1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/prefetch.h> 20 #include <linux/buffer_head.h> /* for inode_has_buffers */ 21 #include <linux/ratelimit.h> 22 #include <linux/list_lru.h> 23 #include <linux/iversion.h> 24 #include <trace/events/writeback.h> 25 #include "internal.h" 26 27 /* 28 * Inode locking rules: 29 * 30 * inode->i_lock protects: 31 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 32 * Inode LRU list locks protect: 33 * inode->i_sb->s_inode_lru, inode->i_lru 34 * inode->i_sb->s_inode_list_lock protects: 35 * inode->i_sb->s_inodes, inode->i_sb_list 36 * bdi->wb.list_lock protects: 37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 38 * inode_hash_lock protects: 39 * inode_hashtable, inode->i_hash 40 * 41 * Lock ordering: 42 * 43 * inode->i_sb->s_inode_list_lock 44 * inode->i_lock 45 * Inode LRU list locks 46 * 47 * bdi->wb.list_lock 48 * inode->i_lock 49 * 50 * inode_hash_lock 51 * inode->i_sb->s_inode_list_lock 52 * inode->i_lock 53 * 54 * iunique_lock 55 * inode_hash_lock 56 */ 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 static struct hlist_head *inode_hashtable __read_mostly; 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 62 63 /* 64 * Empty aops. Can be used for the cases where the user does not 65 * define any of the address_space operations. 66 */ 67 const struct address_space_operations empty_aops = { 68 }; 69 EXPORT_SYMBOL(empty_aops); 70 71 static DEFINE_PER_CPU(unsigned long, nr_inodes); 72 static DEFINE_PER_CPU(unsigned long, nr_unused); 73 74 static struct kmem_cache *inode_cachep __read_mostly; 75 76 static long get_nr_inodes(void) 77 { 78 int i; 79 long sum = 0; 80 for_each_possible_cpu(i) 81 sum += per_cpu(nr_inodes, i); 82 return sum < 0 ? 0 : sum; 83 } 84 85 static inline long get_nr_inodes_unused(void) 86 { 87 int i; 88 long sum = 0; 89 for_each_possible_cpu(i) 90 sum += per_cpu(nr_unused, i); 91 return sum < 0 ? 0 : sum; 92 } 93 94 long get_nr_dirty_inodes(void) 95 { 96 /* not actually dirty inodes, but a wild approximation */ 97 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 98 return nr_dirty > 0 ? nr_dirty : 0; 99 } 100 101 /* 102 * Handle nr_inode sysctl 103 */ 104 #ifdef CONFIG_SYSCTL 105 /* 106 * Statistics gathering.. 107 */ 108 static struct inodes_stat_t inodes_stat; 109 110 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 111 size_t *lenp, loff_t *ppos) 112 { 113 inodes_stat.nr_inodes = get_nr_inodes(); 114 inodes_stat.nr_unused = get_nr_inodes_unused(); 115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 116 } 117 118 static struct ctl_table inodes_sysctls[] = { 119 { 120 .procname = "inode-nr", 121 .data = &inodes_stat, 122 .maxlen = 2*sizeof(long), 123 .mode = 0444, 124 .proc_handler = proc_nr_inodes, 125 }, 126 { 127 .procname = "inode-state", 128 .data = &inodes_stat, 129 .maxlen = 7*sizeof(long), 130 .mode = 0444, 131 .proc_handler = proc_nr_inodes, 132 }, 133 { } 134 }; 135 136 static int __init init_fs_inode_sysctls(void) 137 { 138 register_sysctl_init("fs", inodes_sysctls); 139 return 0; 140 } 141 early_initcall(init_fs_inode_sysctls); 142 #endif 143 144 static int no_open(struct inode *inode, struct file *file) 145 { 146 return -ENXIO; 147 } 148 149 /** 150 * inode_init_always - perform inode structure initialisation 151 * @sb: superblock inode belongs to 152 * @inode: inode to initialise 153 * 154 * These are initializations that need to be done on every inode 155 * allocation as the fields are not initialised by slab allocation. 156 */ 157 int inode_init_always(struct super_block *sb, struct inode *inode) 158 { 159 static const struct inode_operations empty_iops; 160 static const struct file_operations no_open_fops = {.open = no_open}; 161 struct address_space *const mapping = &inode->i_data; 162 163 inode->i_sb = sb; 164 inode->i_blkbits = sb->s_blocksize_bits; 165 inode->i_flags = 0; 166 atomic64_set(&inode->i_sequence, 0); 167 atomic_set(&inode->i_count, 1); 168 inode->i_op = &empty_iops; 169 inode->i_fop = &no_open_fops; 170 inode->i_ino = 0; 171 inode->__i_nlink = 1; 172 inode->i_opflags = 0; 173 if (sb->s_xattr) 174 inode->i_opflags |= IOP_XATTR; 175 i_uid_write(inode, 0); 176 i_gid_write(inode, 0); 177 atomic_set(&inode->i_writecount, 0); 178 inode->i_size = 0; 179 inode->i_write_hint = WRITE_LIFE_NOT_SET; 180 inode->i_blocks = 0; 181 inode->i_bytes = 0; 182 inode->i_generation = 0; 183 inode->i_pipe = NULL; 184 inode->i_cdev = NULL; 185 inode->i_link = NULL; 186 inode->i_dir_seq = 0; 187 inode->i_rdev = 0; 188 inode->dirtied_when = 0; 189 190 #ifdef CONFIG_CGROUP_WRITEBACK 191 inode->i_wb_frn_winner = 0; 192 inode->i_wb_frn_avg_time = 0; 193 inode->i_wb_frn_history = 0; 194 #endif 195 196 spin_lock_init(&inode->i_lock); 197 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 198 199 init_rwsem(&inode->i_rwsem); 200 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 201 202 atomic_set(&inode->i_dio_count, 0); 203 204 mapping->a_ops = &empty_aops; 205 mapping->host = inode; 206 mapping->flags = 0; 207 mapping->wb_err = 0; 208 atomic_set(&mapping->i_mmap_writable, 0); 209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 210 atomic_set(&mapping->nr_thps, 0); 211 #endif 212 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 213 mapping->private_data = NULL; 214 mapping->writeback_index = 0; 215 init_rwsem(&mapping->invalidate_lock); 216 lockdep_set_class_and_name(&mapping->invalidate_lock, 217 &sb->s_type->invalidate_lock_key, 218 "mapping.invalidate_lock"); 219 inode->i_private = NULL; 220 inode->i_mapping = mapping; 221 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 222 #ifdef CONFIG_FS_POSIX_ACL 223 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 224 #endif 225 226 #ifdef CONFIG_FSNOTIFY 227 inode->i_fsnotify_mask = 0; 228 #endif 229 inode->i_flctx = NULL; 230 231 if (unlikely(security_inode_alloc(inode))) 232 return -ENOMEM; 233 this_cpu_inc(nr_inodes); 234 235 return 0; 236 } 237 EXPORT_SYMBOL(inode_init_always); 238 239 void free_inode_nonrcu(struct inode *inode) 240 { 241 kmem_cache_free(inode_cachep, inode); 242 } 243 EXPORT_SYMBOL(free_inode_nonrcu); 244 245 static void i_callback(struct rcu_head *head) 246 { 247 struct inode *inode = container_of(head, struct inode, i_rcu); 248 if (inode->free_inode) 249 inode->free_inode(inode); 250 else 251 free_inode_nonrcu(inode); 252 } 253 254 static struct inode *alloc_inode(struct super_block *sb) 255 { 256 const struct super_operations *ops = sb->s_op; 257 struct inode *inode; 258 259 if (ops->alloc_inode) 260 inode = ops->alloc_inode(sb); 261 else 262 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 263 264 if (!inode) 265 return NULL; 266 267 if (unlikely(inode_init_always(sb, inode))) { 268 if (ops->destroy_inode) { 269 ops->destroy_inode(inode); 270 if (!ops->free_inode) 271 return NULL; 272 } 273 inode->free_inode = ops->free_inode; 274 i_callback(&inode->i_rcu); 275 return NULL; 276 } 277 278 return inode; 279 } 280 281 void __destroy_inode(struct inode *inode) 282 { 283 BUG_ON(inode_has_buffers(inode)); 284 inode_detach_wb(inode); 285 security_inode_free(inode); 286 fsnotify_inode_delete(inode); 287 locks_free_lock_context(inode); 288 if (!inode->i_nlink) { 289 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 290 atomic_long_dec(&inode->i_sb->s_remove_count); 291 } 292 293 #ifdef CONFIG_FS_POSIX_ACL 294 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 295 posix_acl_release(inode->i_acl); 296 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 297 posix_acl_release(inode->i_default_acl); 298 #endif 299 this_cpu_dec(nr_inodes); 300 } 301 EXPORT_SYMBOL(__destroy_inode); 302 303 static void destroy_inode(struct inode *inode) 304 { 305 const struct super_operations *ops = inode->i_sb->s_op; 306 307 BUG_ON(!list_empty(&inode->i_lru)); 308 __destroy_inode(inode); 309 if (ops->destroy_inode) { 310 ops->destroy_inode(inode); 311 if (!ops->free_inode) 312 return; 313 } 314 inode->free_inode = ops->free_inode; 315 call_rcu(&inode->i_rcu, i_callback); 316 } 317 318 /** 319 * drop_nlink - directly drop an inode's link count 320 * @inode: inode 321 * 322 * This is a low-level filesystem helper to replace any 323 * direct filesystem manipulation of i_nlink. In cases 324 * where we are attempting to track writes to the 325 * filesystem, a decrement to zero means an imminent 326 * write when the file is truncated and actually unlinked 327 * on the filesystem. 328 */ 329 void drop_nlink(struct inode *inode) 330 { 331 WARN_ON(inode->i_nlink == 0); 332 inode->__i_nlink--; 333 if (!inode->i_nlink) 334 atomic_long_inc(&inode->i_sb->s_remove_count); 335 } 336 EXPORT_SYMBOL(drop_nlink); 337 338 /** 339 * clear_nlink - directly zero an inode's link count 340 * @inode: inode 341 * 342 * This is a low-level filesystem helper to replace any 343 * direct filesystem manipulation of i_nlink. See 344 * drop_nlink() for why we care about i_nlink hitting zero. 345 */ 346 void clear_nlink(struct inode *inode) 347 { 348 if (inode->i_nlink) { 349 inode->__i_nlink = 0; 350 atomic_long_inc(&inode->i_sb->s_remove_count); 351 } 352 } 353 EXPORT_SYMBOL(clear_nlink); 354 355 /** 356 * set_nlink - directly set an inode's link count 357 * @inode: inode 358 * @nlink: new nlink (should be non-zero) 359 * 360 * This is a low-level filesystem helper to replace any 361 * direct filesystem manipulation of i_nlink. 362 */ 363 void set_nlink(struct inode *inode, unsigned int nlink) 364 { 365 if (!nlink) { 366 clear_nlink(inode); 367 } else { 368 /* Yes, some filesystems do change nlink from zero to one */ 369 if (inode->i_nlink == 0) 370 atomic_long_dec(&inode->i_sb->s_remove_count); 371 372 inode->__i_nlink = nlink; 373 } 374 } 375 EXPORT_SYMBOL(set_nlink); 376 377 /** 378 * inc_nlink - directly increment an inode's link count 379 * @inode: inode 380 * 381 * This is a low-level filesystem helper to replace any 382 * direct filesystem manipulation of i_nlink. Currently, 383 * it is only here for parity with dec_nlink(). 384 */ 385 void inc_nlink(struct inode *inode) 386 { 387 if (unlikely(inode->i_nlink == 0)) { 388 WARN_ON(!(inode->i_state & I_LINKABLE)); 389 atomic_long_dec(&inode->i_sb->s_remove_count); 390 } 391 392 inode->__i_nlink++; 393 } 394 EXPORT_SYMBOL(inc_nlink); 395 396 static void __address_space_init_once(struct address_space *mapping) 397 { 398 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 399 init_rwsem(&mapping->i_mmap_rwsem); 400 INIT_LIST_HEAD(&mapping->private_list); 401 spin_lock_init(&mapping->private_lock); 402 mapping->i_mmap = RB_ROOT_CACHED; 403 } 404 405 void address_space_init_once(struct address_space *mapping) 406 { 407 memset(mapping, 0, sizeof(*mapping)); 408 __address_space_init_once(mapping); 409 } 410 EXPORT_SYMBOL(address_space_init_once); 411 412 /* 413 * These are initializations that only need to be done 414 * once, because the fields are idempotent across use 415 * of the inode, so let the slab aware of that. 416 */ 417 void inode_init_once(struct inode *inode) 418 { 419 memset(inode, 0, sizeof(*inode)); 420 INIT_HLIST_NODE(&inode->i_hash); 421 INIT_LIST_HEAD(&inode->i_devices); 422 INIT_LIST_HEAD(&inode->i_io_list); 423 INIT_LIST_HEAD(&inode->i_wb_list); 424 INIT_LIST_HEAD(&inode->i_lru); 425 INIT_LIST_HEAD(&inode->i_sb_list); 426 __address_space_init_once(&inode->i_data); 427 i_size_ordered_init(inode); 428 } 429 EXPORT_SYMBOL(inode_init_once); 430 431 static void init_once(void *foo) 432 { 433 struct inode *inode = (struct inode *) foo; 434 435 inode_init_once(inode); 436 } 437 438 /* 439 * inode->i_lock must be held 440 */ 441 void __iget(struct inode *inode) 442 { 443 atomic_inc(&inode->i_count); 444 } 445 446 /* 447 * get additional reference to inode; caller must already hold one. 448 */ 449 void ihold(struct inode *inode) 450 { 451 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 452 } 453 EXPORT_SYMBOL(ihold); 454 455 static void __inode_add_lru(struct inode *inode, bool rotate) 456 { 457 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 458 return; 459 if (atomic_read(&inode->i_count)) 460 return; 461 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 462 return; 463 if (!mapping_shrinkable(&inode->i_data)) 464 return; 465 466 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 467 this_cpu_inc(nr_unused); 468 else if (rotate) 469 inode->i_state |= I_REFERENCED; 470 } 471 472 /* 473 * Add inode to LRU if needed (inode is unused and clean). 474 * 475 * Needs inode->i_lock held. 476 */ 477 void inode_add_lru(struct inode *inode) 478 { 479 __inode_add_lru(inode, false); 480 } 481 482 static void inode_lru_list_del(struct inode *inode) 483 { 484 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 485 this_cpu_dec(nr_unused); 486 } 487 488 /** 489 * inode_sb_list_add - add inode to the superblock list of inodes 490 * @inode: inode to add 491 */ 492 void inode_sb_list_add(struct inode *inode) 493 { 494 spin_lock(&inode->i_sb->s_inode_list_lock); 495 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 496 spin_unlock(&inode->i_sb->s_inode_list_lock); 497 } 498 EXPORT_SYMBOL_GPL(inode_sb_list_add); 499 500 static inline void inode_sb_list_del(struct inode *inode) 501 { 502 if (!list_empty(&inode->i_sb_list)) { 503 spin_lock(&inode->i_sb->s_inode_list_lock); 504 list_del_init(&inode->i_sb_list); 505 spin_unlock(&inode->i_sb->s_inode_list_lock); 506 } 507 } 508 509 static unsigned long hash(struct super_block *sb, unsigned long hashval) 510 { 511 unsigned long tmp; 512 513 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 514 L1_CACHE_BYTES; 515 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 516 return tmp & i_hash_mask; 517 } 518 519 /** 520 * __insert_inode_hash - hash an inode 521 * @inode: unhashed inode 522 * @hashval: unsigned long value used to locate this object in the 523 * inode_hashtable. 524 * 525 * Add an inode to the inode hash for this superblock. 526 */ 527 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 528 { 529 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 530 531 spin_lock(&inode_hash_lock); 532 spin_lock(&inode->i_lock); 533 hlist_add_head_rcu(&inode->i_hash, b); 534 spin_unlock(&inode->i_lock); 535 spin_unlock(&inode_hash_lock); 536 } 537 EXPORT_SYMBOL(__insert_inode_hash); 538 539 /** 540 * __remove_inode_hash - remove an inode from the hash 541 * @inode: inode to unhash 542 * 543 * Remove an inode from the superblock. 544 */ 545 void __remove_inode_hash(struct inode *inode) 546 { 547 spin_lock(&inode_hash_lock); 548 spin_lock(&inode->i_lock); 549 hlist_del_init_rcu(&inode->i_hash); 550 spin_unlock(&inode->i_lock); 551 spin_unlock(&inode_hash_lock); 552 } 553 EXPORT_SYMBOL(__remove_inode_hash); 554 555 void dump_mapping(const struct address_space *mapping) 556 { 557 struct inode *host; 558 const struct address_space_operations *a_ops; 559 struct hlist_node *dentry_first; 560 struct dentry *dentry_ptr; 561 struct dentry dentry; 562 unsigned long ino; 563 564 /* 565 * If mapping is an invalid pointer, we don't want to crash 566 * accessing it, so probe everything depending on it carefully. 567 */ 568 if (get_kernel_nofault(host, &mapping->host) || 569 get_kernel_nofault(a_ops, &mapping->a_ops)) { 570 pr_warn("invalid mapping:%px\n", mapping); 571 return; 572 } 573 574 if (!host) { 575 pr_warn("aops:%ps\n", a_ops); 576 return; 577 } 578 579 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 580 get_kernel_nofault(ino, &host->i_ino)) { 581 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 582 return; 583 } 584 585 if (!dentry_first) { 586 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 587 return; 588 } 589 590 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 591 if (get_kernel_nofault(dentry, dentry_ptr)) { 592 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 593 a_ops, ino, dentry_ptr); 594 return; 595 } 596 597 /* 598 * if dentry is corrupted, the %pd handler may still crash, 599 * but it's unlikely that we reach here with a corrupt mapping 600 */ 601 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 602 } 603 604 void clear_inode(struct inode *inode) 605 { 606 /* 607 * We have to cycle the i_pages lock here because reclaim can be in the 608 * process of removing the last page (in __filemap_remove_folio()) 609 * and we must not free the mapping under it. 610 */ 611 xa_lock_irq(&inode->i_data.i_pages); 612 BUG_ON(inode->i_data.nrpages); 613 /* 614 * Almost always, mapping_empty(&inode->i_data) here; but there are 615 * two known and long-standing ways in which nodes may get left behind 616 * (when deep radix-tree node allocation failed partway; or when THP 617 * collapse_file() failed). Until those two known cases are cleaned up, 618 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 619 * nor even WARN_ON(!mapping_empty). 620 */ 621 xa_unlock_irq(&inode->i_data.i_pages); 622 BUG_ON(!list_empty(&inode->i_data.private_list)); 623 BUG_ON(!(inode->i_state & I_FREEING)); 624 BUG_ON(inode->i_state & I_CLEAR); 625 BUG_ON(!list_empty(&inode->i_wb_list)); 626 /* don't need i_lock here, no concurrent mods to i_state */ 627 inode->i_state = I_FREEING | I_CLEAR; 628 } 629 EXPORT_SYMBOL(clear_inode); 630 631 /* 632 * Free the inode passed in, removing it from the lists it is still connected 633 * to. We remove any pages still attached to the inode and wait for any IO that 634 * is still in progress before finally destroying the inode. 635 * 636 * An inode must already be marked I_FREEING so that we avoid the inode being 637 * moved back onto lists if we race with other code that manipulates the lists 638 * (e.g. writeback_single_inode). The caller is responsible for setting this. 639 * 640 * An inode must already be removed from the LRU list before being evicted from 641 * the cache. This should occur atomically with setting the I_FREEING state 642 * flag, so no inodes here should ever be on the LRU when being evicted. 643 */ 644 static void evict(struct inode *inode) 645 { 646 const struct super_operations *op = inode->i_sb->s_op; 647 648 BUG_ON(!(inode->i_state & I_FREEING)); 649 BUG_ON(!list_empty(&inode->i_lru)); 650 651 if (!list_empty(&inode->i_io_list)) 652 inode_io_list_del(inode); 653 654 inode_sb_list_del(inode); 655 656 /* 657 * Wait for flusher thread to be done with the inode so that filesystem 658 * does not start destroying it while writeback is still running. Since 659 * the inode has I_FREEING set, flusher thread won't start new work on 660 * the inode. We just have to wait for running writeback to finish. 661 */ 662 inode_wait_for_writeback(inode); 663 664 if (op->evict_inode) { 665 op->evict_inode(inode); 666 } else { 667 truncate_inode_pages_final(&inode->i_data); 668 clear_inode(inode); 669 } 670 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 671 cd_forget(inode); 672 673 remove_inode_hash(inode); 674 675 spin_lock(&inode->i_lock); 676 wake_up_bit(&inode->i_state, __I_NEW); 677 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 678 spin_unlock(&inode->i_lock); 679 680 destroy_inode(inode); 681 } 682 683 /* 684 * dispose_list - dispose of the contents of a local list 685 * @head: the head of the list to free 686 * 687 * Dispose-list gets a local list with local inodes in it, so it doesn't 688 * need to worry about list corruption and SMP locks. 689 */ 690 static void dispose_list(struct list_head *head) 691 { 692 while (!list_empty(head)) { 693 struct inode *inode; 694 695 inode = list_first_entry(head, struct inode, i_lru); 696 list_del_init(&inode->i_lru); 697 698 evict(inode); 699 cond_resched(); 700 } 701 } 702 703 /** 704 * evict_inodes - evict all evictable inodes for a superblock 705 * @sb: superblock to operate on 706 * 707 * Make sure that no inodes with zero refcount are retained. This is 708 * called by superblock shutdown after having SB_ACTIVE flag removed, 709 * so any inode reaching zero refcount during or after that call will 710 * be immediately evicted. 711 */ 712 void evict_inodes(struct super_block *sb) 713 { 714 struct inode *inode, *next; 715 LIST_HEAD(dispose); 716 717 again: 718 spin_lock(&sb->s_inode_list_lock); 719 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 720 if (atomic_read(&inode->i_count)) 721 continue; 722 723 spin_lock(&inode->i_lock); 724 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 725 spin_unlock(&inode->i_lock); 726 continue; 727 } 728 729 inode->i_state |= I_FREEING; 730 inode_lru_list_del(inode); 731 spin_unlock(&inode->i_lock); 732 list_add(&inode->i_lru, &dispose); 733 734 /* 735 * We can have a ton of inodes to evict at unmount time given 736 * enough memory, check to see if we need to go to sleep for a 737 * bit so we don't livelock. 738 */ 739 if (need_resched()) { 740 spin_unlock(&sb->s_inode_list_lock); 741 cond_resched(); 742 dispose_list(&dispose); 743 goto again; 744 } 745 } 746 spin_unlock(&sb->s_inode_list_lock); 747 748 dispose_list(&dispose); 749 } 750 EXPORT_SYMBOL_GPL(evict_inodes); 751 752 /** 753 * invalidate_inodes - attempt to free all inodes on a superblock 754 * @sb: superblock to operate on 755 * @kill_dirty: flag to guide handling of dirty inodes 756 * 757 * Attempts to free all inodes for a given superblock. If there were any 758 * busy inodes return a non-zero value, else zero. 759 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 760 * them as busy. 761 */ 762 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 763 { 764 int busy = 0; 765 struct inode *inode, *next; 766 LIST_HEAD(dispose); 767 768 again: 769 spin_lock(&sb->s_inode_list_lock); 770 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 771 spin_lock(&inode->i_lock); 772 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 773 spin_unlock(&inode->i_lock); 774 continue; 775 } 776 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 777 spin_unlock(&inode->i_lock); 778 busy = 1; 779 continue; 780 } 781 if (atomic_read(&inode->i_count)) { 782 spin_unlock(&inode->i_lock); 783 busy = 1; 784 continue; 785 } 786 787 inode->i_state |= I_FREEING; 788 inode_lru_list_del(inode); 789 spin_unlock(&inode->i_lock); 790 list_add(&inode->i_lru, &dispose); 791 if (need_resched()) { 792 spin_unlock(&sb->s_inode_list_lock); 793 cond_resched(); 794 dispose_list(&dispose); 795 goto again; 796 } 797 } 798 spin_unlock(&sb->s_inode_list_lock); 799 800 dispose_list(&dispose); 801 802 return busy; 803 } 804 805 /* 806 * Isolate the inode from the LRU in preparation for freeing it. 807 * 808 * If the inode has the I_REFERENCED flag set, then it means that it has been 809 * used recently - the flag is set in iput_final(). When we encounter such an 810 * inode, clear the flag and move it to the back of the LRU so it gets another 811 * pass through the LRU before it gets reclaimed. This is necessary because of 812 * the fact we are doing lazy LRU updates to minimise lock contention so the 813 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 814 * with this flag set because they are the inodes that are out of order. 815 */ 816 static enum lru_status inode_lru_isolate(struct list_head *item, 817 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 818 { 819 struct list_head *freeable = arg; 820 struct inode *inode = container_of(item, struct inode, i_lru); 821 822 /* 823 * We are inverting the lru lock/inode->i_lock here, so use a 824 * trylock. If we fail to get the lock, just skip it. 825 */ 826 if (!spin_trylock(&inode->i_lock)) 827 return LRU_SKIP; 828 829 /* 830 * Inodes can get referenced, redirtied, or repopulated while 831 * they're already on the LRU, and this can make them 832 * unreclaimable for a while. Remove them lazily here; iput, 833 * sync, or the last page cache deletion will requeue them. 834 */ 835 if (atomic_read(&inode->i_count) || 836 (inode->i_state & ~I_REFERENCED) || 837 !mapping_shrinkable(&inode->i_data)) { 838 list_lru_isolate(lru, &inode->i_lru); 839 spin_unlock(&inode->i_lock); 840 this_cpu_dec(nr_unused); 841 return LRU_REMOVED; 842 } 843 844 /* Recently referenced inodes get one more pass */ 845 if (inode->i_state & I_REFERENCED) { 846 inode->i_state &= ~I_REFERENCED; 847 spin_unlock(&inode->i_lock); 848 return LRU_ROTATE; 849 } 850 851 /* 852 * On highmem systems, mapping_shrinkable() permits dropping 853 * page cache in order to free up struct inodes: lowmem might 854 * be under pressure before the cache inside the highmem zone. 855 */ 856 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 857 __iget(inode); 858 spin_unlock(&inode->i_lock); 859 spin_unlock(lru_lock); 860 if (remove_inode_buffers(inode)) { 861 unsigned long reap; 862 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 863 if (current_is_kswapd()) 864 __count_vm_events(KSWAPD_INODESTEAL, reap); 865 else 866 __count_vm_events(PGINODESTEAL, reap); 867 mm_account_reclaimed_pages(reap); 868 } 869 iput(inode); 870 spin_lock(lru_lock); 871 return LRU_RETRY; 872 } 873 874 WARN_ON(inode->i_state & I_NEW); 875 inode->i_state |= I_FREEING; 876 list_lru_isolate_move(lru, &inode->i_lru, freeable); 877 spin_unlock(&inode->i_lock); 878 879 this_cpu_dec(nr_unused); 880 return LRU_REMOVED; 881 } 882 883 /* 884 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 885 * This is called from the superblock shrinker function with a number of inodes 886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 887 * then are freed outside inode_lock by dispose_list(). 888 */ 889 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 890 { 891 LIST_HEAD(freeable); 892 long freed; 893 894 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 895 inode_lru_isolate, &freeable); 896 dispose_list(&freeable); 897 return freed; 898 } 899 900 static void __wait_on_freeing_inode(struct inode *inode); 901 /* 902 * Called with the inode lock held. 903 */ 904 static struct inode *find_inode(struct super_block *sb, 905 struct hlist_head *head, 906 int (*test)(struct inode *, void *), 907 void *data) 908 { 909 struct inode *inode = NULL; 910 911 repeat: 912 hlist_for_each_entry(inode, head, i_hash) { 913 if (inode->i_sb != sb) 914 continue; 915 if (!test(inode, data)) 916 continue; 917 spin_lock(&inode->i_lock); 918 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 919 __wait_on_freeing_inode(inode); 920 goto repeat; 921 } 922 if (unlikely(inode->i_state & I_CREATING)) { 923 spin_unlock(&inode->i_lock); 924 return ERR_PTR(-ESTALE); 925 } 926 __iget(inode); 927 spin_unlock(&inode->i_lock); 928 return inode; 929 } 930 return NULL; 931 } 932 933 /* 934 * find_inode_fast is the fast path version of find_inode, see the comment at 935 * iget_locked for details. 936 */ 937 static struct inode *find_inode_fast(struct super_block *sb, 938 struct hlist_head *head, unsigned long ino) 939 { 940 struct inode *inode = NULL; 941 942 repeat: 943 hlist_for_each_entry(inode, head, i_hash) { 944 if (inode->i_ino != ino) 945 continue; 946 if (inode->i_sb != sb) 947 continue; 948 spin_lock(&inode->i_lock); 949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 950 __wait_on_freeing_inode(inode); 951 goto repeat; 952 } 953 if (unlikely(inode->i_state & I_CREATING)) { 954 spin_unlock(&inode->i_lock); 955 return ERR_PTR(-ESTALE); 956 } 957 __iget(inode); 958 spin_unlock(&inode->i_lock); 959 return inode; 960 } 961 return NULL; 962 } 963 964 /* 965 * Each cpu owns a range of LAST_INO_BATCH numbers. 966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 967 * to renew the exhausted range. 968 * 969 * This does not significantly increase overflow rate because every CPU can 970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 973 * overflow rate by 2x, which does not seem too significant. 974 * 975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 976 * error if st_ino won't fit in target struct field. Use 32bit counter 977 * here to attempt to avoid that. 978 */ 979 #define LAST_INO_BATCH 1024 980 static DEFINE_PER_CPU(unsigned int, last_ino); 981 982 unsigned int get_next_ino(void) 983 { 984 unsigned int *p = &get_cpu_var(last_ino); 985 unsigned int res = *p; 986 987 #ifdef CONFIG_SMP 988 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 989 static atomic_t shared_last_ino; 990 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 991 992 res = next - LAST_INO_BATCH; 993 } 994 #endif 995 996 res++; 997 /* get_next_ino should not provide a 0 inode number */ 998 if (unlikely(!res)) 999 res++; 1000 *p = res; 1001 put_cpu_var(last_ino); 1002 return res; 1003 } 1004 EXPORT_SYMBOL(get_next_ino); 1005 1006 /** 1007 * new_inode_pseudo - obtain an inode 1008 * @sb: superblock 1009 * 1010 * Allocates a new inode for given superblock. 1011 * Inode wont be chained in superblock s_inodes list 1012 * This means : 1013 * - fs can't be unmount 1014 * - quotas, fsnotify, writeback can't work 1015 */ 1016 struct inode *new_inode_pseudo(struct super_block *sb) 1017 { 1018 struct inode *inode = alloc_inode(sb); 1019 1020 if (inode) { 1021 spin_lock(&inode->i_lock); 1022 inode->i_state = 0; 1023 spin_unlock(&inode->i_lock); 1024 } 1025 return inode; 1026 } 1027 1028 /** 1029 * new_inode - obtain an inode 1030 * @sb: superblock 1031 * 1032 * Allocates a new inode for given superblock. The default gfp_mask 1033 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1034 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1035 * for the page cache are not reclaimable or migratable, 1036 * mapping_set_gfp_mask() must be called with suitable flags on the 1037 * newly created inode's mapping 1038 * 1039 */ 1040 struct inode *new_inode(struct super_block *sb) 1041 { 1042 struct inode *inode; 1043 1044 spin_lock_prefetch(&sb->s_inode_list_lock); 1045 1046 inode = new_inode_pseudo(sb); 1047 if (inode) 1048 inode_sb_list_add(inode); 1049 return inode; 1050 } 1051 EXPORT_SYMBOL(new_inode); 1052 1053 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1054 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1055 { 1056 if (S_ISDIR(inode->i_mode)) { 1057 struct file_system_type *type = inode->i_sb->s_type; 1058 1059 /* Set new key only if filesystem hasn't already changed it */ 1060 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1061 /* 1062 * ensure nobody is actually holding i_mutex 1063 */ 1064 // mutex_destroy(&inode->i_mutex); 1065 init_rwsem(&inode->i_rwsem); 1066 lockdep_set_class(&inode->i_rwsem, 1067 &type->i_mutex_dir_key); 1068 } 1069 } 1070 } 1071 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1072 #endif 1073 1074 /** 1075 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1076 * @inode: new inode to unlock 1077 * 1078 * Called when the inode is fully initialised to clear the new state of the 1079 * inode and wake up anyone waiting for the inode to finish initialisation. 1080 */ 1081 void unlock_new_inode(struct inode *inode) 1082 { 1083 lockdep_annotate_inode_mutex_key(inode); 1084 spin_lock(&inode->i_lock); 1085 WARN_ON(!(inode->i_state & I_NEW)); 1086 inode->i_state &= ~I_NEW & ~I_CREATING; 1087 smp_mb(); 1088 wake_up_bit(&inode->i_state, __I_NEW); 1089 spin_unlock(&inode->i_lock); 1090 } 1091 EXPORT_SYMBOL(unlock_new_inode); 1092 1093 void discard_new_inode(struct inode *inode) 1094 { 1095 lockdep_annotate_inode_mutex_key(inode); 1096 spin_lock(&inode->i_lock); 1097 WARN_ON(!(inode->i_state & I_NEW)); 1098 inode->i_state &= ~I_NEW; 1099 smp_mb(); 1100 wake_up_bit(&inode->i_state, __I_NEW); 1101 spin_unlock(&inode->i_lock); 1102 iput(inode); 1103 } 1104 EXPORT_SYMBOL(discard_new_inode); 1105 1106 /** 1107 * lock_two_inodes - lock two inodes (may be regular files but also dirs) 1108 * 1109 * Lock any non-NULL argument. The caller must make sure that if he is passing 1110 * in two directories, one is not ancestor of the other. Zero, one or two 1111 * objects may be locked by this function. 1112 * 1113 * @inode1: first inode to lock 1114 * @inode2: second inode to lock 1115 * @subclass1: inode lock subclass for the first lock obtained 1116 * @subclass2: inode lock subclass for the second lock obtained 1117 */ 1118 void lock_two_inodes(struct inode *inode1, struct inode *inode2, 1119 unsigned subclass1, unsigned subclass2) 1120 { 1121 if (!inode1 || !inode2) { 1122 /* 1123 * Make sure @subclass1 will be used for the acquired lock. 1124 * This is not strictly necessary (no current caller cares) but 1125 * let's keep things consistent. 1126 */ 1127 if (!inode1) 1128 swap(inode1, inode2); 1129 goto lock; 1130 } 1131 1132 /* 1133 * If one object is directory and the other is not, we must make sure 1134 * to lock directory first as the other object may be its child. 1135 */ 1136 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) { 1137 if (inode1 > inode2) 1138 swap(inode1, inode2); 1139 } else if (!S_ISDIR(inode1->i_mode)) 1140 swap(inode1, inode2); 1141 lock: 1142 if (inode1) 1143 inode_lock_nested(inode1, subclass1); 1144 if (inode2 && inode2 != inode1) 1145 inode_lock_nested(inode2, subclass2); 1146 } 1147 1148 /** 1149 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1150 * 1151 * Lock any non-NULL argument. Passed objects must not be directories. 1152 * Zero, one or two objects may be locked by this function. 1153 * 1154 * @inode1: first inode to lock 1155 * @inode2: second inode to lock 1156 */ 1157 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1158 { 1159 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1160 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1161 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2); 1162 } 1163 EXPORT_SYMBOL(lock_two_nondirectories); 1164 1165 /** 1166 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1167 * @inode1: first inode to unlock 1168 * @inode2: second inode to unlock 1169 */ 1170 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1171 { 1172 if (inode1) { 1173 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1174 inode_unlock(inode1); 1175 } 1176 if (inode2 && inode2 != inode1) { 1177 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1178 inode_unlock(inode2); 1179 } 1180 } 1181 EXPORT_SYMBOL(unlock_two_nondirectories); 1182 1183 /** 1184 * inode_insert5 - obtain an inode from a mounted file system 1185 * @inode: pre-allocated inode to use for insert to cache 1186 * @hashval: hash value (usually inode number) to get 1187 * @test: callback used for comparisons between inodes 1188 * @set: callback used to initialize a new struct inode 1189 * @data: opaque data pointer to pass to @test and @set 1190 * 1191 * Search for the inode specified by @hashval and @data in the inode cache, 1192 * and if present it is return it with an increased reference count. This is 1193 * a variant of iget5_locked() for callers that don't want to fail on memory 1194 * allocation of inode. 1195 * 1196 * If the inode is not in cache, insert the pre-allocated inode to cache and 1197 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1198 * to fill it in before unlocking it via unlock_new_inode(). 1199 * 1200 * Note both @test and @set are called with the inode_hash_lock held, so can't 1201 * sleep. 1202 */ 1203 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1204 int (*test)(struct inode *, void *), 1205 int (*set)(struct inode *, void *), void *data) 1206 { 1207 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1208 struct inode *old; 1209 1210 again: 1211 spin_lock(&inode_hash_lock); 1212 old = find_inode(inode->i_sb, head, test, data); 1213 if (unlikely(old)) { 1214 /* 1215 * Uhhuh, somebody else created the same inode under us. 1216 * Use the old inode instead of the preallocated one. 1217 */ 1218 spin_unlock(&inode_hash_lock); 1219 if (IS_ERR(old)) 1220 return NULL; 1221 wait_on_inode(old); 1222 if (unlikely(inode_unhashed(old))) { 1223 iput(old); 1224 goto again; 1225 } 1226 return old; 1227 } 1228 1229 if (set && unlikely(set(inode, data))) { 1230 inode = NULL; 1231 goto unlock; 1232 } 1233 1234 /* 1235 * Return the locked inode with I_NEW set, the 1236 * caller is responsible for filling in the contents 1237 */ 1238 spin_lock(&inode->i_lock); 1239 inode->i_state |= I_NEW; 1240 hlist_add_head_rcu(&inode->i_hash, head); 1241 spin_unlock(&inode->i_lock); 1242 1243 /* 1244 * Add inode to the sb list if it's not already. It has I_NEW at this 1245 * point, so it should be safe to test i_sb_list locklessly. 1246 */ 1247 if (list_empty(&inode->i_sb_list)) 1248 inode_sb_list_add(inode); 1249 unlock: 1250 spin_unlock(&inode_hash_lock); 1251 1252 return inode; 1253 } 1254 EXPORT_SYMBOL(inode_insert5); 1255 1256 /** 1257 * iget5_locked - obtain an inode from a mounted file system 1258 * @sb: super block of file system 1259 * @hashval: hash value (usually inode number) to get 1260 * @test: callback used for comparisons between inodes 1261 * @set: callback used to initialize a new struct inode 1262 * @data: opaque data pointer to pass to @test and @set 1263 * 1264 * Search for the inode specified by @hashval and @data in the inode cache, 1265 * and if present it is return it with an increased reference count. This is 1266 * a generalized version of iget_locked() for file systems where the inode 1267 * number is not sufficient for unique identification of an inode. 1268 * 1269 * If the inode is not in cache, allocate a new inode and return it locked, 1270 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1271 * before unlocking it via unlock_new_inode(). 1272 * 1273 * Note both @test and @set are called with the inode_hash_lock held, so can't 1274 * sleep. 1275 */ 1276 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1277 int (*test)(struct inode *, void *), 1278 int (*set)(struct inode *, void *), void *data) 1279 { 1280 struct inode *inode = ilookup5(sb, hashval, test, data); 1281 1282 if (!inode) { 1283 struct inode *new = alloc_inode(sb); 1284 1285 if (new) { 1286 new->i_state = 0; 1287 inode = inode_insert5(new, hashval, test, set, data); 1288 if (unlikely(inode != new)) 1289 destroy_inode(new); 1290 } 1291 } 1292 return inode; 1293 } 1294 EXPORT_SYMBOL(iget5_locked); 1295 1296 /** 1297 * iget_locked - obtain an inode from a mounted file system 1298 * @sb: super block of file system 1299 * @ino: inode number to get 1300 * 1301 * Search for the inode specified by @ino in the inode cache and if present 1302 * return it with an increased reference count. This is for file systems 1303 * where the inode number is sufficient for unique identification of an inode. 1304 * 1305 * If the inode is not in cache, allocate a new inode and return it locked, 1306 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1307 * before unlocking it via unlock_new_inode(). 1308 */ 1309 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1310 { 1311 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1312 struct inode *inode; 1313 again: 1314 spin_lock(&inode_hash_lock); 1315 inode = find_inode_fast(sb, head, ino); 1316 spin_unlock(&inode_hash_lock); 1317 if (inode) { 1318 if (IS_ERR(inode)) 1319 return NULL; 1320 wait_on_inode(inode); 1321 if (unlikely(inode_unhashed(inode))) { 1322 iput(inode); 1323 goto again; 1324 } 1325 return inode; 1326 } 1327 1328 inode = alloc_inode(sb); 1329 if (inode) { 1330 struct inode *old; 1331 1332 spin_lock(&inode_hash_lock); 1333 /* We released the lock, so.. */ 1334 old = find_inode_fast(sb, head, ino); 1335 if (!old) { 1336 inode->i_ino = ino; 1337 spin_lock(&inode->i_lock); 1338 inode->i_state = I_NEW; 1339 hlist_add_head_rcu(&inode->i_hash, head); 1340 spin_unlock(&inode->i_lock); 1341 inode_sb_list_add(inode); 1342 spin_unlock(&inode_hash_lock); 1343 1344 /* Return the locked inode with I_NEW set, the 1345 * caller is responsible for filling in the contents 1346 */ 1347 return inode; 1348 } 1349 1350 /* 1351 * Uhhuh, somebody else created the same inode under 1352 * us. Use the old inode instead of the one we just 1353 * allocated. 1354 */ 1355 spin_unlock(&inode_hash_lock); 1356 destroy_inode(inode); 1357 if (IS_ERR(old)) 1358 return NULL; 1359 inode = old; 1360 wait_on_inode(inode); 1361 if (unlikely(inode_unhashed(inode))) { 1362 iput(inode); 1363 goto again; 1364 } 1365 } 1366 return inode; 1367 } 1368 EXPORT_SYMBOL(iget_locked); 1369 1370 /* 1371 * search the inode cache for a matching inode number. 1372 * If we find one, then the inode number we are trying to 1373 * allocate is not unique and so we should not use it. 1374 * 1375 * Returns 1 if the inode number is unique, 0 if it is not. 1376 */ 1377 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1378 { 1379 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1380 struct inode *inode; 1381 1382 hlist_for_each_entry_rcu(inode, b, i_hash) { 1383 if (inode->i_ino == ino && inode->i_sb == sb) 1384 return 0; 1385 } 1386 return 1; 1387 } 1388 1389 /** 1390 * iunique - get a unique inode number 1391 * @sb: superblock 1392 * @max_reserved: highest reserved inode number 1393 * 1394 * Obtain an inode number that is unique on the system for a given 1395 * superblock. This is used by file systems that have no natural 1396 * permanent inode numbering system. An inode number is returned that 1397 * is higher than the reserved limit but unique. 1398 * 1399 * BUGS: 1400 * With a large number of inodes live on the file system this function 1401 * currently becomes quite slow. 1402 */ 1403 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1404 { 1405 /* 1406 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1407 * error if st_ino won't fit in target struct field. Use 32bit counter 1408 * here to attempt to avoid that. 1409 */ 1410 static DEFINE_SPINLOCK(iunique_lock); 1411 static unsigned int counter; 1412 ino_t res; 1413 1414 rcu_read_lock(); 1415 spin_lock(&iunique_lock); 1416 do { 1417 if (counter <= max_reserved) 1418 counter = max_reserved + 1; 1419 res = counter++; 1420 } while (!test_inode_iunique(sb, res)); 1421 spin_unlock(&iunique_lock); 1422 rcu_read_unlock(); 1423 1424 return res; 1425 } 1426 EXPORT_SYMBOL(iunique); 1427 1428 struct inode *igrab(struct inode *inode) 1429 { 1430 spin_lock(&inode->i_lock); 1431 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1432 __iget(inode); 1433 spin_unlock(&inode->i_lock); 1434 } else { 1435 spin_unlock(&inode->i_lock); 1436 /* 1437 * Handle the case where s_op->clear_inode is not been 1438 * called yet, and somebody is calling igrab 1439 * while the inode is getting freed. 1440 */ 1441 inode = NULL; 1442 } 1443 return inode; 1444 } 1445 EXPORT_SYMBOL(igrab); 1446 1447 /** 1448 * ilookup5_nowait - search for an inode in the inode cache 1449 * @sb: super block of file system to search 1450 * @hashval: hash value (usually inode number) to search for 1451 * @test: callback used for comparisons between inodes 1452 * @data: opaque data pointer to pass to @test 1453 * 1454 * Search for the inode specified by @hashval and @data in the inode cache. 1455 * If the inode is in the cache, the inode is returned with an incremented 1456 * reference count. 1457 * 1458 * Note: I_NEW is not waited upon so you have to be very careful what you do 1459 * with the returned inode. You probably should be using ilookup5() instead. 1460 * 1461 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1462 */ 1463 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1464 int (*test)(struct inode *, void *), void *data) 1465 { 1466 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1467 struct inode *inode; 1468 1469 spin_lock(&inode_hash_lock); 1470 inode = find_inode(sb, head, test, data); 1471 spin_unlock(&inode_hash_lock); 1472 1473 return IS_ERR(inode) ? NULL : inode; 1474 } 1475 EXPORT_SYMBOL(ilookup5_nowait); 1476 1477 /** 1478 * ilookup5 - search for an inode in the inode cache 1479 * @sb: super block of file system to search 1480 * @hashval: hash value (usually inode number) to search for 1481 * @test: callback used for comparisons between inodes 1482 * @data: opaque data pointer to pass to @test 1483 * 1484 * Search for the inode specified by @hashval and @data in the inode cache, 1485 * and if the inode is in the cache, return the inode with an incremented 1486 * reference count. Waits on I_NEW before returning the inode. 1487 * returned with an incremented reference count. 1488 * 1489 * This is a generalized version of ilookup() for file systems where the 1490 * inode number is not sufficient for unique identification of an inode. 1491 * 1492 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1493 */ 1494 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1495 int (*test)(struct inode *, void *), void *data) 1496 { 1497 struct inode *inode; 1498 again: 1499 inode = ilookup5_nowait(sb, hashval, test, data); 1500 if (inode) { 1501 wait_on_inode(inode); 1502 if (unlikely(inode_unhashed(inode))) { 1503 iput(inode); 1504 goto again; 1505 } 1506 } 1507 return inode; 1508 } 1509 EXPORT_SYMBOL(ilookup5); 1510 1511 /** 1512 * ilookup - search for an inode in the inode cache 1513 * @sb: super block of file system to search 1514 * @ino: inode number to search for 1515 * 1516 * Search for the inode @ino in the inode cache, and if the inode is in the 1517 * cache, the inode is returned with an incremented reference count. 1518 */ 1519 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1520 { 1521 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1522 struct inode *inode; 1523 again: 1524 spin_lock(&inode_hash_lock); 1525 inode = find_inode_fast(sb, head, ino); 1526 spin_unlock(&inode_hash_lock); 1527 1528 if (inode) { 1529 if (IS_ERR(inode)) 1530 return NULL; 1531 wait_on_inode(inode); 1532 if (unlikely(inode_unhashed(inode))) { 1533 iput(inode); 1534 goto again; 1535 } 1536 } 1537 return inode; 1538 } 1539 EXPORT_SYMBOL(ilookup); 1540 1541 /** 1542 * find_inode_nowait - find an inode in the inode cache 1543 * @sb: super block of file system to search 1544 * @hashval: hash value (usually inode number) to search for 1545 * @match: callback used for comparisons between inodes 1546 * @data: opaque data pointer to pass to @match 1547 * 1548 * Search for the inode specified by @hashval and @data in the inode 1549 * cache, where the helper function @match will return 0 if the inode 1550 * does not match, 1 if the inode does match, and -1 if the search 1551 * should be stopped. The @match function must be responsible for 1552 * taking the i_lock spin_lock and checking i_state for an inode being 1553 * freed or being initialized, and incrementing the reference count 1554 * before returning 1. It also must not sleep, since it is called with 1555 * the inode_hash_lock spinlock held. 1556 * 1557 * This is a even more generalized version of ilookup5() when the 1558 * function must never block --- find_inode() can block in 1559 * __wait_on_freeing_inode() --- or when the caller can not increment 1560 * the reference count because the resulting iput() might cause an 1561 * inode eviction. The tradeoff is that the @match funtion must be 1562 * very carefully implemented. 1563 */ 1564 struct inode *find_inode_nowait(struct super_block *sb, 1565 unsigned long hashval, 1566 int (*match)(struct inode *, unsigned long, 1567 void *), 1568 void *data) 1569 { 1570 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1571 struct inode *inode, *ret_inode = NULL; 1572 int mval; 1573 1574 spin_lock(&inode_hash_lock); 1575 hlist_for_each_entry(inode, head, i_hash) { 1576 if (inode->i_sb != sb) 1577 continue; 1578 mval = match(inode, hashval, data); 1579 if (mval == 0) 1580 continue; 1581 if (mval == 1) 1582 ret_inode = inode; 1583 goto out; 1584 } 1585 out: 1586 spin_unlock(&inode_hash_lock); 1587 return ret_inode; 1588 } 1589 EXPORT_SYMBOL(find_inode_nowait); 1590 1591 /** 1592 * find_inode_rcu - find an inode in the inode cache 1593 * @sb: Super block of file system to search 1594 * @hashval: Key to hash 1595 * @test: Function to test match on an inode 1596 * @data: Data for test function 1597 * 1598 * Search for the inode specified by @hashval and @data in the inode cache, 1599 * where the helper function @test will return 0 if the inode does not match 1600 * and 1 if it does. The @test function must be responsible for taking the 1601 * i_lock spin_lock and checking i_state for an inode being freed or being 1602 * initialized. 1603 * 1604 * If successful, this will return the inode for which the @test function 1605 * returned 1 and NULL otherwise. 1606 * 1607 * The @test function is not permitted to take a ref on any inode presented. 1608 * It is also not permitted to sleep. 1609 * 1610 * The caller must hold the RCU read lock. 1611 */ 1612 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1613 int (*test)(struct inode *, void *), void *data) 1614 { 1615 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1616 struct inode *inode; 1617 1618 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1619 "suspicious find_inode_rcu() usage"); 1620 1621 hlist_for_each_entry_rcu(inode, head, i_hash) { 1622 if (inode->i_sb == sb && 1623 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1624 test(inode, data)) 1625 return inode; 1626 } 1627 return NULL; 1628 } 1629 EXPORT_SYMBOL(find_inode_rcu); 1630 1631 /** 1632 * find_inode_by_ino_rcu - Find an inode in the inode cache 1633 * @sb: Super block of file system to search 1634 * @ino: The inode number to match 1635 * 1636 * Search for the inode specified by @hashval and @data in the inode cache, 1637 * where the helper function @test will return 0 if the inode does not match 1638 * and 1 if it does. The @test function must be responsible for taking the 1639 * i_lock spin_lock and checking i_state for an inode being freed or being 1640 * initialized. 1641 * 1642 * If successful, this will return the inode for which the @test function 1643 * returned 1 and NULL otherwise. 1644 * 1645 * The @test function is not permitted to take a ref on any inode presented. 1646 * It is also not permitted to sleep. 1647 * 1648 * The caller must hold the RCU read lock. 1649 */ 1650 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1651 unsigned long ino) 1652 { 1653 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1654 struct inode *inode; 1655 1656 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1657 "suspicious find_inode_by_ino_rcu() usage"); 1658 1659 hlist_for_each_entry_rcu(inode, head, i_hash) { 1660 if (inode->i_ino == ino && 1661 inode->i_sb == sb && 1662 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1663 return inode; 1664 } 1665 return NULL; 1666 } 1667 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1668 1669 int insert_inode_locked(struct inode *inode) 1670 { 1671 struct super_block *sb = inode->i_sb; 1672 ino_t ino = inode->i_ino; 1673 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1674 1675 while (1) { 1676 struct inode *old = NULL; 1677 spin_lock(&inode_hash_lock); 1678 hlist_for_each_entry(old, head, i_hash) { 1679 if (old->i_ino != ino) 1680 continue; 1681 if (old->i_sb != sb) 1682 continue; 1683 spin_lock(&old->i_lock); 1684 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1685 spin_unlock(&old->i_lock); 1686 continue; 1687 } 1688 break; 1689 } 1690 if (likely(!old)) { 1691 spin_lock(&inode->i_lock); 1692 inode->i_state |= I_NEW | I_CREATING; 1693 hlist_add_head_rcu(&inode->i_hash, head); 1694 spin_unlock(&inode->i_lock); 1695 spin_unlock(&inode_hash_lock); 1696 return 0; 1697 } 1698 if (unlikely(old->i_state & I_CREATING)) { 1699 spin_unlock(&old->i_lock); 1700 spin_unlock(&inode_hash_lock); 1701 return -EBUSY; 1702 } 1703 __iget(old); 1704 spin_unlock(&old->i_lock); 1705 spin_unlock(&inode_hash_lock); 1706 wait_on_inode(old); 1707 if (unlikely(!inode_unhashed(old))) { 1708 iput(old); 1709 return -EBUSY; 1710 } 1711 iput(old); 1712 } 1713 } 1714 EXPORT_SYMBOL(insert_inode_locked); 1715 1716 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1717 int (*test)(struct inode *, void *), void *data) 1718 { 1719 struct inode *old; 1720 1721 inode->i_state |= I_CREATING; 1722 old = inode_insert5(inode, hashval, test, NULL, data); 1723 1724 if (old != inode) { 1725 iput(old); 1726 return -EBUSY; 1727 } 1728 return 0; 1729 } 1730 EXPORT_SYMBOL(insert_inode_locked4); 1731 1732 1733 int generic_delete_inode(struct inode *inode) 1734 { 1735 return 1; 1736 } 1737 EXPORT_SYMBOL(generic_delete_inode); 1738 1739 /* 1740 * Called when we're dropping the last reference 1741 * to an inode. 1742 * 1743 * Call the FS "drop_inode()" function, defaulting to 1744 * the legacy UNIX filesystem behaviour. If it tells 1745 * us to evict inode, do so. Otherwise, retain inode 1746 * in cache if fs is alive, sync and evict if fs is 1747 * shutting down. 1748 */ 1749 static void iput_final(struct inode *inode) 1750 { 1751 struct super_block *sb = inode->i_sb; 1752 const struct super_operations *op = inode->i_sb->s_op; 1753 unsigned long state; 1754 int drop; 1755 1756 WARN_ON(inode->i_state & I_NEW); 1757 1758 if (op->drop_inode) 1759 drop = op->drop_inode(inode); 1760 else 1761 drop = generic_drop_inode(inode); 1762 1763 if (!drop && 1764 !(inode->i_state & I_DONTCACHE) && 1765 (sb->s_flags & SB_ACTIVE)) { 1766 __inode_add_lru(inode, true); 1767 spin_unlock(&inode->i_lock); 1768 return; 1769 } 1770 1771 state = inode->i_state; 1772 if (!drop) { 1773 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1774 spin_unlock(&inode->i_lock); 1775 1776 write_inode_now(inode, 1); 1777 1778 spin_lock(&inode->i_lock); 1779 state = inode->i_state; 1780 WARN_ON(state & I_NEW); 1781 state &= ~I_WILL_FREE; 1782 } 1783 1784 WRITE_ONCE(inode->i_state, state | I_FREEING); 1785 if (!list_empty(&inode->i_lru)) 1786 inode_lru_list_del(inode); 1787 spin_unlock(&inode->i_lock); 1788 1789 evict(inode); 1790 } 1791 1792 /** 1793 * iput - put an inode 1794 * @inode: inode to put 1795 * 1796 * Puts an inode, dropping its usage count. If the inode use count hits 1797 * zero, the inode is then freed and may also be destroyed. 1798 * 1799 * Consequently, iput() can sleep. 1800 */ 1801 void iput(struct inode *inode) 1802 { 1803 if (!inode) 1804 return; 1805 BUG_ON(inode->i_state & I_CLEAR); 1806 retry: 1807 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1808 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1809 atomic_inc(&inode->i_count); 1810 spin_unlock(&inode->i_lock); 1811 trace_writeback_lazytime_iput(inode); 1812 mark_inode_dirty_sync(inode); 1813 goto retry; 1814 } 1815 iput_final(inode); 1816 } 1817 } 1818 EXPORT_SYMBOL(iput); 1819 1820 #ifdef CONFIG_BLOCK 1821 /** 1822 * bmap - find a block number in a file 1823 * @inode: inode owning the block number being requested 1824 * @block: pointer containing the block to find 1825 * 1826 * Replaces the value in ``*block`` with the block number on the device holding 1827 * corresponding to the requested block number in the file. 1828 * That is, asked for block 4 of inode 1 the function will replace the 1829 * 4 in ``*block``, with disk block relative to the disk start that holds that 1830 * block of the file. 1831 * 1832 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1833 * hole, returns 0 and ``*block`` is also set to 0. 1834 */ 1835 int bmap(struct inode *inode, sector_t *block) 1836 { 1837 if (!inode->i_mapping->a_ops->bmap) 1838 return -EINVAL; 1839 1840 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1841 return 0; 1842 } 1843 EXPORT_SYMBOL(bmap); 1844 #endif 1845 1846 /* 1847 * With relative atime, only update atime if the previous atime is 1848 * earlier than or equal to either the ctime or mtime, 1849 * or if at least a day has passed since the last atime update. 1850 */ 1851 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1852 struct timespec64 now) 1853 { 1854 1855 if (!(mnt->mnt_flags & MNT_RELATIME)) 1856 return 1; 1857 /* 1858 * Is mtime younger than or equal to atime? If yes, update atime: 1859 */ 1860 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1861 return 1; 1862 /* 1863 * Is ctime younger than or equal to atime? If yes, update atime: 1864 */ 1865 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1866 return 1; 1867 1868 /* 1869 * Is the previous atime value older than a day? If yes, 1870 * update atime: 1871 */ 1872 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1873 return 1; 1874 /* 1875 * Good, we can skip the atime update: 1876 */ 1877 return 0; 1878 } 1879 1880 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1881 { 1882 int dirty_flags = 0; 1883 1884 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1885 if (flags & S_ATIME) 1886 inode->i_atime = *time; 1887 if (flags & S_CTIME) 1888 inode->i_ctime = *time; 1889 if (flags & S_MTIME) 1890 inode->i_mtime = *time; 1891 1892 if (inode->i_sb->s_flags & SB_LAZYTIME) 1893 dirty_flags |= I_DIRTY_TIME; 1894 else 1895 dirty_flags |= I_DIRTY_SYNC; 1896 } 1897 1898 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1899 dirty_flags |= I_DIRTY_SYNC; 1900 1901 __mark_inode_dirty(inode, dirty_flags); 1902 return 0; 1903 } 1904 EXPORT_SYMBOL(generic_update_time); 1905 1906 /* 1907 * This does the actual work of updating an inodes time or version. Must have 1908 * had called mnt_want_write() before calling this. 1909 */ 1910 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags) 1911 { 1912 if (inode->i_op->update_time) 1913 return inode->i_op->update_time(inode, time, flags); 1914 return generic_update_time(inode, time, flags); 1915 } 1916 EXPORT_SYMBOL(inode_update_time); 1917 1918 /** 1919 * atime_needs_update - update the access time 1920 * @path: the &struct path to update 1921 * @inode: inode to update 1922 * 1923 * Update the accessed time on an inode and mark it for writeback. 1924 * This function automatically handles read only file systems and media, 1925 * as well as the "noatime" flag and inode specific "noatime" markers. 1926 */ 1927 bool atime_needs_update(const struct path *path, struct inode *inode) 1928 { 1929 struct vfsmount *mnt = path->mnt; 1930 struct timespec64 now; 1931 1932 if (inode->i_flags & S_NOATIME) 1933 return false; 1934 1935 /* Atime updates will likely cause i_uid and i_gid to be written 1936 * back improprely if their true value is unknown to the vfs. 1937 */ 1938 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 1939 return false; 1940 1941 if (IS_NOATIME(inode)) 1942 return false; 1943 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1944 return false; 1945 1946 if (mnt->mnt_flags & MNT_NOATIME) 1947 return false; 1948 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1949 return false; 1950 1951 now = current_time(inode); 1952 1953 if (!relatime_need_update(mnt, inode, now)) 1954 return false; 1955 1956 if (timespec64_equal(&inode->i_atime, &now)) 1957 return false; 1958 1959 return true; 1960 } 1961 1962 void touch_atime(const struct path *path) 1963 { 1964 struct vfsmount *mnt = path->mnt; 1965 struct inode *inode = d_inode(path->dentry); 1966 struct timespec64 now; 1967 1968 if (!atime_needs_update(path, inode)) 1969 return; 1970 1971 if (!sb_start_write_trylock(inode->i_sb)) 1972 return; 1973 1974 if (__mnt_want_write(mnt) != 0) 1975 goto skip_update; 1976 /* 1977 * File systems can error out when updating inodes if they need to 1978 * allocate new space to modify an inode (such is the case for 1979 * Btrfs), but since we touch atime while walking down the path we 1980 * really don't care if we failed to update the atime of the file, 1981 * so just ignore the return value. 1982 * We may also fail on filesystems that have the ability to make parts 1983 * of the fs read only, e.g. subvolumes in Btrfs. 1984 */ 1985 now = current_time(inode); 1986 inode_update_time(inode, &now, S_ATIME); 1987 __mnt_drop_write(mnt); 1988 skip_update: 1989 sb_end_write(inode->i_sb); 1990 } 1991 EXPORT_SYMBOL(touch_atime); 1992 1993 /* 1994 * Return mask of changes for notify_change() that need to be done as a 1995 * response to write or truncate. Return 0 if nothing has to be changed. 1996 * Negative value on error (change should be denied). 1997 */ 1998 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 1999 struct dentry *dentry) 2000 { 2001 struct inode *inode = d_inode(dentry); 2002 int mask = 0; 2003 int ret; 2004 2005 if (IS_NOSEC(inode)) 2006 return 0; 2007 2008 mask = setattr_should_drop_suidgid(idmap, inode); 2009 ret = security_inode_need_killpriv(dentry); 2010 if (ret < 0) 2011 return ret; 2012 if (ret) 2013 mask |= ATTR_KILL_PRIV; 2014 return mask; 2015 } 2016 2017 static int __remove_privs(struct mnt_idmap *idmap, 2018 struct dentry *dentry, int kill) 2019 { 2020 struct iattr newattrs; 2021 2022 newattrs.ia_valid = ATTR_FORCE | kill; 2023 /* 2024 * Note we call this on write, so notify_change will not 2025 * encounter any conflicting delegations: 2026 */ 2027 return notify_change(idmap, dentry, &newattrs, NULL); 2028 } 2029 2030 static int __file_remove_privs(struct file *file, unsigned int flags) 2031 { 2032 struct dentry *dentry = file_dentry(file); 2033 struct inode *inode = file_inode(file); 2034 int error = 0; 2035 int kill; 2036 2037 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2038 return 0; 2039 2040 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2041 if (kill < 0) 2042 return kill; 2043 2044 if (kill) { 2045 if (flags & IOCB_NOWAIT) 2046 return -EAGAIN; 2047 2048 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2049 } 2050 2051 if (!error) 2052 inode_has_no_xattr(inode); 2053 return error; 2054 } 2055 2056 /** 2057 * file_remove_privs - remove special file privileges (suid, capabilities) 2058 * @file: file to remove privileges from 2059 * 2060 * When file is modified by a write or truncation ensure that special 2061 * file privileges are removed. 2062 * 2063 * Return: 0 on success, negative errno on failure. 2064 */ 2065 int file_remove_privs(struct file *file) 2066 { 2067 return __file_remove_privs(file, 0); 2068 } 2069 EXPORT_SYMBOL(file_remove_privs); 2070 2071 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now) 2072 { 2073 int sync_it = 0; 2074 2075 /* First try to exhaust all avenues to not sync */ 2076 if (IS_NOCMTIME(inode)) 2077 return 0; 2078 2079 if (!timespec64_equal(&inode->i_mtime, now)) 2080 sync_it = S_MTIME; 2081 2082 if (!timespec64_equal(&inode->i_ctime, now)) 2083 sync_it |= S_CTIME; 2084 2085 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2086 sync_it |= S_VERSION; 2087 2088 return sync_it; 2089 } 2090 2091 static int __file_update_time(struct file *file, struct timespec64 *now, 2092 int sync_mode) 2093 { 2094 int ret = 0; 2095 struct inode *inode = file_inode(file); 2096 2097 /* try to update time settings */ 2098 if (!__mnt_want_write_file(file)) { 2099 ret = inode_update_time(inode, now, sync_mode); 2100 __mnt_drop_write_file(file); 2101 } 2102 2103 return ret; 2104 } 2105 2106 /** 2107 * file_update_time - update mtime and ctime time 2108 * @file: file accessed 2109 * 2110 * Update the mtime and ctime members of an inode and mark the inode for 2111 * writeback. Note that this function is meant exclusively for usage in 2112 * the file write path of filesystems, and filesystems may choose to 2113 * explicitly ignore updates via this function with the _NOCMTIME inode 2114 * flag, e.g. for network filesystem where these imestamps are handled 2115 * by the server. This can return an error for file systems who need to 2116 * allocate space in order to update an inode. 2117 * 2118 * Return: 0 on success, negative errno on failure. 2119 */ 2120 int file_update_time(struct file *file) 2121 { 2122 int ret; 2123 struct inode *inode = file_inode(file); 2124 struct timespec64 now = current_time(inode); 2125 2126 ret = inode_needs_update_time(inode, &now); 2127 if (ret <= 0) 2128 return ret; 2129 2130 return __file_update_time(file, &now, ret); 2131 } 2132 EXPORT_SYMBOL(file_update_time); 2133 2134 /** 2135 * file_modified_flags - handle mandated vfs changes when modifying a file 2136 * @file: file that was modified 2137 * @flags: kiocb flags 2138 * 2139 * When file has been modified ensure that special 2140 * file privileges are removed and time settings are updated. 2141 * 2142 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2143 * time settings will not be updated. It will return -EAGAIN. 2144 * 2145 * Context: Caller must hold the file's inode lock. 2146 * 2147 * Return: 0 on success, negative errno on failure. 2148 */ 2149 static int file_modified_flags(struct file *file, int flags) 2150 { 2151 int ret; 2152 struct inode *inode = file_inode(file); 2153 struct timespec64 now = current_time(inode); 2154 2155 /* 2156 * Clear the security bits if the process is not being run by root. 2157 * This keeps people from modifying setuid and setgid binaries. 2158 */ 2159 ret = __file_remove_privs(file, flags); 2160 if (ret) 2161 return ret; 2162 2163 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2164 return 0; 2165 2166 ret = inode_needs_update_time(inode, &now); 2167 if (ret <= 0) 2168 return ret; 2169 if (flags & IOCB_NOWAIT) 2170 return -EAGAIN; 2171 2172 return __file_update_time(file, &now, ret); 2173 } 2174 2175 /** 2176 * file_modified - handle mandated vfs changes when modifying a file 2177 * @file: file that was modified 2178 * 2179 * When file has been modified ensure that special 2180 * file privileges are removed and time settings are updated. 2181 * 2182 * Context: Caller must hold the file's inode lock. 2183 * 2184 * Return: 0 on success, negative errno on failure. 2185 */ 2186 int file_modified(struct file *file) 2187 { 2188 return file_modified_flags(file, 0); 2189 } 2190 EXPORT_SYMBOL(file_modified); 2191 2192 /** 2193 * kiocb_modified - handle mandated vfs changes when modifying a file 2194 * @iocb: iocb that was modified 2195 * 2196 * When file has been modified ensure that special 2197 * file privileges are removed and time settings are updated. 2198 * 2199 * Context: Caller must hold the file's inode lock. 2200 * 2201 * Return: 0 on success, negative errno on failure. 2202 */ 2203 int kiocb_modified(struct kiocb *iocb) 2204 { 2205 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2206 } 2207 EXPORT_SYMBOL_GPL(kiocb_modified); 2208 2209 int inode_needs_sync(struct inode *inode) 2210 { 2211 if (IS_SYNC(inode)) 2212 return 1; 2213 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2214 return 1; 2215 return 0; 2216 } 2217 EXPORT_SYMBOL(inode_needs_sync); 2218 2219 /* 2220 * If we try to find an inode in the inode hash while it is being 2221 * deleted, we have to wait until the filesystem completes its 2222 * deletion before reporting that it isn't found. This function waits 2223 * until the deletion _might_ have completed. Callers are responsible 2224 * to recheck inode state. 2225 * 2226 * It doesn't matter if I_NEW is not set initially, a call to 2227 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2228 * will DTRT. 2229 */ 2230 static void __wait_on_freeing_inode(struct inode *inode) 2231 { 2232 wait_queue_head_t *wq; 2233 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2234 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2235 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2236 spin_unlock(&inode->i_lock); 2237 spin_unlock(&inode_hash_lock); 2238 schedule(); 2239 finish_wait(wq, &wait.wq_entry); 2240 spin_lock(&inode_hash_lock); 2241 } 2242 2243 static __initdata unsigned long ihash_entries; 2244 static int __init set_ihash_entries(char *str) 2245 { 2246 if (!str) 2247 return 0; 2248 ihash_entries = simple_strtoul(str, &str, 0); 2249 return 1; 2250 } 2251 __setup("ihash_entries=", set_ihash_entries); 2252 2253 /* 2254 * Initialize the waitqueues and inode hash table. 2255 */ 2256 void __init inode_init_early(void) 2257 { 2258 /* If hashes are distributed across NUMA nodes, defer 2259 * hash allocation until vmalloc space is available. 2260 */ 2261 if (hashdist) 2262 return; 2263 2264 inode_hashtable = 2265 alloc_large_system_hash("Inode-cache", 2266 sizeof(struct hlist_head), 2267 ihash_entries, 2268 14, 2269 HASH_EARLY | HASH_ZERO, 2270 &i_hash_shift, 2271 &i_hash_mask, 2272 0, 2273 0); 2274 } 2275 2276 void __init inode_init(void) 2277 { 2278 /* inode slab cache */ 2279 inode_cachep = kmem_cache_create("inode_cache", 2280 sizeof(struct inode), 2281 0, 2282 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2283 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2284 init_once); 2285 2286 /* Hash may have been set up in inode_init_early */ 2287 if (!hashdist) 2288 return; 2289 2290 inode_hashtable = 2291 alloc_large_system_hash("Inode-cache", 2292 sizeof(struct hlist_head), 2293 ihash_entries, 2294 14, 2295 HASH_ZERO, 2296 &i_hash_shift, 2297 &i_hash_mask, 2298 0, 2299 0); 2300 } 2301 2302 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2303 { 2304 inode->i_mode = mode; 2305 if (S_ISCHR(mode)) { 2306 inode->i_fop = &def_chr_fops; 2307 inode->i_rdev = rdev; 2308 } else if (S_ISBLK(mode)) { 2309 if (IS_ENABLED(CONFIG_BLOCK)) 2310 inode->i_fop = &def_blk_fops; 2311 inode->i_rdev = rdev; 2312 } else if (S_ISFIFO(mode)) 2313 inode->i_fop = &pipefifo_fops; 2314 else if (S_ISSOCK(mode)) 2315 ; /* leave it no_open_fops */ 2316 else 2317 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2318 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2319 inode->i_ino); 2320 } 2321 EXPORT_SYMBOL(init_special_inode); 2322 2323 /** 2324 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2325 * @idmap: idmap of the mount the inode was created from 2326 * @inode: New inode 2327 * @dir: Directory inode 2328 * @mode: mode of the new inode 2329 * 2330 * If the inode has been created through an idmapped mount the idmap of 2331 * the vfsmount must be passed through @idmap. This function will then take 2332 * care to map the inode according to @idmap before checking permissions 2333 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2334 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2335 */ 2336 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2337 const struct inode *dir, umode_t mode) 2338 { 2339 inode_fsuid_set(inode, idmap); 2340 if (dir && dir->i_mode & S_ISGID) { 2341 inode->i_gid = dir->i_gid; 2342 2343 /* Directories are special, and always inherit S_ISGID */ 2344 if (S_ISDIR(mode)) 2345 mode |= S_ISGID; 2346 } else 2347 inode_fsgid_set(inode, idmap); 2348 inode->i_mode = mode; 2349 } 2350 EXPORT_SYMBOL(inode_init_owner); 2351 2352 /** 2353 * inode_owner_or_capable - check current task permissions to inode 2354 * @idmap: idmap of the mount the inode was found from 2355 * @inode: inode being checked 2356 * 2357 * Return true if current either has CAP_FOWNER in a namespace with the 2358 * inode owner uid mapped, or owns the file. 2359 * 2360 * If the inode has been found through an idmapped mount the idmap of 2361 * the vfsmount must be passed through @idmap. This function will then take 2362 * care to map the inode according to @idmap before checking permissions. 2363 * On non-idmapped mounts or if permission checking is to be performed on the 2364 * raw inode simply passs @nop_mnt_idmap. 2365 */ 2366 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2367 const struct inode *inode) 2368 { 2369 vfsuid_t vfsuid; 2370 struct user_namespace *ns; 2371 2372 vfsuid = i_uid_into_vfsuid(idmap, inode); 2373 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2374 return true; 2375 2376 ns = current_user_ns(); 2377 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2378 return true; 2379 return false; 2380 } 2381 EXPORT_SYMBOL(inode_owner_or_capable); 2382 2383 /* 2384 * Direct i/o helper functions 2385 */ 2386 static void __inode_dio_wait(struct inode *inode) 2387 { 2388 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2389 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2390 2391 do { 2392 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2393 if (atomic_read(&inode->i_dio_count)) 2394 schedule(); 2395 } while (atomic_read(&inode->i_dio_count)); 2396 finish_wait(wq, &q.wq_entry); 2397 } 2398 2399 /** 2400 * inode_dio_wait - wait for outstanding DIO requests to finish 2401 * @inode: inode to wait for 2402 * 2403 * Waits for all pending direct I/O requests to finish so that we can 2404 * proceed with a truncate or equivalent operation. 2405 * 2406 * Must be called under a lock that serializes taking new references 2407 * to i_dio_count, usually by inode->i_mutex. 2408 */ 2409 void inode_dio_wait(struct inode *inode) 2410 { 2411 if (atomic_read(&inode->i_dio_count)) 2412 __inode_dio_wait(inode); 2413 } 2414 EXPORT_SYMBOL(inode_dio_wait); 2415 2416 /* 2417 * inode_set_flags - atomically set some inode flags 2418 * 2419 * Note: the caller should be holding i_mutex, or else be sure that 2420 * they have exclusive access to the inode structure (i.e., while the 2421 * inode is being instantiated). The reason for the cmpxchg() loop 2422 * --- which wouldn't be necessary if all code paths which modify 2423 * i_flags actually followed this rule, is that there is at least one 2424 * code path which doesn't today so we use cmpxchg() out of an abundance 2425 * of caution. 2426 * 2427 * In the long run, i_mutex is overkill, and we should probably look 2428 * at using the i_lock spinlock to protect i_flags, and then make sure 2429 * it is so documented in include/linux/fs.h and that all code follows 2430 * the locking convention!! 2431 */ 2432 void inode_set_flags(struct inode *inode, unsigned int flags, 2433 unsigned int mask) 2434 { 2435 WARN_ON_ONCE(flags & ~mask); 2436 set_mask_bits(&inode->i_flags, mask, flags); 2437 } 2438 EXPORT_SYMBOL(inode_set_flags); 2439 2440 void inode_nohighmem(struct inode *inode) 2441 { 2442 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2443 } 2444 EXPORT_SYMBOL(inode_nohighmem); 2445 2446 /** 2447 * timestamp_truncate - Truncate timespec to a granularity 2448 * @t: Timespec 2449 * @inode: inode being updated 2450 * 2451 * Truncate a timespec to the granularity supported by the fs 2452 * containing the inode. Always rounds down. gran must 2453 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2454 */ 2455 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2456 { 2457 struct super_block *sb = inode->i_sb; 2458 unsigned int gran = sb->s_time_gran; 2459 2460 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2461 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2462 t.tv_nsec = 0; 2463 2464 /* Avoid division in the common cases 1 ns and 1 s. */ 2465 if (gran == 1) 2466 ; /* nothing */ 2467 else if (gran == NSEC_PER_SEC) 2468 t.tv_nsec = 0; 2469 else if (gran > 1 && gran < NSEC_PER_SEC) 2470 t.tv_nsec -= t.tv_nsec % gran; 2471 else 2472 WARN(1, "invalid file time granularity: %u", gran); 2473 return t; 2474 } 2475 EXPORT_SYMBOL(timestamp_truncate); 2476 2477 /** 2478 * current_time - Return FS time 2479 * @inode: inode. 2480 * 2481 * Return the current time truncated to the time granularity supported by 2482 * the fs. 2483 * 2484 * Note that inode and inode->sb cannot be NULL. 2485 * Otherwise, the function warns and returns time without truncation. 2486 */ 2487 struct timespec64 current_time(struct inode *inode) 2488 { 2489 struct timespec64 now; 2490 2491 ktime_get_coarse_real_ts64(&now); 2492 2493 if (unlikely(!inode->i_sb)) { 2494 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2495 return now; 2496 } 2497 2498 return timestamp_truncate(now, inode); 2499 } 2500 EXPORT_SYMBOL(current_time); 2501 2502 /** 2503 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2504 * @idmap: idmap of the mount @inode was found from 2505 * @inode: inode to check 2506 * @vfsgid: the new/current vfsgid of @inode 2507 * 2508 * Check wether @vfsgid is in the caller's group list or if the caller is 2509 * privileged with CAP_FSETID over @inode. This can be used to determine 2510 * whether the setgid bit can be kept or must be dropped. 2511 * 2512 * Return: true if the caller is sufficiently privileged, false if not. 2513 */ 2514 bool in_group_or_capable(struct mnt_idmap *idmap, 2515 const struct inode *inode, vfsgid_t vfsgid) 2516 { 2517 if (vfsgid_in_group_p(vfsgid)) 2518 return true; 2519 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2520 return true; 2521 return false; 2522 } 2523 2524 /** 2525 * mode_strip_sgid - handle the sgid bit for non-directories 2526 * @idmap: idmap of the mount the inode was created from 2527 * @dir: parent directory inode 2528 * @mode: mode of the file to be created in @dir 2529 * 2530 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2531 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2532 * either in the group of the parent directory or they have CAP_FSETID 2533 * in their user namespace and are privileged over the parent directory. 2534 * In all other cases, strip the S_ISGID bit from @mode. 2535 * 2536 * Return: the new mode to use for the file 2537 */ 2538 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2539 const struct inode *dir, umode_t mode) 2540 { 2541 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2542 return mode; 2543 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2544 return mode; 2545 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2546 return mode; 2547 return mode & ~S_ISGID; 2548 } 2549 EXPORT_SYMBOL(mode_strip_sgid); 2550