1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/writeback.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/wait.h> 16 #include <linux/rwsem.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mount.h> 26 #include <linux/async.h> 27 #include <linux/posix_acl.h> 28 29 /* 30 * This is needed for the following functions: 31 * - inode_has_buffers 32 * - invalidate_inode_buffers 33 * - invalidate_bdev 34 * 35 * FIXME: remove all knowledge of the buffer layer from this file 36 */ 37 #include <linux/buffer_head.h> 38 39 /* 40 * New inode.c implementation. 41 * 42 * This implementation has the basic premise of trying 43 * to be extremely low-overhead and SMP-safe, yet be 44 * simple enough to be "obviously correct". 45 * 46 * Famous last words. 47 */ 48 49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 50 51 /* #define INODE_PARANOIA 1 */ 52 /* #define INODE_DEBUG 1 */ 53 54 /* 55 * Inode lookup is no longer as critical as it used to be: 56 * most of the lookups are going to be through the dcache. 57 */ 58 #define I_HASHBITS i_hash_shift 59 #define I_HASHMASK i_hash_mask 60 61 static unsigned int i_hash_mask __read_mostly; 62 static unsigned int i_hash_shift __read_mostly; 63 64 /* 65 * Each inode can be on two separate lists. One is 66 * the hash list of the inode, used for lookups. The 67 * other linked list is the "type" list: 68 * "in_use" - valid inode, i_count > 0, i_nlink > 0 69 * "dirty" - as "in_use" but also dirty 70 * "unused" - valid inode, i_count = 0 71 * 72 * A "dirty" list is maintained for each super block, 73 * allowing for low-overhead inode sync() operations. 74 */ 75 76 LIST_HEAD(inode_in_use); 77 LIST_HEAD(inode_unused); 78 static struct hlist_head *inode_hashtable __read_mostly; 79 80 /* 81 * A simple spinlock to protect the list manipulations. 82 * 83 * NOTE! You also have to own the lock if you change 84 * the i_state of an inode while it is in use.. 85 */ 86 DEFINE_SPINLOCK(inode_lock); 87 88 /* 89 * iprune_sem provides exclusion between the kswapd or try_to_free_pages 90 * icache shrinking path, and the umount path. Without this exclusion, 91 * by the time prune_icache calls iput for the inode whose pages it has 92 * been invalidating, or by the time it calls clear_inode & destroy_inode 93 * from its final dispose_list, the struct super_block they refer to 94 * (for inode->i_sb->s_op) may already have been freed and reused. 95 * 96 * We make this an rwsem because the fastpath is icache shrinking. In 97 * some cases a filesystem may be doing a significant amount of work in 98 * its inode reclaim code, so this should improve parallelism. 99 */ 100 static DECLARE_RWSEM(iprune_sem); 101 102 /* 103 * Statistics gathering.. 104 */ 105 struct inodes_stat_t inodes_stat; 106 107 static struct kmem_cache *inode_cachep __read_mostly; 108 109 static void wake_up_inode(struct inode *inode) 110 { 111 /* 112 * Prevent speculative execution through spin_unlock(&inode_lock); 113 */ 114 smp_mb(); 115 wake_up_bit(&inode->i_state, __I_NEW); 116 } 117 118 /** 119 * inode_init_always - perform inode structure intialisation 120 * @sb: superblock inode belongs to 121 * @inode: inode to initialise 122 * 123 * These are initializations that need to be done on every inode 124 * allocation as the fields are not initialised by slab allocation. 125 */ 126 int inode_init_always(struct super_block *sb, struct inode *inode) 127 { 128 static const struct address_space_operations empty_aops; 129 static const struct inode_operations empty_iops; 130 static const struct file_operations empty_fops; 131 struct address_space *const mapping = &inode->i_data; 132 133 inode->i_sb = sb; 134 inode->i_blkbits = sb->s_blocksize_bits; 135 inode->i_flags = 0; 136 atomic_set(&inode->i_count, 1); 137 inode->i_op = &empty_iops; 138 inode->i_fop = &empty_fops; 139 inode->i_nlink = 1; 140 inode->i_uid = 0; 141 inode->i_gid = 0; 142 atomic_set(&inode->i_writecount, 0); 143 inode->i_size = 0; 144 inode->i_blocks = 0; 145 inode->i_bytes = 0; 146 inode->i_generation = 0; 147 #ifdef CONFIG_QUOTA 148 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 149 #endif 150 inode->i_pipe = NULL; 151 inode->i_bdev = NULL; 152 inode->i_cdev = NULL; 153 inode->i_rdev = 0; 154 inode->dirtied_when = 0; 155 156 if (security_inode_alloc(inode)) 157 goto out; 158 spin_lock_init(&inode->i_lock); 159 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 160 161 mutex_init(&inode->i_mutex); 162 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 163 164 init_rwsem(&inode->i_alloc_sem); 165 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 166 167 mapping->a_ops = &empty_aops; 168 mapping->host = inode; 169 mapping->flags = 0; 170 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 171 mapping->assoc_mapping = NULL; 172 mapping->backing_dev_info = &default_backing_dev_info; 173 mapping->writeback_index = 0; 174 175 /* 176 * If the block_device provides a backing_dev_info for client 177 * inodes then use that. Otherwise the inode share the bdev's 178 * backing_dev_info. 179 */ 180 if (sb->s_bdev) { 181 struct backing_dev_info *bdi; 182 183 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 184 mapping->backing_dev_info = bdi; 185 } 186 inode->i_private = NULL; 187 inode->i_mapping = mapping; 188 #ifdef CONFIG_FS_POSIX_ACL 189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 190 #endif 191 192 #ifdef CONFIG_FSNOTIFY 193 inode->i_fsnotify_mask = 0; 194 #endif 195 196 return 0; 197 out: 198 return -ENOMEM; 199 } 200 EXPORT_SYMBOL(inode_init_always); 201 202 static struct inode *alloc_inode(struct super_block *sb) 203 { 204 struct inode *inode; 205 206 if (sb->s_op->alloc_inode) 207 inode = sb->s_op->alloc_inode(sb); 208 else 209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 210 211 if (!inode) 212 return NULL; 213 214 if (unlikely(inode_init_always(sb, inode))) { 215 if (inode->i_sb->s_op->destroy_inode) 216 inode->i_sb->s_op->destroy_inode(inode); 217 else 218 kmem_cache_free(inode_cachep, inode); 219 return NULL; 220 } 221 222 return inode; 223 } 224 225 void __destroy_inode(struct inode *inode) 226 { 227 BUG_ON(inode_has_buffers(inode)); 228 security_inode_free(inode); 229 fsnotify_inode_delete(inode); 230 #ifdef CONFIG_FS_POSIX_ACL 231 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 232 posix_acl_release(inode->i_acl); 233 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 234 posix_acl_release(inode->i_default_acl); 235 #endif 236 } 237 EXPORT_SYMBOL(__destroy_inode); 238 239 void destroy_inode(struct inode *inode) 240 { 241 __destroy_inode(inode); 242 if (inode->i_sb->s_op->destroy_inode) 243 inode->i_sb->s_op->destroy_inode(inode); 244 else 245 kmem_cache_free(inode_cachep, (inode)); 246 } 247 248 /* 249 * These are initializations that only need to be done 250 * once, because the fields are idempotent across use 251 * of the inode, so let the slab aware of that. 252 */ 253 void inode_init_once(struct inode *inode) 254 { 255 memset(inode, 0, sizeof(*inode)); 256 INIT_HLIST_NODE(&inode->i_hash); 257 INIT_LIST_HEAD(&inode->i_dentry); 258 INIT_LIST_HEAD(&inode->i_devices); 259 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 260 spin_lock_init(&inode->i_data.tree_lock); 261 spin_lock_init(&inode->i_data.i_mmap_lock); 262 INIT_LIST_HEAD(&inode->i_data.private_list); 263 spin_lock_init(&inode->i_data.private_lock); 264 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 265 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 266 i_size_ordered_init(inode); 267 #ifdef CONFIG_INOTIFY 268 INIT_LIST_HEAD(&inode->inotify_watches); 269 mutex_init(&inode->inotify_mutex); 270 #endif 271 #ifdef CONFIG_FSNOTIFY 272 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries); 273 #endif 274 } 275 EXPORT_SYMBOL(inode_init_once); 276 277 static void init_once(void *foo) 278 { 279 struct inode *inode = (struct inode *) foo; 280 281 inode_init_once(inode); 282 } 283 284 /* 285 * inode_lock must be held 286 */ 287 void __iget(struct inode *inode) 288 { 289 if (atomic_inc_return(&inode->i_count) != 1) 290 return; 291 292 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 293 list_move(&inode->i_list, &inode_in_use); 294 inodes_stat.nr_unused--; 295 } 296 297 /** 298 * clear_inode - clear an inode 299 * @inode: inode to clear 300 * 301 * This is called by the filesystem to tell us 302 * that the inode is no longer useful. We just 303 * terminate it with extreme prejudice. 304 */ 305 void clear_inode(struct inode *inode) 306 { 307 might_sleep(); 308 invalidate_inode_buffers(inode); 309 310 BUG_ON(inode->i_data.nrpages); 311 BUG_ON(!(inode->i_state & I_FREEING)); 312 BUG_ON(inode->i_state & I_CLEAR); 313 inode_sync_wait(inode); 314 if (inode->i_sb->s_op->clear_inode) 315 inode->i_sb->s_op->clear_inode(inode); 316 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 317 bd_forget(inode); 318 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 319 cd_forget(inode); 320 inode->i_state = I_CLEAR; 321 } 322 EXPORT_SYMBOL(clear_inode); 323 324 /* 325 * dispose_list - dispose of the contents of a local list 326 * @head: the head of the list to free 327 * 328 * Dispose-list gets a local list with local inodes in it, so it doesn't 329 * need to worry about list corruption and SMP locks. 330 */ 331 static void dispose_list(struct list_head *head) 332 { 333 int nr_disposed = 0; 334 335 while (!list_empty(head)) { 336 struct inode *inode; 337 338 inode = list_first_entry(head, struct inode, i_list); 339 list_del(&inode->i_list); 340 341 if (inode->i_data.nrpages) 342 truncate_inode_pages(&inode->i_data, 0); 343 clear_inode(inode); 344 345 spin_lock(&inode_lock); 346 hlist_del_init(&inode->i_hash); 347 list_del_init(&inode->i_sb_list); 348 spin_unlock(&inode_lock); 349 350 wake_up_inode(inode); 351 destroy_inode(inode); 352 nr_disposed++; 353 } 354 spin_lock(&inode_lock); 355 inodes_stat.nr_inodes -= nr_disposed; 356 spin_unlock(&inode_lock); 357 } 358 359 /* 360 * Invalidate all inodes for a device. 361 */ 362 static int invalidate_list(struct list_head *head, struct list_head *dispose) 363 { 364 struct list_head *next; 365 int busy = 0, count = 0; 366 367 next = head->next; 368 for (;;) { 369 struct list_head *tmp = next; 370 struct inode *inode; 371 372 /* 373 * We can reschedule here without worrying about the list's 374 * consistency because the per-sb list of inodes must not 375 * change during umount anymore, and because iprune_sem keeps 376 * shrink_icache_memory() away. 377 */ 378 cond_resched_lock(&inode_lock); 379 380 next = next->next; 381 if (tmp == head) 382 break; 383 inode = list_entry(tmp, struct inode, i_sb_list); 384 if (inode->i_state & I_NEW) 385 continue; 386 invalidate_inode_buffers(inode); 387 if (!atomic_read(&inode->i_count)) { 388 list_move(&inode->i_list, dispose); 389 WARN_ON(inode->i_state & I_NEW); 390 inode->i_state |= I_FREEING; 391 count++; 392 continue; 393 } 394 busy = 1; 395 } 396 /* only unused inodes may be cached with i_count zero */ 397 inodes_stat.nr_unused -= count; 398 return busy; 399 } 400 401 /** 402 * invalidate_inodes - discard the inodes on a device 403 * @sb: superblock 404 * 405 * Discard all of the inodes for a given superblock. If the discard 406 * fails because there are busy inodes then a non zero value is returned. 407 * If the discard is successful all the inodes have been discarded. 408 */ 409 int invalidate_inodes(struct super_block *sb) 410 { 411 int busy; 412 LIST_HEAD(throw_away); 413 414 down_write(&iprune_sem); 415 spin_lock(&inode_lock); 416 inotify_unmount_inodes(&sb->s_inodes); 417 fsnotify_unmount_inodes(&sb->s_inodes); 418 busy = invalidate_list(&sb->s_inodes, &throw_away); 419 spin_unlock(&inode_lock); 420 421 dispose_list(&throw_away); 422 up_write(&iprune_sem); 423 424 return busy; 425 } 426 EXPORT_SYMBOL(invalidate_inodes); 427 428 static int can_unuse(struct inode *inode) 429 { 430 if (inode->i_state) 431 return 0; 432 if (inode_has_buffers(inode)) 433 return 0; 434 if (atomic_read(&inode->i_count)) 435 return 0; 436 if (inode->i_data.nrpages) 437 return 0; 438 return 1; 439 } 440 441 /* 442 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 443 * a temporary list and then are freed outside inode_lock by dispose_list(). 444 * 445 * Any inodes which are pinned purely because of attached pagecache have their 446 * pagecache removed. We expect the final iput() on that inode to add it to 447 * the front of the inode_unused list. So look for it there and if the 448 * inode is still freeable, proceed. The right inode is found 99.9% of the 449 * time in testing on a 4-way. 450 * 451 * If the inode has metadata buffers attached to mapping->private_list then 452 * try to remove them. 453 */ 454 static void prune_icache(int nr_to_scan) 455 { 456 LIST_HEAD(freeable); 457 int nr_pruned = 0; 458 int nr_scanned; 459 unsigned long reap = 0; 460 461 down_read(&iprune_sem); 462 spin_lock(&inode_lock); 463 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 464 struct inode *inode; 465 466 if (list_empty(&inode_unused)) 467 break; 468 469 inode = list_entry(inode_unused.prev, struct inode, i_list); 470 471 if (inode->i_state || atomic_read(&inode->i_count)) { 472 list_move(&inode->i_list, &inode_unused); 473 continue; 474 } 475 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 476 __iget(inode); 477 spin_unlock(&inode_lock); 478 if (remove_inode_buffers(inode)) 479 reap += invalidate_mapping_pages(&inode->i_data, 480 0, -1); 481 iput(inode); 482 spin_lock(&inode_lock); 483 484 if (inode != list_entry(inode_unused.next, 485 struct inode, i_list)) 486 continue; /* wrong inode or list_empty */ 487 if (!can_unuse(inode)) 488 continue; 489 } 490 list_move(&inode->i_list, &freeable); 491 WARN_ON(inode->i_state & I_NEW); 492 inode->i_state |= I_FREEING; 493 nr_pruned++; 494 } 495 inodes_stat.nr_unused -= nr_pruned; 496 if (current_is_kswapd()) 497 __count_vm_events(KSWAPD_INODESTEAL, reap); 498 else 499 __count_vm_events(PGINODESTEAL, reap); 500 spin_unlock(&inode_lock); 501 502 dispose_list(&freeable); 503 up_read(&iprune_sem); 504 } 505 506 /* 507 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 508 * "unused" means that no dentries are referring to the inodes: the files are 509 * not open and the dcache references to those inodes have already been 510 * reclaimed. 511 * 512 * This function is passed the number of inodes to scan, and it returns the 513 * total number of remaining possibly-reclaimable inodes. 514 */ 515 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 516 { 517 if (nr) { 518 /* 519 * Nasty deadlock avoidance. We may hold various FS locks, 520 * and we don't want to recurse into the FS that called us 521 * in clear_inode() and friends.. 522 */ 523 if (!(gfp_mask & __GFP_FS)) 524 return -1; 525 prune_icache(nr); 526 } 527 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 528 } 529 530 static struct shrinker icache_shrinker = { 531 .shrink = shrink_icache_memory, 532 .seeks = DEFAULT_SEEKS, 533 }; 534 535 static void __wait_on_freeing_inode(struct inode *inode); 536 /* 537 * Called with the inode lock held. 538 * NOTE: we are not increasing the inode-refcount, you must call __iget() 539 * by hand after calling find_inode now! This simplifies iunique and won't 540 * add any additional branch in the common code. 541 */ 542 static struct inode *find_inode(struct super_block *sb, 543 struct hlist_head *head, 544 int (*test)(struct inode *, void *), 545 void *data) 546 { 547 struct hlist_node *node; 548 struct inode *inode = NULL; 549 550 repeat: 551 hlist_for_each_entry(inode, node, head, i_hash) { 552 if (inode->i_sb != sb) 553 continue; 554 if (!test(inode, data)) 555 continue; 556 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 557 __wait_on_freeing_inode(inode); 558 goto repeat; 559 } 560 break; 561 } 562 return node ? inode : NULL; 563 } 564 565 /* 566 * find_inode_fast is the fast path version of find_inode, see the comment at 567 * iget_locked for details. 568 */ 569 static struct inode *find_inode_fast(struct super_block *sb, 570 struct hlist_head *head, unsigned long ino) 571 { 572 struct hlist_node *node; 573 struct inode *inode = NULL; 574 575 repeat: 576 hlist_for_each_entry(inode, node, head, i_hash) { 577 if (inode->i_ino != ino) 578 continue; 579 if (inode->i_sb != sb) 580 continue; 581 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 582 __wait_on_freeing_inode(inode); 583 goto repeat; 584 } 585 break; 586 } 587 return node ? inode : NULL; 588 } 589 590 static unsigned long hash(struct super_block *sb, unsigned long hashval) 591 { 592 unsigned long tmp; 593 594 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 595 L1_CACHE_BYTES; 596 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 597 return tmp & I_HASHMASK; 598 } 599 600 static inline void 601 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 602 struct inode *inode) 603 { 604 inodes_stat.nr_inodes++; 605 list_add(&inode->i_list, &inode_in_use); 606 list_add(&inode->i_sb_list, &sb->s_inodes); 607 if (head) 608 hlist_add_head(&inode->i_hash, head); 609 } 610 611 /** 612 * inode_add_to_lists - add a new inode to relevant lists 613 * @sb: superblock inode belongs to 614 * @inode: inode to mark in use 615 * 616 * When an inode is allocated it needs to be accounted for, added to the in use 617 * list, the owning superblock and the inode hash. This needs to be done under 618 * the inode_lock, so export a function to do this rather than the inode lock 619 * itself. We calculate the hash list to add to here so it is all internal 620 * which requires the caller to have already set up the inode number in the 621 * inode to add. 622 */ 623 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 624 { 625 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 626 627 spin_lock(&inode_lock); 628 __inode_add_to_lists(sb, head, inode); 629 spin_unlock(&inode_lock); 630 } 631 EXPORT_SYMBOL_GPL(inode_add_to_lists); 632 633 /** 634 * new_inode - obtain an inode 635 * @sb: superblock 636 * 637 * Allocates a new inode for given superblock. The default gfp_mask 638 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 639 * If HIGHMEM pages are unsuitable or it is known that pages allocated 640 * for the page cache are not reclaimable or migratable, 641 * mapping_set_gfp_mask() must be called with suitable flags on the 642 * newly created inode's mapping 643 * 644 */ 645 struct inode *new_inode(struct super_block *sb) 646 { 647 /* 648 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 649 * error if st_ino won't fit in target struct field. Use 32bit counter 650 * here to attempt to avoid that. 651 */ 652 static unsigned int last_ino; 653 struct inode *inode; 654 655 spin_lock_prefetch(&inode_lock); 656 657 inode = alloc_inode(sb); 658 if (inode) { 659 spin_lock(&inode_lock); 660 __inode_add_to_lists(sb, NULL, inode); 661 inode->i_ino = ++last_ino; 662 inode->i_state = 0; 663 spin_unlock(&inode_lock); 664 } 665 return inode; 666 } 667 EXPORT_SYMBOL(new_inode); 668 669 void unlock_new_inode(struct inode *inode) 670 { 671 #ifdef CONFIG_DEBUG_LOCK_ALLOC 672 if (inode->i_mode & S_IFDIR) { 673 struct file_system_type *type = inode->i_sb->s_type; 674 675 /* Set new key only if filesystem hasn't already changed it */ 676 if (!lockdep_match_class(&inode->i_mutex, 677 &type->i_mutex_key)) { 678 /* 679 * ensure nobody is actually holding i_mutex 680 */ 681 mutex_destroy(&inode->i_mutex); 682 mutex_init(&inode->i_mutex); 683 lockdep_set_class(&inode->i_mutex, 684 &type->i_mutex_dir_key); 685 } 686 } 687 #endif 688 /* 689 * This is special! We do not need the spinlock when clearing I_NEW, 690 * because we're guaranteed that nobody else tries to do anything about 691 * the state of the inode when it is locked, as we just created it (so 692 * there can be no old holders that haven't tested I_NEW). 693 * However we must emit the memory barrier so that other CPUs reliably 694 * see the clearing of I_NEW after the other inode initialisation has 695 * completed. 696 */ 697 smp_mb(); 698 WARN_ON(!(inode->i_state & I_NEW)); 699 inode->i_state &= ~I_NEW; 700 wake_up_inode(inode); 701 } 702 EXPORT_SYMBOL(unlock_new_inode); 703 704 /* 705 * This is called without the inode lock held.. Be careful. 706 * 707 * We no longer cache the sb_flags in i_flags - see fs.h 708 * -- rmk@arm.uk.linux.org 709 */ 710 static struct inode *get_new_inode(struct super_block *sb, 711 struct hlist_head *head, 712 int (*test)(struct inode *, void *), 713 int (*set)(struct inode *, void *), 714 void *data) 715 { 716 struct inode *inode; 717 718 inode = alloc_inode(sb); 719 if (inode) { 720 struct inode *old; 721 722 spin_lock(&inode_lock); 723 /* We released the lock, so.. */ 724 old = find_inode(sb, head, test, data); 725 if (!old) { 726 if (set(inode, data)) 727 goto set_failed; 728 729 __inode_add_to_lists(sb, head, inode); 730 inode->i_state = I_NEW; 731 spin_unlock(&inode_lock); 732 733 /* Return the locked inode with I_NEW set, the 734 * caller is responsible for filling in the contents 735 */ 736 return inode; 737 } 738 739 /* 740 * Uhhuh, somebody else created the same inode under 741 * us. Use the old inode instead of the one we just 742 * allocated. 743 */ 744 __iget(old); 745 spin_unlock(&inode_lock); 746 destroy_inode(inode); 747 inode = old; 748 wait_on_inode(inode); 749 } 750 return inode; 751 752 set_failed: 753 spin_unlock(&inode_lock); 754 destroy_inode(inode); 755 return NULL; 756 } 757 758 /* 759 * get_new_inode_fast is the fast path version of get_new_inode, see the 760 * comment at iget_locked for details. 761 */ 762 static struct inode *get_new_inode_fast(struct super_block *sb, 763 struct hlist_head *head, unsigned long ino) 764 { 765 struct inode *inode; 766 767 inode = alloc_inode(sb); 768 if (inode) { 769 struct inode *old; 770 771 spin_lock(&inode_lock); 772 /* We released the lock, so.. */ 773 old = find_inode_fast(sb, head, ino); 774 if (!old) { 775 inode->i_ino = ino; 776 __inode_add_to_lists(sb, head, inode); 777 inode->i_state = I_NEW; 778 spin_unlock(&inode_lock); 779 780 /* Return the locked inode with I_NEW set, the 781 * caller is responsible for filling in the contents 782 */ 783 return inode; 784 } 785 786 /* 787 * Uhhuh, somebody else created the same inode under 788 * us. Use the old inode instead of the one we just 789 * allocated. 790 */ 791 __iget(old); 792 spin_unlock(&inode_lock); 793 destroy_inode(inode); 794 inode = old; 795 wait_on_inode(inode); 796 } 797 return inode; 798 } 799 800 /** 801 * iunique - get a unique inode number 802 * @sb: superblock 803 * @max_reserved: highest reserved inode number 804 * 805 * Obtain an inode number that is unique on the system for a given 806 * superblock. This is used by file systems that have no natural 807 * permanent inode numbering system. An inode number is returned that 808 * is higher than the reserved limit but unique. 809 * 810 * BUGS: 811 * With a large number of inodes live on the file system this function 812 * currently becomes quite slow. 813 */ 814 ino_t iunique(struct super_block *sb, ino_t max_reserved) 815 { 816 /* 817 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 818 * error if st_ino won't fit in target struct field. Use 32bit counter 819 * here to attempt to avoid that. 820 */ 821 static unsigned int counter; 822 struct inode *inode; 823 struct hlist_head *head; 824 ino_t res; 825 826 spin_lock(&inode_lock); 827 do { 828 if (counter <= max_reserved) 829 counter = max_reserved + 1; 830 res = counter++; 831 head = inode_hashtable + hash(sb, res); 832 inode = find_inode_fast(sb, head, res); 833 } while (inode != NULL); 834 spin_unlock(&inode_lock); 835 836 return res; 837 } 838 EXPORT_SYMBOL(iunique); 839 840 struct inode *igrab(struct inode *inode) 841 { 842 spin_lock(&inode_lock); 843 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 844 __iget(inode); 845 else 846 /* 847 * Handle the case where s_op->clear_inode is not been 848 * called yet, and somebody is calling igrab 849 * while the inode is getting freed. 850 */ 851 inode = NULL; 852 spin_unlock(&inode_lock); 853 return inode; 854 } 855 EXPORT_SYMBOL(igrab); 856 857 /** 858 * ifind - internal function, you want ilookup5() or iget5(). 859 * @sb: super block of file system to search 860 * @head: the head of the list to search 861 * @test: callback used for comparisons between inodes 862 * @data: opaque data pointer to pass to @test 863 * @wait: if true wait for the inode to be unlocked, if false do not 864 * 865 * ifind() searches for the inode specified by @data in the inode 866 * cache. This is a generalized version of ifind_fast() for file systems where 867 * the inode number is not sufficient for unique identification of an inode. 868 * 869 * If the inode is in the cache, the inode is returned with an incremented 870 * reference count. 871 * 872 * Otherwise NULL is returned. 873 * 874 * Note, @test is called with the inode_lock held, so can't sleep. 875 */ 876 static struct inode *ifind(struct super_block *sb, 877 struct hlist_head *head, int (*test)(struct inode *, void *), 878 void *data, const int wait) 879 { 880 struct inode *inode; 881 882 spin_lock(&inode_lock); 883 inode = find_inode(sb, head, test, data); 884 if (inode) { 885 __iget(inode); 886 spin_unlock(&inode_lock); 887 if (likely(wait)) 888 wait_on_inode(inode); 889 return inode; 890 } 891 spin_unlock(&inode_lock); 892 return NULL; 893 } 894 895 /** 896 * ifind_fast - internal function, you want ilookup() or iget(). 897 * @sb: super block of file system to search 898 * @head: head of the list to search 899 * @ino: inode number to search for 900 * 901 * ifind_fast() searches for the inode @ino in the inode cache. This is for 902 * file systems where the inode number is sufficient for unique identification 903 * of an inode. 904 * 905 * If the inode is in the cache, the inode is returned with an incremented 906 * reference count. 907 * 908 * Otherwise NULL is returned. 909 */ 910 static struct inode *ifind_fast(struct super_block *sb, 911 struct hlist_head *head, unsigned long ino) 912 { 913 struct inode *inode; 914 915 spin_lock(&inode_lock); 916 inode = find_inode_fast(sb, head, ino); 917 if (inode) { 918 __iget(inode); 919 spin_unlock(&inode_lock); 920 wait_on_inode(inode); 921 return inode; 922 } 923 spin_unlock(&inode_lock); 924 return NULL; 925 } 926 927 /** 928 * ilookup5_nowait - search for an inode in the inode cache 929 * @sb: super block of file system to search 930 * @hashval: hash value (usually inode number) to search for 931 * @test: callback used for comparisons between inodes 932 * @data: opaque data pointer to pass to @test 933 * 934 * ilookup5() uses ifind() to search for the inode specified by @hashval and 935 * @data in the inode cache. This is a generalized version of ilookup() for 936 * file systems where the inode number is not sufficient for unique 937 * identification of an inode. 938 * 939 * If the inode is in the cache, the inode is returned with an incremented 940 * reference count. Note, the inode lock is not waited upon so you have to be 941 * very careful what you do with the returned inode. You probably should be 942 * using ilookup5() instead. 943 * 944 * Otherwise NULL is returned. 945 * 946 * Note, @test is called with the inode_lock held, so can't sleep. 947 */ 948 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 949 int (*test)(struct inode *, void *), void *data) 950 { 951 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 952 953 return ifind(sb, head, test, data, 0); 954 } 955 EXPORT_SYMBOL(ilookup5_nowait); 956 957 /** 958 * ilookup5 - search for an inode in the inode cache 959 * @sb: super block of file system to search 960 * @hashval: hash value (usually inode number) to search for 961 * @test: callback used for comparisons between inodes 962 * @data: opaque data pointer to pass to @test 963 * 964 * ilookup5() uses ifind() to search for the inode specified by @hashval and 965 * @data in the inode cache. This is a generalized version of ilookup() for 966 * file systems where the inode number is not sufficient for unique 967 * identification of an inode. 968 * 969 * If the inode is in the cache, the inode lock is waited upon and the inode is 970 * returned with an incremented reference count. 971 * 972 * Otherwise NULL is returned. 973 * 974 * Note, @test is called with the inode_lock held, so can't sleep. 975 */ 976 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 977 int (*test)(struct inode *, void *), void *data) 978 { 979 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 980 981 return ifind(sb, head, test, data, 1); 982 } 983 EXPORT_SYMBOL(ilookup5); 984 985 /** 986 * ilookup - search for an inode in the inode cache 987 * @sb: super block of file system to search 988 * @ino: inode number to search for 989 * 990 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 991 * This is for file systems where the inode number is sufficient for unique 992 * identification of an inode. 993 * 994 * If the inode is in the cache, the inode is returned with an incremented 995 * reference count. 996 * 997 * Otherwise NULL is returned. 998 */ 999 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1000 { 1001 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1002 1003 return ifind_fast(sb, head, ino); 1004 } 1005 EXPORT_SYMBOL(ilookup); 1006 1007 /** 1008 * iget5_locked - obtain an inode from a mounted file system 1009 * @sb: super block of file system 1010 * @hashval: hash value (usually inode number) to get 1011 * @test: callback used for comparisons between inodes 1012 * @set: callback used to initialize a new struct inode 1013 * @data: opaque data pointer to pass to @test and @set 1014 * 1015 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1016 * and @data in the inode cache and if present it is returned with an increased 1017 * reference count. This is a generalized version of iget_locked() for file 1018 * systems where the inode number is not sufficient for unique identification 1019 * of an inode. 1020 * 1021 * If the inode is not in cache, get_new_inode() is called to allocate a new 1022 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1023 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1024 * 1025 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1026 */ 1027 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1028 int (*test)(struct inode *, void *), 1029 int (*set)(struct inode *, void *), void *data) 1030 { 1031 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1032 struct inode *inode; 1033 1034 inode = ifind(sb, head, test, data, 1); 1035 if (inode) 1036 return inode; 1037 /* 1038 * get_new_inode() will do the right thing, re-trying the search 1039 * in case it had to block at any point. 1040 */ 1041 return get_new_inode(sb, head, test, set, data); 1042 } 1043 EXPORT_SYMBOL(iget5_locked); 1044 1045 /** 1046 * iget_locked - obtain an inode from a mounted file system 1047 * @sb: super block of file system 1048 * @ino: inode number to get 1049 * 1050 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1051 * the inode cache and if present it is returned with an increased reference 1052 * count. This is for file systems where the inode number is sufficient for 1053 * unique identification of an inode. 1054 * 1055 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1056 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1057 * The file system gets to fill it in before unlocking it via 1058 * unlock_new_inode(). 1059 */ 1060 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1061 { 1062 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1063 struct inode *inode; 1064 1065 inode = ifind_fast(sb, head, ino); 1066 if (inode) 1067 return inode; 1068 /* 1069 * get_new_inode_fast() will do the right thing, re-trying the search 1070 * in case it had to block at any point. 1071 */ 1072 return get_new_inode_fast(sb, head, ino); 1073 } 1074 EXPORT_SYMBOL(iget_locked); 1075 1076 int insert_inode_locked(struct inode *inode) 1077 { 1078 struct super_block *sb = inode->i_sb; 1079 ino_t ino = inode->i_ino; 1080 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1081 1082 inode->i_state |= I_NEW; 1083 while (1) { 1084 struct hlist_node *node; 1085 struct inode *old = NULL; 1086 spin_lock(&inode_lock); 1087 hlist_for_each_entry(old, node, head, i_hash) { 1088 if (old->i_ino != ino) 1089 continue; 1090 if (old->i_sb != sb) 1091 continue; 1092 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1093 continue; 1094 break; 1095 } 1096 if (likely(!node)) { 1097 hlist_add_head(&inode->i_hash, head); 1098 spin_unlock(&inode_lock); 1099 return 0; 1100 } 1101 __iget(old); 1102 spin_unlock(&inode_lock); 1103 wait_on_inode(old); 1104 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1105 iput(old); 1106 return -EBUSY; 1107 } 1108 iput(old); 1109 } 1110 } 1111 EXPORT_SYMBOL(insert_inode_locked); 1112 1113 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1114 int (*test)(struct inode *, void *), void *data) 1115 { 1116 struct super_block *sb = inode->i_sb; 1117 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1118 1119 inode->i_state |= I_NEW; 1120 1121 while (1) { 1122 struct hlist_node *node; 1123 struct inode *old = NULL; 1124 1125 spin_lock(&inode_lock); 1126 hlist_for_each_entry(old, node, head, i_hash) { 1127 if (old->i_sb != sb) 1128 continue; 1129 if (!test(old, data)) 1130 continue; 1131 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1132 continue; 1133 break; 1134 } 1135 if (likely(!node)) { 1136 hlist_add_head(&inode->i_hash, head); 1137 spin_unlock(&inode_lock); 1138 return 0; 1139 } 1140 __iget(old); 1141 spin_unlock(&inode_lock); 1142 wait_on_inode(old); 1143 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1144 iput(old); 1145 return -EBUSY; 1146 } 1147 iput(old); 1148 } 1149 } 1150 EXPORT_SYMBOL(insert_inode_locked4); 1151 1152 /** 1153 * __insert_inode_hash - hash an inode 1154 * @inode: unhashed inode 1155 * @hashval: unsigned long value used to locate this object in the 1156 * inode_hashtable. 1157 * 1158 * Add an inode to the inode hash for this superblock. 1159 */ 1160 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1161 { 1162 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1163 spin_lock(&inode_lock); 1164 hlist_add_head(&inode->i_hash, head); 1165 spin_unlock(&inode_lock); 1166 } 1167 EXPORT_SYMBOL(__insert_inode_hash); 1168 1169 /** 1170 * remove_inode_hash - remove an inode from the hash 1171 * @inode: inode to unhash 1172 * 1173 * Remove an inode from the superblock. 1174 */ 1175 void remove_inode_hash(struct inode *inode) 1176 { 1177 spin_lock(&inode_lock); 1178 hlist_del_init(&inode->i_hash); 1179 spin_unlock(&inode_lock); 1180 } 1181 EXPORT_SYMBOL(remove_inode_hash); 1182 1183 /* 1184 * Tell the filesystem that this inode is no longer of any interest and should 1185 * be completely destroyed. 1186 * 1187 * We leave the inode in the inode hash table until *after* the filesystem's 1188 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1189 * instigate) will always find up-to-date information either in the hash or on 1190 * disk. 1191 * 1192 * I_FREEING is set so that no-one will take a new reference to the inode while 1193 * it is being deleted. 1194 */ 1195 void generic_delete_inode(struct inode *inode) 1196 { 1197 const struct super_operations *op = inode->i_sb->s_op; 1198 1199 list_del_init(&inode->i_list); 1200 list_del_init(&inode->i_sb_list); 1201 WARN_ON(inode->i_state & I_NEW); 1202 inode->i_state |= I_FREEING; 1203 inodes_stat.nr_inodes--; 1204 spin_unlock(&inode_lock); 1205 1206 if (op->delete_inode) { 1207 void (*delete)(struct inode *) = op->delete_inode; 1208 /* Filesystems implementing their own 1209 * s_op->delete_inode are required to call 1210 * truncate_inode_pages and clear_inode() 1211 * internally */ 1212 delete(inode); 1213 } else { 1214 truncate_inode_pages(&inode->i_data, 0); 1215 clear_inode(inode); 1216 } 1217 spin_lock(&inode_lock); 1218 hlist_del_init(&inode->i_hash); 1219 spin_unlock(&inode_lock); 1220 wake_up_inode(inode); 1221 BUG_ON(inode->i_state != I_CLEAR); 1222 destroy_inode(inode); 1223 } 1224 EXPORT_SYMBOL(generic_delete_inode); 1225 1226 /** 1227 * generic_detach_inode - remove inode from inode lists 1228 * @inode: inode to remove 1229 * 1230 * Remove inode from inode lists, write it if it's dirty. This is just an 1231 * internal VFS helper exported for hugetlbfs. Do not use! 1232 * 1233 * Returns 1 if inode should be completely destroyed. 1234 */ 1235 int generic_detach_inode(struct inode *inode) 1236 { 1237 struct super_block *sb = inode->i_sb; 1238 1239 if (!hlist_unhashed(&inode->i_hash)) { 1240 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1241 list_move(&inode->i_list, &inode_unused); 1242 inodes_stat.nr_unused++; 1243 if (sb->s_flags & MS_ACTIVE) { 1244 spin_unlock(&inode_lock); 1245 return 0; 1246 } 1247 WARN_ON(inode->i_state & I_NEW); 1248 inode->i_state |= I_WILL_FREE; 1249 spin_unlock(&inode_lock); 1250 write_inode_now(inode, 1); 1251 spin_lock(&inode_lock); 1252 WARN_ON(inode->i_state & I_NEW); 1253 inode->i_state &= ~I_WILL_FREE; 1254 inodes_stat.nr_unused--; 1255 hlist_del_init(&inode->i_hash); 1256 } 1257 list_del_init(&inode->i_list); 1258 list_del_init(&inode->i_sb_list); 1259 WARN_ON(inode->i_state & I_NEW); 1260 inode->i_state |= I_FREEING; 1261 inodes_stat.nr_inodes--; 1262 spin_unlock(&inode_lock); 1263 return 1; 1264 } 1265 EXPORT_SYMBOL_GPL(generic_detach_inode); 1266 1267 static void generic_forget_inode(struct inode *inode) 1268 { 1269 if (!generic_detach_inode(inode)) 1270 return; 1271 if (inode->i_data.nrpages) 1272 truncate_inode_pages(&inode->i_data, 0); 1273 clear_inode(inode); 1274 wake_up_inode(inode); 1275 destroy_inode(inode); 1276 } 1277 1278 /* 1279 * Normal UNIX filesystem behaviour: delete the 1280 * inode when the usage count drops to zero, and 1281 * i_nlink is zero. 1282 */ 1283 void generic_drop_inode(struct inode *inode) 1284 { 1285 if (!inode->i_nlink) 1286 generic_delete_inode(inode); 1287 else 1288 generic_forget_inode(inode); 1289 } 1290 EXPORT_SYMBOL_GPL(generic_drop_inode); 1291 1292 /* 1293 * Called when we're dropping the last reference 1294 * to an inode. 1295 * 1296 * Call the FS "drop()" function, defaulting to 1297 * the legacy UNIX filesystem behaviour.. 1298 * 1299 * NOTE! NOTE! NOTE! We're called with the inode lock 1300 * held, and the drop function is supposed to release 1301 * the lock! 1302 */ 1303 static inline void iput_final(struct inode *inode) 1304 { 1305 const struct super_operations *op = inode->i_sb->s_op; 1306 void (*drop)(struct inode *) = generic_drop_inode; 1307 1308 if (op && op->drop_inode) 1309 drop = op->drop_inode; 1310 drop(inode); 1311 } 1312 1313 /** 1314 * iput - put an inode 1315 * @inode: inode to put 1316 * 1317 * Puts an inode, dropping its usage count. If the inode use count hits 1318 * zero, the inode is then freed and may also be destroyed. 1319 * 1320 * Consequently, iput() can sleep. 1321 */ 1322 void iput(struct inode *inode) 1323 { 1324 if (inode) { 1325 BUG_ON(inode->i_state == I_CLEAR); 1326 1327 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1328 iput_final(inode); 1329 } 1330 } 1331 EXPORT_SYMBOL(iput); 1332 1333 /** 1334 * bmap - find a block number in a file 1335 * @inode: inode of file 1336 * @block: block to find 1337 * 1338 * Returns the block number on the device holding the inode that 1339 * is the disk block number for the block of the file requested. 1340 * That is, asked for block 4 of inode 1 the function will return the 1341 * disk block relative to the disk start that holds that block of the 1342 * file. 1343 */ 1344 sector_t bmap(struct inode *inode, sector_t block) 1345 { 1346 sector_t res = 0; 1347 if (inode->i_mapping->a_ops->bmap) 1348 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1349 return res; 1350 } 1351 EXPORT_SYMBOL(bmap); 1352 1353 /* 1354 * With relative atime, only update atime if the previous atime is 1355 * earlier than either the ctime or mtime or if at least a day has 1356 * passed since the last atime update. 1357 */ 1358 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1359 struct timespec now) 1360 { 1361 1362 if (!(mnt->mnt_flags & MNT_RELATIME)) 1363 return 1; 1364 /* 1365 * Is mtime younger than atime? If yes, update atime: 1366 */ 1367 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1368 return 1; 1369 /* 1370 * Is ctime younger than atime? If yes, update atime: 1371 */ 1372 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1373 return 1; 1374 1375 /* 1376 * Is the previous atime value older than a day? If yes, 1377 * update atime: 1378 */ 1379 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1380 return 1; 1381 /* 1382 * Good, we can skip the atime update: 1383 */ 1384 return 0; 1385 } 1386 1387 /** 1388 * touch_atime - update the access time 1389 * @mnt: mount the inode is accessed on 1390 * @dentry: dentry accessed 1391 * 1392 * Update the accessed time on an inode and mark it for writeback. 1393 * This function automatically handles read only file systems and media, 1394 * as well as the "noatime" flag and inode specific "noatime" markers. 1395 */ 1396 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1397 { 1398 struct inode *inode = dentry->d_inode; 1399 struct timespec now; 1400 1401 if (inode->i_flags & S_NOATIME) 1402 return; 1403 if (IS_NOATIME(inode)) 1404 return; 1405 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1406 return; 1407 1408 if (mnt->mnt_flags & MNT_NOATIME) 1409 return; 1410 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1411 return; 1412 1413 now = current_fs_time(inode->i_sb); 1414 1415 if (!relatime_need_update(mnt, inode, now)) 1416 return; 1417 1418 if (timespec_equal(&inode->i_atime, &now)) 1419 return; 1420 1421 if (mnt_want_write(mnt)) 1422 return; 1423 1424 inode->i_atime = now; 1425 mark_inode_dirty_sync(inode); 1426 mnt_drop_write(mnt); 1427 } 1428 EXPORT_SYMBOL(touch_atime); 1429 1430 /** 1431 * file_update_time - update mtime and ctime time 1432 * @file: file accessed 1433 * 1434 * Update the mtime and ctime members of an inode and mark the inode 1435 * for writeback. Note that this function is meant exclusively for 1436 * usage in the file write path of filesystems, and filesystems may 1437 * choose to explicitly ignore update via this function with the 1438 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1439 * timestamps are handled by the server. 1440 */ 1441 1442 void file_update_time(struct file *file) 1443 { 1444 struct inode *inode = file->f_path.dentry->d_inode; 1445 struct timespec now; 1446 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1447 1448 /* First try to exhaust all avenues to not sync */ 1449 if (IS_NOCMTIME(inode)) 1450 return; 1451 1452 now = current_fs_time(inode->i_sb); 1453 if (!timespec_equal(&inode->i_mtime, &now)) 1454 sync_it = S_MTIME; 1455 1456 if (!timespec_equal(&inode->i_ctime, &now)) 1457 sync_it |= S_CTIME; 1458 1459 if (IS_I_VERSION(inode)) 1460 sync_it |= S_VERSION; 1461 1462 if (!sync_it) 1463 return; 1464 1465 /* Finally allowed to write? Takes lock. */ 1466 if (mnt_want_write_file(file)) 1467 return; 1468 1469 /* Only change inode inside the lock region */ 1470 if (sync_it & S_VERSION) 1471 inode_inc_iversion(inode); 1472 if (sync_it & S_CTIME) 1473 inode->i_ctime = now; 1474 if (sync_it & S_MTIME) 1475 inode->i_mtime = now; 1476 mark_inode_dirty_sync(inode); 1477 mnt_drop_write(file->f_path.mnt); 1478 } 1479 EXPORT_SYMBOL(file_update_time); 1480 1481 int inode_needs_sync(struct inode *inode) 1482 { 1483 if (IS_SYNC(inode)) 1484 return 1; 1485 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1486 return 1; 1487 return 0; 1488 } 1489 EXPORT_SYMBOL(inode_needs_sync); 1490 1491 int inode_wait(void *word) 1492 { 1493 schedule(); 1494 return 0; 1495 } 1496 EXPORT_SYMBOL(inode_wait); 1497 1498 /* 1499 * If we try to find an inode in the inode hash while it is being 1500 * deleted, we have to wait until the filesystem completes its 1501 * deletion before reporting that it isn't found. This function waits 1502 * until the deletion _might_ have completed. Callers are responsible 1503 * to recheck inode state. 1504 * 1505 * It doesn't matter if I_NEW is not set initially, a call to 1506 * wake_up_inode() after removing from the hash list will DTRT. 1507 * 1508 * This is called with inode_lock held. 1509 */ 1510 static void __wait_on_freeing_inode(struct inode *inode) 1511 { 1512 wait_queue_head_t *wq; 1513 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1514 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1515 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1516 spin_unlock(&inode_lock); 1517 schedule(); 1518 finish_wait(wq, &wait.wait); 1519 spin_lock(&inode_lock); 1520 } 1521 1522 static __initdata unsigned long ihash_entries; 1523 static int __init set_ihash_entries(char *str) 1524 { 1525 if (!str) 1526 return 0; 1527 ihash_entries = simple_strtoul(str, &str, 0); 1528 return 1; 1529 } 1530 __setup("ihash_entries=", set_ihash_entries); 1531 1532 /* 1533 * Initialize the waitqueues and inode hash table. 1534 */ 1535 void __init inode_init_early(void) 1536 { 1537 int loop; 1538 1539 /* If hashes are distributed across NUMA nodes, defer 1540 * hash allocation until vmalloc space is available. 1541 */ 1542 if (hashdist) 1543 return; 1544 1545 inode_hashtable = 1546 alloc_large_system_hash("Inode-cache", 1547 sizeof(struct hlist_head), 1548 ihash_entries, 1549 14, 1550 HASH_EARLY, 1551 &i_hash_shift, 1552 &i_hash_mask, 1553 0); 1554 1555 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1556 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1557 } 1558 1559 void __init inode_init(void) 1560 { 1561 int loop; 1562 1563 /* inode slab cache */ 1564 inode_cachep = kmem_cache_create("inode_cache", 1565 sizeof(struct inode), 1566 0, 1567 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1568 SLAB_MEM_SPREAD), 1569 init_once); 1570 register_shrinker(&icache_shrinker); 1571 1572 /* Hash may have been set up in inode_init_early */ 1573 if (!hashdist) 1574 return; 1575 1576 inode_hashtable = 1577 alloc_large_system_hash("Inode-cache", 1578 sizeof(struct hlist_head), 1579 ihash_entries, 1580 14, 1581 0, 1582 &i_hash_shift, 1583 &i_hash_mask, 1584 0); 1585 1586 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1587 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1588 } 1589 1590 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1591 { 1592 inode->i_mode = mode; 1593 if (S_ISCHR(mode)) { 1594 inode->i_fop = &def_chr_fops; 1595 inode->i_rdev = rdev; 1596 } else if (S_ISBLK(mode)) { 1597 inode->i_fop = &def_blk_fops; 1598 inode->i_rdev = rdev; 1599 } else if (S_ISFIFO(mode)) 1600 inode->i_fop = &def_fifo_fops; 1601 else if (S_ISSOCK(mode)) 1602 inode->i_fop = &bad_sock_fops; 1603 else 1604 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1605 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1606 inode->i_ino); 1607 } 1608 EXPORT_SYMBOL(init_special_inode); 1609 1610 /** 1611 * Init uid,gid,mode for new inode according to posix standards 1612 * @inode: New inode 1613 * @dir: Directory inode 1614 * @mode: mode of the new inode 1615 */ 1616 void inode_init_owner(struct inode *inode, const struct inode *dir, 1617 mode_t mode) 1618 { 1619 inode->i_uid = current_fsuid(); 1620 if (dir && dir->i_mode & S_ISGID) { 1621 inode->i_gid = dir->i_gid; 1622 if (S_ISDIR(mode)) 1623 mode |= S_ISGID; 1624 } else 1625 inode->i_gid = current_fsgid(); 1626 inode->i_mode = mode; 1627 } 1628 EXPORT_SYMBOL(inode_init_owner); 1629