CONFIG_CGROUP_WRITEBACK 191 inode->i_wb_frn_winner = 0; 192 inode->i_wb_frn_avg_time = 0; 193 inode->i_wb_frn_history = 0; 194 #endif 195 196 spin_lock_init(&inode->i_lock); 197 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 198 199 init_rwsem(&inode->i_rwsem); 200 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 201 202 atomic_set(&inode->i_dio_count, 0); 203 204 mapping->a_ops = &empty_aops; 205 mapping->host = inode; 206 mapping->flags = 0; 207 mapping->wb_err = 0; 208 atomic_set(&mapping->i_mmap_writable, 0); 209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 210 atomic_set(&mapping->nr_thps, 0); 211 #endif 212 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 213 mapping->i_private_data = NULL; 214 mapping->writeback_index = 0; 215 init_rwsem(&mapping->invalidate_lock); 216 lockdep_set_class_and_name(&mapping->invalidate_lock, 217 &sb->s_type->invalidate_lock_key, 218 "mapping.invalidate_lock"); 219 if (sb->s_iflags & SB_I_STABLE_WRITES) 220 mapping_set_stable_writes(mapping); 221 inode->i_private = NULL; 222 inode->i_mapping = mapping; 223 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 224 #ifdef CONFIG_FS_POSIX_ACL 225 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 226 #endif 227 228 #ifdef CONFIG_FSNOTIFY 229 inode->i_fsnotify_mask = 0; 230 #endif 231 inode->i_flctx = NULL; 232 233 if (unlikely(security_inode_alloc(inode))) 234 return -ENOMEM; 235 236 this_cpu_inc(nr_inodes); 237 238 return 0; 239 } 240 EXPORT_SYMBOL(inode_init_always); 241 242 void free_inode_nonrcu(struct inode *inode) 243 { 244 kmem_cache_free(inode_cachep, inode); 245 } 246 EXPORT_SYMBOL(free_inode_nonrcu); 247 248 static void i_callback(struct rcu_head *head) 249 { 250 struct inode *inode = container_of(head, struct inode, i_rcu); 251 if (inode->free_inode) 252 inode->free_inode(inode); 253 else 254 free_inode_nonrcu(inode); 255 } 256 257 static struct inode *alloc_inode(struct super_block *sb) 258 { 259 const struct super_operations *ops = sb->s_op; 260 struct inode *inode; 261 262 if (ops->alloc_inode) 263 inode = ops->alloc_inode(sb); 264 else 265 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 266 267 if (!inode) 268 return NULL; 269 270 if (unlikely(inode_init_always(sb, inode))) { 271 if (ops->destroy_inode) { 272 ops->destroy_inode(inode); 273 if (!ops->free_inode) 274 return NULL; 275 } 276 inode->free_inode = ops->free_inode; 277 i_callback(&inode->i_rcu); 278 return NULL; 279 } 280 281 return inode; 282 } 283 284 void __destroy_inode(struct inode *inode) 285 { 286 BUG_ON(inode_has_buffers(inode)); 287 inode_detach_wb(inode); 288 security_inode_free(inode); 289 fsnotify_inode_delete(inode); 290 locks_free_lock_context(inode); 291 if (!inode->i_nlink) { 292 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 293 atomic_long_dec(&inode->i_sb->s_remove_count); 294 } 295 296 #ifdef CONFIG_FS_POSIX_ACL 297 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 298 posix_acl_release(inode->i_acl); 299 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 300 posix_acl_release(inode->i_default_acl); 301 #endif 302 this_cpu_dec(nr_inodes); 303 } 304 EXPORT_SYMBOL(__destroy_inode); 305 306 static void destroy_inode(struct inode *inode) 307 { 308 const struct super_operations *ops = inode->i_sb->s_op; 309 310 BUG_ON(!list_empty(&inode->i_lru)); 311 __destroy_inode(inode); 312 if (ops->destroy_inode) { 313 ops->destroy_inode(inode); 314 if (!ops->free_inode) 315 return; 316 } 317 inode->free_inode = ops->free_inode; 318 call_rcu(&inode->i_rcu, i_callback); 319 } 320 321 /** 322 * drop_nlink - directly drop an inode's link count 323 * @inode: inode 324 * 325 * This is a low-level filesystem helper to replace any 326 * direct filesystem manipulation of i_nlink. In cases 327 * where we are attempting to track writes to the 328 * filesystem, a decrement to zero means an imminent 329 * write when the file is truncated and actually unlinked 330 * on the filesystem. 331 */ 332 void drop_nlink(struct inode *inode) 333 { 334 WARN_ON(inode->i_nlink == 0); 335 inode->__i_nlink--; 336 if (!inode->i_nlink) 337 atomic_long_inc(&inode->i_sb->s_remove_count); 338 } 339 EXPORT_SYMBOL(drop_nlink); 340 341 /** 342 * clear_nlink - directly zero an inode's link count 343 * @inode: inode 344 * 345 * This is a low-level filesystem helper to replace any 346 * direct filesystem manipulation of i_nlink. See 347 * drop_nlink() for why we care about i_nlink hitting zero. 348 */ 349 void clear_nlink(struct inode *inode) 350 { 351 if (inode->i_nlink) { 352 inode->__i_nlink = 0; 353 atomic_long_inc(&inode->i_sb->s_remove_count); 354 } 355 } 356 EXPORT_SYMBOL(clear_nlink); 357 358 /** 359 * set_nlink - directly set an inode's link count 360 * @inode: inode 361 * @nlink: new nlink (should be non-zero) 362 * 363 * This is a low-level filesystem helper to replace any 364 * direct filesystem manipulation of i_nlink. 365 */ 366 void set_nlink(struct inode *inode, unsigned int nlink) 367 { 368 if (!nlink) { 369 clear_nlink(inode); 370 } else { 371 /* Yes, some filesystems do change nlink from zero to one */ 372 if (inode->i_nlink == 0) 373 atomic_long_dec(&inode->i_sb->s_remove_count); 374 375 inode->__i_nlink = nlink; 376 } 377 } 378 EXPORT_SYMBOL(set_nlink); 379 380 /** 381 * inc_nlink - directly increment an inode's link count 382 * @inode: inode 383 * 384 * This is a low-level filesystem helper to replace any 385 * direct filesystem manipulation of i_nlink. Currently, 386 * it is only here for parity with dec_nlink(). 387 */ 388 void inc_nlink(struct inode *inode) 389 { 390 if (unlikely(inode->i_nlink == 0)) { 391 WARN_ON(!(inode->i_state & I_LINKABLE)); 392 atomic_long_dec(&inode->i_sb->s_remove_count); 393 } 394 395 inode->__i_nlink++; 396 } 397 EXPORT_SYMBOL(inc_nlink); 398 399 static void __address_space_init_once(struct address_space *mapping) 400 { 401 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 402 init_rwsem(&mapping->i_mmap_rwsem); 403 INIT_LIST_HEAD(&mapping->i_private_list); 404 spin_lock_init(&mapping->i_private_lock); 405 mapping->i_mmap = RB_ROOT_CACHED; 406 } 407 408 void address_space_init_once(struct address_space *mapping) 409 { 410 memset(mapping, 0, sizeof(*mapping)); 411 __address_space_init_once(mapping); 412 } 413 EXPORT_SYMBOL(address_space_init_once); 414 415 /* 416 * These are initializations that only need to be done 417 * once, because the fields are idempotent across use 418 * of the inode, so let the slab aware of that. 419 */ 420 void inode_init_once(struct inode *inode) 421 { 422 memset(inode, 0, sizeof(*inode)); 423 INIT_HLIST_NODE(&inode->i_hash); 424 INIT_LIST_HEAD(&inode->i_devices); 425 INIT_LIST_HEAD(&inode->i_io_list); 426 INIT_LIST_HEAD(&inode->i_wb_list); 427 INIT_LIST_HEAD(&inode->i_lru); 428 INIT_LIST_HEAD(&inode->i_sb_list); 429 __address_space_init_once(&inode->i_data); 430 i_size_ordered_init(inode); 431 } 432 EXPORT_SYMBOL(inode_init_once); 433 434 static void init_once(void *foo) 435 { 436 struct inode *inode = (struct inode *) foo; 437 438 inode_init_once(inode); 439 } 440 441 /* 442 * inode->i_lock must be held 443 */ 444 void __iget(struct inode *inode) 445 { 446 atomic_inc(&inode->i_count); 447 } 448 449 /* 450 * get additional reference to inode; caller must already hold one. 451 */ 452 void ihold(struct inode *inode) 453 { 454 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 455 } 456 EXPORT_SYMBOL(ihold); 457 458 static void __inode_add_lru(struct inode *inode, bool rotate) 459 { 460 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 461 return; 462 if (atomic_read(&inode->i_count)) 463 return; 464 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 465 return; 466 if (!mapping_shrinkable(&inode->i_data)) 467 return; 468 469 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 470 this_cpu_inc(nr_unused); 471 else if (rotate) 472 inode->i_state |= I_REFERENCED; 473 } 474 475 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 476 struct inode *inode, u32 bit) 477 { 478 void *bit_address; 479 480 bit_address = inode_state_wait_address(inode, bit); 481 init_wait_var_entry(wqe, bit_address, 0); 482 return __var_waitqueue(bit_address); 483 } 484 EXPORT_SYMBOL(inode_bit_waitqueue); 485 486 /* 487 * Add inode to LRU if needed (inode is unused and clean). 488 * 489 * Needs inode->i_lock held. 490 */ 491 void inode_add_lru(struct inode *inode) 492 { 493 __inode_add_lru(inode, false); 494 } 495 496 static void inode_lru_list_del(struct inode *inode) 497 { 498 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 499 this_cpu_dec(nr_unused); 500 } 501 502 static void inode_pin_lru_isolating(struct inode *inode) 503 { 504 lockdep_assert_held(&inode->i_lock); 505 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 506 inode->i_state |= I_LRU_ISOLATING; 507 } 508 509 static void inode_unpin_lru_isolating(struct inode *inode) 510 { 511 spin_lock(&inode->i_lock); 512 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 513 inode->i_state &= ~I_LRU_ISOLATING; 514 /* Called with inode->i_lock which ensures memory ordering. */ 515 inode_wake_up_bit(inode, __I_LRU_ISOLATING); 516 spin_unlock(&inode->i_lock); 517 } 518 519 static void inode_wait_for_lru_isolating(struct inode *inode) 520 { 521 struct wait_bit_queue_entry wqe; 522 struct wait_queue_head *wq_head; 523 524 lockdep_assert_held(&inode->i_lock); 525 if (!(inode->i_state & I_LRU_ISOLATING)) 526 return; 527 528 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING); 529 for (;;) { 530 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 531 /* 532 * Checking I_LRU_ISOLATING with inode->i_lock guarantees 533 * memory ordering. 534 */ 535 if (!(inode->i_state & I_LRU_ISOLATING)) 536 break; 537 spin_unlock(&inode->i_lock); 538 schedule(); 539 spin_lock(&inode->i_lock); 540 } 541 finish_wait(wq_head, &wqe.wq_entry); 542 WARN_ON(inode->i_state & I_LRU_ISOLATING); 543 } 544 545 /** 546 * inode_sb_list_add - add inode to the superblock list of inodes 547 * @inode: inode to add 548 */ 549 void inode_sb_list_add(struct inode *inode) 550 { 551 spin_lock(&inode->i_sb->s_inode_list_lock); 552 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 553 spin_unlock(&inode->i_sb->s_inode_list_lock); 554 } 555 EXPORT_SYMBOL_GPL(inode_sb_list_add); 556 557 static inline void inode_sb_list_del(struct inode *inode) 558 { 559 if (!list_empty(&inode->i_sb_list)) { 560 spin_lock(&inode->i_sb->s_inode_list_lock); 561 list_del_init(&inode->i_sb_list); 562 spin_unlock(&inode->i_sb->s_inode_list_lock); 563 } 564 } 565 566 static unsigned long hash(struct super_block *sb, unsigned long hashval) 567 { 568 unsigned long tmp; 569 570 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 571 L1_CACHE_BYTES; 572 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 573 return tmp & i_hash_mask; 574 } 575 576 /** 577 * __insert_inode_hash - hash an inode 578 * @inode: unhashed inode 579 * @hashval: unsigned long value used to locate this object in the 580 * inode_hashtable. 581 * 582 * Add an inode to the inode hash for this superblock. 583 */ 584 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 585 { 586 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 587 588 spin_lock(&inode_hash_lock); 589 spin_lock(&inode->i_lock); 590 hlist_add_head_rcu(&inode->i_hash, b); 591 spin_unlock(&inode->i_lock); 592 spin_unlock(&inode_hash_lock); 593 } 594 EXPORT_SYMBOL(__insert_inode_hash); 595 596 /** 597 * __remove_inode_hash - remove an inode from the hash 598 * @inode: inode to unhash 599 * 600 * Remove an inode from the superblock. 601 */ 602 void __remove_inode_hash(struct inode *inode) 603 { 604 spin_lock(&inode_hash_lock); 605 spin_lock(&inode->i_lock); 606 hlist_del_init_rcu(&inode->i_hash); 607 spin_unlock(&inode->i_lock); 608 spin_unlock(&inode_hash_lock); 609 } 610 EXPORT_SYMBOL(__remove_inode_hash); 611 612 void dump_mapping(const struct address_space *mapping) 613 { 614 struct inode *host; 615 const struct address_space_operations *a_ops; 616 struct hlist_node *dentry_first; 617 struct dentry *dentry_ptr; 618 struct dentry dentry; 619 char fname[64] = {}; 620 unsigned long ino; 621 622 /* 623 * If mapping is an invalid pointer, we don't want to crash 624 * accessing it, so probe everything depending on it carefully. 625 */ 626 if (get_kernel_nofault(host, &mapping->host) || 627 get_kernel_nofault(a_ops, &mapping->a_ops)) { 628 pr_warn("invalid mapping:%px\n", mapping); 629 return; 630 } 631 632 if (!host) { 633 pr_warn("aops:%ps\n", a_ops); 634 return; 635 } 636 637 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 638 get_kernel_nofault(ino, &host->i_ino)) { 639 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 640 return; 641 } 642 643 if (!dentry_first) { 644 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 645 return; 646 } 647 648 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 649 if (get_kernel_nofault(dentry, dentry_ptr) || 650 !dentry.d_parent || !dentry.d_name.name) { 651 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 652 a_ops, ino, dentry_ptr); 653 return; 654 } 655 656 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) 657 strscpy(fname, "<invalid>"); 658 /* 659 * Even if strncpy_from_kernel_nofault() succeeded, 660 * the fname could be unreliable 661 */ 662 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", 663 a_ops, ino, fname); 664 } 665 666 void clear_inode(struct inode *inode) 667 { 668 /* 669 * We have to cycle the i_pages lock here because reclaim can be in the 670 * process of removing the last page (in __filemap_remove_folio()) 671 * and we must not free the mapping under it. 672 */ 673 xa_lock_irq(&inode->i_data.i_pages); 674 BUG_ON(inode->i_data.nrpages); 675 /* 676 * Almost always, mapping_empty(&inode->i_data) here; but there are 677 * two known and long-standing ways in which nodes may get left behind 678 * (when deep radix-tree node allocation failed partway; or when THP 679 * collapse_file() failed). Until those two known cases are cleaned up, 680 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 681 * nor even WARN_ON(!mapping_empty). 682 */ 683 xa_unlock_irq(&inode->i_data.i_pages); 684 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 685 BUG_ON(!(inode->i_state & I_FREEING)); 686 BUG_ON(inode->i_state & I_CLEAR); 687 BUG_ON(!list_empty(&inode->i_wb_list)); 688 /* don't need i_lock here, no concurrent mods to i_state */ 689 inode->i_state = I_FREEING | I_CLEAR; 690 } 691 EXPORT_SYMBOL(clear_inode); 692 693 /* 694 * Free the inode passed in, removing it from the lists it is still connected 695 * to. We remove any pages still attached to the inode and wait for any IO that 696 * is still in progress before finally destroying the inode. 697 * 698 * An inode must already be marked I_FREEING so that we avoid the inode being 699 * moved back onto lists if we race with other code that manipulates the lists 700 * (e.g. writeback_single_inode). The caller is responsible for setting this. 701 * 702 * An inode must already be removed from the LRU list before being evicted from 703 * the cache. This should occur atomically with setting the I_FREEING state 704 * flag, so no inodes here should ever be on the LRU when being evicted. 705 */ 706 static void evict(struct inode *inode) 707 { 708 const struct super_operations *op = inode->i_sb->s_op; 709 710 BUG_ON(!(inode->i_state & I_FREEING)); 711 BUG_ON(!list_empty(&inode->i_lru)); 712 713 if (!list_empty(&inode->i_io_list)) 714 inode_io_list_del(inode); 715 716 inode_sb_list_del(inode); 717 718 spin_lock(&inode->i_lock); 719 inode_wait_for_lru_isolating(inode); 720 721 /* 722 * Wait for flusher thread to be done with the inode so that filesystem 723 * does not start destroying it while writeback is still running. Since 724 * the inode has I_FREEING set, flusher thread won't start new work on 725 * the inode. We just have to wait for running writeback to finish. 726 */ 727 inode_wait_for_writeback(inode); 728 spin_unlock(&inode->i_lock); 729 730 if (op->evict_inode) { 731 op->evict_inode(inode); 732 } else { 733 truncate_inode_pages_final(&inode->i_data); 734 clear_inode(inode); 735 } 736 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 737 cd_forget(inode); 738 739 remove_inode_hash(inode); 740 741 /* 742 * Wake up waiters in __wait_on_freeing_inode(). 743 * 744 * Lockless hash lookup may end up finding the inode before we removed 745 * it above, but only lock it *after* we are done with the wakeup below. 746 * In this case the potential waiter cannot safely block. 747 * 748 * The inode being unhashed after the call to remove_inode_hash() is 749 * used as an indicator whether blocking on it is safe. 750 */ 751 spin_lock(&inode->i_lock); 752 /* 753 * Pairs with the barrier in prepare_to_wait_event() to make sure 754 * ___wait_var_event() either sees the bit cleared or 755 * waitqueue_active() check in wake_up_var() sees the waiter. 756 */ 757 smp_mb(); 758 inode_wake_up_bit(inode, __I_NEW); 759 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 760 spin_unlock(&inode->i_lock); 761 762 destroy_inode(inode); 763 } 764 765 /* 766 * dispose_list - dispose of the contents of a local list 767 * @head: the head of the list to free 768 * 769 * Dispose-list gets a local list with local inodes in it, so it doesn't 770 * need to worry about list corruption and SMP locks. 771 */ 772 static void dispose_list(struct list_head *head) 773 { 774 while (!list_empty(head)) { 775 struct inode *inode; 776 777 inode = list_first_entry(head, struct inode, i_lru); 778 list_del_init(&inode->i_lru); 779 780 evict(inode); 781 cond_resched(); 782 } 783 } 784 785 /** 786 * evict_inodes - evict all evictable inodes for a superblock 787 * @sb: superblock to operate on 788 * 789 * Make sure that no inodes with zero refcount are retained. This is 790 * called by superblock shutdown after having SB_ACTIVE flag removed, 791 * so any inode reaching zero refcount during or after that call will 792 * be immediately evicted. 793 */ 794 void evict_inodes(struct super_block *sb) 795 { 796 struct inode *inode, *next; 797 LIST_HEAD(dispose); 798 799 again: 800 spin_lock(&sb->s_inode_list_lock); 801 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 802 if (atomic_read(&inode->i_count)) 803 continue; 804 805 spin_lock(&inode->i_lock); 806 if (atomic_read(&inode->i_count)) { 807 spin_unlock(&inode->i_lock); 808 continue; 809 } 810 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 811 spin_unlock(&inode->i_lock); 812 continue; 813 } 814 815 inode->i_state |= I_FREEING; 816 inode_lru_list_del(inode); 817 spin_unlock(&inode->i_lock); 818 list_add(&inode->i_lru, &dispose); 819 820 /* 821 * We can have a ton of inodes to evict at unmount time given 822 * enough memory, check to see if we need to go to sleep for a 823 * bit so we don't livelock. 824 */ 825 if (need_resched()) { 826 spin_unlock(&sb->s_inode_list_lock); 827 cond_resched(); 828 dispose_list(&dispose); 829 goto again; 830 } 831 } 832 spin_unlock(&sb->s_inode_list_lock); 833 834 dispose_list(&dispose); 835 } 836 EXPORT_SYMBOL_GPL(evict_inodes); 837 838 /** 839 * invalidate_inodes - attempt to free all inodes on a superblock 840 * @sb: superblock to operate on 841 * 842 * Attempts to free all inodes (including dirty inodes) for a given superblock. 843 */ 844 void invalidate_inodes(struct super_block *sb) 845 { 846 struct inode *inode, *next; 847 LIST_HEAD(dispose); 848 849 again: 850 spin_lock(&sb->s_inode_list_lock); 851 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 852 spin_lock(&inode->i_lock); 853 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 854 spin_unlock(&inode->i_lock); 855 continue; 856 } 857 if (atomic_read(&inode->i_count)) { 858 spin_unlock(&inode->i_lock); 859 continue; 860 } 861 862 inode->i_state |= I_FREEING; 863 inode_lru_list_del(inode); 864 spin_unlock(&inode->i_lock); 865 list_add(&inode->i_lru, &dispose); 866 if (need_resched()) { 867 spin_unlock(&sb->s_inode_list_lock); 868 cond_resched(); 869 dispose_list(&dispose); 870 goto again; 871 } 872 } 873 spin_unlock(&sb->s_inode_list_lock); 874 875 dispose_list(&dispose); 876 } 877 878 /* 879 * Isolate the inode from the LRU in preparation for freeing it. 880 * 881 * If the inode has the I_REFERENCED flag set, then it means that it has been 882 * used recently - the flag is set in iput_final(). When we encounter such an 883 * inode, clear the flag and move it to the back of the LRU so it gets another 884 * pass through the LRU before it gets reclaimed. This is necessary because of 885 * the fact we are doing lazy LRU updates to minimise lock contention so the 886 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 887 * with this flag set because they are the inodes that are out of order. 888 */ 889 static enum lru_status inode_lru_isolate(struct list_head *item, 890 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 891 { 892 struct list_head *freeable = arg; 893 struct inode *inode = container_of(item, struct inode, i_lru); 894 895 /* 896 * We are inverting the lru lock/inode->i_lock here, so use a 897 * trylock. If we fail to get the lock, just skip it. 898 */ 899 if (!spin_trylock(&inode->i_lock)) 900 return LRU_SKIP; 901 902 /* 903 * Inodes can get referenced, redirtied, or repopulated while 904 * they're already on the LRU, and this can make them 905 * unreclaimable for a while. Remove them lazily here; iput, 906 * sync, or the last page cache deletion will requeue them. 907 */ 908 if (atomic_read(&inode->i_count) || 909 (inode->i_state & ~I_REFERENCED) || 910 !mapping_shrinkable(&inode->i_data)) { 911 list_lru_isolate(lru, &inode->i_lru); 912 spin_unlock(&inode->i_lock); 913 this_cpu_dec(nr_unused); 914 return LRU_REMOVED; 915 } 916 917 /* Recently referenced inodes get one more pass */ 918 if (inode->i_state & I_REFERENCED) { 919 inode->i_state &= ~I_REFERENCED; 920 spin_unlock(&inode->i_lock); 921 return LRU_ROTATE; 922 } 923 924 /* 925 * On highmem systems, mapping_shrinkable() permits dropping 926 * page cache in order to free up struct inodes: lowmem might 927 * be under pressure before the cache inside the highmem zone. 928 */ 929 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 930 inode_pin_lru_isolating(inode); 931 spin_unlock(&inode->i_lock); 932 spin_unlock(lru_lock); 933 if (remove_inode_buffers(inode)) { 934 unsigned long reap; 935 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 936 if (current_is_kswapd()) 937 __count_vm_events(KSWAPD_INODESTEAL, reap); 938 else 939 __count_vm_events(PGINODESTEAL, reap); 940 mm_account_reclaimed_pages(reap); 941 } 942 inode_unpin_lru_isolating(inode); 943 spin_lock(lru_lock); 944 return LRU_RETRY; 945 } 946 947 WARN_ON(inode->i_state & I_NEW); 948 inode->i_state |= I_FREEING; 949 list_lru_isolate_move(lru, &inode->i_lru, freeable); 950 spin_unlock(&inode->i_lock); 951 952 this_cpu_dec(nr_unused); 953 return LRU_REMOVED; 954 } 955 956 /* 957 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 958 * This is called from the superblock shrinker function with a number of inodes 959 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 960 * then are freed outside inode_lock by dispose_list(). 961 */ 962 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 963 { 964 LIST_HEAD(freeable); 965 long freed; 966 967 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 968 inode_lru_isolate, &freeable); 969 dispose_list(&freeable); 970 return freed; 971 } 972 973 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); 974 /* 975 * Called with the inode lock held. 976 */ 977 static struct inode *find_inode(struct super_block *sb, 978 struct hlist_head *head, 979 int (*test)(struct inode *, void *), 980 void *data, bool is_inode_hash_locked) 981 { 982 struct inode *inode = NULL; 983 984 if (is_inode_hash_locked) 985 lockdep_assert_held(&inode_hash_lock); 986 else 987 lockdep_assert_not_held(&inode_hash_lock); 988 989 rcu_read_lock(); 990 repeat: 991 hlist_for_each_entry_rcu(inode, head, i_hash) { 992 if (inode->i_sb != sb) 993 continue; 994 if (!test(inode, data)) 995 continue; 996 spin_lock(&inode->i_lock); 997 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 998 __wait_on_freeing_inode(inode, is_inode_hash_locked); 999 goto repeat; 1000 } 1001 if (unlikely(inode->i_state & I_CREATING)) { 1002 spin_unlock(&inode->i_lock); 1003 rcu_read_unlock(); 1004 return ERR_PTR(-ESTALE); 1005 } 1006 __iget(inode); 1007 spin_unlock(&inode->i_lock); 1008 rcu_read_unlock(); 1009 return inode; 1010 } 1011 rcu_read_unlock(); 1012 return NULL; 1013 } 1014 1015 /* 1016 * find_inode_fast is the fast path version of find_inode, see the comment at 1017 * iget_locked for details. 1018 */ 1019 static struct inode *find_inode_fast(struct super_block *sb, 1020 struct hlist_head *head, unsigned long ino, 1021 bool is_inode_hash_locked) 1022 { 1023 struct inode *inode = NULL; 1024 1025 if (is_inode_hash_locked) 1026 lockdep_assert_held(&inode_hash_lock); 1027 else 1028 lockdep_assert_not_held(&inode_hash_lock); 1029 1030 rcu_read_lock(); 1031 repeat: 1032 hlist_for_each_entry_rcu(inode, head, i_hash) { 1033 if (inode->i_ino != ino) 1034 continue; 1035 if (inode->i_sb != sb) 1036 continue; 1037 spin_lock(&inode->i_lock); 1038 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1039 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1040 goto repeat; 1041 } 1042 if (unlikely(inode->i_state & I_CREATING)) { 1043 spin_unlock(&inode->i_lock); 1044 rcu_read_unlock(); 1045 return ERR_PTR(-ESTALE); 1046 } 1047 __iget(inode); 1048 spin_unlock(&inode->i_lock); 1049 rcu_read_unlock(); 1050 return inode; 1051 } 1052 rcu_read_unlock(); 1053 return NULL; 1054 } 1055 1056 /* 1057 * Each cpu owns a range of LAST_INO_BATCH numbers. 1058 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 1059 * to renew the exhausted range. 1060 * 1061 * This does not significantly increase overflow rate because every CPU can 1062 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1063 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1064 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1065 * overflow rate by 2x, which does not seem too significant. 1066 * 1067 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1068 * error if st_ino won't fit in target struct field. Use 32bit counter 1069 * here to attempt to avoid that. 1070 */ 1071 #define LAST_INO_BATCH 1024 1072 static DEFINE_PER_CPU(unsigned int, last_ino); 1073 1074 unsigned int get_next_ino(void) 1075 { 1076 unsigned int *p = &get_cpu_var(last_ino); 1077 unsigned int res = *p; 1078 1079 #ifdef CONFIG_SMP 1080 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1081 static atomic_t shared_last_ino; 1082 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1083 1084 res = next - LAST_INO_BATCH; 1085 } 1086 #endif 1087 1088 res++; 1089 /* get_next_ino should not provide a 0 inode number */ 1090 if (unlikely(!res)) 1091 res++; 1092 *p = res; 1093 put_cpu_var(last_ino); 1094 return res; 1095 } 1096 EXPORT_SYMBOL(get_next_ino); 1097 1098 /** 1099 * new_inode_pseudo - obtain an inode 1100 * @sb: superblock 1101 * 1102 * Allocates a new inode for given superblock. 1103 * Inode wont be chained in superblock s_inodes list 1104 * This means : 1105 * - fs can't be unmount 1106 * - quotas, fsnotify, writeback can't work 1107 */ 1108 struct inode *new_inode_pseudo(struct super_block *sb) 1109 { 1110 return alloc_inode(sb); 1111 } 1112 1113 /** 1114 * new_inode - obtain an inode 1115 * @sb: superblock 1116 * 1117 * Allocates a new inode for given superblock. The default gfp_mask 1118 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1119 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1120 * for the page cache are not reclaimable or migratable, 1121 * mapping_set_gfp_mask() must be called with suitable flags on the 1122 * newly created inode's mapping 1123 * 1124 */ 1125 struct inode *new_inode(struct super_block *sb) 1126 { 1127 struct inode *inode; 1128 1129 inode = new_inode_pseudo(sb); 1130 if (inode) 1131 inode_sb_list_add(inode); 1132 return inode; 1133 } 1134 EXPORT_SYMBOL(new_inode); 1135 1136 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1137 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1138 { 1139 if (S_ISDIR(inode->i_mode)) { 1140 struct file_system_type *type = inode->i_sb->s_type; 1141 1142 /* Set new key only if filesystem hasn't already changed it */ 1143 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1144 /* 1145 * ensure nobody is actually holding i_mutex 1146 */ 1147 // mutex_destroy(&inode->i_mutex); 1148 init_rwsem(&inode->i_rwsem); 1149 lockdep_set_class(&inode->i_rwsem, 1150 &type->i_mutex_dir_key); 1151 } 1152 } 1153 } 1154 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1155 #endif 1156 1157 /** 1158 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1159 * @inode: new inode to unlock 1160 * 1161 * Called when the inode is fully initialised to clear the new state of the 1162 * inode and wake up anyone waiting for the inode to finish initialisation. 1163 */ 1164 void unlock_new_inode(struct inode *inode) 1165 { 1166 lockdep_annotate_inode_mutex_key(inode); 1167 spin_lock(&inode->i_lock); 1168 WARN_ON(!(inode->i_state & I_NEW)); 1169 inode->i_state &= ~I_NEW & ~I_CREATING; 1170 /* 1171 * Pairs with the barrier in prepare_to_wait_event() to make sure 1172 * ___wait_var_event() either sees the bit cleared or 1173 * waitqueue_active() check in wake_up_var() sees the waiter. 1174 */ 1175 smp_mb(); 1176 inode_wake_up_bit(inode, __I_NEW); 1177 spin_unlock(&inode->i_lock); 1178 } 1179 EXPORT_SYMBOL(unlock_new_inode); 1180 1181 void discard_new_inode(struct inode *inode) 1182 { 1183 lockdep_annotate_inode_mutex_key(inode); 1184 spin_lock(&inode->i_lock); 1185 WARN_ON(!(inode->i_state & I_NEW)); 1186 inode->i_state &= ~I_NEW; 1187 /* 1188 * Pairs with the barrier in prepare_to_wait_event() to make sure 1189 * ___wait_var_event() either sees the bit cleared or 1190 * waitqueue_active() check in wake_up_var() sees the waiter. 1191 */ 1192 smp_mb(); 1193 inode_wake_up_bit(inode, __I_NEW); 1194 spin_unlock(&inode->i_lock); 1195 iput(inode); 1196 } 1197 EXPORT_SYMBOL(discard_new_inode); 1198 1199 /** 1200 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1201 * 1202 * Lock any non-NULL argument. Passed objects must not be directories. 1203 * Zero, one or two objects may be locked by this function. 1204 * 1205 * @inode1: first inode to lock 1206 * @inode2: second inode to lock 1207 */ 1208 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1209 { 1210 if (inode1) 1211 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1212 if (inode2) 1213 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1214 if (inode1 > inode2) 1215 swap(inode1, inode2); 1216 if (inode1) 1217 inode_lock(inode1); 1218 if (inode2 && inode2 != inode1) 1219 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1220 } 1221 EXPORT_SYMBOL(lock_two_nondirectories); 1222 1223 /** 1224 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1225 * @inode1: first inode to unlock 1226 * @inode2: second inode to unlock 1227 */ 1228 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1229 { 1230 if (inode1) { 1231 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1232 inode_unlock(inode1); 1233 } 1234 if (inode2 && inode2 != inode1) { 1235 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1236 inode_unlock(inode2); 1237 } 1238 } 1239 EXPORT_SYMBOL(unlock_two_nondirectories); 1240 1241 /** 1242 * inode_insert5 - obtain an inode from a mounted file system 1243 * @inode: pre-allocated inode to use for insert to cache 1244 * @hashval: hash value (usually inode number) to get 1245 * @test: callback used for comparisons between inodes 1246 * @set: callback used to initialize a new struct inode 1247 * @data: opaque data pointer to pass to @test and @set 1248 * 1249 * Search for the inode specified by @hashval and @data in the inode cache, 1250 * and if present it is return it with an increased reference count. This is 1251 * a variant of iget5_locked() for callers that don't want to fail on memory 1252 * allocation of inode. 1253 * 1254 * If the inode is not in cache, insert the pre-allocated inode to cache and 1255 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1256 * to fill it in before unlocking it via unlock_new_inode(). 1257 * 1258 * Note both @test and @set are called with the inode_hash_lock held, so can't 1259 * sleep. 1260 */ 1261 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1262 int (*test)(struct inode *, void *), 1263 int (*set)(struct inode *, void *), void *data) 1264 { 1265 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1266 struct inode *old; 1267 1268 again: 1269 spin_lock(&inode_hash_lock); 1270 old = find_inode(inode->i_sb, head, test, data, true); 1271 if (unlikely(old)) { 1272 /* 1273 * Uhhuh, somebody else created the same inode under us. 1274 * Use the old inode instead of the preallocated one. 1275 */ 1276 spin_unlock(&inode_hash_lock); 1277 if (IS_ERR(old)) 1278 return NULL; 1279 wait_on_inode(old); 1280 if (unlikely(inode_unhashed(old))) { 1281 iput(old); 1282 goto again; 1283 } 1284 return old; 1285 } 1286 1287 if (set && unlikely(set(inode, data))) { 1288 inode = NULL; 1289 goto unlock; 1290 } 1291 1292 /* 1293 * Return the locked inode with I_NEW set, the 1294 * caller is responsible for filling in the contents 1295 */ 1296 spin_lock(&inode->i_lock); 1297 inode->i_state |= I_NEW; 1298 hlist_add_head_rcu(&inode->i_hash, head); 1299 spin_unlock(&inode->i_lock); 1300 1301 /* 1302 * Add inode to the sb list if it's not already. It has I_NEW at this 1303 * point, so it should be safe to test i_sb_list locklessly. 1304 */ 1305 if (list_empty(&inode->i_sb_list)) 1306 inode_sb_list_add(inode); 1307 unlock: 1308 spin_unlock(&inode_hash_lock); 1309 1310 return inode; 1311 } 1312 EXPORT_SYMBOL(inode_insert5); 1313 1314 /** 1315 * iget5_locked - obtain an inode from a mounted file system 1316 * @sb: super block of file system 1317 * @hashval: hash value (usually inode number) to get 1318 * @test: callback used for comparisons between inodes 1319 * @set: callback used to initialize a new struct inode 1320 * @data: opaque data pointer to pass to @test and @set 1321 * 1322 * Search for the inode specified by @hashval and @data in the inode cache, 1323 * and if present it is return it with an increased reference count. This is 1324 * a generalized version of iget_locked() for file systems where the inode 1325 * number is not sufficient for unique identification of an inode. 1326 * 1327 * If the inode is not in cache, allocate a new inode and return it locked, 1328 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1329 * before unlocking it via unlock_new_inode(). 1330 * 1331 * Note both @test and @set are called with the inode_hash_lock held, so can't 1332 * sleep. 1333 */ 1334 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1335 int (*test)(struct inode *, void *), 1336 int (*set)(struct inode *, void *), void *data) 1337 { 1338 struct inode *inode = ilookup5(sb, hashval, test, data); 1339 1340 if (!inode) { 1341 struct inode *new = alloc_inode(sb); 1342 1343 if (new) { 1344 inode = inode_insert5(new, hashval, test, set, data); 1345 if (unlikely(inode != new)) 1346 destroy_inode(new); 1347 } 1348 } 1349 return inode; 1350 } 1351 EXPORT_SYMBOL(iget5_locked); 1352 1353 /** 1354 * iget5_locked_rcu - obtain an inode from a mounted file system 1355 * @sb: super block of file system 1356 * @hashval: hash value (usually inode number) to get 1357 * @test: callback used for comparisons between inodes 1358 * @set: callback used to initialize a new struct inode 1359 * @data: opaque data pointer to pass to @test and @set 1360 * 1361 * This is equivalent to iget5_locked, except the @test callback must 1362 * tolerate the inode not being stable, including being mid-teardown. 1363 */ 1364 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1365 int (*test)(struct inode *, void *), 1366 int (*set)(struct inode *, void *), void *data) 1367 { 1368 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1369 struct inode *inode, *new; 1370 1371 again: 1372 inode = find_inode(sb, head, test, data, false); 1373 if (inode) { 1374 if (IS_ERR(inode)) 1375 return NULL; 1376 wait_on_inode(inode); 1377 if (unlikely(inode_unhashed(inode))) { 1378 iput(inode); 1379 goto again; 1380 } 1381 return inode; 1382 } 1383 1384 new = alloc_inode(sb); 1385 if (new) { 1386 inode = inode_insert5(new, hashval, test, set, data); 1387 if (unlikely(inode != new)) 1388 destroy_inode(new); 1389 } 1390 return inode; 1391 } 1392 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1393 1394 /** 1395 * iget_locked - obtain an inode from a mounted file system 1396 * @sb: super block of file system 1397 * @ino: inode number to get 1398 * 1399 * Search for the inode specified by @ino in the inode cache and if present 1400 * return it with an increased reference count. This is for file systems 1401 * where the inode number is sufficient for unique identification of an inode. 1402 * 1403 * If the inode is not in cache, allocate a new inode and return it locked, 1404 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1405 * before unlocking it via unlock_new_inode(). 1406 */ 1407 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1408 { 1409 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1410 struct inode *inode; 1411 again: 1412 inode = find_inode_fast(sb, head, ino, false); 1413 if (inode) { 1414 if (IS_ERR(inode)) 1415 return NULL; 1416 wait_on_inode(inode); 1417 if (unlikely(inode_unhashed(inode))) { 1418 iput(inode); 1419 goto again; 1420 } 1421 return inode; 1422 } 1423 1424 inode = alloc_inode(sb); 1425 if (inode) { 1426 struct inode *old; 1427 1428 spin_lock(&inode_hash_lock); 1429 /* We released the lock, so.. */ 1430 old = find_inode_fast(sb, head, ino, true); 1431 if (!old) { 1432 inode->i_ino = ino; 1433 spin_lock(&inode->i_lock); 1434 inode->i_state = I_NEW; 1435 hlist_add_head_rcu(&inode->i_hash, head); 1436 spin_unlock(&inode->i_lock); 1437 inode_sb_list_add(inode); 1438 spin_unlock(&inode_hash_lock); 1439 1440 /* Return the locked inode with I_NEW set, the 1441 * caller is responsible for filling in the contents 1442 */ 1443 return inode; 1444 } 1445 1446 /* 1447 * Uhhuh, somebody else created the same inode under 1448 * us. Use the old inode instead of the one we just 1449 * allocated. 1450 */ 1451 spin_unlock(&inode_hash_lock); 1452 destroy_inode(inode); 1453 if (IS_ERR(old)) 1454 return NULL; 1455 inode = old; 1456 wait_on_inode(inode); 1457 if (unlikely(inode_unhashed(inode))) { 1458 iput(inode); 1459 goto again; 1460 } 1461 } 1462 return inode; 1463 } 1464 EXPORT_SYMBOL(iget_locked); 1465 1466 /* 1467 * search the inode cache for a matching inode number. 1468 * If we find one, then the inode number we are trying to 1469 * allocate is not unique and so we should not use it. 1470 * 1471 * Returns 1 if the inode number is unique, 0 if it is not. 1472 */ 1473 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1474 { 1475 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1476 struct inode *inode; 1477 1478 hlist_for_each_entry_rcu(inode, b, i_hash) { 1479 if (inode->i_ino == ino && inode->i_sb == sb) 1480 return 0; 1481 } 1482 return 1; 1483 } 1484 1485 /** 1486 * iunique - get a unique inode number 1487 * @sb: superblock 1488 * @max_reserved: highest reserved inode number 1489 * 1490 * Obtain an inode number that is unique on the system for a given 1491 * superblock. This is used by file systems that have no natural 1492 * permanent inode numbering system. An inode number is returned that 1493 * is higher than the reserved limit but unique. 1494 * 1495 * BUGS: 1496 * With a large number of inodes live on the file system this function 1497 * currently becomes quite slow. 1498 */ 1499 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1500 { 1501 /* 1502 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1503 * error if st_ino won't fit in target struct field. Use 32bit counter 1504 * here to attempt to avoid that. 1505 */ 1506 static DEFINE_SPINLOCK(iunique_lock); 1507 static unsigned int counter; 1508 ino_t res; 1509 1510 rcu_read_lock(); 1511 spin_lock(&iunique_lock); 1512 do { 1513 if (counter <= max_reserved) 1514 counter = max_reserved + 1; 1515 res = counter++; 1516 } while (!test_inode_iunique(sb, res)); 1517 spin_unlock(&iunique_lock); 1518 rcu_read_unlock(); 1519 1520 return res; 1521 } 1522 EXPORT_SYMBOL(iunique); 1523 1524 struct inode *igrab(struct inode *inode) 1525 { 1526 spin_lock(&inode->i_lock); 1527 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1528 __iget(inode); 1529 spin_unlock(&inode->i_lock); 1530 } else { 1531 spin_unlock(&inode->i_lock); 1532 /* 1533 * Handle the case where s_op->clear_inode is not been 1534 * called yet, and somebody is calling igrab 1535 * while the inode is getting freed. 1536 */ 1537 inode = NULL; 1538 } 1539 return inode; 1540 } 1541 EXPORT_SYMBOL(igrab); 1542 1543 /** 1544 * ilookup5_nowait - search for an inode in the inode cache 1545 * @sb: super block of file system to search 1546 * @hashval: hash value (usually inode number) to search for 1547 * @test: callback used for comparisons between inodes 1548 * @data: opaque data pointer to pass to @test 1549 * 1550 * Search for the inode specified by @hashval and @data in the inode cache. 1551 * If the inode is in the cache, the inode is returned with an incremented 1552 * reference count. 1553 * 1554 * Note: I_NEW is not waited upon so you have to be very careful what you do 1555 * with the returned inode. You probably should be using ilookup5() instead. 1556 * 1557 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1558 */ 1559 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1560 int (*test)(struct inode *, void *), void *data) 1561 { 1562 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1563 struct inode *inode; 1564 1565 spin_lock(&inode_hash_lock); 1566 inode = find_inode(sb, head, test, data, true); 1567 spin_unlock(&inode_hash_lock); 1568 1569 return IS_ERR(inode) ? NULL : inode; 1570 } 1571 EXPORT_SYMBOL(ilookup5_nowait); 1572 1573 /** 1574 * ilookup5 - search for an inode in the inode cache 1575 * @sb: super block of file system to search 1576 * @hashval: hash value (usually inode number) to search for 1577 * @test: callback used for comparisons between inodes 1578 * @data: opaque data pointer to pass to @test 1579 * 1580 * Search for the inode specified by @hashval and @data in the inode cache, 1581 * and if the inode is in the cache, return the inode with an incremented 1582 * reference count. Waits on I_NEW before returning the inode. 1583 * returned with an incremented reference count. 1584 * 1585 * This is a generalized version of ilookup() for file systems where the 1586 * inode number is not sufficient for unique identification of an inode. 1587 * 1588 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1589 */ 1590 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1591 int (*test)(struct inode *, void *), void *data) 1592 { 1593 struct inode *inode; 1594 again: 1595 inode = ilookup5_nowait(sb, hashval, test, data); 1596 if (inode) { 1597 wait_on_inode(inode); 1598 if (unlikely(inode_unhashed(inode))) { 1599 iput(inode); 1600 goto again; 1601 } 1602 } 1603 return inode; 1604 } 1605 EXPORT_SYMBOL(ilookup5); 1606 1607 /** 1608 * ilookup - search for an inode in the inode cache 1609 * @sb: super block of file system to search 1610 * @ino: inode number to search for 1611 * 1612 * Search for the inode @ino in the inode cache, and if the inode is in the 1613 * cache, the inode is returned with an incremented reference count. 1614 */ 1615 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1616 { 1617 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1618 struct inode *inode; 1619 again: 1620 inode = find_inode_fast(sb, head, ino, false); 1621 1622 if (inode) { 1623 if (IS_ERR(inode)) 1624 return NULL; 1625 wait_on_inode(inode); 1626 if (unlikely(inode_unhashed(inode))) { 1627 iput(inode); 1628 goto again; 1629 } 1630 } 1631 return inode; 1632 } 1633 EXPORT_SYMBOL(ilookup); 1634 1635 /** 1636 * find_inode_nowait - find an inode in the inode cache 1637 * @sb: super block of file system to search 1638 * @hashval: hash value (usually inode number) to search for 1639 * @match: callback used for comparisons between inodes 1640 * @data: opaque data pointer to pass to @match 1641 * 1642 * Search for the inode specified by @hashval and @data in the inode 1643 * cache, where the helper function @match will return 0 if the inode 1644 * does not match, 1 if the inode does match, and -1 if the search 1645 * should be stopped. The @match function must be responsible for 1646 * taking the i_lock spin_lock and checking i_state for an inode being 1647 * freed or being initialized, and incrementing the reference count 1648 * before returning 1. It also must not sleep, since it is called with 1649 * the inode_hash_lock spinlock held. 1650 * 1651 * This is a even more generalized version of ilookup5() when the 1652 * function must never block --- find_inode() can block in 1653 * __wait_on_freeing_inode() --- or when the caller can not increment 1654 * the reference count because the resulting iput() might cause an 1655 * inode eviction. The tradeoff is that the @match funtion must be 1656 * very carefully implemented. 1657 */ 1658 struct inode *find_inode_nowait(struct super_block *sb, 1659 unsigned long hashval, 1660 int (*match)(struct inode *, unsigned long, 1661 void *), 1662 void *data) 1663 { 1664 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1665 struct inode *inode, *ret_inode = NULL; 1666 int mval; 1667 1668 spin_lock(&inode_hash_lock); 1669 hlist_for_each_entry(inode, head, i_hash) { 1670 if (inode->i_sb != sb) 1671 continue; 1672 mval = match(inode, hashval, data); 1673 if (mval == 0) 1674 continue; 1675 if (mval == 1) 1676 ret_inode = inode; 1677 goto out; 1678 } 1679 out: 1680 spin_unlock(&inode_hash_lock); 1681 return ret_inode; 1682 } 1683 EXPORT_SYMBOL(find_inode_nowait); 1684 1685 /** 1686 * find_inode_rcu - find an inode in the inode cache 1687 * @sb: Super block of file system to search 1688 * @hashval: Key to hash 1689 * @test: Function to test match on an inode 1690 * @data: Data for test function 1691 * 1692 * Search for the inode specified by @hashval and @data in the inode cache, 1693 * where the helper function @test will return 0 if the inode does not match 1694 * and 1 if it does. The @test function must be responsible for taking the 1695 * i_lock spin_lock and checking i_state for an inode being freed or being 1696 * initialized. 1697 * 1698 * If successful, this will return the inode for which the @test function 1699 * returned 1 and NULL otherwise. 1700 * 1701 * The @test function is not permitted to take a ref on any inode presented. 1702 * It is also not permitted to sleep. 1703 * 1704 * The caller must hold the RCU read lock. 1705 */ 1706 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1707 int (*test)(struct inode *, void *), void *data) 1708 { 1709 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1710 struct inode *inode; 1711 1712 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1713 "suspicious find_inode_rcu() usage"); 1714 1715 hlist_for_each_entry_rcu(inode, head, i_hash) { 1716 if (inode->i_sb == sb && 1717 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1718 test(inode, data)) 1719 return inode; 1720 } 1721 return NULL; 1722 } 1723 EXPORT_SYMBOL(find_inode_rcu); 1724 1725 /** 1726 * find_inode_by_ino_rcu - Find an inode in the inode cache 1727 * @sb: Super block of file system to search 1728 * @ino: The inode number to match 1729 * 1730 * Search for the inode specified by @hashval and @data in the inode cache, 1731 * where the helper function @test will return 0 if the inode does not match 1732 * and 1 if it does. The @test function must be responsible for taking the 1733 * i_lock spin_lock and checking i_state for an inode being freed or being 1734 * initialized. 1735 * 1736 * If successful, this will return the inode for which the @test function 1737 * returned 1 and NULL otherwise. 1738 * 1739 * The @test function is not permitted to take a ref on any inode presented. 1740 * It is also not permitted to sleep. 1741 * 1742 * The caller must hold the RCU read lock. 1743 */ 1744 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1745 unsigned long ino) 1746 { 1747 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1748 struct inode *inode; 1749 1750 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1751 "suspicious find_inode_by_ino_rcu() usage"); 1752 1753 hlist_for_each_entry_rcu(inode, head, i_hash) { 1754 if (inode->i_ino == ino && 1755 inode->i_sb == sb && 1756 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1757 return inode; 1758 } 1759 return NULL; 1760 } 1761 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1762 1763 int insert_inode_locked(struct inode *inode) 1764 { 1765 struct super_block *sb = inode->i_sb; 1766 ino_t ino = inode->i_ino; 1767 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1768 1769 while (1) { 1770 struct inode *old = NULL; 1771 spin_lock(&inode_hash_lock); 1772 hlist_for_each_entry(old, head, i_hash) { 1773 if (old->i_ino != ino) 1774 continue; 1775 if (old->i_sb != sb) 1776 continue; 1777 spin_lock(&old->i_lock); 1778 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1779 spin_unlock(&old->i_lock); 1780 continue; 1781 } 1782 break; 1783 } 1784 if (likely(!old)) { 1785 spin_lock(&inode->i_lock); 1786 inode->i_state |= I_NEW | I_CREATING; 1787 hlist_add_head_rcu(&inode->i_hash, head); 1788 spin_unlock(&inode->i_lock); 1789 spin_unlock(&inode_hash_lock); 1790 return 0; 1791 } 1792 if (unlikely(old->i_state & I_CREATING)) { 1793 spin_unlock(&old->i_lock); 1794 spin_unlock(&inode_hash_lock); 1795 return -EBUSY; 1796 } 1797 __iget(old); 1798 spin_unlock(&old->i_lock); 1799 spin_unlock(&inode_hash_lock); 1800 wait_on_inode(old); 1801 if (unlikely(!inode_unhashed(old))) { 1802 iput(old); 1803 return -EBUSY; 1804 } 1805 iput(old); 1806 } 1807 } 1808 EXPORT_SYMBOL(insert_inode_locked); 1809 1810 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1811 int (*test)(struct inode *, void *), void *data) 1812 { 1813 struct inode *old; 1814 1815 inode->i_state |= I_CREATING; 1816 old = inode_insert5(inode, hashval, test, NULL, data); 1817 1818 if (old != inode) { 1819 iput(old); 1820 return -EBUSY; 1821 } 1822 return 0; 1823 } 1824 EXPORT_SYMBOL(insert_inode_locked4); 1825 1826 1827 int generic_delete_inode(struct inode *inode) 1828 { 1829 return 1; 1830 } 1831 EXPORT_SYMBOL(generic_delete_inode); 1832 1833 /* 1834 * Called when we're dropping the last reference 1835 * to an inode. 1836 * 1837 * Call the FS "drop_inode()" function, defaulting to 1838 * the legacy UNIX filesystem behaviour. If it tells 1839 * us to evict inode, do so. Otherwise, retain inode 1840 * in cache if fs is alive, sync and evict if fs is 1841 * shutting down. 1842 */ 1843 static void iput_final(struct inode *inode) 1844 { 1845 struct super_block *sb = inode->i_sb; 1846 const struct super_operations *op = inode->i_sb->s_op; 1847 unsigned long state; 1848 int drop; 1849 1850 WARN_ON(inode->i_state & I_NEW); 1851 1852 if (op->drop_inode) 1853 drop = op->drop_inode(inode); 1854 else 1855 drop = generic_drop_inode(inode); 1856 1857 if (!drop && 1858 !(inode->i_state & I_DONTCACHE) && 1859 (sb->s_flags & SB_ACTIVE)) { 1860 __inode_add_lru(inode, true); 1861 spin_unlock(&inode->i_lock); 1862 return; 1863 } 1864 1865 state = inode->i_state; 1866 if (!drop) { 1867 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1868 spin_unlock(&inode->i_lock); 1869 1870 write_inode_now(inode, 1); 1871 1872 spin_lock(&inode->i_lock); 1873 state = inode->i_state; 1874 WARN_ON(state & I_NEW); 1875 state &= ~I_WILL_FREE; 1876 } 1877 1878 WRITE_ONCE(inode->i_state, state | I_FREEING); 1879 if (!list_empty(&inode->i_lru)) 1880 inode_lru_list_del(inode); 1881 spin_unlock(&inode->i_lock); 1882 1883 evict(inode); 1884 } 1885 1886 /** 1887 * iput - put an inode 1888 * @inode: inode to put 1889 * 1890 * Puts an inode, dropping its usage count. If the inode use count hits 1891 * zero, the inode is then freed and may also be destroyed. 1892 * 1893 * Consequently, iput() can sleep. 1894 */ 1895 void iput(struct inode *inode) 1896 { 1897 if (!inode) 1898 return; 1899 BUG_ON(inode->i_state & I_CLEAR); 1900 retry: 1901 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1902 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1903 atomic_inc(&inode->i_count); 1904 spin_unlock(&inode->i_lock); 1905 trace_writeback_lazytime_iput(inode); 1906 mark_inode_dirty_sync(inode); 1907 goto retry; 1908 } 1909 iput_final(inode); 1910 } 1911 } 1912 EXPORT_SYMBOL(iput); 1913 1914 #ifdef CONFIG_BLOCK 1915 /** 1916 * bmap - find a block number in a file 1917 * @inode: inode owning the block number being requested 1918 * @block: pointer containing the block to find 1919 * 1920 * Replaces the value in ``*block`` with the block number on the device holding 1921 * corresponding to the requested block number in the file. 1922 * That is, asked for block 4 of inode 1 the function will replace the 1923 * 4 in ``*block``, with disk block relative to the disk start that holds that 1924 * block of the file. 1925 * 1926 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1927 * hole, returns 0 and ``*block`` is also set to 0. 1928 */ 1929 int bmap(struct inode *inode, sector_t *block) 1930 { 1931 if (!inode->i_mapping->a_ops->bmap) 1932 return -EINVAL; 1933 1934 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1935 return 0; 1936 } 1937 EXPORT_SYMBOL(bmap); 1938 #endif 1939 1940 /* 1941 * With relative atime, only update atime if the previous atime is 1942 * earlier than or equal to either the ctime or mtime, 1943 * or if at least a day has passed since the last atime update. 1944 */ 1945 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1946 struct timespec64 now) 1947 { 1948 struct timespec64 atime, mtime, ctime; 1949 1950 if (!(mnt->mnt_flags & MNT_RELATIME)) 1951 return true; 1952 /* 1953 * Is mtime younger than or equal to atime? If yes, update atime: 1954 */ 1955 atime = inode_get_atime(inode); 1956 mtime = inode_get_mtime(inode); 1957 if (timespec64_compare(&mtime, &atime) >= 0) 1958 return true; 1959 /* 1960 * Is ctime younger than or equal to atime? If yes, update atime: 1961 */ 1962 ctime = inode_get_ctime(inode); 1963 if (timespec64_compare(&ctime, &atime) >= 0) 1964 return true; 1965 1966 /* 1967 * Is the previous atime value older than a day? If yes, 1968 * update atime: 1969 */ 1970 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1971 return true; 1972 /* 1973 * Good, we can skip the atime update: 1974 */ 1975 return false; 1976 } 1977 1978 /** 1979 * inode_update_timestamps - update the timestamps on the inode 1980 * @inode: inode to be updated 1981 * @flags: S_* flags that needed to be updated 1982 * 1983 * The update_time function is called when an inode's timestamps need to be 1984 * updated for a read or write operation. This function handles updating the 1985 * actual timestamps. It's up to the caller to ensure that the inode is marked 1986 * dirty appropriately. 1987 * 1988 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1989 * attempt to update all three of them. S_ATIME updates can be handled 1990 * independently of the rest. 1991 * 1992 * Returns a set of S_* flags indicating which values changed. 1993 */ 1994 int inode_update_timestamps(struct inode *inode, int flags) 1995 { 1996 int updated = 0; 1997 struct timespec64 now; 1998 1999 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 2000 struct timespec64 ctime = inode_get_ctime(inode); 2001 struct timespec64 mtime = inode_get_mtime(inode); 2002 2003 now = inode_set_ctime_current(inode); 2004 if (!timespec64_equal(&now, &ctime)) 2005 updated |= S_CTIME; 2006 if (!timespec64_equal(&now, &mtime)) { 2007 inode_set_mtime_to_ts(inode, now); 2008 updated |= S_MTIME; 2009 } 2010 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 2011 updated |= S_VERSION; 2012 } else { 2013 now = current_time(inode); 2014 } 2015 2016 if (flags & S_ATIME) { 2017 struct timespec64 atime = inode_get_atime(inode); 2018 2019 if (!timespec64_equal(&now, &atime)) { 2020 inode_set_atime_to_ts(inode, now); 2021 updated |= S_ATIME; 2022 } 2023 } 2024 return updated; 2025 } 2026 EXPORT_SYMBOL(inode_update_timestamps); 2027 2028 /** 2029 * generic_update_time - update the timestamps on the inode 2030 * @inode: inode to be updated 2031 * @flags: S_* flags that needed to be updated 2032 * 2033 * The update_time function is called when an inode's timestamps need to be 2034 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 2035 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 2036 * updates can be handled done independently of the rest. 2037 * 2038 * Returns a S_* mask indicating which fields were updated. 2039 */ 2040 int generic_update_time(struct inode *inode, int flags) 2041 { 2042 int updated = inode_update_timestamps(inode, flags); 2043 int dirty_flags = 0; 2044 2045 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 2046 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 2047 if (updated & S_VERSION) 2048 dirty_flags |= I_DIRTY_SYNC; 2049 __mark_inode_dirty(inode, dirty_flags); 2050 return updated; 2051 } 2052 EXPORT_SYMBOL(generic_update_time); 2053 2054 /* 2055 * This does the actual work of updating an inodes time or version. Must have 2056 * had called mnt_want_write() before calling this. 2057 */ 2058 int inode_update_time(struct inode *inode, int flags) 2059 { 2060 if (inode->i_op->update_time) 2061 return inode->i_op->update_time(inode, flags); 2062 generic_update_time(inode, flags); 2063 return 0; 2064 } 2065 EXPORT_SYMBOL(inode_update_time); 2066 2067 /** 2068 * atime_needs_update - update the access time 2069 * @path: the &struct path to update 2070 * @inode: inode to update 2071 * 2072 * Update the accessed time on an inode and mark it for writeback. 2073 * This function automatically handles read only file systems and media, 2074 * as well as the "noatime" flag and inode specific "noatime" markers. 2075 */ 2076 bool atime_needs_update(const struct path *path, struct inode *inode) 2077 { 2078 struct vfsmount *mnt = path->mnt; 2079 struct timespec64 now, atime; 2080 2081 if (inode->i_flags & S_NOATIME) 2082 return false; 2083 2084 /* Atime updates will likely cause i_uid and i_gid to be written 2085 * back improprely if their true value is unknown to the vfs. 2086 */ 2087 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2088 return false; 2089 2090 if (IS_NOATIME(inode)) 2091 return false; 2092 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2093 return false; 2094 2095 if (mnt->mnt_flags & MNT_NOATIME) 2096 return false; 2097 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2098 return false; 2099 2100 now = current_time(inode); 2101 2102 if (!relatime_need_update(mnt, inode, now)) 2103 return false; 2104 2105 atime = inode_get_atime(inode); 2106 if (timespec64_equal(&atime, &now)) 2107 return false; 2108 2109 return true; 2110 } 2111 2112 void touch_atime(const struct path *path) 2113 { 2114 struct vfsmount *mnt = path->mnt; 2115 struct inode *inode = d_inode(path->dentry); 2116 2117 if (!atime_needs_update(path, inode)) 2118 return; 2119 2120 if (!sb_start_write_trylock(inode->i_sb)) 2121 return; 2122 2123 if (mnt_get_write_access(mnt) != 0) 2124 goto skip_update; 2125 /* 2126 * File systems can error out when updating inodes if they need to 2127 * allocate new space to modify an inode (such is the case for 2128 * Btrfs), but since we touch atime while walking down the path we 2129 * really don't care if we failed to update the atime of the file, 2130 * so just ignore the return value. 2131 * We may also fail on filesystems that have the ability to make parts 2132 * of the fs read only, e.g. subvolumes in Btrfs. 2133 */ 2134 inode_update_time(inode, S_ATIME); 2135 mnt_put_write_access(mnt); 2136 skip_update: 2137 sb_end_write(inode->i_sb); 2138 } 2139 EXPORT_SYMBOL(touch_atime); 2140 2141 /* 2142 * Return mask of changes for notify_change() that need to be done as a 2143 * response to write or truncate. Return 0 if nothing has to be changed. 2144 * Negative value on error (change should be denied). 2145 */ 2146 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2147 struct dentry *dentry) 2148 { 2149 struct inode *inode = d_inode(dentry); 2150 int mask = 0; 2151 int ret; 2152 2153 if (IS_NOSEC(inode)) 2154 return 0; 2155 2156 mask = setattr_should_drop_suidgid(idmap, inode); 2157 ret = security_inode_need_killpriv(dentry); 2158 if (ret < 0) 2159 return ret; 2160 if (ret) 2161 mask |= ATTR_KILL_PRIV; 2162 return mask; 2163 } 2164 2165 static int __remove_privs(struct mnt_idmap *idmap, 2166 struct dentry *dentry, int kill) 2167 { 2168 struct iattr newattrs; 2169 2170 newattrs.ia_valid = ATTR_FORCE | kill; 2171 /* 2172 * Note we call this on write, so notify_change will not 2173 * encounter any conflicting delegations: 2174 */ 2175 return notify_change(idmap, dentry, &newattrs, NULL); 2176 } 2177 2178 int file_remove_privs_flags(struct file *file, unsigned int flags) 2179 { 2180 struct dentry *dentry = file_dentry(file); 2181 struct inode *inode = file_inode(file); 2182 int error = 0; 2183 int kill; 2184 2185 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2186 return 0; 2187 2188 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2189 if (kill < 0) 2190 return kill; 2191 2192 if (kill) { 2193 if (flags & IOCB_NOWAIT) 2194 return -EAGAIN; 2195 2196 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2197 } 2198 2199 if (!error) 2200 inode_has_no_xattr(inode); 2201 return error; 2202 } 2203 EXPORT_SYMBOL_GPL(file_remove_privs_flags); 2204 2205 /** 2206 * file_remove_privs - remove special file privileges (suid, capabilities) 2207 * @file: file to remove privileges from 2208 * 2209 * When file is modified by a write or truncation ensure that special 2210 * file privileges are removed. 2211 * 2212 * Return: 0 on success, negative errno on failure. 2213 */ 2214 int file_remove_privs(struct file *file) 2215 { 2216 return file_remove_privs_flags(file, 0); 2217 } 2218 EXPORT_SYMBOL(file_remove_privs); 2219 2220 static int inode_needs_update_time(struct inode *inode) 2221 { 2222 int sync_it = 0; 2223 struct timespec64 now = current_time(inode); 2224 struct timespec64 ts; 2225 2226 /* First try to exhaust all avenues to not sync */ 2227 if (IS_NOCMTIME(inode)) 2228 return 0; 2229 2230 ts = inode_get_mtime(inode); 2231 if (!timespec64_equal(&ts, &now)) 2232 sync_it = S_MTIME; 2233 2234 ts = inode_get_ctime(inode); 2235 if (!timespec64_equal(&ts, &now)) 2236 sync_it |= S_CTIME; 2237 2238 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2239 sync_it |= S_VERSION; 2240 2241 return sync_it; 2242 } 2243 2244 static int __file_update_time(struct file *file, int sync_mode) 2245 { 2246 int ret = 0; 2247 struct inode *inode = file_inode(file); 2248 2249 /* try to update time settings */ 2250 if (!mnt_get_write_access_file(file)) { 2251 ret = inode_update_time(inode, sync_mode); 2252 mnt_put_write_access_file(file); 2253 } 2254 2255 return ret; 2256 } 2257 2258 /** 2259 * file_update_time - update mtime and ctime time 2260 * @file: file accessed 2261 * 2262 * Update the mtime and ctime members of an inode and mark the inode for 2263 * writeback. Note that this function is meant exclusively for usage in 2264 * the file write path of filesystems, and filesystems may choose to 2265 * explicitly ignore updates via this function with the _NOCMTIME inode 2266 * flag, e.g. for network filesystem where these imestamps are handled 2267 * by the server. This can return an error for file systems who need to 2268 * allocate space in order to update an inode. 2269 * 2270 * Return: 0 on success, negative errno on failure. 2271 */ 2272 int file_update_time(struct file *file) 2273 { 2274 int ret; 2275 struct inode *inode = file_inode(file); 2276 2277 ret = inode_needs_update_time(inode); 2278 if (ret <= 0) 2279 return ret; 2280 2281 return __file_update_time(file, ret); 2282 } 2283 EXPORT_SYMBOL(file_update_time); 2284 2285 /** 2286 * file_modified_flags - handle mandated vfs changes when modifying a file 2287 * @file: file that was modified 2288 * @flags: kiocb flags 2289 * 2290 * When file has been modified ensure that special 2291 * file privileges are removed and time settings are updated. 2292 * 2293 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2294 * time settings will not be updated. It will return -EAGAIN. 2295 * 2296 * Context: Caller must hold the file's inode lock. 2297 * 2298 * Return: 0 on success, negative errno on failure. 2299 */ 2300 static int file_modified_flags(struct file *file, int flags) 2301 { 2302 int ret; 2303 struct inode *inode = file_inode(file); 2304 2305 /* 2306 * Clear the security bits if the process is not being run by root. 2307 * This keeps people from modifying setuid and setgid binaries. 2308 */ 2309 ret = file_remove_privs_flags(file, flags); 2310 if (ret) 2311 return ret; 2312 2313 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2314 return 0; 2315 2316 ret = inode_needs_update_time(inode); 2317 if (ret <= 0) 2318 return ret; 2319 if (flags & IOCB_NOWAIT) 2320 return -EAGAIN; 2321 2322 return __file_update_time(file, ret); 2323 } 2324 2325 /** 2326 * file_modified - handle mandated vfs changes when modifying a file 2327 * @file: file that was modified 2328 * 2329 * When file has been modified ensure that special 2330 * file privileges are removed and time settings are updated. 2331 * 2332 * Context: Caller must hold the file's inode lock. 2333 * 2334 * Return: 0 on success, negative errno on failure. 2335 */ 2336 int file_modified(struct file *file) 2337 { 2338 return file_modified_flags(file, 0); 2339 } 2340 EXPORT_SYMBOL(file_modified); 2341 2342 /** 2343 * kiocb_modified - handle mandated vfs changes when modifying a file 2344 * @iocb: iocb that was modified 2345 * 2346 * When file has been modified ensure that special 2347 * file privileges are removed and time settings are updated. 2348 * 2349 * Context: Caller must hold the file's inode lock. 2350 * 2351 * Return: 0 on success, negative errno on failure. 2352 */ 2353 int kiocb_modified(struct kiocb *iocb) 2354 { 2355 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2356 } 2357 EXPORT_SYMBOL_GPL(kiocb_modified); 2358 2359 int inode_needs_sync(struct inode *inode) 2360 { 2361 if (IS_SYNC(inode)) 2362 return 1; 2363 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2364 return 1; 2365 return 0; 2366 } 2367 EXPORT_SYMBOL(inode_needs_sync); 2368 2369 /* 2370 * If we try to find an inode in the inode hash while it is being 2371 * deleted, we have to wait until the filesystem completes its 2372 * deletion before reporting that it isn't found. This function waits 2373 * until the deletion _might_ have completed. Callers are responsible 2374 * to recheck inode state. 2375 * 2376 * It doesn't matter if I_NEW is not set initially, a call to 2377 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2378 * will DTRT. 2379 */ 2380 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) 2381 { 2382 struct wait_bit_queue_entry wqe; 2383 struct wait_queue_head *wq_head; 2384 2385 /* 2386 * Handle racing against evict(), see that routine for more details. 2387 */ 2388 if (unlikely(inode_unhashed(inode))) { 2389 WARN_ON(is_inode_hash_locked); 2390 spin_unlock(&inode->i_lock); 2391 return; 2392 } 2393 2394 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 2395 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 2396 spin_unlock(&inode->i_lock); 2397 rcu_read_unlock(); 2398 if (is_inode_hash_locked) 2399 spin_unlock(&inode_hash_lock); 2400 schedule(); 2401 finish_wait(wq_head, &wqe.wq_entry); 2402 if (is_inode_hash_locked) 2403 spin_lock(&inode_hash_lock); 2404 rcu_read_lock(); 2405 } 2406 2407 static __initdata unsigned long ihash_entries; 2408 static int __init set_ihash_entries(char *str) 2409 { 2410 if (!str) 2411 return 0; 2412 ihash_entries = simple_strtoul(str, &str, 0); 2413 return 1; 2414 } 2415 __setup("ihash_entries=", set_ihash_entries); 2416 2417 /* 2418 * Initialize the waitqueues and inode hash table. 2419 */ 2420 void __init inode_init_early(void) 2421 { 2422 /* If hashes are distributed across NUMA nodes, defer 2423 * hash allocation until vmalloc space is available. 2424 */ 2425 if (hashdist) 2426 return; 2427 2428 inode_hashtable = 2429 alloc_large_system_hash("Inode-cache", 2430 sizeof(struct hlist_head), 2431 ihash_entries, 2432 14, 2433 HASH_EARLY | HASH_ZERO, 2434 &i_hash_shift, 2435 &i_hash_mask, 2436 0, 2437 0); 2438 } 2439 2440 void __init inode_init(void) 2441 { 2442 /* inode slab cache */ 2443 inode_cachep = kmem_cache_create("inode_cache", 2444 sizeof(struct inode), 2445 0, 2446 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2447 SLAB_ACCOUNT), 2448 init_once); 2449 2450 /* Hash may have been set up in inode_init_early */ 2451 if (!hashdist) 2452 return; 2453 2454 inode_hashtable = 2455 alloc_large_system_hash("Inode-cache", 2456 sizeof(struct hlist_head), 2457 ihash_entries, 2458 14, 2459 HASH_ZERO, 2460 &i_hash_shift, 2461 &i_hash_mask, 2462 0, 2463 0); 2464 } 2465 2466 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2467 { 2468 inode->i_mode = mode; 2469 if (S_ISCHR(mode)) { 2470 inode->i_fop = &def_chr_fops; 2471 inode->i_rdev = rdev; 2472 } else if (S_ISBLK(mode)) { 2473 if (IS_ENABLED(CONFIG_BLOCK)) 2474 inode->i_fop = &def_blk_fops; 2475 inode->i_rdev = rdev; 2476 } else if (S_ISFIFO(mode)) 2477 inode->i_fop = &pipefifo_fops; 2478 else if (S_ISSOCK(mode)) 2479 ; /* leave it no_open_fops */ 2480 else 2481 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2482 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2483 inode->i_ino); 2484 } 2485 EXPORT_SYMBOL(init_special_inode); 2486 2487 /** 2488 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2489 * @idmap: idmap of the mount the inode was created from 2490 * @inode: New inode 2491 * @dir: Directory inode 2492 * @mode: mode of the new inode 2493 * 2494 * If the inode has been created through an idmapped mount the idmap of 2495 * the vfsmount must be passed through @idmap. This function will then take 2496 * care to map the inode according to @idmap before checking permissions 2497 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2498 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2499 */ 2500 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2501 const struct inode *dir, umode_t mode) 2502 { 2503 inode_fsuid_set(inode, idmap); 2504 if (dir && dir->i_mode & S_ISGID) { 2505 inode->i_gid = dir->i_gid; 2506 2507 /* Directories are special, and always inherit S_ISGID */ 2508 if (S_ISDIR(mode)) 2509 mode |= S_ISGID; 2510 } else 2511 inode_fsgid_set(inode, idmap); 2512 inode->i_mode = mode; 2513 } 2514 EXPORT_SYMBOL(inode_init_owner); 2515 2516 /** 2517 * inode_owner_or_capable - check current task permissions to inode 2518 * @idmap: idmap of the mount the inode was found from 2519 * @inode: inode being checked 2520 * 2521 * Return true if current either has CAP_FOWNER in a namespace with the 2522 * inode owner uid mapped, or owns the file. 2523 * 2524 * If the inode has been found through an idmapped mount the idmap of 2525 * the vfsmount must be passed through @idmap. This function will then take 2526 * care to map the inode according to @idmap before checking permissions. 2527 * On non-idmapped mounts or if permission checking is to be performed on the 2528 * raw inode simply pass @nop_mnt_idmap. 2529 */ 2530 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2531 const struct inode *inode) 2532 { 2533 vfsuid_t vfsuid; 2534 struct user_namespace *ns; 2535 2536 vfsuid = i_uid_into_vfsuid(idmap, inode); 2537 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2538 return true; 2539 2540 ns = current_user_ns(); 2541 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2542 return true; 2543 return false; 2544 } 2545 EXPORT_SYMBOL(inode_owner_or_capable); 2546 2547 /* 2548 * Direct i/o helper functions 2549 */ 2550 bool inode_dio_finished(const struct inode *inode) 2551 { 2552 return atomic_read(&inode->i_dio_count) == 0; 2553 } 2554 EXPORT_SYMBOL(inode_dio_finished); 2555 2556 /** 2557 * inode_dio_wait - wait for outstanding DIO requests to finish 2558 * @inode: inode to wait for 2559 * 2560 * Waits for all pending direct I/O requests to finish so that we can 2561 * proceed with a truncate or equivalent operation. 2562 * 2563 * Must be called under a lock that serializes taking new references 2564 * to i_dio_count, usually by inode->i_mutex. 2565 */ 2566 void inode_dio_wait(struct inode *inode) 2567 { 2568 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode)); 2569 } 2570 EXPORT_SYMBOL(inode_dio_wait); 2571 2572 void inode_dio_wait_interruptible(struct inode *inode) 2573 { 2574 wait_var_event_interruptible(&inode->i_dio_count, 2575 inode_dio_finished(inode)); 2576 } 2577 EXPORT_SYMBOL(inode_dio_wait_interruptible); 2578 2579 /* 2580 * inode_set_flags - atomically set some inode flags 2581 * 2582 * Note: the caller should be holding i_mutex, or else be sure that 2583 * they have exclusive access to the inode structure (i.e., while the 2584 * inode is being instantiated). The reason for the cmpxchg() loop 2585 * --- which wouldn't be necessary if all code paths which modify 2586 * i_flags actually followed this rule, is that there is at least one 2587 * code path which doesn't today so we use cmpxchg() out of an abundance 2588 * of caution. 2589 * 2590 * In the long run, i_mutex is overkill, and we should probably look 2591 * at using the i_lock spinlock to protect i_flags, and then make sure 2592 * it is so documented in include/linux/fs.h and that all code follows 2593 * the locking convention!! 2594 */ 2595 void inode_set_flags(struct inode *inode, unsigned int flags, 2596 unsigned int mask) 2597 { 2598 WARN_ON_ONCE(flags & ~mask); 2599 set_mask_bits(&inode->i_flags, mask, flags); 2600 } 2601 EXPORT_SYMBOL(inode_set_flags); 2602 2603 void inode_nohighmem(struct inode *inode) 2604 { 2605 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2606 } 2607 EXPORT_SYMBOL(inode_nohighmem); 2608 2609 /** 2610 * timestamp_truncate - Truncate timespec to a granularity 2611 * @t: Timespec 2612 * @inode: inode being updated 2613 * 2614 * Truncate a timespec to the granularity supported by the fs 2615 * containing the inode. Always rounds down. gran must 2616 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2617 */ 2618 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2619 { 2620 struct super_block *sb = inode->i_sb; 2621 unsigned int gran = sb->s_time_gran; 2622 2623 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2624 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2625 t.tv_nsec = 0; 2626 2627 /* Avoid division in the common cases 1 ns and 1 s. */ 2628 if (gran == 1) 2629 ; /* nothing */ 2630 else if (gran == NSEC_PER_SEC) 2631 t.tv_nsec = 0; 2632 else if (gran > 1 && gran < NSEC_PER_SEC) 2633 t.tv_nsec -= t.tv_nsec % gran; 2634 else 2635 WARN(1, "invalid file time granularity: %u", gran); 2636 return t; 2637 } 2638 EXPORT_SYMBOL(timestamp_truncate); 2639 2640 /** 2641 * current_time - Return FS time 2642 * @inode: inode. 2643 * 2644 * Return the current time truncated to the time granularity supported by 2645 * the fs. 2646 * 2647 * Note that inode and inode->sb cannot be NULL. 2648 * Otherwise, the function warns and returns time without truncation. 2649 */ 2650 struct timespec64 current_time(struct inode *inode) 2651 { 2652 struct timespec64 now; 2653 2654 ktime_get_coarse_real_ts64(&now); 2655 return timestamp_truncate(now, inode); 2656 } 2657 EXPORT_SYMBOL(current_time); 2658 2659 /** 2660 * inode_set_ctime_current - set the ctime to current_time 2661 * @inode: inode 2662 * 2663 * Set the inode->i_ctime to the current value for the inode. Returns 2664 * the current value that was assigned to i_ctime. 2665 */ 2666 struct timespec64 inode_set_ctime_current(struct inode *inode) 2667 { 2668 struct timespec64 now = current_time(inode); 2669 2670 inode_set_ctime_to_ts(inode, now); 2671 return now; 2672 } 2673 EXPORT_SYMBOL(inode_set_ctime_current); 2674 2675 /** 2676 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2677 * @idmap: idmap of the mount @inode was found from 2678 * @inode: inode to check 2679 * @vfsgid: the new/current vfsgid of @inode 2680 * 2681 * Check wether @vfsgid is in the caller's group list or if the caller is 2682 * privileged with CAP_FSETID over @inode. This can be used to determine 2683 * whether the setgid bit can be kept or must be dropped. 2684 * 2685 * Return: true if the caller is sufficiently privileged, false if not. 2686 */ 2687 bool in_group_or_capable(struct mnt_idmap *idmap, 2688 const struct inode *inode, vfsgid_t vfsgid) 2689 { 2690 if (vfsgid_in_group_p(vfsgid)) 2691 return true; 2692 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2693 return true; 2694 return false; 2695 } 2696 EXPORT_SYMBOL(in_group_or_capable); 2697 2698 /** 2699 * mode_strip_sgid - handle the sgid bit for non-directories 2700 * @idmap: idmap of the mount the inode was created from 2701 * @dir: parent directory inode 2702 * @mode: mode of the file to be created in @dir 2703 * 2704 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2705 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2706 * either in the group of the parent directory or they have CAP_FSETID 2707 * in their user namespace and are privileged over the parent directory. 2708 * In all other cases, strip the S_ISGID bit from @mode. 2709 * 2710 * Return: the new mode to use for the file 2711 */ 2712 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2713 const struct inode *dir, umode_t mode) 2714 { 2715 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2716 return mode; 2717 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2718 return mode; 2719 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2720 return mode; 2721 return mode & ~S_ISGID; 2722 } 2723 EXPORT_SYMBOL(mode_strip_sgid); 2724