1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/ima.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/mount.h> 26 #include <linux/async.h> 27 28 /* 29 * This is needed for the following functions: 30 * - inode_has_buffers 31 * - invalidate_inode_buffers 32 * - invalidate_bdev 33 * 34 * FIXME: remove all knowledge of the buffer layer from this file 35 */ 36 #include <linux/buffer_head.h> 37 38 /* 39 * New inode.c implementation. 40 * 41 * This implementation has the basic premise of trying 42 * to be extremely low-overhead and SMP-safe, yet be 43 * simple enough to be "obviously correct". 44 * 45 * Famous last words. 46 */ 47 48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 49 50 /* #define INODE_PARANOIA 1 */ 51 /* #define INODE_DEBUG 1 */ 52 53 /* 54 * Inode lookup is no longer as critical as it used to be: 55 * most of the lookups are going to be through the dcache. 56 */ 57 #define I_HASHBITS i_hash_shift 58 #define I_HASHMASK i_hash_mask 59 60 static unsigned int i_hash_mask __read_mostly; 61 static unsigned int i_hash_shift __read_mostly; 62 63 /* 64 * Each inode can be on two separate lists. One is 65 * the hash list of the inode, used for lookups. The 66 * other linked list is the "type" list: 67 * "in_use" - valid inode, i_count > 0, i_nlink > 0 68 * "dirty" - as "in_use" but also dirty 69 * "unused" - valid inode, i_count = 0 70 * 71 * A "dirty" list is maintained for each super block, 72 * allowing for low-overhead inode sync() operations. 73 */ 74 75 LIST_HEAD(inode_in_use); 76 LIST_HEAD(inode_unused); 77 static struct hlist_head *inode_hashtable __read_mostly; 78 79 /* 80 * A simple spinlock to protect the list manipulations. 81 * 82 * NOTE! You also have to own the lock if you change 83 * the i_state of an inode while it is in use.. 84 */ 85 DEFINE_SPINLOCK(inode_lock); 86 87 /* 88 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 89 * icache shrinking path, and the umount path. Without this exclusion, 90 * by the time prune_icache calls iput for the inode whose pages it has 91 * been invalidating, or by the time it calls clear_inode & destroy_inode 92 * from its final dispose_list, the struct super_block they refer to 93 * (for inode->i_sb->s_op) may already have been freed and reused. 94 */ 95 static DEFINE_MUTEX(iprune_mutex); 96 97 /* 98 * Statistics gathering.. 99 */ 100 struct inodes_stat_t inodes_stat; 101 102 static struct kmem_cache *inode_cachep __read_mostly; 103 104 static void wake_up_inode(struct inode *inode) 105 { 106 /* 107 * Prevent speculative execution through spin_unlock(&inode_lock); 108 */ 109 smp_mb(); 110 wake_up_bit(&inode->i_state, __I_LOCK); 111 } 112 113 /** 114 * inode_init_always - perform inode structure intialisation 115 * @sb: superblock inode belongs to 116 * @inode: inode to initialise 117 * 118 * These are initializations that need to be done on every inode 119 * allocation as the fields are not initialised by slab allocation. 120 */ 121 struct inode *inode_init_always(struct super_block *sb, struct inode *inode) 122 { 123 static const struct address_space_operations empty_aops; 124 static struct inode_operations empty_iops; 125 static const struct file_operations empty_fops; 126 127 struct address_space *const mapping = &inode->i_data; 128 129 inode->i_sb = sb; 130 inode->i_blkbits = sb->s_blocksize_bits; 131 inode->i_flags = 0; 132 atomic_set(&inode->i_count, 1); 133 inode->i_op = &empty_iops; 134 inode->i_fop = &empty_fops; 135 inode->i_nlink = 1; 136 inode->i_uid = 0; 137 inode->i_gid = 0; 138 atomic_set(&inode->i_writecount, 0); 139 inode->i_size = 0; 140 inode->i_blocks = 0; 141 inode->i_bytes = 0; 142 inode->i_generation = 0; 143 #ifdef CONFIG_QUOTA 144 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 145 #endif 146 inode->i_pipe = NULL; 147 inode->i_bdev = NULL; 148 inode->i_cdev = NULL; 149 inode->i_rdev = 0; 150 inode->dirtied_when = 0; 151 152 if (security_inode_alloc(inode)) 153 goto out_free_inode; 154 155 /* allocate and initialize an i_integrity */ 156 if (ima_inode_alloc(inode)) 157 goto out_free_security; 158 159 spin_lock_init(&inode->i_lock); 160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 161 162 mutex_init(&inode->i_mutex); 163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 164 165 init_rwsem(&inode->i_alloc_sem); 166 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 167 168 mapping->a_ops = &empty_aops; 169 mapping->host = inode; 170 mapping->flags = 0; 171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 172 mapping->assoc_mapping = NULL; 173 mapping->backing_dev_info = &default_backing_dev_info; 174 mapping->writeback_index = 0; 175 176 /* 177 * If the block_device provides a backing_dev_info for client 178 * inodes then use that. Otherwise the inode share the bdev's 179 * backing_dev_info. 180 */ 181 if (sb->s_bdev) { 182 struct backing_dev_info *bdi; 183 184 bdi = sb->s_bdev->bd_inode_backing_dev_info; 185 if (!bdi) 186 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 187 mapping->backing_dev_info = bdi; 188 } 189 inode->i_private = NULL; 190 inode->i_mapping = mapping; 191 192 return inode; 193 194 out_free_security: 195 security_inode_free(inode); 196 out_free_inode: 197 if (inode->i_sb->s_op->destroy_inode) 198 inode->i_sb->s_op->destroy_inode(inode); 199 else 200 kmem_cache_free(inode_cachep, (inode)); 201 return NULL; 202 } 203 EXPORT_SYMBOL(inode_init_always); 204 205 static struct inode *alloc_inode(struct super_block *sb) 206 { 207 struct inode *inode; 208 209 if (sb->s_op->alloc_inode) 210 inode = sb->s_op->alloc_inode(sb); 211 else 212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 213 214 if (inode) 215 return inode_init_always(sb, inode); 216 return NULL; 217 } 218 219 void destroy_inode(struct inode *inode) 220 { 221 BUG_ON(inode_has_buffers(inode)); 222 security_inode_free(inode); 223 if (inode->i_sb->s_op->destroy_inode) 224 inode->i_sb->s_op->destroy_inode(inode); 225 else 226 kmem_cache_free(inode_cachep, (inode)); 227 } 228 EXPORT_SYMBOL(destroy_inode); 229 230 231 /* 232 * These are initializations that only need to be done 233 * once, because the fields are idempotent across use 234 * of the inode, so let the slab aware of that. 235 */ 236 void inode_init_once(struct inode *inode) 237 { 238 memset(inode, 0, sizeof(*inode)); 239 INIT_HLIST_NODE(&inode->i_hash); 240 INIT_LIST_HEAD(&inode->i_dentry); 241 INIT_LIST_HEAD(&inode->i_devices); 242 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 243 spin_lock_init(&inode->i_data.tree_lock); 244 spin_lock_init(&inode->i_data.i_mmap_lock); 245 INIT_LIST_HEAD(&inode->i_data.private_list); 246 spin_lock_init(&inode->i_data.private_lock); 247 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 248 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 249 i_size_ordered_init(inode); 250 #ifdef CONFIG_INOTIFY 251 INIT_LIST_HEAD(&inode->inotify_watches); 252 mutex_init(&inode->inotify_mutex); 253 #endif 254 } 255 EXPORT_SYMBOL(inode_init_once); 256 257 static void init_once(void *foo) 258 { 259 struct inode *inode = (struct inode *) foo; 260 261 inode_init_once(inode); 262 } 263 264 /* 265 * inode_lock must be held 266 */ 267 void __iget(struct inode *inode) 268 { 269 if (atomic_read(&inode->i_count)) { 270 atomic_inc(&inode->i_count); 271 return; 272 } 273 atomic_inc(&inode->i_count); 274 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 275 list_move(&inode->i_list, &inode_in_use); 276 inodes_stat.nr_unused--; 277 } 278 279 /** 280 * clear_inode - clear an inode 281 * @inode: inode to clear 282 * 283 * This is called by the filesystem to tell us 284 * that the inode is no longer useful. We just 285 * terminate it with extreme prejudice. 286 */ 287 void clear_inode(struct inode *inode) 288 { 289 might_sleep(); 290 invalidate_inode_buffers(inode); 291 292 BUG_ON(inode->i_data.nrpages); 293 BUG_ON(!(inode->i_state & I_FREEING)); 294 BUG_ON(inode->i_state & I_CLEAR); 295 inode_sync_wait(inode); 296 vfs_dq_drop(inode); 297 if (inode->i_sb->s_op->clear_inode) 298 inode->i_sb->s_op->clear_inode(inode); 299 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 300 bd_forget(inode); 301 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 302 cd_forget(inode); 303 inode->i_state = I_CLEAR; 304 } 305 EXPORT_SYMBOL(clear_inode); 306 307 /* 308 * dispose_list - dispose of the contents of a local list 309 * @head: the head of the list to free 310 * 311 * Dispose-list gets a local list with local inodes in it, so it doesn't 312 * need to worry about list corruption and SMP locks. 313 */ 314 static void dispose_list(struct list_head *head) 315 { 316 int nr_disposed = 0; 317 318 while (!list_empty(head)) { 319 struct inode *inode; 320 321 inode = list_first_entry(head, struct inode, i_list); 322 list_del(&inode->i_list); 323 324 if (inode->i_data.nrpages) 325 truncate_inode_pages(&inode->i_data, 0); 326 clear_inode(inode); 327 328 spin_lock(&inode_lock); 329 hlist_del_init(&inode->i_hash); 330 list_del_init(&inode->i_sb_list); 331 spin_unlock(&inode_lock); 332 333 wake_up_inode(inode); 334 destroy_inode(inode); 335 nr_disposed++; 336 } 337 spin_lock(&inode_lock); 338 inodes_stat.nr_inodes -= nr_disposed; 339 spin_unlock(&inode_lock); 340 } 341 342 /* 343 * Invalidate all inodes for a device. 344 */ 345 static int invalidate_list(struct list_head *head, struct list_head *dispose) 346 { 347 struct list_head *next; 348 int busy = 0, count = 0; 349 350 next = head->next; 351 for (;;) { 352 struct list_head *tmp = next; 353 struct inode *inode; 354 355 /* 356 * We can reschedule here without worrying about the list's 357 * consistency because the per-sb list of inodes must not 358 * change during umount anymore, and because iprune_mutex keeps 359 * shrink_icache_memory() away. 360 */ 361 cond_resched_lock(&inode_lock); 362 363 next = next->next; 364 if (tmp == head) 365 break; 366 inode = list_entry(tmp, struct inode, i_sb_list); 367 if (inode->i_state & I_NEW) 368 continue; 369 invalidate_inode_buffers(inode); 370 if (!atomic_read(&inode->i_count)) { 371 list_move(&inode->i_list, dispose); 372 WARN_ON(inode->i_state & I_NEW); 373 inode->i_state |= I_FREEING; 374 count++; 375 continue; 376 } 377 busy = 1; 378 } 379 /* only unused inodes may be cached with i_count zero */ 380 inodes_stat.nr_unused -= count; 381 return busy; 382 } 383 384 /** 385 * invalidate_inodes - discard the inodes on a device 386 * @sb: superblock 387 * 388 * Discard all of the inodes for a given superblock. If the discard 389 * fails because there are busy inodes then a non zero value is returned. 390 * If the discard is successful all the inodes have been discarded. 391 */ 392 int invalidate_inodes(struct super_block *sb) 393 { 394 int busy; 395 LIST_HEAD(throw_away); 396 397 mutex_lock(&iprune_mutex); 398 spin_lock(&inode_lock); 399 inotify_unmount_inodes(&sb->s_inodes); 400 busy = invalidate_list(&sb->s_inodes, &throw_away); 401 spin_unlock(&inode_lock); 402 403 dispose_list(&throw_away); 404 mutex_unlock(&iprune_mutex); 405 406 return busy; 407 } 408 EXPORT_SYMBOL(invalidate_inodes); 409 410 static int can_unuse(struct inode *inode) 411 { 412 if (inode->i_state) 413 return 0; 414 if (inode_has_buffers(inode)) 415 return 0; 416 if (atomic_read(&inode->i_count)) 417 return 0; 418 if (inode->i_data.nrpages) 419 return 0; 420 return 1; 421 } 422 423 /* 424 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 425 * a temporary list and then are freed outside inode_lock by dispose_list(). 426 * 427 * Any inodes which are pinned purely because of attached pagecache have their 428 * pagecache removed. We expect the final iput() on that inode to add it to 429 * the front of the inode_unused list. So look for it there and if the 430 * inode is still freeable, proceed. The right inode is found 99.9% of the 431 * time in testing on a 4-way. 432 * 433 * If the inode has metadata buffers attached to mapping->private_list then 434 * try to remove them. 435 */ 436 static void prune_icache(int nr_to_scan) 437 { 438 LIST_HEAD(freeable); 439 int nr_pruned = 0; 440 int nr_scanned; 441 unsigned long reap = 0; 442 443 mutex_lock(&iprune_mutex); 444 spin_lock(&inode_lock); 445 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 446 struct inode *inode; 447 448 if (list_empty(&inode_unused)) 449 break; 450 451 inode = list_entry(inode_unused.prev, struct inode, i_list); 452 453 if (inode->i_state || atomic_read(&inode->i_count)) { 454 list_move(&inode->i_list, &inode_unused); 455 continue; 456 } 457 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 458 __iget(inode); 459 spin_unlock(&inode_lock); 460 if (remove_inode_buffers(inode)) 461 reap += invalidate_mapping_pages(&inode->i_data, 462 0, -1); 463 iput(inode); 464 spin_lock(&inode_lock); 465 466 if (inode != list_entry(inode_unused.next, 467 struct inode, i_list)) 468 continue; /* wrong inode or list_empty */ 469 if (!can_unuse(inode)) 470 continue; 471 } 472 list_move(&inode->i_list, &freeable); 473 WARN_ON(inode->i_state & I_NEW); 474 inode->i_state |= I_FREEING; 475 nr_pruned++; 476 } 477 inodes_stat.nr_unused -= nr_pruned; 478 if (current_is_kswapd()) 479 __count_vm_events(KSWAPD_INODESTEAL, reap); 480 else 481 __count_vm_events(PGINODESTEAL, reap); 482 spin_unlock(&inode_lock); 483 484 dispose_list(&freeable); 485 mutex_unlock(&iprune_mutex); 486 } 487 488 /* 489 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 490 * "unused" means that no dentries are referring to the inodes: the files are 491 * not open and the dcache references to those inodes have already been 492 * reclaimed. 493 * 494 * This function is passed the number of inodes to scan, and it returns the 495 * total number of remaining possibly-reclaimable inodes. 496 */ 497 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 498 { 499 if (nr) { 500 /* 501 * Nasty deadlock avoidance. We may hold various FS locks, 502 * and we don't want to recurse into the FS that called us 503 * in clear_inode() and friends.. 504 */ 505 if (!(gfp_mask & __GFP_FS)) 506 return -1; 507 prune_icache(nr); 508 } 509 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 510 } 511 512 static struct shrinker icache_shrinker = { 513 .shrink = shrink_icache_memory, 514 .seeks = DEFAULT_SEEKS, 515 }; 516 517 static void __wait_on_freeing_inode(struct inode *inode); 518 /* 519 * Called with the inode lock held. 520 * NOTE: we are not increasing the inode-refcount, you must call __iget() 521 * by hand after calling find_inode now! This simplifies iunique and won't 522 * add any additional branch in the common code. 523 */ 524 static struct inode *find_inode(struct super_block *sb, 525 struct hlist_head *head, 526 int (*test)(struct inode *, void *), 527 void *data) 528 { 529 struct hlist_node *node; 530 struct inode *inode = NULL; 531 532 repeat: 533 hlist_for_each_entry(inode, node, head, i_hash) { 534 if (inode->i_sb != sb) 535 continue; 536 if (!test(inode, data)) 537 continue; 538 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 539 __wait_on_freeing_inode(inode); 540 goto repeat; 541 } 542 break; 543 } 544 return node ? inode : NULL; 545 } 546 547 /* 548 * find_inode_fast is the fast path version of find_inode, see the comment at 549 * iget_locked for details. 550 */ 551 static struct inode *find_inode_fast(struct super_block *sb, 552 struct hlist_head *head, unsigned long ino) 553 { 554 struct hlist_node *node; 555 struct inode *inode = NULL; 556 557 repeat: 558 hlist_for_each_entry(inode, node, head, i_hash) { 559 if (inode->i_ino != ino) 560 continue; 561 if (inode->i_sb != sb) 562 continue; 563 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 564 __wait_on_freeing_inode(inode); 565 goto repeat; 566 } 567 break; 568 } 569 return node ? inode : NULL; 570 } 571 572 static unsigned long hash(struct super_block *sb, unsigned long hashval) 573 { 574 unsigned long tmp; 575 576 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 577 L1_CACHE_BYTES; 578 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 579 return tmp & I_HASHMASK; 580 } 581 582 static inline void 583 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 584 struct inode *inode) 585 { 586 inodes_stat.nr_inodes++; 587 list_add(&inode->i_list, &inode_in_use); 588 list_add(&inode->i_sb_list, &sb->s_inodes); 589 if (head) 590 hlist_add_head(&inode->i_hash, head); 591 } 592 593 /** 594 * inode_add_to_lists - add a new inode to relevant lists 595 * @sb: superblock inode belongs to 596 * @inode: inode to mark in use 597 * 598 * When an inode is allocated it needs to be accounted for, added to the in use 599 * list, the owning superblock and the inode hash. This needs to be done under 600 * the inode_lock, so export a function to do this rather than the inode lock 601 * itself. We calculate the hash list to add to here so it is all internal 602 * which requires the caller to have already set up the inode number in the 603 * inode to add. 604 */ 605 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 606 { 607 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 608 609 spin_lock(&inode_lock); 610 __inode_add_to_lists(sb, head, inode); 611 spin_unlock(&inode_lock); 612 } 613 EXPORT_SYMBOL_GPL(inode_add_to_lists); 614 615 /** 616 * new_inode - obtain an inode 617 * @sb: superblock 618 * 619 * Allocates a new inode for given superblock. The default gfp_mask 620 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 621 * If HIGHMEM pages are unsuitable or it is known that pages allocated 622 * for the page cache are not reclaimable or migratable, 623 * mapping_set_gfp_mask() must be called with suitable flags on the 624 * newly created inode's mapping 625 * 626 */ 627 struct inode *new_inode(struct super_block *sb) 628 { 629 /* 630 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 631 * error if st_ino won't fit in target struct field. Use 32bit counter 632 * here to attempt to avoid that. 633 */ 634 static unsigned int last_ino; 635 struct inode *inode; 636 637 spin_lock_prefetch(&inode_lock); 638 639 inode = alloc_inode(sb); 640 if (inode) { 641 spin_lock(&inode_lock); 642 __inode_add_to_lists(sb, NULL, inode); 643 inode->i_ino = ++last_ino; 644 inode->i_state = 0; 645 spin_unlock(&inode_lock); 646 } 647 return inode; 648 } 649 EXPORT_SYMBOL(new_inode); 650 651 void unlock_new_inode(struct inode *inode) 652 { 653 #ifdef CONFIG_DEBUG_LOCK_ALLOC 654 if (inode->i_mode & S_IFDIR) { 655 struct file_system_type *type = inode->i_sb->s_type; 656 657 /* 658 * ensure nobody is actually holding i_mutex 659 */ 660 mutex_destroy(&inode->i_mutex); 661 mutex_init(&inode->i_mutex); 662 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 663 } 664 #endif 665 /* 666 * This is special! We do not need the spinlock 667 * when clearing I_LOCK, because we're guaranteed 668 * that nobody else tries to do anything about the 669 * state of the inode when it is locked, as we 670 * just created it (so there can be no old holders 671 * that haven't tested I_LOCK). 672 */ 673 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW)); 674 inode->i_state &= ~(I_LOCK|I_NEW); 675 wake_up_inode(inode); 676 } 677 EXPORT_SYMBOL(unlock_new_inode); 678 679 /* 680 * This is called without the inode lock held.. Be careful. 681 * 682 * We no longer cache the sb_flags in i_flags - see fs.h 683 * -- rmk@arm.uk.linux.org 684 */ 685 static struct inode *get_new_inode(struct super_block *sb, 686 struct hlist_head *head, 687 int (*test)(struct inode *, void *), 688 int (*set)(struct inode *, void *), 689 void *data) 690 { 691 struct inode *inode; 692 693 inode = alloc_inode(sb); 694 if (inode) { 695 struct inode *old; 696 697 spin_lock(&inode_lock); 698 /* We released the lock, so.. */ 699 old = find_inode(sb, head, test, data); 700 if (!old) { 701 if (set(inode, data)) 702 goto set_failed; 703 704 __inode_add_to_lists(sb, head, inode); 705 inode->i_state = I_LOCK|I_NEW; 706 spin_unlock(&inode_lock); 707 708 /* Return the locked inode with I_NEW set, the 709 * caller is responsible for filling in the contents 710 */ 711 return inode; 712 } 713 714 /* 715 * Uhhuh, somebody else created the same inode under 716 * us. Use the old inode instead of the one we just 717 * allocated. 718 */ 719 __iget(old); 720 spin_unlock(&inode_lock); 721 destroy_inode(inode); 722 inode = old; 723 wait_on_inode(inode); 724 } 725 return inode; 726 727 set_failed: 728 spin_unlock(&inode_lock); 729 destroy_inode(inode); 730 return NULL; 731 } 732 733 /* 734 * get_new_inode_fast is the fast path version of get_new_inode, see the 735 * comment at iget_locked for details. 736 */ 737 static struct inode *get_new_inode_fast(struct super_block *sb, 738 struct hlist_head *head, unsigned long ino) 739 { 740 struct inode *inode; 741 742 inode = alloc_inode(sb); 743 if (inode) { 744 struct inode *old; 745 746 spin_lock(&inode_lock); 747 /* We released the lock, so.. */ 748 old = find_inode_fast(sb, head, ino); 749 if (!old) { 750 inode->i_ino = ino; 751 __inode_add_to_lists(sb, head, inode); 752 inode->i_state = I_LOCK|I_NEW; 753 spin_unlock(&inode_lock); 754 755 /* Return the locked inode with I_NEW set, the 756 * caller is responsible for filling in the contents 757 */ 758 return inode; 759 } 760 761 /* 762 * Uhhuh, somebody else created the same inode under 763 * us. Use the old inode instead of the one we just 764 * allocated. 765 */ 766 __iget(old); 767 spin_unlock(&inode_lock); 768 destroy_inode(inode); 769 inode = old; 770 wait_on_inode(inode); 771 } 772 return inode; 773 } 774 775 /** 776 * iunique - get a unique inode number 777 * @sb: superblock 778 * @max_reserved: highest reserved inode number 779 * 780 * Obtain an inode number that is unique on the system for a given 781 * superblock. This is used by file systems that have no natural 782 * permanent inode numbering system. An inode number is returned that 783 * is higher than the reserved limit but unique. 784 * 785 * BUGS: 786 * With a large number of inodes live on the file system this function 787 * currently becomes quite slow. 788 */ 789 ino_t iunique(struct super_block *sb, ino_t max_reserved) 790 { 791 /* 792 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 793 * error if st_ino won't fit in target struct field. Use 32bit counter 794 * here to attempt to avoid that. 795 */ 796 static unsigned int counter; 797 struct inode *inode; 798 struct hlist_head *head; 799 ino_t res; 800 801 spin_lock(&inode_lock); 802 do { 803 if (counter <= max_reserved) 804 counter = max_reserved + 1; 805 res = counter++; 806 head = inode_hashtable + hash(sb, res); 807 inode = find_inode_fast(sb, head, res); 808 } while (inode != NULL); 809 spin_unlock(&inode_lock); 810 811 return res; 812 } 813 EXPORT_SYMBOL(iunique); 814 815 struct inode *igrab(struct inode *inode) 816 { 817 spin_lock(&inode_lock); 818 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 819 __iget(inode); 820 else 821 /* 822 * Handle the case where s_op->clear_inode is not been 823 * called yet, and somebody is calling igrab 824 * while the inode is getting freed. 825 */ 826 inode = NULL; 827 spin_unlock(&inode_lock); 828 return inode; 829 } 830 EXPORT_SYMBOL(igrab); 831 832 /** 833 * ifind - internal function, you want ilookup5() or iget5(). 834 * @sb: super block of file system to search 835 * @head: the head of the list to search 836 * @test: callback used for comparisons between inodes 837 * @data: opaque data pointer to pass to @test 838 * @wait: if true wait for the inode to be unlocked, if false do not 839 * 840 * ifind() searches for the inode specified by @data in the inode 841 * cache. This is a generalized version of ifind_fast() for file systems where 842 * the inode number is not sufficient for unique identification of an inode. 843 * 844 * If the inode is in the cache, the inode is returned with an incremented 845 * reference count. 846 * 847 * Otherwise NULL is returned. 848 * 849 * Note, @test is called with the inode_lock held, so can't sleep. 850 */ 851 static struct inode *ifind(struct super_block *sb, 852 struct hlist_head *head, int (*test)(struct inode *, void *), 853 void *data, const int wait) 854 { 855 struct inode *inode; 856 857 spin_lock(&inode_lock); 858 inode = find_inode(sb, head, test, data); 859 if (inode) { 860 __iget(inode); 861 spin_unlock(&inode_lock); 862 if (likely(wait)) 863 wait_on_inode(inode); 864 return inode; 865 } 866 spin_unlock(&inode_lock); 867 return NULL; 868 } 869 870 /** 871 * ifind_fast - internal function, you want ilookup() or iget(). 872 * @sb: super block of file system to search 873 * @head: head of the list to search 874 * @ino: inode number to search for 875 * 876 * ifind_fast() searches for the inode @ino in the inode cache. This is for 877 * file systems where the inode number is sufficient for unique identification 878 * of an inode. 879 * 880 * If the inode is in the cache, the inode is returned with an incremented 881 * reference count. 882 * 883 * Otherwise NULL is returned. 884 */ 885 static struct inode *ifind_fast(struct super_block *sb, 886 struct hlist_head *head, unsigned long ino) 887 { 888 struct inode *inode; 889 890 spin_lock(&inode_lock); 891 inode = find_inode_fast(sb, head, ino); 892 if (inode) { 893 __iget(inode); 894 spin_unlock(&inode_lock); 895 wait_on_inode(inode); 896 return inode; 897 } 898 spin_unlock(&inode_lock); 899 return NULL; 900 } 901 902 /** 903 * ilookup5_nowait - search for an inode in the inode cache 904 * @sb: super block of file system to search 905 * @hashval: hash value (usually inode number) to search for 906 * @test: callback used for comparisons between inodes 907 * @data: opaque data pointer to pass to @test 908 * 909 * ilookup5() uses ifind() to search for the inode specified by @hashval and 910 * @data in the inode cache. This is a generalized version of ilookup() for 911 * file systems where the inode number is not sufficient for unique 912 * identification of an inode. 913 * 914 * If the inode is in the cache, the inode is returned with an incremented 915 * reference count. Note, the inode lock is not waited upon so you have to be 916 * very careful what you do with the returned inode. You probably should be 917 * using ilookup5() instead. 918 * 919 * Otherwise NULL is returned. 920 * 921 * Note, @test is called with the inode_lock held, so can't sleep. 922 */ 923 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 924 int (*test)(struct inode *, void *), void *data) 925 { 926 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 927 928 return ifind(sb, head, test, data, 0); 929 } 930 EXPORT_SYMBOL(ilookup5_nowait); 931 932 /** 933 * ilookup5 - search for an inode in the inode cache 934 * @sb: super block of file system to search 935 * @hashval: hash value (usually inode number) to search for 936 * @test: callback used for comparisons between inodes 937 * @data: opaque data pointer to pass to @test 938 * 939 * ilookup5() uses ifind() to search for the inode specified by @hashval and 940 * @data in the inode cache. This is a generalized version of ilookup() for 941 * file systems where the inode number is not sufficient for unique 942 * identification of an inode. 943 * 944 * If the inode is in the cache, the inode lock is waited upon and the inode is 945 * returned with an incremented reference count. 946 * 947 * Otherwise NULL is returned. 948 * 949 * Note, @test is called with the inode_lock held, so can't sleep. 950 */ 951 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 952 int (*test)(struct inode *, void *), void *data) 953 { 954 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 955 956 return ifind(sb, head, test, data, 1); 957 } 958 EXPORT_SYMBOL(ilookup5); 959 960 /** 961 * ilookup - search for an inode in the inode cache 962 * @sb: super block of file system to search 963 * @ino: inode number to search for 964 * 965 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 966 * This is for file systems where the inode number is sufficient for unique 967 * identification of an inode. 968 * 969 * If the inode is in the cache, the inode is returned with an incremented 970 * reference count. 971 * 972 * Otherwise NULL is returned. 973 */ 974 struct inode *ilookup(struct super_block *sb, unsigned long ino) 975 { 976 struct hlist_head *head = inode_hashtable + hash(sb, ino); 977 978 return ifind_fast(sb, head, ino); 979 } 980 EXPORT_SYMBOL(ilookup); 981 982 /** 983 * iget5_locked - obtain an inode from a mounted file system 984 * @sb: super block of file system 985 * @hashval: hash value (usually inode number) to get 986 * @test: callback used for comparisons between inodes 987 * @set: callback used to initialize a new struct inode 988 * @data: opaque data pointer to pass to @test and @set 989 * 990 * iget5_locked() uses ifind() to search for the inode specified by @hashval 991 * and @data in the inode cache and if present it is returned with an increased 992 * reference count. This is a generalized version of iget_locked() for file 993 * systems where the inode number is not sufficient for unique identification 994 * of an inode. 995 * 996 * If the inode is not in cache, get_new_inode() is called to allocate a new 997 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 998 * file system gets to fill it in before unlocking it via unlock_new_inode(). 999 * 1000 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1001 */ 1002 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1003 int (*test)(struct inode *, void *), 1004 int (*set)(struct inode *, void *), void *data) 1005 { 1006 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1007 struct inode *inode; 1008 1009 inode = ifind(sb, head, test, data, 1); 1010 if (inode) 1011 return inode; 1012 /* 1013 * get_new_inode() will do the right thing, re-trying the search 1014 * in case it had to block at any point. 1015 */ 1016 return get_new_inode(sb, head, test, set, data); 1017 } 1018 EXPORT_SYMBOL(iget5_locked); 1019 1020 /** 1021 * iget_locked - obtain an inode from a mounted file system 1022 * @sb: super block of file system 1023 * @ino: inode number to get 1024 * 1025 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1026 * the inode cache and if present it is returned with an increased reference 1027 * count. This is for file systems where the inode number is sufficient for 1028 * unique identification of an inode. 1029 * 1030 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1031 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1032 * The file system gets to fill it in before unlocking it via 1033 * unlock_new_inode(). 1034 */ 1035 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1036 { 1037 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1038 struct inode *inode; 1039 1040 inode = ifind_fast(sb, head, ino); 1041 if (inode) 1042 return inode; 1043 /* 1044 * get_new_inode_fast() will do the right thing, re-trying the search 1045 * in case it had to block at any point. 1046 */ 1047 return get_new_inode_fast(sb, head, ino); 1048 } 1049 EXPORT_SYMBOL(iget_locked); 1050 1051 int insert_inode_locked(struct inode *inode) 1052 { 1053 struct super_block *sb = inode->i_sb; 1054 ino_t ino = inode->i_ino; 1055 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1056 struct inode *old; 1057 1058 inode->i_state |= I_LOCK|I_NEW; 1059 while (1) { 1060 spin_lock(&inode_lock); 1061 old = find_inode_fast(sb, head, ino); 1062 if (likely(!old)) { 1063 hlist_add_head(&inode->i_hash, head); 1064 spin_unlock(&inode_lock); 1065 return 0; 1066 } 1067 __iget(old); 1068 spin_unlock(&inode_lock); 1069 wait_on_inode(old); 1070 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1071 iput(old); 1072 return -EBUSY; 1073 } 1074 iput(old); 1075 } 1076 } 1077 EXPORT_SYMBOL(insert_inode_locked); 1078 1079 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1080 int (*test)(struct inode *, void *), void *data) 1081 { 1082 struct super_block *sb = inode->i_sb; 1083 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1084 struct inode *old; 1085 1086 inode->i_state |= I_LOCK|I_NEW; 1087 1088 while (1) { 1089 spin_lock(&inode_lock); 1090 old = find_inode(sb, head, test, data); 1091 if (likely(!old)) { 1092 hlist_add_head(&inode->i_hash, head); 1093 spin_unlock(&inode_lock); 1094 return 0; 1095 } 1096 __iget(old); 1097 spin_unlock(&inode_lock); 1098 wait_on_inode(old); 1099 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1100 iput(old); 1101 return -EBUSY; 1102 } 1103 iput(old); 1104 } 1105 } 1106 EXPORT_SYMBOL(insert_inode_locked4); 1107 1108 /** 1109 * __insert_inode_hash - hash an inode 1110 * @inode: unhashed inode 1111 * @hashval: unsigned long value used to locate this object in the 1112 * inode_hashtable. 1113 * 1114 * Add an inode to the inode hash for this superblock. 1115 */ 1116 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1117 { 1118 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1119 spin_lock(&inode_lock); 1120 hlist_add_head(&inode->i_hash, head); 1121 spin_unlock(&inode_lock); 1122 } 1123 EXPORT_SYMBOL(__insert_inode_hash); 1124 1125 /** 1126 * remove_inode_hash - remove an inode from the hash 1127 * @inode: inode to unhash 1128 * 1129 * Remove an inode from the superblock. 1130 */ 1131 void remove_inode_hash(struct inode *inode) 1132 { 1133 spin_lock(&inode_lock); 1134 hlist_del_init(&inode->i_hash); 1135 spin_unlock(&inode_lock); 1136 } 1137 EXPORT_SYMBOL(remove_inode_hash); 1138 1139 /* 1140 * Tell the filesystem that this inode is no longer of any interest and should 1141 * be completely destroyed. 1142 * 1143 * We leave the inode in the inode hash table until *after* the filesystem's 1144 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1145 * instigate) will always find up-to-date information either in the hash or on 1146 * disk. 1147 * 1148 * I_FREEING is set so that no-one will take a new reference to the inode while 1149 * it is being deleted. 1150 */ 1151 void generic_delete_inode(struct inode *inode) 1152 { 1153 const struct super_operations *op = inode->i_sb->s_op; 1154 1155 list_del_init(&inode->i_list); 1156 list_del_init(&inode->i_sb_list); 1157 WARN_ON(inode->i_state & I_NEW); 1158 inode->i_state |= I_FREEING; 1159 inodes_stat.nr_inodes--; 1160 spin_unlock(&inode_lock); 1161 1162 security_inode_delete(inode); 1163 1164 if (op->delete_inode) { 1165 void (*delete)(struct inode *) = op->delete_inode; 1166 if (!is_bad_inode(inode)) 1167 vfs_dq_init(inode); 1168 /* Filesystems implementing their own 1169 * s_op->delete_inode are required to call 1170 * truncate_inode_pages and clear_inode() 1171 * internally */ 1172 delete(inode); 1173 } else { 1174 truncate_inode_pages(&inode->i_data, 0); 1175 clear_inode(inode); 1176 } 1177 spin_lock(&inode_lock); 1178 hlist_del_init(&inode->i_hash); 1179 spin_unlock(&inode_lock); 1180 wake_up_inode(inode); 1181 BUG_ON(inode->i_state != I_CLEAR); 1182 destroy_inode(inode); 1183 } 1184 EXPORT_SYMBOL(generic_delete_inode); 1185 1186 static void generic_forget_inode(struct inode *inode) 1187 { 1188 struct super_block *sb = inode->i_sb; 1189 1190 if (!hlist_unhashed(&inode->i_hash)) { 1191 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1192 list_move(&inode->i_list, &inode_unused); 1193 inodes_stat.nr_unused++; 1194 if (sb->s_flags & MS_ACTIVE) { 1195 spin_unlock(&inode_lock); 1196 return; 1197 } 1198 WARN_ON(inode->i_state & I_NEW); 1199 inode->i_state |= I_WILL_FREE; 1200 spin_unlock(&inode_lock); 1201 write_inode_now(inode, 1); 1202 spin_lock(&inode_lock); 1203 WARN_ON(inode->i_state & I_NEW); 1204 inode->i_state &= ~I_WILL_FREE; 1205 inodes_stat.nr_unused--; 1206 hlist_del_init(&inode->i_hash); 1207 } 1208 list_del_init(&inode->i_list); 1209 list_del_init(&inode->i_sb_list); 1210 WARN_ON(inode->i_state & I_NEW); 1211 inode->i_state |= I_FREEING; 1212 inodes_stat.nr_inodes--; 1213 spin_unlock(&inode_lock); 1214 if (inode->i_data.nrpages) 1215 truncate_inode_pages(&inode->i_data, 0); 1216 clear_inode(inode); 1217 wake_up_inode(inode); 1218 destroy_inode(inode); 1219 } 1220 1221 /* 1222 * Normal UNIX filesystem behaviour: delete the 1223 * inode when the usage count drops to zero, and 1224 * i_nlink is zero. 1225 */ 1226 void generic_drop_inode(struct inode *inode) 1227 { 1228 if (!inode->i_nlink) 1229 generic_delete_inode(inode); 1230 else 1231 generic_forget_inode(inode); 1232 } 1233 EXPORT_SYMBOL_GPL(generic_drop_inode); 1234 1235 /* 1236 * Called when we're dropping the last reference 1237 * to an inode. 1238 * 1239 * Call the FS "drop()" function, defaulting to 1240 * the legacy UNIX filesystem behaviour.. 1241 * 1242 * NOTE! NOTE! NOTE! We're called with the inode lock 1243 * held, and the drop function is supposed to release 1244 * the lock! 1245 */ 1246 static inline void iput_final(struct inode *inode) 1247 { 1248 const struct super_operations *op = inode->i_sb->s_op; 1249 void (*drop)(struct inode *) = generic_drop_inode; 1250 1251 if (op && op->drop_inode) 1252 drop = op->drop_inode; 1253 drop(inode); 1254 } 1255 1256 /** 1257 * iput - put an inode 1258 * @inode: inode to put 1259 * 1260 * Puts an inode, dropping its usage count. If the inode use count hits 1261 * zero, the inode is then freed and may also be destroyed. 1262 * 1263 * Consequently, iput() can sleep. 1264 */ 1265 void iput(struct inode *inode) 1266 { 1267 if (inode) { 1268 BUG_ON(inode->i_state == I_CLEAR); 1269 1270 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1271 iput_final(inode); 1272 } 1273 } 1274 EXPORT_SYMBOL(iput); 1275 1276 /** 1277 * bmap - find a block number in a file 1278 * @inode: inode of file 1279 * @block: block to find 1280 * 1281 * Returns the block number on the device holding the inode that 1282 * is the disk block number for the block of the file requested. 1283 * That is, asked for block 4 of inode 1 the function will return the 1284 * disk block relative to the disk start that holds that block of the 1285 * file. 1286 */ 1287 sector_t bmap(struct inode *inode, sector_t block) 1288 { 1289 sector_t res = 0; 1290 if (inode->i_mapping->a_ops->bmap) 1291 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1292 return res; 1293 } 1294 EXPORT_SYMBOL(bmap); 1295 1296 /* 1297 * With relative atime, only update atime if the previous atime is 1298 * earlier than either the ctime or mtime or if at least a day has 1299 * passed since the last atime update. 1300 */ 1301 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1302 struct timespec now) 1303 { 1304 1305 if (!(mnt->mnt_flags & MNT_RELATIME)) 1306 return 1; 1307 /* 1308 * Is mtime younger than atime? If yes, update atime: 1309 */ 1310 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1311 return 1; 1312 /* 1313 * Is ctime younger than atime? If yes, update atime: 1314 */ 1315 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1316 return 1; 1317 1318 /* 1319 * Is the previous atime value older than a day? If yes, 1320 * update atime: 1321 */ 1322 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1323 return 1; 1324 /* 1325 * Good, we can skip the atime update: 1326 */ 1327 return 0; 1328 } 1329 1330 /** 1331 * touch_atime - update the access time 1332 * @mnt: mount the inode is accessed on 1333 * @dentry: dentry accessed 1334 * 1335 * Update the accessed time on an inode and mark it for writeback. 1336 * This function automatically handles read only file systems and media, 1337 * as well as the "noatime" flag and inode specific "noatime" markers. 1338 */ 1339 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1340 { 1341 struct inode *inode = dentry->d_inode; 1342 struct timespec now; 1343 1344 if (mnt_want_write(mnt)) 1345 return; 1346 if (inode->i_flags & S_NOATIME) 1347 goto out; 1348 if (IS_NOATIME(inode)) 1349 goto out; 1350 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1351 goto out; 1352 1353 if (mnt->mnt_flags & MNT_NOATIME) 1354 goto out; 1355 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1356 goto out; 1357 1358 now = current_fs_time(inode->i_sb); 1359 1360 if (!relatime_need_update(mnt, inode, now)) 1361 goto out; 1362 1363 if (timespec_equal(&inode->i_atime, &now)) 1364 goto out; 1365 1366 inode->i_atime = now; 1367 mark_inode_dirty_sync(inode); 1368 out: 1369 mnt_drop_write(mnt); 1370 } 1371 EXPORT_SYMBOL(touch_atime); 1372 1373 /** 1374 * file_update_time - update mtime and ctime time 1375 * @file: file accessed 1376 * 1377 * Update the mtime and ctime members of an inode and mark the inode 1378 * for writeback. Note that this function is meant exclusively for 1379 * usage in the file write path of filesystems, and filesystems may 1380 * choose to explicitly ignore update via this function with the 1381 * S_NOCTIME inode flag, e.g. for network filesystem where these 1382 * timestamps are handled by the server. 1383 */ 1384 1385 void file_update_time(struct file *file) 1386 { 1387 struct inode *inode = file->f_path.dentry->d_inode; 1388 struct timespec now; 1389 int sync_it = 0; 1390 int err; 1391 1392 if (IS_NOCMTIME(inode)) 1393 return; 1394 1395 err = mnt_want_write(file->f_path.mnt); 1396 if (err) 1397 return; 1398 1399 now = current_fs_time(inode->i_sb); 1400 if (!timespec_equal(&inode->i_mtime, &now)) { 1401 inode->i_mtime = now; 1402 sync_it = 1; 1403 } 1404 1405 if (!timespec_equal(&inode->i_ctime, &now)) { 1406 inode->i_ctime = now; 1407 sync_it = 1; 1408 } 1409 1410 if (IS_I_VERSION(inode)) { 1411 inode_inc_iversion(inode); 1412 sync_it = 1; 1413 } 1414 1415 if (sync_it) 1416 mark_inode_dirty_sync(inode); 1417 mnt_drop_write(file->f_path.mnt); 1418 } 1419 EXPORT_SYMBOL(file_update_time); 1420 1421 int inode_needs_sync(struct inode *inode) 1422 { 1423 if (IS_SYNC(inode)) 1424 return 1; 1425 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1426 return 1; 1427 return 0; 1428 } 1429 EXPORT_SYMBOL(inode_needs_sync); 1430 1431 int inode_wait(void *word) 1432 { 1433 schedule(); 1434 return 0; 1435 } 1436 EXPORT_SYMBOL(inode_wait); 1437 1438 /* 1439 * If we try to find an inode in the inode hash while it is being 1440 * deleted, we have to wait until the filesystem completes its 1441 * deletion before reporting that it isn't found. This function waits 1442 * until the deletion _might_ have completed. Callers are responsible 1443 * to recheck inode state. 1444 * 1445 * It doesn't matter if I_LOCK is not set initially, a call to 1446 * wake_up_inode() after removing from the hash list will DTRT. 1447 * 1448 * This is called with inode_lock held. 1449 */ 1450 static void __wait_on_freeing_inode(struct inode *inode) 1451 { 1452 wait_queue_head_t *wq; 1453 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1454 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1455 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1456 spin_unlock(&inode_lock); 1457 schedule(); 1458 finish_wait(wq, &wait.wait); 1459 spin_lock(&inode_lock); 1460 } 1461 1462 static __initdata unsigned long ihash_entries; 1463 static int __init set_ihash_entries(char *str) 1464 { 1465 if (!str) 1466 return 0; 1467 ihash_entries = simple_strtoul(str, &str, 0); 1468 return 1; 1469 } 1470 __setup("ihash_entries=", set_ihash_entries); 1471 1472 /* 1473 * Initialize the waitqueues and inode hash table. 1474 */ 1475 void __init inode_init_early(void) 1476 { 1477 int loop; 1478 1479 /* If hashes are distributed across NUMA nodes, defer 1480 * hash allocation until vmalloc space is available. 1481 */ 1482 if (hashdist) 1483 return; 1484 1485 inode_hashtable = 1486 alloc_large_system_hash("Inode-cache", 1487 sizeof(struct hlist_head), 1488 ihash_entries, 1489 14, 1490 HASH_EARLY, 1491 &i_hash_shift, 1492 &i_hash_mask, 1493 0); 1494 1495 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1496 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1497 } 1498 1499 void __init inode_init(void) 1500 { 1501 int loop; 1502 1503 /* inode slab cache */ 1504 inode_cachep = kmem_cache_create("inode_cache", 1505 sizeof(struct inode), 1506 0, 1507 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1508 SLAB_MEM_SPREAD), 1509 init_once); 1510 register_shrinker(&icache_shrinker); 1511 1512 /* Hash may have been set up in inode_init_early */ 1513 if (!hashdist) 1514 return; 1515 1516 inode_hashtable = 1517 alloc_large_system_hash("Inode-cache", 1518 sizeof(struct hlist_head), 1519 ihash_entries, 1520 14, 1521 0, 1522 &i_hash_shift, 1523 &i_hash_mask, 1524 0); 1525 1526 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1527 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1528 } 1529 1530 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1531 { 1532 inode->i_mode = mode; 1533 if (S_ISCHR(mode)) { 1534 inode->i_fop = &def_chr_fops; 1535 inode->i_rdev = rdev; 1536 } else if (S_ISBLK(mode)) { 1537 inode->i_fop = &def_blk_fops; 1538 inode->i_rdev = rdev; 1539 } else if (S_ISFIFO(mode)) 1540 inode->i_fop = &def_fifo_fops; 1541 else if (S_ISSOCK(mode)) 1542 inode->i_fop = &bad_sock_fops; 1543 else 1544 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1545 mode); 1546 } 1547 EXPORT_SYMBOL(init_special_inode); 1548