xref: /linux/fs/inode.c (revision 5b25ab29bad3114f798b136b4147f255a5d5742f)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
27 
28 /*
29  * This is needed for the following functions:
30  *  - inode_has_buffers
31  *  - invalidate_inode_buffers
32  *  - invalidate_bdev
33  *
34  * FIXME: remove all knowledge of the buffer layer from this file
35  */
36 #include <linux/buffer_head.h>
37 
38 /*
39  * New inode.c implementation.
40  *
41  * This implementation has the basic premise of trying
42  * to be extremely low-overhead and SMP-safe, yet be
43  * simple enough to be "obviously correct".
44  *
45  * Famous last words.
46  */
47 
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49 
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52 
53 /*
54  * Inode lookup is no longer as critical as it used to be:
55  * most of the lookups are going to be through the dcache.
56  */
57 #define I_HASHBITS	i_hash_shift
58 #define I_HASHMASK	i_hash_mask
59 
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62 
63 /*
64  * Each inode can be on two separate lists. One is
65  * the hash list of the inode, used for lookups. The
66  * other linked list is the "type" list:
67  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
68  *  "dirty"  - as "in_use" but also dirty
69  *  "unused" - valid inode, i_count = 0
70  *
71  * A "dirty" list is maintained for each super block,
72  * allowing for low-overhead inode sync() operations.
73  */
74 
75 LIST_HEAD(inode_in_use);
76 LIST_HEAD(inode_unused);
77 static struct hlist_head *inode_hashtable __read_mostly;
78 
79 /*
80  * A simple spinlock to protect the list manipulations.
81  *
82  * NOTE! You also have to own the lock if you change
83  * the i_state of an inode while it is in use..
84  */
85 DEFINE_SPINLOCK(inode_lock);
86 
87 /*
88  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
89  * icache shrinking path, and the umount path.  Without this exclusion,
90  * by the time prune_icache calls iput for the inode whose pages it has
91  * been invalidating, or by the time it calls clear_inode & destroy_inode
92  * from its final dispose_list, the struct super_block they refer to
93  * (for inode->i_sb->s_op) may already have been freed and reused.
94  */
95 static DEFINE_MUTEX(iprune_mutex);
96 
97 /*
98  * Statistics gathering..
99  */
100 struct inodes_stat_t inodes_stat;
101 
102 static struct kmem_cache *inode_cachep __read_mostly;
103 
104 static void wake_up_inode(struct inode *inode)
105 {
106 	/*
107 	 * Prevent speculative execution through spin_unlock(&inode_lock);
108 	 */
109 	smp_mb();
110 	wake_up_bit(&inode->i_state, __I_LOCK);
111 }
112 
113 /**
114  * inode_init_always - perform inode structure intialisation
115  * @sb: superblock inode belongs to
116  * @inode: inode to initialise
117  *
118  * These are initializations that need to be done on every inode
119  * allocation as the fields are not initialised by slab allocation.
120  */
121 struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
122 {
123 	static const struct address_space_operations empty_aops;
124 	static struct inode_operations empty_iops;
125 	static const struct file_operations empty_fops;
126 
127 	struct address_space *const mapping = &inode->i_data;
128 
129 	inode->i_sb = sb;
130 	inode->i_blkbits = sb->s_blocksize_bits;
131 	inode->i_flags = 0;
132 	atomic_set(&inode->i_count, 1);
133 	inode->i_op = &empty_iops;
134 	inode->i_fop = &empty_fops;
135 	inode->i_nlink = 1;
136 	inode->i_uid = 0;
137 	inode->i_gid = 0;
138 	atomic_set(&inode->i_writecount, 0);
139 	inode->i_size = 0;
140 	inode->i_blocks = 0;
141 	inode->i_bytes = 0;
142 	inode->i_generation = 0;
143 #ifdef CONFIG_QUOTA
144 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
145 #endif
146 	inode->i_pipe = NULL;
147 	inode->i_bdev = NULL;
148 	inode->i_cdev = NULL;
149 	inode->i_rdev = 0;
150 	inode->dirtied_when = 0;
151 
152 	if (security_inode_alloc(inode))
153 		goto out_free_inode;
154 
155 	/* allocate and initialize an i_integrity */
156 	if (ima_inode_alloc(inode))
157 		goto out_free_security;
158 
159 	spin_lock_init(&inode->i_lock);
160 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161 
162 	mutex_init(&inode->i_mutex);
163 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164 
165 	init_rwsem(&inode->i_alloc_sem);
166 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
167 
168 	mapping->a_ops = &empty_aops;
169 	mapping->host = inode;
170 	mapping->flags = 0;
171 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 	mapping->assoc_mapping = NULL;
173 	mapping->backing_dev_info = &default_backing_dev_info;
174 	mapping->writeback_index = 0;
175 
176 	/*
177 	 * If the block_device provides a backing_dev_info for client
178 	 * inodes then use that.  Otherwise the inode share the bdev's
179 	 * backing_dev_info.
180 	 */
181 	if (sb->s_bdev) {
182 		struct backing_dev_info *bdi;
183 
184 		bdi = sb->s_bdev->bd_inode_backing_dev_info;
185 		if (!bdi)
186 			bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
187 		mapping->backing_dev_info = bdi;
188 	}
189 	inode->i_private = NULL;
190 	inode->i_mapping = mapping;
191 
192 	return inode;
193 
194 out_free_security:
195 	security_inode_free(inode);
196 out_free_inode:
197 	if (inode->i_sb->s_op->destroy_inode)
198 		inode->i_sb->s_op->destroy_inode(inode);
199 	else
200 		kmem_cache_free(inode_cachep, (inode));
201 	return NULL;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204 
205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 	struct inode *inode;
208 
209 	if (sb->s_op->alloc_inode)
210 		inode = sb->s_op->alloc_inode(sb);
211 	else
212 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213 
214 	if (inode)
215 		return inode_init_always(sb, inode);
216 	return NULL;
217 }
218 
219 void destroy_inode(struct inode *inode)
220 {
221 	BUG_ON(inode_has_buffers(inode));
222 	security_inode_free(inode);
223 	if (inode->i_sb->s_op->destroy_inode)
224 		inode->i_sb->s_op->destroy_inode(inode);
225 	else
226 		kmem_cache_free(inode_cachep, (inode));
227 }
228 EXPORT_SYMBOL(destroy_inode);
229 
230 
231 /*
232  * These are initializations that only need to be done
233  * once, because the fields are idempotent across use
234  * of the inode, so let the slab aware of that.
235  */
236 void inode_init_once(struct inode *inode)
237 {
238 	memset(inode, 0, sizeof(*inode));
239 	INIT_HLIST_NODE(&inode->i_hash);
240 	INIT_LIST_HEAD(&inode->i_dentry);
241 	INIT_LIST_HEAD(&inode->i_devices);
242 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
243 	spin_lock_init(&inode->i_data.tree_lock);
244 	spin_lock_init(&inode->i_data.i_mmap_lock);
245 	INIT_LIST_HEAD(&inode->i_data.private_list);
246 	spin_lock_init(&inode->i_data.private_lock);
247 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
248 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
249 	i_size_ordered_init(inode);
250 #ifdef CONFIG_INOTIFY
251 	INIT_LIST_HEAD(&inode->inotify_watches);
252 	mutex_init(&inode->inotify_mutex);
253 #endif
254 }
255 EXPORT_SYMBOL(inode_init_once);
256 
257 static void init_once(void *foo)
258 {
259 	struct inode *inode = (struct inode *) foo;
260 
261 	inode_init_once(inode);
262 }
263 
264 /*
265  * inode_lock must be held
266  */
267 void __iget(struct inode *inode)
268 {
269 	if (atomic_read(&inode->i_count)) {
270 		atomic_inc(&inode->i_count);
271 		return;
272 	}
273 	atomic_inc(&inode->i_count);
274 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
275 		list_move(&inode->i_list, &inode_in_use);
276 	inodes_stat.nr_unused--;
277 }
278 
279 /**
280  * clear_inode - clear an inode
281  * @inode: inode to clear
282  *
283  * This is called by the filesystem to tell us
284  * that the inode is no longer useful. We just
285  * terminate it with extreme prejudice.
286  */
287 void clear_inode(struct inode *inode)
288 {
289 	might_sleep();
290 	invalidate_inode_buffers(inode);
291 
292 	BUG_ON(inode->i_data.nrpages);
293 	BUG_ON(!(inode->i_state & I_FREEING));
294 	BUG_ON(inode->i_state & I_CLEAR);
295 	inode_sync_wait(inode);
296 	vfs_dq_drop(inode);
297 	if (inode->i_sb->s_op->clear_inode)
298 		inode->i_sb->s_op->clear_inode(inode);
299 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
300 		bd_forget(inode);
301 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
302 		cd_forget(inode);
303 	inode->i_state = I_CLEAR;
304 }
305 EXPORT_SYMBOL(clear_inode);
306 
307 /*
308  * dispose_list - dispose of the contents of a local list
309  * @head: the head of the list to free
310  *
311  * Dispose-list gets a local list with local inodes in it, so it doesn't
312  * need to worry about list corruption and SMP locks.
313  */
314 static void dispose_list(struct list_head *head)
315 {
316 	int nr_disposed = 0;
317 
318 	while (!list_empty(head)) {
319 		struct inode *inode;
320 
321 		inode = list_first_entry(head, struct inode, i_list);
322 		list_del(&inode->i_list);
323 
324 		if (inode->i_data.nrpages)
325 			truncate_inode_pages(&inode->i_data, 0);
326 		clear_inode(inode);
327 
328 		spin_lock(&inode_lock);
329 		hlist_del_init(&inode->i_hash);
330 		list_del_init(&inode->i_sb_list);
331 		spin_unlock(&inode_lock);
332 
333 		wake_up_inode(inode);
334 		destroy_inode(inode);
335 		nr_disposed++;
336 	}
337 	spin_lock(&inode_lock);
338 	inodes_stat.nr_inodes -= nr_disposed;
339 	spin_unlock(&inode_lock);
340 }
341 
342 /*
343  * Invalidate all inodes for a device.
344  */
345 static int invalidate_list(struct list_head *head, struct list_head *dispose)
346 {
347 	struct list_head *next;
348 	int busy = 0, count = 0;
349 
350 	next = head->next;
351 	for (;;) {
352 		struct list_head *tmp = next;
353 		struct inode *inode;
354 
355 		/*
356 		 * We can reschedule here without worrying about the list's
357 		 * consistency because the per-sb list of inodes must not
358 		 * change during umount anymore, and because iprune_mutex keeps
359 		 * shrink_icache_memory() away.
360 		 */
361 		cond_resched_lock(&inode_lock);
362 
363 		next = next->next;
364 		if (tmp == head)
365 			break;
366 		inode = list_entry(tmp, struct inode, i_sb_list);
367 		if (inode->i_state & I_NEW)
368 			continue;
369 		invalidate_inode_buffers(inode);
370 		if (!atomic_read(&inode->i_count)) {
371 			list_move(&inode->i_list, dispose);
372 			WARN_ON(inode->i_state & I_NEW);
373 			inode->i_state |= I_FREEING;
374 			count++;
375 			continue;
376 		}
377 		busy = 1;
378 	}
379 	/* only unused inodes may be cached with i_count zero */
380 	inodes_stat.nr_unused -= count;
381 	return busy;
382 }
383 
384 /**
385  *	invalidate_inodes	- discard the inodes on a device
386  *	@sb: superblock
387  *
388  *	Discard all of the inodes for a given superblock. If the discard
389  *	fails because there are busy inodes then a non zero value is returned.
390  *	If the discard is successful all the inodes have been discarded.
391  */
392 int invalidate_inodes(struct super_block *sb)
393 {
394 	int busy;
395 	LIST_HEAD(throw_away);
396 
397 	mutex_lock(&iprune_mutex);
398 	spin_lock(&inode_lock);
399 	inotify_unmount_inodes(&sb->s_inodes);
400 	busy = invalidate_list(&sb->s_inodes, &throw_away);
401 	spin_unlock(&inode_lock);
402 
403 	dispose_list(&throw_away);
404 	mutex_unlock(&iprune_mutex);
405 
406 	return busy;
407 }
408 EXPORT_SYMBOL(invalidate_inodes);
409 
410 static int can_unuse(struct inode *inode)
411 {
412 	if (inode->i_state)
413 		return 0;
414 	if (inode_has_buffers(inode))
415 		return 0;
416 	if (atomic_read(&inode->i_count))
417 		return 0;
418 	if (inode->i_data.nrpages)
419 		return 0;
420 	return 1;
421 }
422 
423 /*
424  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
425  * a temporary list and then are freed outside inode_lock by dispose_list().
426  *
427  * Any inodes which are pinned purely because of attached pagecache have their
428  * pagecache removed.  We expect the final iput() on that inode to add it to
429  * the front of the inode_unused list.  So look for it there and if the
430  * inode is still freeable, proceed.  The right inode is found 99.9% of the
431  * time in testing on a 4-way.
432  *
433  * If the inode has metadata buffers attached to mapping->private_list then
434  * try to remove them.
435  */
436 static void prune_icache(int nr_to_scan)
437 {
438 	LIST_HEAD(freeable);
439 	int nr_pruned = 0;
440 	int nr_scanned;
441 	unsigned long reap = 0;
442 
443 	mutex_lock(&iprune_mutex);
444 	spin_lock(&inode_lock);
445 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
446 		struct inode *inode;
447 
448 		if (list_empty(&inode_unused))
449 			break;
450 
451 		inode = list_entry(inode_unused.prev, struct inode, i_list);
452 
453 		if (inode->i_state || atomic_read(&inode->i_count)) {
454 			list_move(&inode->i_list, &inode_unused);
455 			continue;
456 		}
457 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
458 			__iget(inode);
459 			spin_unlock(&inode_lock);
460 			if (remove_inode_buffers(inode))
461 				reap += invalidate_mapping_pages(&inode->i_data,
462 								0, -1);
463 			iput(inode);
464 			spin_lock(&inode_lock);
465 
466 			if (inode != list_entry(inode_unused.next,
467 						struct inode, i_list))
468 				continue;	/* wrong inode or list_empty */
469 			if (!can_unuse(inode))
470 				continue;
471 		}
472 		list_move(&inode->i_list, &freeable);
473 		WARN_ON(inode->i_state & I_NEW);
474 		inode->i_state |= I_FREEING;
475 		nr_pruned++;
476 	}
477 	inodes_stat.nr_unused -= nr_pruned;
478 	if (current_is_kswapd())
479 		__count_vm_events(KSWAPD_INODESTEAL, reap);
480 	else
481 		__count_vm_events(PGINODESTEAL, reap);
482 	spin_unlock(&inode_lock);
483 
484 	dispose_list(&freeable);
485 	mutex_unlock(&iprune_mutex);
486 }
487 
488 /*
489  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
490  * "unused" means that no dentries are referring to the inodes: the files are
491  * not open and the dcache references to those inodes have already been
492  * reclaimed.
493  *
494  * This function is passed the number of inodes to scan, and it returns the
495  * total number of remaining possibly-reclaimable inodes.
496  */
497 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
498 {
499 	if (nr) {
500 		/*
501 		 * Nasty deadlock avoidance.  We may hold various FS locks,
502 		 * and we don't want to recurse into the FS that called us
503 		 * in clear_inode() and friends..
504 		 */
505 		if (!(gfp_mask & __GFP_FS))
506 			return -1;
507 		prune_icache(nr);
508 	}
509 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
510 }
511 
512 static struct shrinker icache_shrinker = {
513 	.shrink = shrink_icache_memory,
514 	.seeks = DEFAULT_SEEKS,
515 };
516 
517 static void __wait_on_freeing_inode(struct inode *inode);
518 /*
519  * Called with the inode lock held.
520  * NOTE: we are not increasing the inode-refcount, you must call __iget()
521  * by hand after calling find_inode now! This simplifies iunique and won't
522  * add any additional branch in the common code.
523  */
524 static struct inode *find_inode(struct super_block *sb,
525 				struct hlist_head *head,
526 				int (*test)(struct inode *, void *),
527 				void *data)
528 {
529 	struct hlist_node *node;
530 	struct inode *inode = NULL;
531 
532 repeat:
533 	hlist_for_each_entry(inode, node, head, i_hash) {
534 		if (inode->i_sb != sb)
535 			continue;
536 		if (!test(inode, data))
537 			continue;
538 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
539 			__wait_on_freeing_inode(inode);
540 			goto repeat;
541 		}
542 		break;
543 	}
544 	return node ? inode : NULL;
545 }
546 
547 /*
548  * find_inode_fast is the fast path version of find_inode, see the comment at
549  * iget_locked for details.
550  */
551 static struct inode *find_inode_fast(struct super_block *sb,
552 				struct hlist_head *head, unsigned long ino)
553 {
554 	struct hlist_node *node;
555 	struct inode *inode = NULL;
556 
557 repeat:
558 	hlist_for_each_entry(inode, node, head, i_hash) {
559 		if (inode->i_ino != ino)
560 			continue;
561 		if (inode->i_sb != sb)
562 			continue;
563 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
564 			__wait_on_freeing_inode(inode);
565 			goto repeat;
566 		}
567 		break;
568 	}
569 	return node ? inode : NULL;
570 }
571 
572 static unsigned long hash(struct super_block *sb, unsigned long hashval)
573 {
574 	unsigned long tmp;
575 
576 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
577 			L1_CACHE_BYTES;
578 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
579 	return tmp & I_HASHMASK;
580 }
581 
582 static inline void
583 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
584 			struct inode *inode)
585 {
586 	inodes_stat.nr_inodes++;
587 	list_add(&inode->i_list, &inode_in_use);
588 	list_add(&inode->i_sb_list, &sb->s_inodes);
589 	if (head)
590 		hlist_add_head(&inode->i_hash, head);
591 }
592 
593 /**
594  * inode_add_to_lists - add a new inode to relevant lists
595  * @sb: superblock inode belongs to
596  * @inode: inode to mark in use
597  *
598  * When an inode is allocated it needs to be accounted for, added to the in use
599  * list, the owning superblock and the inode hash. This needs to be done under
600  * the inode_lock, so export a function to do this rather than the inode lock
601  * itself. We calculate the hash list to add to here so it is all internal
602  * which requires the caller to have already set up the inode number in the
603  * inode to add.
604  */
605 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
606 {
607 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
608 
609 	spin_lock(&inode_lock);
610 	__inode_add_to_lists(sb, head, inode);
611 	spin_unlock(&inode_lock);
612 }
613 EXPORT_SYMBOL_GPL(inode_add_to_lists);
614 
615 /**
616  *	new_inode 	- obtain an inode
617  *	@sb: superblock
618  *
619  *	Allocates a new inode for given superblock. The default gfp_mask
620  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
621  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
622  *	for the page cache are not reclaimable or migratable,
623  *	mapping_set_gfp_mask() must be called with suitable flags on the
624  *	newly created inode's mapping
625  *
626  */
627 struct inode *new_inode(struct super_block *sb)
628 {
629 	/*
630 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
631 	 * error if st_ino won't fit in target struct field. Use 32bit counter
632 	 * here to attempt to avoid that.
633 	 */
634 	static unsigned int last_ino;
635 	struct inode *inode;
636 
637 	spin_lock_prefetch(&inode_lock);
638 
639 	inode = alloc_inode(sb);
640 	if (inode) {
641 		spin_lock(&inode_lock);
642 		__inode_add_to_lists(sb, NULL, inode);
643 		inode->i_ino = ++last_ino;
644 		inode->i_state = 0;
645 		spin_unlock(&inode_lock);
646 	}
647 	return inode;
648 }
649 EXPORT_SYMBOL(new_inode);
650 
651 void unlock_new_inode(struct inode *inode)
652 {
653 #ifdef CONFIG_DEBUG_LOCK_ALLOC
654 	if (inode->i_mode & S_IFDIR) {
655 		struct file_system_type *type = inode->i_sb->s_type;
656 
657 		/*
658 		 * ensure nobody is actually holding i_mutex
659 		 */
660 		mutex_destroy(&inode->i_mutex);
661 		mutex_init(&inode->i_mutex);
662 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
663 	}
664 #endif
665 	/*
666 	 * This is special!  We do not need the spinlock
667 	 * when clearing I_LOCK, because we're guaranteed
668 	 * that nobody else tries to do anything about the
669 	 * state of the inode when it is locked, as we
670 	 * just created it (so there can be no old holders
671 	 * that haven't tested I_LOCK).
672 	 */
673 	WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
674 	inode->i_state &= ~(I_LOCK|I_NEW);
675 	wake_up_inode(inode);
676 }
677 EXPORT_SYMBOL(unlock_new_inode);
678 
679 /*
680  * This is called without the inode lock held.. Be careful.
681  *
682  * We no longer cache the sb_flags in i_flags - see fs.h
683  *	-- rmk@arm.uk.linux.org
684  */
685 static struct inode *get_new_inode(struct super_block *sb,
686 				struct hlist_head *head,
687 				int (*test)(struct inode *, void *),
688 				int (*set)(struct inode *, void *),
689 				void *data)
690 {
691 	struct inode *inode;
692 
693 	inode = alloc_inode(sb);
694 	if (inode) {
695 		struct inode *old;
696 
697 		spin_lock(&inode_lock);
698 		/* We released the lock, so.. */
699 		old = find_inode(sb, head, test, data);
700 		if (!old) {
701 			if (set(inode, data))
702 				goto set_failed;
703 
704 			__inode_add_to_lists(sb, head, inode);
705 			inode->i_state = I_LOCK|I_NEW;
706 			spin_unlock(&inode_lock);
707 
708 			/* Return the locked inode with I_NEW set, the
709 			 * caller is responsible for filling in the contents
710 			 */
711 			return inode;
712 		}
713 
714 		/*
715 		 * Uhhuh, somebody else created the same inode under
716 		 * us. Use the old inode instead of the one we just
717 		 * allocated.
718 		 */
719 		__iget(old);
720 		spin_unlock(&inode_lock);
721 		destroy_inode(inode);
722 		inode = old;
723 		wait_on_inode(inode);
724 	}
725 	return inode;
726 
727 set_failed:
728 	spin_unlock(&inode_lock);
729 	destroy_inode(inode);
730 	return NULL;
731 }
732 
733 /*
734  * get_new_inode_fast is the fast path version of get_new_inode, see the
735  * comment at iget_locked for details.
736  */
737 static struct inode *get_new_inode_fast(struct super_block *sb,
738 				struct hlist_head *head, unsigned long ino)
739 {
740 	struct inode *inode;
741 
742 	inode = alloc_inode(sb);
743 	if (inode) {
744 		struct inode *old;
745 
746 		spin_lock(&inode_lock);
747 		/* We released the lock, so.. */
748 		old = find_inode_fast(sb, head, ino);
749 		if (!old) {
750 			inode->i_ino = ino;
751 			__inode_add_to_lists(sb, head, inode);
752 			inode->i_state = I_LOCK|I_NEW;
753 			spin_unlock(&inode_lock);
754 
755 			/* Return the locked inode with I_NEW set, the
756 			 * caller is responsible for filling in the contents
757 			 */
758 			return inode;
759 		}
760 
761 		/*
762 		 * Uhhuh, somebody else created the same inode under
763 		 * us. Use the old inode instead of the one we just
764 		 * allocated.
765 		 */
766 		__iget(old);
767 		spin_unlock(&inode_lock);
768 		destroy_inode(inode);
769 		inode = old;
770 		wait_on_inode(inode);
771 	}
772 	return inode;
773 }
774 
775 /**
776  *	iunique - get a unique inode number
777  *	@sb: superblock
778  *	@max_reserved: highest reserved inode number
779  *
780  *	Obtain an inode number that is unique on the system for a given
781  *	superblock. This is used by file systems that have no natural
782  *	permanent inode numbering system. An inode number is returned that
783  *	is higher than the reserved limit but unique.
784  *
785  *	BUGS:
786  *	With a large number of inodes live on the file system this function
787  *	currently becomes quite slow.
788  */
789 ino_t iunique(struct super_block *sb, ino_t max_reserved)
790 {
791 	/*
792 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
793 	 * error if st_ino won't fit in target struct field. Use 32bit counter
794 	 * here to attempt to avoid that.
795 	 */
796 	static unsigned int counter;
797 	struct inode *inode;
798 	struct hlist_head *head;
799 	ino_t res;
800 
801 	spin_lock(&inode_lock);
802 	do {
803 		if (counter <= max_reserved)
804 			counter = max_reserved + 1;
805 		res = counter++;
806 		head = inode_hashtable + hash(sb, res);
807 		inode = find_inode_fast(sb, head, res);
808 	} while (inode != NULL);
809 	spin_unlock(&inode_lock);
810 
811 	return res;
812 }
813 EXPORT_SYMBOL(iunique);
814 
815 struct inode *igrab(struct inode *inode)
816 {
817 	spin_lock(&inode_lock);
818 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
819 		__iget(inode);
820 	else
821 		/*
822 		 * Handle the case where s_op->clear_inode is not been
823 		 * called yet, and somebody is calling igrab
824 		 * while the inode is getting freed.
825 		 */
826 		inode = NULL;
827 	spin_unlock(&inode_lock);
828 	return inode;
829 }
830 EXPORT_SYMBOL(igrab);
831 
832 /**
833  * ifind - internal function, you want ilookup5() or iget5().
834  * @sb:		super block of file system to search
835  * @head:       the head of the list to search
836  * @test:	callback used for comparisons between inodes
837  * @data:	opaque data pointer to pass to @test
838  * @wait:	if true wait for the inode to be unlocked, if false do not
839  *
840  * ifind() searches for the inode specified by @data in the inode
841  * cache. This is a generalized version of ifind_fast() for file systems where
842  * the inode number is not sufficient for unique identification of an inode.
843  *
844  * If the inode is in the cache, the inode is returned with an incremented
845  * reference count.
846  *
847  * Otherwise NULL is returned.
848  *
849  * Note, @test is called with the inode_lock held, so can't sleep.
850  */
851 static struct inode *ifind(struct super_block *sb,
852 		struct hlist_head *head, int (*test)(struct inode *, void *),
853 		void *data, const int wait)
854 {
855 	struct inode *inode;
856 
857 	spin_lock(&inode_lock);
858 	inode = find_inode(sb, head, test, data);
859 	if (inode) {
860 		__iget(inode);
861 		spin_unlock(&inode_lock);
862 		if (likely(wait))
863 			wait_on_inode(inode);
864 		return inode;
865 	}
866 	spin_unlock(&inode_lock);
867 	return NULL;
868 }
869 
870 /**
871  * ifind_fast - internal function, you want ilookup() or iget().
872  * @sb:		super block of file system to search
873  * @head:       head of the list to search
874  * @ino:	inode number to search for
875  *
876  * ifind_fast() searches for the inode @ino in the inode cache. This is for
877  * file systems where the inode number is sufficient for unique identification
878  * of an inode.
879  *
880  * If the inode is in the cache, the inode is returned with an incremented
881  * reference count.
882  *
883  * Otherwise NULL is returned.
884  */
885 static struct inode *ifind_fast(struct super_block *sb,
886 		struct hlist_head *head, unsigned long ino)
887 {
888 	struct inode *inode;
889 
890 	spin_lock(&inode_lock);
891 	inode = find_inode_fast(sb, head, ino);
892 	if (inode) {
893 		__iget(inode);
894 		spin_unlock(&inode_lock);
895 		wait_on_inode(inode);
896 		return inode;
897 	}
898 	spin_unlock(&inode_lock);
899 	return NULL;
900 }
901 
902 /**
903  * ilookup5_nowait - search for an inode in the inode cache
904  * @sb:		super block of file system to search
905  * @hashval:	hash value (usually inode number) to search for
906  * @test:	callback used for comparisons between inodes
907  * @data:	opaque data pointer to pass to @test
908  *
909  * ilookup5() uses ifind() to search for the inode specified by @hashval and
910  * @data in the inode cache. This is a generalized version of ilookup() for
911  * file systems where the inode number is not sufficient for unique
912  * identification of an inode.
913  *
914  * If the inode is in the cache, the inode is returned with an incremented
915  * reference count.  Note, the inode lock is not waited upon so you have to be
916  * very careful what you do with the returned inode.  You probably should be
917  * using ilookup5() instead.
918  *
919  * Otherwise NULL is returned.
920  *
921  * Note, @test is called with the inode_lock held, so can't sleep.
922  */
923 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
924 		int (*test)(struct inode *, void *), void *data)
925 {
926 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
927 
928 	return ifind(sb, head, test, data, 0);
929 }
930 EXPORT_SYMBOL(ilookup5_nowait);
931 
932 /**
933  * ilookup5 - search for an inode in the inode cache
934  * @sb:		super block of file system to search
935  * @hashval:	hash value (usually inode number) to search for
936  * @test:	callback used for comparisons between inodes
937  * @data:	opaque data pointer to pass to @test
938  *
939  * ilookup5() uses ifind() to search for the inode specified by @hashval and
940  * @data in the inode cache. This is a generalized version of ilookup() for
941  * file systems where the inode number is not sufficient for unique
942  * identification of an inode.
943  *
944  * If the inode is in the cache, the inode lock is waited upon and the inode is
945  * returned with an incremented reference count.
946  *
947  * Otherwise NULL is returned.
948  *
949  * Note, @test is called with the inode_lock held, so can't sleep.
950  */
951 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
952 		int (*test)(struct inode *, void *), void *data)
953 {
954 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
955 
956 	return ifind(sb, head, test, data, 1);
957 }
958 EXPORT_SYMBOL(ilookup5);
959 
960 /**
961  * ilookup - search for an inode in the inode cache
962  * @sb:		super block of file system to search
963  * @ino:	inode number to search for
964  *
965  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
966  * This is for file systems where the inode number is sufficient for unique
967  * identification of an inode.
968  *
969  * If the inode is in the cache, the inode is returned with an incremented
970  * reference count.
971  *
972  * Otherwise NULL is returned.
973  */
974 struct inode *ilookup(struct super_block *sb, unsigned long ino)
975 {
976 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
977 
978 	return ifind_fast(sb, head, ino);
979 }
980 EXPORT_SYMBOL(ilookup);
981 
982 /**
983  * iget5_locked - obtain an inode from a mounted file system
984  * @sb:		super block of file system
985  * @hashval:	hash value (usually inode number) to get
986  * @test:	callback used for comparisons between inodes
987  * @set:	callback used to initialize a new struct inode
988  * @data:	opaque data pointer to pass to @test and @set
989  *
990  * iget5_locked() uses ifind() to search for the inode specified by @hashval
991  * and @data in the inode cache and if present it is returned with an increased
992  * reference count. This is a generalized version of iget_locked() for file
993  * systems where the inode number is not sufficient for unique identification
994  * of an inode.
995  *
996  * If the inode is not in cache, get_new_inode() is called to allocate a new
997  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
998  * file system gets to fill it in before unlocking it via unlock_new_inode().
999  *
1000  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1001  */
1002 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1003 		int (*test)(struct inode *, void *),
1004 		int (*set)(struct inode *, void *), void *data)
1005 {
1006 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1007 	struct inode *inode;
1008 
1009 	inode = ifind(sb, head, test, data, 1);
1010 	if (inode)
1011 		return inode;
1012 	/*
1013 	 * get_new_inode() will do the right thing, re-trying the search
1014 	 * in case it had to block at any point.
1015 	 */
1016 	return get_new_inode(sb, head, test, set, data);
1017 }
1018 EXPORT_SYMBOL(iget5_locked);
1019 
1020 /**
1021  * iget_locked - obtain an inode from a mounted file system
1022  * @sb:		super block of file system
1023  * @ino:	inode number to get
1024  *
1025  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1026  * the inode cache and if present it is returned with an increased reference
1027  * count. This is for file systems where the inode number is sufficient for
1028  * unique identification of an inode.
1029  *
1030  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1031  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1032  * The file system gets to fill it in before unlocking it via
1033  * unlock_new_inode().
1034  */
1035 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1036 {
1037 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1038 	struct inode *inode;
1039 
1040 	inode = ifind_fast(sb, head, ino);
1041 	if (inode)
1042 		return inode;
1043 	/*
1044 	 * get_new_inode_fast() will do the right thing, re-trying the search
1045 	 * in case it had to block at any point.
1046 	 */
1047 	return get_new_inode_fast(sb, head, ino);
1048 }
1049 EXPORT_SYMBOL(iget_locked);
1050 
1051 int insert_inode_locked(struct inode *inode)
1052 {
1053 	struct super_block *sb = inode->i_sb;
1054 	ino_t ino = inode->i_ino;
1055 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1056 	struct inode *old;
1057 
1058 	inode->i_state |= I_LOCK|I_NEW;
1059 	while (1) {
1060 		spin_lock(&inode_lock);
1061 		old = find_inode_fast(sb, head, ino);
1062 		if (likely(!old)) {
1063 			hlist_add_head(&inode->i_hash, head);
1064 			spin_unlock(&inode_lock);
1065 			return 0;
1066 		}
1067 		__iget(old);
1068 		spin_unlock(&inode_lock);
1069 		wait_on_inode(old);
1070 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1071 			iput(old);
1072 			return -EBUSY;
1073 		}
1074 		iput(old);
1075 	}
1076 }
1077 EXPORT_SYMBOL(insert_inode_locked);
1078 
1079 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1080 		int (*test)(struct inode *, void *), void *data)
1081 {
1082 	struct super_block *sb = inode->i_sb;
1083 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1084 	struct inode *old;
1085 
1086 	inode->i_state |= I_LOCK|I_NEW;
1087 
1088 	while (1) {
1089 		spin_lock(&inode_lock);
1090 		old = find_inode(sb, head, test, data);
1091 		if (likely(!old)) {
1092 			hlist_add_head(&inode->i_hash, head);
1093 			spin_unlock(&inode_lock);
1094 			return 0;
1095 		}
1096 		__iget(old);
1097 		spin_unlock(&inode_lock);
1098 		wait_on_inode(old);
1099 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1100 			iput(old);
1101 			return -EBUSY;
1102 		}
1103 		iput(old);
1104 	}
1105 }
1106 EXPORT_SYMBOL(insert_inode_locked4);
1107 
1108 /**
1109  *	__insert_inode_hash - hash an inode
1110  *	@inode: unhashed inode
1111  *	@hashval: unsigned long value used to locate this object in the
1112  *		inode_hashtable.
1113  *
1114  *	Add an inode to the inode hash for this superblock.
1115  */
1116 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1117 {
1118 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1119 	spin_lock(&inode_lock);
1120 	hlist_add_head(&inode->i_hash, head);
1121 	spin_unlock(&inode_lock);
1122 }
1123 EXPORT_SYMBOL(__insert_inode_hash);
1124 
1125 /**
1126  *	remove_inode_hash - remove an inode from the hash
1127  *	@inode: inode to unhash
1128  *
1129  *	Remove an inode from the superblock.
1130  */
1131 void remove_inode_hash(struct inode *inode)
1132 {
1133 	spin_lock(&inode_lock);
1134 	hlist_del_init(&inode->i_hash);
1135 	spin_unlock(&inode_lock);
1136 }
1137 EXPORT_SYMBOL(remove_inode_hash);
1138 
1139 /*
1140  * Tell the filesystem that this inode is no longer of any interest and should
1141  * be completely destroyed.
1142  *
1143  * We leave the inode in the inode hash table until *after* the filesystem's
1144  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1145  * instigate) will always find up-to-date information either in the hash or on
1146  * disk.
1147  *
1148  * I_FREEING is set so that no-one will take a new reference to the inode while
1149  * it is being deleted.
1150  */
1151 void generic_delete_inode(struct inode *inode)
1152 {
1153 	const struct super_operations *op = inode->i_sb->s_op;
1154 
1155 	list_del_init(&inode->i_list);
1156 	list_del_init(&inode->i_sb_list);
1157 	WARN_ON(inode->i_state & I_NEW);
1158 	inode->i_state |= I_FREEING;
1159 	inodes_stat.nr_inodes--;
1160 	spin_unlock(&inode_lock);
1161 
1162 	security_inode_delete(inode);
1163 
1164 	if (op->delete_inode) {
1165 		void (*delete)(struct inode *) = op->delete_inode;
1166 		if (!is_bad_inode(inode))
1167 			vfs_dq_init(inode);
1168 		/* Filesystems implementing their own
1169 		 * s_op->delete_inode are required to call
1170 		 * truncate_inode_pages and clear_inode()
1171 		 * internally */
1172 		delete(inode);
1173 	} else {
1174 		truncate_inode_pages(&inode->i_data, 0);
1175 		clear_inode(inode);
1176 	}
1177 	spin_lock(&inode_lock);
1178 	hlist_del_init(&inode->i_hash);
1179 	spin_unlock(&inode_lock);
1180 	wake_up_inode(inode);
1181 	BUG_ON(inode->i_state != I_CLEAR);
1182 	destroy_inode(inode);
1183 }
1184 EXPORT_SYMBOL(generic_delete_inode);
1185 
1186 static void generic_forget_inode(struct inode *inode)
1187 {
1188 	struct super_block *sb = inode->i_sb;
1189 
1190 	if (!hlist_unhashed(&inode->i_hash)) {
1191 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1192 			list_move(&inode->i_list, &inode_unused);
1193 		inodes_stat.nr_unused++;
1194 		if (sb->s_flags & MS_ACTIVE) {
1195 			spin_unlock(&inode_lock);
1196 			return;
1197 		}
1198 		WARN_ON(inode->i_state & I_NEW);
1199 		inode->i_state |= I_WILL_FREE;
1200 		spin_unlock(&inode_lock);
1201 		write_inode_now(inode, 1);
1202 		spin_lock(&inode_lock);
1203 		WARN_ON(inode->i_state & I_NEW);
1204 		inode->i_state &= ~I_WILL_FREE;
1205 		inodes_stat.nr_unused--;
1206 		hlist_del_init(&inode->i_hash);
1207 	}
1208 	list_del_init(&inode->i_list);
1209 	list_del_init(&inode->i_sb_list);
1210 	WARN_ON(inode->i_state & I_NEW);
1211 	inode->i_state |= I_FREEING;
1212 	inodes_stat.nr_inodes--;
1213 	spin_unlock(&inode_lock);
1214 	if (inode->i_data.nrpages)
1215 		truncate_inode_pages(&inode->i_data, 0);
1216 	clear_inode(inode);
1217 	wake_up_inode(inode);
1218 	destroy_inode(inode);
1219 }
1220 
1221 /*
1222  * Normal UNIX filesystem behaviour: delete the
1223  * inode when the usage count drops to zero, and
1224  * i_nlink is zero.
1225  */
1226 void generic_drop_inode(struct inode *inode)
1227 {
1228 	if (!inode->i_nlink)
1229 		generic_delete_inode(inode);
1230 	else
1231 		generic_forget_inode(inode);
1232 }
1233 EXPORT_SYMBOL_GPL(generic_drop_inode);
1234 
1235 /*
1236  * Called when we're dropping the last reference
1237  * to an inode.
1238  *
1239  * Call the FS "drop()" function, defaulting to
1240  * the legacy UNIX filesystem behaviour..
1241  *
1242  * NOTE! NOTE! NOTE! We're called with the inode lock
1243  * held, and the drop function is supposed to release
1244  * the lock!
1245  */
1246 static inline void iput_final(struct inode *inode)
1247 {
1248 	const struct super_operations *op = inode->i_sb->s_op;
1249 	void (*drop)(struct inode *) = generic_drop_inode;
1250 
1251 	if (op && op->drop_inode)
1252 		drop = op->drop_inode;
1253 	drop(inode);
1254 }
1255 
1256 /**
1257  *	iput	- put an inode
1258  *	@inode: inode to put
1259  *
1260  *	Puts an inode, dropping its usage count. If the inode use count hits
1261  *	zero, the inode is then freed and may also be destroyed.
1262  *
1263  *	Consequently, iput() can sleep.
1264  */
1265 void iput(struct inode *inode)
1266 {
1267 	if (inode) {
1268 		BUG_ON(inode->i_state == I_CLEAR);
1269 
1270 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1271 			iput_final(inode);
1272 	}
1273 }
1274 EXPORT_SYMBOL(iput);
1275 
1276 /**
1277  *	bmap	- find a block number in a file
1278  *	@inode: inode of file
1279  *	@block: block to find
1280  *
1281  *	Returns the block number on the device holding the inode that
1282  *	is the disk block number for the block of the file requested.
1283  *	That is, asked for block 4 of inode 1 the function will return the
1284  *	disk block relative to the disk start that holds that block of the
1285  *	file.
1286  */
1287 sector_t bmap(struct inode *inode, sector_t block)
1288 {
1289 	sector_t res = 0;
1290 	if (inode->i_mapping->a_ops->bmap)
1291 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1292 	return res;
1293 }
1294 EXPORT_SYMBOL(bmap);
1295 
1296 /*
1297  * With relative atime, only update atime if the previous atime is
1298  * earlier than either the ctime or mtime or if at least a day has
1299  * passed since the last atime update.
1300  */
1301 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1302 			     struct timespec now)
1303 {
1304 
1305 	if (!(mnt->mnt_flags & MNT_RELATIME))
1306 		return 1;
1307 	/*
1308 	 * Is mtime younger than atime? If yes, update atime:
1309 	 */
1310 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1311 		return 1;
1312 	/*
1313 	 * Is ctime younger than atime? If yes, update atime:
1314 	 */
1315 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1316 		return 1;
1317 
1318 	/*
1319 	 * Is the previous atime value older than a day? If yes,
1320 	 * update atime:
1321 	 */
1322 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1323 		return 1;
1324 	/*
1325 	 * Good, we can skip the atime update:
1326 	 */
1327 	return 0;
1328 }
1329 
1330 /**
1331  *	touch_atime	-	update the access time
1332  *	@mnt: mount the inode is accessed on
1333  *	@dentry: dentry accessed
1334  *
1335  *	Update the accessed time on an inode and mark it for writeback.
1336  *	This function automatically handles read only file systems and media,
1337  *	as well as the "noatime" flag and inode specific "noatime" markers.
1338  */
1339 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1340 {
1341 	struct inode *inode = dentry->d_inode;
1342 	struct timespec now;
1343 
1344 	if (mnt_want_write(mnt))
1345 		return;
1346 	if (inode->i_flags & S_NOATIME)
1347 		goto out;
1348 	if (IS_NOATIME(inode))
1349 		goto out;
1350 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1351 		goto out;
1352 
1353 	if (mnt->mnt_flags & MNT_NOATIME)
1354 		goto out;
1355 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1356 		goto out;
1357 
1358 	now = current_fs_time(inode->i_sb);
1359 
1360 	if (!relatime_need_update(mnt, inode, now))
1361 		goto out;
1362 
1363 	if (timespec_equal(&inode->i_atime, &now))
1364 		goto out;
1365 
1366 	inode->i_atime = now;
1367 	mark_inode_dirty_sync(inode);
1368 out:
1369 	mnt_drop_write(mnt);
1370 }
1371 EXPORT_SYMBOL(touch_atime);
1372 
1373 /**
1374  *	file_update_time	-	update mtime and ctime time
1375  *	@file: file accessed
1376  *
1377  *	Update the mtime and ctime members of an inode and mark the inode
1378  *	for writeback.  Note that this function is meant exclusively for
1379  *	usage in the file write path of filesystems, and filesystems may
1380  *	choose to explicitly ignore update via this function with the
1381  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1382  *	timestamps are handled by the server.
1383  */
1384 
1385 void file_update_time(struct file *file)
1386 {
1387 	struct inode *inode = file->f_path.dentry->d_inode;
1388 	struct timespec now;
1389 	int sync_it = 0;
1390 	int err;
1391 
1392 	if (IS_NOCMTIME(inode))
1393 		return;
1394 
1395 	err = mnt_want_write(file->f_path.mnt);
1396 	if (err)
1397 		return;
1398 
1399 	now = current_fs_time(inode->i_sb);
1400 	if (!timespec_equal(&inode->i_mtime, &now)) {
1401 		inode->i_mtime = now;
1402 		sync_it = 1;
1403 	}
1404 
1405 	if (!timespec_equal(&inode->i_ctime, &now)) {
1406 		inode->i_ctime = now;
1407 		sync_it = 1;
1408 	}
1409 
1410 	if (IS_I_VERSION(inode)) {
1411 		inode_inc_iversion(inode);
1412 		sync_it = 1;
1413 	}
1414 
1415 	if (sync_it)
1416 		mark_inode_dirty_sync(inode);
1417 	mnt_drop_write(file->f_path.mnt);
1418 }
1419 EXPORT_SYMBOL(file_update_time);
1420 
1421 int inode_needs_sync(struct inode *inode)
1422 {
1423 	if (IS_SYNC(inode))
1424 		return 1;
1425 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1426 		return 1;
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL(inode_needs_sync);
1430 
1431 int inode_wait(void *word)
1432 {
1433 	schedule();
1434 	return 0;
1435 }
1436 EXPORT_SYMBOL(inode_wait);
1437 
1438 /*
1439  * If we try to find an inode in the inode hash while it is being
1440  * deleted, we have to wait until the filesystem completes its
1441  * deletion before reporting that it isn't found.  This function waits
1442  * until the deletion _might_ have completed.  Callers are responsible
1443  * to recheck inode state.
1444  *
1445  * It doesn't matter if I_LOCK is not set initially, a call to
1446  * wake_up_inode() after removing from the hash list will DTRT.
1447  *
1448  * This is called with inode_lock held.
1449  */
1450 static void __wait_on_freeing_inode(struct inode *inode)
1451 {
1452 	wait_queue_head_t *wq;
1453 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1454 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1455 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1456 	spin_unlock(&inode_lock);
1457 	schedule();
1458 	finish_wait(wq, &wait.wait);
1459 	spin_lock(&inode_lock);
1460 }
1461 
1462 static __initdata unsigned long ihash_entries;
1463 static int __init set_ihash_entries(char *str)
1464 {
1465 	if (!str)
1466 		return 0;
1467 	ihash_entries = simple_strtoul(str, &str, 0);
1468 	return 1;
1469 }
1470 __setup("ihash_entries=", set_ihash_entries);
1471 
1472 /*
1473  * Initialize the waitqueues and inode hash table.
1474  */
1475 void __init inode_init_early(void)
1476 {
1477 	int loop;
1478 
1479 	/* If hashes are distributed across NUMA nodes, defer
1480 	 * hash allocation until vmalloc space is available.
1481 	 */
1482 	if (hashdist)
1483 		return;
1484 
1485 	inode_hashtable =
1486 		alloc_large_system_hash("Inode-cache",
1487 					sizeof(struct hlist_head),
1488 					ihash_entries,
1489 					14,
1490 					HASH_EARLY,
1491 					&i_hash_shift,
1492 					&i_hash_mask,
1493 					0);
1494 
1495 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1496 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1497 }
1498 
1499 void __init inode_init(void)
1500 {
1501 	int loop;
1502 
1503 	/* inode slab cache */
1504 	inode_cachep = kmem_cache_create("inode_cache",
1505 					 sizeof(struct inode),
1506 					 0,
1507 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1508 					 SLAB_MEM_SPREAD),
1509 					 init_once);
1510 	register_shrinker(&icache_shrinker);
1511 
1512 	/* Hash may have been set up in inode_init_early */
1513 	if (!hashdist)
1514 		return;
1515 
1516 	inode_hashtable =
1517 		alloc_large_system_hash("Inode-cache",
1518 					sizeof(struct hlist_head),
1519 					ihash_entries,
1520 					14,
1521 					0,
1522 					&i_hash_shift,
1523 					&i_hash_mask,
1524 					0);
1525 
1526 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1527 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1528 }
1529 
1530 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1531 {
1532 	inode->i_mode = mode;
1533 	if (S_ISCHR(mode)) {
1534 		inode->i_fop = &def_chr_fops;
1535 		inode->i_rdev = rdev;
1536 	} else if (S_ISBLK(mode)) {
1537 		inode->i_fop = &def_blk_fops;
1538 		inode->i_rdev = rdev;
1539 	} else if (S_ISFIFO(mode))
1540 		inode->i_fop = &def_fifo_fops;
1541 	else if (S_ISSOCK(mode))
1542 		inode->i_fop = &bad_sock_fops;
1543 	else
1544 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1545 		       mode);
1546 }
1547 EXPORT_SYMBOL(init_special_inode);
1548