xref: /linux/fs/inode.c (revision 529d6dad5bc69de14cdd24831e2a14264e93daa4)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
27 #include <linux/posix_acl.h>
28 
29 /*
30  * This is needed for the following functions:
31  *  - inode_has_buffers
32  *  - invalidate_inode_buffers
33  *  - invalidate_bdev
34  *
35  * FIXME: remove all knowledge of the buffer layer from this file
36  */
37 #include <linux/buffer_head.h>
38 
39 /*
40  * New inode.c implementation.
41  *
42  * This implementation has the basic premise of trying
43  * to be extremely low-overhead and SMP-safe, yet be
44  * simple enough to be "obviously correct".
45  *
46  * Famous last words.
47  */
48 
49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50 
51 /* #define INODE_PARANOIA 1 */
52 /* #define INODE_DEBUG 1 */
53 
54 /*
55  * Inode lookup is no longer as critical as it used to be:
56  * most of the lookups are going to be through the dcache.
57  */
58 #define I_HASHBITS	i_hash_shift
59 #define I_HASHMASK	i_hash_mask
60 
61 static unsigned int i_hash_mask __read_mostly;
62 static unsigned int i_hash_shift __read_mostly;
63 
64 /*
65  * Each inode can be on two separate lists. One is
66  * the hash list of the inode, used for lookups. The
67  * other linked list is the "type" list:
68  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
69  *  "dirty"  - as "in_use" but also dirty
70  *  "unused" - valid inode, i_count = 0
71  *
72  * A "dirty" list is maintained for each super block,
73  * allowing for low-overhead inode sync() operations.
74  */
75 
76 LIST_HEAD(inode_in_use);
77 LIST_HEAD(inode_unused);
78 static struct hlist_head *inode_hashtable __read_mostly;
79 
80 /*
81  * A simple spinlock to protect the list manipulations.
82  *
83  * NOTE! You also have to own the lock if you change
84  * the i_state of an inode while it is in use..
85  */
86 DEFINE_SPINLOCK(inode_lock);
87 
88 /*
89  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
90  * icache shrinking path, and the umount path.  Without this exclusion,
91  * by the time prune_icache calls iput for the inode whose pages it has
92  * been invalidating, or by the time it calls clear_inode & destroy_inode
93  * from its final dispose_list, the struct super_block they refer to
94  * (for inode->i_sb->s_op) may already have been freed and reused.
95  *
96  * We make this an rwsem because the fastpath is icache shrinking. In
97  * some cases a filesystem may be doing a significant amount of work in
98  * its inode reclaim code, so this should improve parallelism.
99  */
100 static DECLARE_RWSEM(iprune_sem);
101 
102 /*
103  * Statistics gathering..
104  */
105 struct inodes_stat_t inodes_stat;
106 
107 static struct kmem_cache *inode_cachep __read_mostly;
108 
109 static void wake_up_inode(struct inode *inode)
110 {
111 	/*
112 	 * Prevent speculative execution through spin_unlock(&inode_lock);
113 	 */
114 	smp_mb();
115 	wake_up_bit(&inode->i_state, __I_NEW);
116 }
117 
118 /**
119  * inode_init_always - perform inode structure intialisation
120  * @sb: superblock inode belongs to
121  * @inode: inode to initialise
122  *
123  * These are initializations that need to be done on every inode
124  * allocation as the fields are not initialised by slab allocation.
125  */
126 int inode_init_always(struct super_block *sb, struct inode *inode)
127 {
128 	static const struct address_space_operations empty_aops;
129 	static const struct inode_operations empty_iops;
130 	static const struct file_operations empty_fops;
131 	struct address_space *const mapping = &inode->i_data;
132 
133 	inode->i_sb = sb;
134 	inode->i_blkbits = sb->s_blocksize_bits;
135 	inode->i_flags = 0;
136 	atomic_set(&inode->i_count, 1);
137 	inode->i_op = &empty_iops;
138 	inode->i_fop = &empty_fops;
139 	inode->i_nlink = 1;
140 	inode->i_uid = 0;
141 	inode->i_gid = 0;
142 	atomic_set(&inode->i_writecount, 0);
143 	inode->i_size = 0;
144 	inode->i_blocks = 0;
145 	inode->i_bytes = 0;
146 	inode->i_generation = 0;
147 #ifdef CONFIG_QUOTA
148 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
149 #endif
150 	inode->i_pipe = NULL;
151 	inode->i_bdev = NULL;
152 	inode->i_cdev = NULL;
153 	inode->i_rdev = 0;
154 	inode->dirtied_when = 0;
155 
156 	if (security_inode_alloc(inode))
157 		goto out;
158 	spin_lock_init(&inode->i_lock);
159 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
160 
161 	mutex_init(&inode->i_mutex);
162 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
163 
164 	init_rwsem(&inode->i_alloc_sem);
165 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
166 
167 	mapping->a_ops = &empty_aops;
168 	mapping->host = inode;
169 	mapping->flags = 0;
170 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
171 	mapping->assoc_mapping = NULL;
172 	mapping->backing_dev_info = &default_backing_dev_info;
173 	mapping->writeback_index = 0;
174 
175 	/*
176 	 * If the block_device provides a backing_dev_info for client
177 	 * inodes then use that.  Otherwise the inode share the bdev's
178 	 * backing_dev_info.
179 	 */
180 	if (sb->s_bdev) {
181 		struct backing_dev_info *bdi;
182 
183 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
184 		mapping->backing_dev_info = bdi;
185 	}
186 	inode->i_private = NULL;
187 	inode->i_mapping = mapping;
188 #ifdef CONFIG_FS_POSIX_ACL
189 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191 
192 #ifdef CONFIG_FSNOTIFY
193 	inode->i_fsnotify_mask = 0;
194 #endif
195 
196 	return 0;
197 out:
198 	return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201 
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 	struct inode *inode;
205 
206 	if (sb->s_op->alloc_inode)
207 		inode = sb->s_op->alloc_inode(sb);
208 	else
209 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210 
211 	if (!inode)
212 		return NULL;
213 
214 	if (unlikely(inode_init_always(sb, inode))) {
215 		if (inode->i_sb->s_op->destroy_inode)
216 			inode->i_sb->s_op->destroy_inode(inode);
217 		else
218 			kmem_cache_free(inode_cachep, inode);
219 		return NULL;
220 	}
221 
222 	return inode;
223 }
224 
225 void __destroy_inode(struct inode *inode)
226 {
227 	BUG_ON(inode_has_buffers(inode));
228 	security_inode_free(inode);
229 	fsnotify_inode_delete(inode);
230 #ifdef CONFIG_FS_POSIX_ACL
231 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
232 		posix_acl_release(inode->i_acl);
233 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
234 		posix_acl_release(inode->i_default_acl);
235 #endif
236 }
237 EXPORT_SYMBOL(__destroy_inode);
238 
239 void destroy_inode(struct inode *inode)
240 {
241 	__destroy_inode(inode);
242 	if (inode->i_sb->s_op->destroy_inode)
243 		inode->i_sb->s_op->destroy_inode(inode);
244 	else
245 		kmem_cache_free(inode_cachep, (inode));
246 }
247 
248 /*
249  * These are initializations that only need to be done
250  * once, because the fields are idempotent across use
251  * of the inode, so let the slab aware of that.
252  */
253 void inode_init_once(struct inode *inode)
254 {
255 	memset(inode, 0, sizeof(*inode));
256 	INIT_HLIST_NODE(&inode->i_hash);
257 	INIT_LIST_HEAD(&inode->i_dentry);
258 	INIT_LIST_HEAD(&inode->i_devices);
259 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
260 	spin_lock_init(&inode->i_data.tree_lock);
261 	spin_lock_init(&inode->i_data.i_mmap_lock);
262 	INIT_LIST_HEAD(&inode->i_data.private_list);
263 	spin_lock_init(&inode->i_data.private_lock);
264 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
265 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
266 	i_size_ordered_init(inode);
267 #ifdef CONFIG_INOTIFY
268 	INIT_LIST_HEAD(&inode->inotify_watches);
269 	mutex_init(&inode->inotify_mutex);
270 #endif
271 #ifdef CONFIG_FSNOTIFY
272 	INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
273 #endif
274 }
275 EXPORT_SYMBOL(inode_init_once);
276 
277 static void init_once(void *foo)
278 {
279 	struct inode *inode = (struct inode *) foo;
280 
281 	inode_init_once(inode);
282 }
283 
284 /*
285  * inode_lock must be held
286  */
287 void __iget(struct inode *inode)
288 {
289 	if (atomic_inc_return(&inode->i_count) != 1)
290 		return;
291 
292 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
293 		list_move(&inode->i_list, &inode_in_use);
294 	inodes_stat.nr_unused--;
295 }
296 
297 /**
298  * clear_inode - clear an inode
299  * @inode: inode to clear
300  *
301  * This is called by the filesystem to tell us
302  * that the inode is no longer useful. We just
303  * terminate it with extreme prejudice.
304  */
305 void clear_inode(struct inode *inode)
306 {
307 	might_sleep();
308 	invalidate_inode_buffers(inode);
309 
310 	BUG_ON(inode->i_data.nrpages);
311 	BUG_ON(!(inode->i_state & I_FREEING));
312 	BUG_ON(inode->i_state & I_CLEAR);
313 	inode_sync_wait(inode);
314 	if (inode->i_sb->s_op->clear_inode)
315 		inode->i_sb->s_op->clear_inode(inode);
316 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
317 		bd_forget(inode);
318 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
319 		cd_forget(inode);
320 	inode->i_state = I_CLEAR;
321 }
322 EXPORT_SYMBOL(clear_inode);
323 
324 /*
325  * dispose_list - dispose of the contents of a local list
326  * @head: the head of the list to free
327  *
328  * Dispose-list gets a local list with local inodes in it, so it doesn't
329  * need to worry about list corruption and SMP locks.
330  */
331 static void dispose_list(struct list_head *head)
332 {
333 	int nr_disposed = 0;
334 
335 	while (!list_empty(head)) {
336 		struct inode *inode;
337 
338 		inode = list_first_entry(head, struct inode, i_list);
339 		list_del(&inode->i_list);
340 
341 		if (inode->i_data.nrpages)
342 			truncate_inode_pages(&inode->i_data, 0);
343 		clear_inode(inode);
344 
345 		spin_lock(&inode_lock);
346 		hlist_del_init(&inode->i_hash);
347 		list_del_init(&inode->i_sb_list);
348 		spin_unlock(&inode_lock);
349 
350 		wake_up_inode(inode);
351 		destroy_inode(inode);
352 		nr_disposed++;
353 	}
354 	spin_lock(&inode_lock);
355 	inodes_stat.nr_inodes -= nr_disposed;
356 	spin_unlock(&inode_lock);
357 }
358 
359 /*
360  * Invalidate all inodes for a device.
361  */
362 static int invalidate_list(struct list_head *head, struct list_head *dispose)
363 {
364 	struct list_head *next;
365 	int busy = 0, count = 0;
366 
367 	next = head->next;
368 	for (;;) {
369 		struct list_head *tmp = next;
370 		struct inode *inode;
371 
372 		/*
373 		 * We can reschedule here without worrying about the list's
374 		 * consistency because the per-sb list of inodes must not
375 		 * change during umount anymore, and because iprune_sem keeps
376 		 * shrink_icache_memory() away.
377 		 */
378 		cond_resched_lock(&inode_lock);
379 
380 		next = next->next;
381 		if (tmp == head)
382 			break;
383 		inode = list_entry(tmp, struct inode, i_sb_list);
384 		if (inode->i_state & I_NEW)
385 			continue;
386 		invalidate_inode_buffers(inode);
387 		if (!atomic_read(&inode->i_count)) {
388 			list_move(&inode->i_list, dispose);
389 			WARN_ON(inode->i_state & I_NEW);
390 			inode->i_state |= I_FREEING;
391 			count++;
392 			continue;
393 		}
394 		busy = 1;
395 	}
396 	/* only unused inodes may be cached with i_count zero */
397 	inodes_stat.nr_unused -= count;
398 	return busy;
399 }
400 
401 /**
402  *	invalidate_inodes	- discard the inodes on a device
403  *	@sb: superblock
404  *
405  *	Discard all of the inodes for a given superblock. If the discard
406  *	fails because there are busy inodes then a non zero value is returned.
407  *	If the discard is successful all the inodes have been discarded.
408  */
409 int invalidate_inodes(struct super_block *sb)
410 {
411 	int busy;
412 	LIST_HEAD(throw_away);
413 
414 	down_write(&iprune_sem);
415 	spin_lock(&inode_lock);
416 	inotify_unmount_inodes(&sb->s_inodes);
417 	fsnotify_unmount_inodes(&sb->s_inodes);
418 	busy = invalidate_list(&sb->s_inodes, &throw_away);
419 	spin_unlock(&inode_lock);
420 
421 	dispose_list(&throw_away);
422 	up_write(&iprune_sem);
423 
424 	return busy;
425 }
426 EXPORT_SYMBOL(invalidate_inodes);
427 
428 static int can_unuse(struct inode *inode)
429 {
430 	if (inode->i_state)
431 		return 0;
432 	if (inode_has_buffers(inode))
433 		return 0;
434 	if (atomic_read(&inode->i_count))
435 		return 0;
436 	if (inode->i_data.nrpages)
437 		return 0;
438 	return 1;
439 }
440 
441 /*
442  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
443  * a temporary list and then are freed outside inode_lock by dispose_list().
444  *
445  * Any inodes which are pinned purely because of attached pagecache have their
446  * pagecache removed.  We expect the final iput() on that inode to add it to
447  * the front of the inode_unused list.  So look for it there and if the
448  * inode is still freeable, proceed.  The right inode is found 99.9% of the
449  * time in testing on a 4-way.
450  *
451  * If the inode has metadata buffers attached to mapping->private_list then
452  * try to remove them.
453  */
454 static void prune_icache(int nr_to_scan)
455 {
456 	LIST_HEAD(freeable);
457 	int nr_pruned = 0;
458 	int nr_scanned;
459 	unsigned long reap = 0;
460 
461 	down_read(&iprune_sem);
462 	spin_lock(&inode_lock);
463 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
464 		struct inode *inode;
465 
466 		if (list_empty(&inode_unused))
467 			break;
468 
469 		inode = list_entry(inode_unused.prev, struct inode, i_list);
470 
471 		if (inode->i_state || atomic_read(&inode->i_count)) {
472 			list_move(&inode->i_list, &inode_unused);
473 			continue;
474 		}
475 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
476 			__iget(inode);
477 			spin_unlock(&inode_lock);
478 			if (remove_inode_buffers(inode))
479 				reap += invalidate_mapping_pages(&inode->i_data,
480 								0, -1);
481 			iput(inode);
482 			spin_lock(&inode_lock);
483 
484 			if (inode != list_entry(inode_unused.next,
485 						struct inode, i_list))
486 				continue;	/* wrong inode or list_empty */
487 			if (!can_unuse(inode))
488 				continue;
489 		}
490 		list_move(&inode->i_list, &freeable);
491 		WARN_ON(inode->i_state & I_NEW);
492 		inode->i_state |= I_FREEING;
493 		nr_pruned++;
494 	}
495 	inodes_stat.nr_unused -= nr_pruned;
496 	if (current_is_kswapd())
497 		__count_vm_events(KSWAPD_INODESTEAL, reap);
498 	else
499 		__count_vm_events(PGINODESTEAL, reap);
500 	spin_unlock(&inode_lock);
501 
502 	dispose_list(&freeable);
503 	up_read(&iprune_sem);
504 }
505 
506 /*
507  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
508  * "unused" means that no dentries are referring to the inodes: the files are
509  * not open and the dcache references to those inodes have already been
510  * reclaimed.
511  *
512  * This function is passed the number of inodes to scan, and it returns the
513  * total number of remaining possibly-reclaimable inodes.
514  */
515 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
516 {
517 	if (nr) {
518 		/*
519 		 * Nasty deadlock avoidance.  We may hold various FS locks,
520 		 * and we don't want to recurse into the FS that called us
521 		 * in clear_inode() and friends..
522 		 */
523 		if (!(gfp_mask & __GFP_FS))
524 			return -1;
525 		prune_icache(nr);
526 	}
527 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
528 }
529 
530 static struct shrinker icache_shrinker = {
531 	.shrink = shrink_icache_memory,
532 	.seeks = DEFAULT_SEEKS,
533 };
534 
535 static void __wait_on_freeing_inode(struct inode *inode);
536 /*
537  * Called with the inode lock held.
538  * NOTE: we are not increasing the inode-refcount, you must call __iget()
539  * by hand after calling find_inode now! This simplifies iunique and won't
540  * add any additional branch in the common code.
541  */
542 static struct inode *find_inode(struct super_block *sb,
543 				struct hlist_head *head,
544 				int (*test)(struct inode *, void *),
545 				void *data)
546 {
547 	struct hlist_node *node;
548 	struct inode *inode = NULL;
549 
550 repeat:
551 	hlist_for_each_entry(inode, node, head, i_hash) {
552 		if (inode->i_sb != sb)
553 			continue;
554 		if (!test(inode, data))
555 			continue;
556 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
557 			__wait_on_freeing_inode(inode);
558 			goto repeat;
559 		}
560 		break;
561 	}
562 	return node ? inode : NULL;
563 }
564 
565 /*
566  * find_inode_fast is the fast path version of find_inode, see the comment at
567  * iget_locked for details.
568  */
569 static struct inode *find_inode_fast(struct super_block *sb,
570 				struct hlist_head *head, unsigned long ino)
571 {
572 	struct hlist_node *node;
573 	struct inode *inode = NULL;
574 
575 repeat:
576 	hlist_for_each_entry(inode, node, head, i_hash) {
577 		if (inode->i_ino != ino)
578 			continue;
579 		if (inode->i_sb != sb)
580 			continue;
581 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
582 			__wait_on_freeing_inode(inode);
583 			goto repeat;
584 		}
585 		break;
586 	}
587 	return node ? inode : NULL;
588 }
589 
590 static unsigned long hash(struct super_block *sb, unsigned long hashval)
591 {
592 	unsigned long tmp;
593 
594 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
595 			L1_CACHE_BYTES;
596 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
597 	return tmp & I_HASHMASK;
598 }
599 
600 static inline void
601 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
602 			struct inode *inode)
603 {
604 	inodes_stat.nr_inodes++;
605 	list_add(&inode->i_list, &inode_in_use);
606 	list_add(&inode->i_sb_list, &sb->s_inodes);
607 	if (head)
608 		hlist_add_head(&inode->i_hash, head);
609 }
610 
611 /**
612  * inode_add_to_lists - add a new inode to relevant lists
613  * @sb: superblock inode belongs to
614  * @inode: inode to mark in use
615  *
616  * When an inode is allocated it needs to be accounted for, added to the in use
617  * list, the owning superblock and the inode hash. This needs to be done under
618  * the inode_lock, so export a function to do this rather than the inode lock
619  * itself. We calculate the hash list to add to here so it is all internal
620  * which requires the caller to have already set up the inode number in the
621  * inode to add.
622  */
623 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
624 {
625 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
626 
627 	spin_lock(&inode_lock);
628 	__inode_add_to_lists(sb, head, inode);
629 	spin_unlock(&inode_lock);
630 }
631 EXPORT_SYMBOL_GPL(inode_add_to_lists);
632 
633 /**
634  *	new_inode 	- obtain an inode
635  *	@sb: superblock
636  *
637  *	Allocates a new inode for given superblock. The default gfp_mask
638  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
639  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
640  *	for the page cache are not reclaimable or migratable,
641  *	mapping_set_gfp_mask() must be called with suitable flags on the
642  *	newly created inode's mapping
643  *
644  */
645 struct inode *new_inode(struct super_block *sb)
646 {
647 	/*
648 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
649 	 * error if st_ino won't fit in target struct field. Use 32bit counter
650 	 * here to attempt to avoid that.
651 	 */
652 	static unsigned int last_ino;
653 	struct inode *inode;
654 
655 	spin_lock_prefetch(&inode_lock);
656 
657 	inode = alloc_inode(sb);
658 	if (inode) {
659 		spin_lock(&inode_lock);
660 		__inode_add_to_lists(sb, NULL, inode);
661 		inode->i_ino = ++last_ino;
662 		inode->i_state = 0;
663 		spin_unlock(&inode_lock);
664 	}
665 	return inode;
666 }
667 EXPORT_SYMBOL(new_inode);
668 
669 void unlock_new_inode(struct inode *inode)
670 {
671 #ifdef CONFIG_DEBUG_LOCK_ALLOC
672 	if (inode->i_mode & S_IFDIR) {
673 		struct file_system_type *type = inode->i_sb->s_type;
674 
675 		/* Set new key only if filesystem hasn't already changed it */
676 		if (!lockdep_match_class(&inode->i_mutex,
677 		    &type->i_mutex_key)) {
678 			/*
679 			 * ensure nobody is actually holding i_mutex
680 			 */
681 			mutex_destroy(&inode->i_mutex);
682 			mutex_init(&inode->i_mutex);
683 			lockdep_set_class(&inode->i_mutex,
684 					  &type->i_mutex_dir_key);
685 		}
686 	}
687 #endif
688 	/*
689 	 * This is special!  We do not need the spinlock when clearing I_NEW,
690 	 * because we're guaranteed that nobody else tries to do anything about
691 	 * the state of the inode when it is locked, as we just created it (so
692 	 * there can be no old holders that haven't tested I_NEW).
693 	 * However we must emit the memory barrier so that other CPUs reliably
694 	 * see the clearing of I_NEW after the other inode initialisation has
695 	 * completed.
696 	 */
697 	smp_mb();
698 	WARN_ON(!(inode->i_state & I_NEW));
699 	inode->i_state &= ~I_NEW;
700 	wake_up_inode(inode);
701 }
702 EXPORT_SYMBOL(unlock_new_inode);
703 
704 /*
705  * This is called without the inode lock held.. Be careful.
706  *
707  * We no longer cache the sb_flags in i_flags - see fs.h
708  *	-- rmk@arm.uk.linux.org
709  */
710 static struct inode *get_new_inode(struct super_block *sb,
711 				struct hlist_head *head,
712 				int (*test)(struct inode *, void *),
713 				int (*set)(struct inode *, void *),
714 				void *data)
715 {
716 	struct inode *inode;
717 
718 	inode = alloc_inode(sb);
719 	if (inode) {
720 		struct inode *old;
721 
722 		spin_lock(&inode_lock);
723 		/* We released the lock, so.. */
724 		old = find_inode(sb, head, test, data);
725 		if (!old) {
726 			if (set(inode, data))
727 				goto set_failed;
728 
729 			__inode_add_to_lists(sb, head, inode);
730 			inode->i_state = I_NEW;
731 			spin_unlock(&inode_lock);
732 
733 			/* Return the locked inode with I_NEW set, the
734 			 * caller is responsible for filling in the contents
735 			 */
736 			return inode;
737 		}
738 
739 		/*
740 		 * Uhhuh, somebody else created the same inode under
741 		 * us. Use the old inode instead of the one we just
742 		 * allocated.
743 		 */
744 		__iget(old);
745 		spin_unlock(&inode_lock);
746 		destroy_inode(inode);
747 		inode = old;
748 		wait_on_inode(inode);
749 	}
750 	return inode;
751 
752 set_failed:
753 	spin_unlock(&inode_lock);
754 	destroy_inode(inode);
755 	return NULL;
756 }
757 
758 /*
759  * get_new_inode_fast is the fast path version of get_new_inode, see the
760  * comment at iget_locked for details.
761  */
762 static struct inode *get_new_inode_fast(struct super_block *sb,
763 				struct hlist_head *head, unsigned long ino)
764 {
765 	struct inode *inode;
766 
767 	inode = alloc_inode(sb);
768 	if (inode) {
769 		struct inode *old;
770 
771 		spin_lock(&inode_lock);
772 		/* We released the lock, so.. */
773 		old = find_inode_fast(sb, head, ino);
774 		if (!old) {
775 			inode->i_ino = ino;
776 			__inode_add_to_lists(sb, head, inode);
777 			inode->i_state = I_NEW;
778 			spin_unlock(&inode_lock);
779 
780 			/* Return the locked inode with I_NEW set, the
781 			 * caller is responsible for filling in the contents
782 			 */
783 			return inode;
784 		}
785 
786 		/*
787 		 * Uhhuh, somebody else created the same inode under
788 		 * us. Use the old inode instead of the one we just
789 		 * allocated.
790 		 */
791 		__iget(old);
792 		spin_unlock(&inode_lock);
793 		destroy_inode(inode);
794 		inode = old;
795 		wait_on_inode(inode);
796 	}
797 	return inode;
798 }
799 
800 /**
801  *	iunique - get a unique inode number
802  *	@sb: superblock
803  *	@max_reserved: highest reserved inode number
804  *
805  *	Obtain an inode number that is unique on the system for a given
806  *	superblock. This is used by file systems that have no natural
807  *	permanent inode numbering system. An inode number is returned that
808  *	is higher than the reserved limit but unique.
809  *
810  *	BUGS:
811  *	With a large number of inodes live on the file system this function
812  *	currently becomes quite slow.
813  */
814 ino_t iunique(struct super_block *sb, ino_t max_reserved)
815 {
816 	/*
817 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
818 	 * error if st_ino won't fit in target struct field. Use 32bit counter
819 	 * here to attempt to avoid that.
820 	 */
821 	static unsigned int counter;
822 	struct inode *inode;
823 	struct hlist_head *head;
824 	ino_t res;
825 
826 	spin_lock(&inode_lock);
827 	do {
828 		if (counter <= max_reserved)
829 			counter = max_reserved + 1;
830 		res = counter++;
831 		head = inode_hashtable + hash(sb, res);
832 		inode = find_inode_fast(sb, head, res);
833 	} while (inode != NULL);
834 	spin_unlock(&inode_lock);
835 
836 	return res;
837 }
838 EXPORT_SYMBOL(iunique);
839 
840 struct inode *igrab(struct inode *inode)
841 {
842 	spin_lock(&inode_lock);
843 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
844 		__iget(inode);
845 	else
846 		/*
847 		 * Handle the case where s_op->clear_inode is not been
848 		 * called yet, and somebody is calling igrab
849 		 * while the inode is getting freed.
850 		 */
851 		inode = NULL;
852 	spin_unlock(&inode_lock);
853 	return inode;
854 }
855 EXPORT_SYMBOL(igrab);
856 
857 /**
858  * ifind - internal function, you want ilookup5() or iget5().
859  * @sb:		super block of file system to search
860  * @head:       the head of the list to search
861  * @test:	callback used for comparisons between inodes
862  * @data:	opaque data pointer to pass to @test
863  * @wait:	if true wait for the inode to be unlocked, if false do not
864  *
865  * ifind() searches for the inode specified by @data in the inode
866  * cache. This is a generalized version of ifind_fast() for file systems where
867  * the inode number is not sufficient for unique identification of an inode.
868  *
869  * If the inode is in the cache, the inode is returned with an incremented
870  * reference count.
871  *
872  * Otherwise NULL is returned.
873  *
874  * Note, @test is called with the inode_lock held, so can't sleep.
875  */
876 static struct inode *ifind(struct super_block *sb,
877 		struct hlist_head *head, int (*test)(struct inode *, void *),
878 		void *data, const int wait)
879 {
880 	struct inode *inode;
881 
882 	spin_lock(&inode_lock);
883 	inode = find_inode(sb, head, test, data);
884 	if (inode) {
885 		__iget(inode);
886 		spin_unlock(&inode_lock);
887 		if (likely(wait))
888 			wait_on_inode(inode);
889 		return inode;
890 	}
891 	spin_unlock(&inode_lock);
892 	return NULL;
893 }
894 
895 /**
896  * ifind_fast - internal function, you want ilookup() or iget().
897  * @sb:		super block of file system to search
898  * @head:       head of the list to search
899  * @ino:	inode number to search for
900  *
901  * ifind_fast() searches for the inode @ino in the inode cache. This is for
902  * file systems where the inode number is sufficient for unique identification
903  * of an inode.
904  *
905  * If the inode is in the cache, the inode is returned with an incremented
906  * reference count.
907  *
908  * Otherwise NULL is returned.
909  */
910 static struct inode *ifind_fast(struct super_block *sb,
911 		struct hlist_head *head, unsigned long ino)
912 {
913 	struct inode *inode;
914 
915 	spin_lock(&inode_lock);
916 	inode = find_inode_fast(sb, head, ino);
917 	if (inode) {
918 		__iget(inode);
919 		spin_unlock(&inode_lock);
920 		wait_on_inode(inode);
921 		return inode;
922 	}
923 	spin_unlock(&inode_lock);
924 	return NULL;
925 }
926 
927 /**
928  * ilookup5_nowait - search for an inode in the inode cache
929  * @sb:		super block of file system to search
930  * @hashval:	hash value (usually inode number) to search for
931  * @test:	callback used for comparisons between inodes
932  * @data:	opaque data pointer to pass to @test
933  *
934  * ilookup5() uses ifind() to search for the inode specified by @hashval and
935  * @data in the inode cache. This is a generalized version of ilookup() for
936  * file systems where the inode number is not sufficient for unique
937  * identification of an inode.
938  *
939  * If the inode is in the cache, the inode is returned with an incremented
940  * reference count.  Note, the inode lock is not waited upon so you have to be
941  * very careful what you do with the returned inode.  You probably should be
942  * using ilookup5() instead.
943  *
944  * Otherwise NULL is returned.
945  *
946  * Note, @test is called with the inode_lock held, so can't sleep.
947  */
948 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
949 		int (*test)(struct inode *, void *), void *data)
950 {
951 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
952 
953 	return ifind(sb, head, test, data, 0);
954 }
955 EXPORT_SYMBOL(ilookup5_nowait);
956 
957 /**
958  * ilookup5 - search for an inode in the inode cache
959  * @sb:		super block of file system to search
960  * @hashval:	hash value (usually inode number) to search for
961  * @test:	callback used for comparisons between inodes
962  * @data:	opaque data pointer to pass to @test
963  *
964  * ilookup5() uses ifind() to search for the inode specified by @hashval and
965  * @data in the inode cache. This is a generalized version of ilookup() for
966  * file systems where the inode number is not sufficient for unique
967  * identification of an inode.
968  *
969  * If the inode is in the cache, the inode lock is waited upon and the inode is
970  * returned with an incremented reference count.
971  *
972  * Otherwise NULL is returned.
973  *
974  * Note, @test is called with the inode_lock held, so can't sleep.
975  */
976 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
977 		int (*test)(struct inode *, void *), void *data)
978 {
979 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
980 
981 	return ifind(sb, head, test, data, 1);
982 }
983 EXPORT_SYMBOL(ilookup5);
984 
985 /**
986  * ilookup - search for an inode in the inode cache
987  * @sb:		super block of file system to search
988  * @ino:	inode number to search for
989  *
990  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
991  * This is for file systems where the inode number is sufficient for unique
992  * identification of an inode.
993  *
994  * If the inode is in the cache, the inode is returned with an incremented
995  * reference count.
996  *
997  * Otherwise NULL is returned.
998  */
999 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1000 {
1001 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1002 
1003 	return ifind_fast(sb, head, ino);
1004 }
1005 EXPORT_SYMBOL(ilookup);
1006 
1007 /**
1008  * iget5_locked - obtain an inode from a mounted file system
1009  * @sb:		super block of file system
1010  * @hashval:	hash value (usually inode number) to get
1011  * @test:	callback used for comparisons between inodes
1012  * @set:	callback used to initialize a new struct inode
1013  * @data:	opaque data pointer to pass to @test and @set
1014  *
1015  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1016  * and @data in the inode cache and if present it is returned with an increased
1017  * reference count. This is a generalized version of iget_locked() for file
1018  * systems where the inode number is not sufficient for unique identification
1019  * of an inode.
1020  *
1021  * If the inode is not in cache, get_new_inode() is called to allocate a new
1022  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1023  * file system gets to fill it in before unlocking it via unlock_new_inode().
1024  *
1025  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1026  */
1027 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1028 		int (*test)(struct inode *, void *),
1029 		int (*set)(struct inode *, void *), void *data)
1030 {
1031 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1032 	struct inode *inode;
1033 
1034 	inode = ifind(sb, head, test, data, 1);
1035 	if (inode)
1036 		return inode;
1037 	/*
1038 	 * get_new_inode() will do the right thing, re-trying the search
1039 	 * in case it had to block at any point.
1040 	 */
1041 	return get_new_inode(sb, head, test, set, data);
1042 }
1043 EXPORT_SYMBOL(iget5_locked);
1044 
1045 /**
1046  * iget_locked - obtain an inode from a mounted file system
1047  * @sb:		super block of file system
1048  * @ino:	inode number to get
1049  *
1050  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1051  * the inode cache and if present it is returned with an increased reference
1052  * count. This is for file systems where the inode number is sufficient for
1053  * unique identification of an inode.
1054  *
1055  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1056  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1057  * The file system gets to fill it in before unlocking it via
1058  * unlock_new_inode().
1059  */
1060 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1061 {
1062 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1063 	struct inode *inode;
1064 
1065 	inode = ifind_fast(sb, head, ino);
1066 	if (inode)
1067 		return inode;
1068 	/*
1069 	 * get_new_inode_fast() will do the right thing, re-trying the search
1070 	 * in case it had to block at any point.
1071 	 */
1072 	return get_new_inode_fast(sb, head, ino);
1073 }
1074 EXPORT_SYMBOL(iget_locked);
1075 
1076 int insert_inode_locked(struct inode *inode)
1077 {
1078 	struct super_block *sb = inode->i_sb;
1079 	ino_t ino = inode->i_ino;
1080 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1081 
1082 	inode->i_state |= I_NEW;
1083 	while (1) {
1084 		struct hlist_node *node;
1085 		struct inode *old = NULL;
1086 		spin_lock(&inode_lock);
1087 		hlist_for_each_entry(old, node, head, i_hash) {
1088 			if (old->i_ino != ino)
1089 				continue;
1090 			if (old->i_sb != sb)
1091 				continue;
1092 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1093 				continue;
1094 			break;
1095 		}
1096 		if (likely(!node)) {
1097 			hlist_add_head(&inode->i_hash, head);
1098 			spin_unlock(&inode_lock);
1099 			return 0;
1100 		}
1101 		__iget(old);
1102 		spin_unlock(&inode_lock);
1103 		wait_on_inode(old);
1104 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1105 			iput(old);
1106 			return -EBUSY;
1107 		}
1108 		iput(old);
1109 	}
1110 }
1111 EXPORT_SYMBOL(insert_inode_locked);
1112 
1113 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1114 		int (*test)(struct inode *, void *), void *data)
1115 {
1116 	struct super_block *sb = inode->i_sb;
1117 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1118 
1119 	inode->i_state |= I_NEW;
1120 
1121 	while (1) {
1122 		struct hlist_node *node;
1123 		struct inode *old = NULL;
1124 
1125 		spin_lock(&inode_lock);
1126 		hlist_for_each_entry(old, node, head, i_hash) {
1127 			if (old->i_sb != sb)
1128 				continue;
1129 			if (!test(old, data))
1130 				continue;
1131 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1132 				continue;
1133 			break;
1134 		}
1135 		if (likely(!node)) {
1136 			hlist_add_head(&inode->i_hash, head);
1137 			spin_unlock(&inode_lock);
1138 			return 0;
1139 		}
1140 		__iget(old);
1141 		spin_unlock(&inode_lock);
1142 		wait_on_inode(old);
1143 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1144 			iput(old);
1145 			return -EBUSY;
1146 		}
1147 		iput(old);
1148 	}
1149 }
1150 EXPORT_SYMBOL(insert_inode_locked4);
1151 
1152 /**
1153  *	__insert_inode_hash - hash an inode
1154  *	@inode: unhashed inode
1155  *	@hashval: unsigned long value used to locate this object in the
1156  *		inode_hashtable.
1157  *
1158  *	Add an inode to the inode hash for this superblock.
1159  */
1160 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1161 {
1162 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1163 	spin_lock(&inode_lock);
1164 	hlist_add_head(&inode->i_hash, head);
1165 	spin_unlock(&inode_lock);
1166 }
1167 EXPORT_SYMBOL(__insert_inode_hash);
1168 
1169 /**
1170  *	remove_inode_hash - remove an inode from the hash
1171  *	@inode: inode to unhash
1172  *
1173  *	Remove an inode from the superblock.
1174  */
1175 void remove_inode_hash(struct inode *inode)
1176 {
1177 	spin_lock(&inode_lock);
1178 	hlist_del_init(&inode->i_hash);
1179 	spin_unlock(&inode_lock);
1180 }
1181 EXPORT_SYMBOL(remove_inode_hash);
1182 
1183 /*
1184  * Tell the filesystem that this inode is no longer of any interest and should
1185  * be completely destroyed.
1186  *
1187  * We leave the inode in the inode hash table until *after* the filesystem's
1188  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1189  * instigate) will always find up-to-date information either in the hash or on
1190  * disk.
1191  *
1192  * I_FREEING is set so that no-one will take a new reference to the inode while
1193  * it is being deleted.
1194  */
1195 void generic_delete_inode(struct inode *inode)
1196 {
1197 	const struct super_operations *op = inode->i_sb->s_op;
1198 
1199 	list_del_init(&inode->i_list);
1200 	list_del_init(&inode->i_sb_list);
1201 	WARN_ON(inode->i_state & I_NEW);
1202 	inode->i_state |= I_FREEING;
1203 	inodes_stat.nr_inodes--;
1204 	spin_unlock(&inode_lock);
1205 
1206 	if (op->delete_inode) {
1207 		void (*delete)(struct inode *) = op->delete_inode;
1208 		/* Filesystems implementing their own
1209 		 * s_op->delete_inode are required to call
1210 		 * truncate_inode_pages and clear_inode()
1211 		 * internally */
1212 		delete(inode);
1213 	} else {
1214 		truncate_inode_pages(&inode->i_data, 0);
1215 		clear_inode(inode);
1216 	}
1217 	spin_lock(&inode_lock);
1218 	hlist_del_init(&inode->i_hash);
1219 	spin_unlock(&inode_lock);
1220 	wake_up_inode(inode);
1221 	BUG_ON(inode->i_state != I_CLEAR);
1222 	destroy_inode(inode);
1223 }
1224 EXPORT_SYMBOL(generic_delete_inode);
1225 
1226 /**
1227  *	generic_detach_inode - remove inode from inode lists
1228  *	@inode: inode to remove
1229  *
1230  *	Remove inode from inode lists, write it if it's dirty. This is just an
1231  *	internal VFS helper exported for hugetlbfs. Do not use!
1232  *
1233  *	Returns 1 if inode should be completely destroyed.
1234  */
1235 int generic_detach_inode(struct inode *inode)
1236 {
1237 	struct super_block *sb = inode->i_sb;
1238 
1239 	if (!hlist_unhashed(&inode->i_hash)) {
1240 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1241 			list_move(&inode->i_list, &inode_unused);
1242 		inodes_stat.nr_unused++;
1243 		if (sb->s_flags & MS_ACTIVE) {
1244 			spin_unlock(&inode_lock);
1245 			return 0;
1246 		}
1247 		WARN_ON(inode->i_state & I_NEW);
1248 		inode->i_state |= I_WILL_FREE;
1249 		spin_unlock(&inode_lock);
1250 		write_inode_now(inode, 1);
1251 		spin_lock(&inode_lock);
1252 		WARN_ON(inode->i_state & I_NEW);
1253 		inode->i_state &= ~I_WILL_FREE;
1254 		inodes_stat.nr_unused--;
1255 		hlist_del_init(&inode->i_hash);
1256 	}
1257 	list_del_init(&inode->i_list);
1258 	list_del_init(&inode->i_sb_list);
1259 	WARN_ON(inode->i_state & I_NEW);
1260 	inode->i_state |= I_FREEING;
1261 	inodes_stat.nr_inodes--;
1262 	spin_unlock(&inode_lock);
1263 	return 1;
1264 }
1265 EXPORT_SYMBOL_GPL(generic_detach_inode);
1266 
1267 static void generic_forget_inode(struct inode *inode)
1268 {
1269 	if (!generic_detach_inode(inode))
1270 		return;
1271 	if (inode->i_data.nrpages)
1272 		truncate_inode_pages(&inode->i_data, 0);
1273 	clear_inode(inode);
1274 	wake_up_inode(inode);
1275 	destroy_inode(inode);
1276 }
1277 
1278 /*
1279  * Normal UNIX filesystem behaviour: delete the
1280  * inode when the usage count drops to zero, and
1281  * i_nlink is zero.
1282  */
1283 void generic_drop_inode(struct inode *inode)
1284 {
1285 	if (!inode->i_nlink)
1286 		generic_delete_inode(inode);
1287 	else
1288 		generic_forget_inode(inode);
1289 }
1290 EXPORT_SYMBOL_GPL(generic_drop_inode);
1291 
1292 /*
1293  * Called when we're dropping the last reference
1294  * to an inode.
1295  *
1296  * Call the FS "drop()" function, defaulting to
1297  * the legacy UNIX filesystem behaviour..
1298  *
1299  * NOTE! NOTE! NOTE! We're called with the inode lock
1300  * held, and the drop function is supposed to release
1301  * the lock!
1302  */
1303 static inline void iput_final(struct inode *inode)
1304 {
1305 	const struct super_operations *op = inode->i_sb->s_op;
1306 	void (*drop)(struct inode *) = generic_drop_inode;
1307 
1308 	if (op && op->drop_inode)
1309 		drop = op->drop_inode;
1310 	drop(inode);
1311 }
1312 
1313 /**
1314  *	iput	- put an inode
1315  *	@inode: inode to put
1316  *
1317  *	Puts an inode, dropping its usage count. If the inode use count hits
1318  *	zero, the inode is then freed and may also be destroyed.
1319  *
1320  *	Consequently, iput() can sleep.
1321  */
1322 void iput(struct inode *inode)
1323 {
1324 	if (inode) {
1325 		BUG_ON(inode->i_state == I_CLEAR);
1326 
1327 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1328 			iput_final(inode);
1329 	}
1330 }
1331 EXPORT_SYMBOL(iput);
1332 
1333 /**
1334  *	bmap	- find a block number in a file
1335  *	@inode: inode of file
1336  *	@block: block to find
1337  *
1338  *	Returns the block number on the device holding the inode that
1339  *	is the disk block number for the block of the file requested.
1340  *	That is, asked for block 4 of inode 1 the function will return the
1341  *	disk block relative to the disk start that holds that block of the
1342  *	file.
1343  */
1344 sector_t bmap(struct inode *inode, sector_t block)
1345 {
1346 	sector_t res = 0;
1347 	if (inode->i_mapping->a_ops->bmap)
1348 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1349 	return res;
1350 }
1351 EXPORT_SYMBOL(bmap);
1352 
1353 /*
1354  * With relative atime, only update atime if the previous atime is
1355  * earlier than either the ctime or mtime or if at least a day has
1356  * passed since the last atime update.
1357  */
1358 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1359 			     struct timespec now)
1360 {
1361 
1362 	if (!(mnt->mnt_flags & MNT_RELATIME))
1363 		return 1;
1364 	/*
1365 	 * Is mtime younger than atime? If yes, update atime:
1366 	 */
1367 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1368 		return 1;
1369 	/*
1370 	 * Is ctime younger than atime? If yes, update atime:
1371 	 */
1372 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1373 		return 1;
1374 
1375 	/*
1376 	 * Is the previous atime value older than a day? If yes,
1377 	 * update atime:
1378 	 */
1379 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1380 		return 1;
1381 	/*
1382 	 * Good, we can skip the atime update:
1383 	 */
1384 	return 0;
1385 }
1386 
1387 /**
1388  *	touch_atime	-	update the access time
1389  *	@mnt: mount the inode is accessed on
1390  *	@dentry: dentry accessed
1391  *
1392  *	Update the accessed time on an inode and mark it for writeback.
1393  *	This function automatically handles read only file systems and media,
1394  *	as well as the "noatime" flag and inode specific "noatime" markers.
1395  */
1396 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1397 {
1398 	struct inode *inode = dentry->d_inode;
1399 	struct timespec now;
1400 
1401 	if (inode->i_flags & S_NOATIME)
1402 		return;
1403 	if (IS_NOATIME(inode))
1404 		return;
1405 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1406 		return;
1407 
1408 	if (mnt->mnt_flags & MNT_NOATIME)
1409 		return;
1410 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1411 		return;
1412 
1413 	now = current_fs_time(inode->i_sb);
1414 
1415 	if (!relatime_need_update(mnt, inode, now))
1416 		return;
1417 
1418 	if (timespec_equal(&inode->i_atime, &now))
1419 		return;
1420 
1421 	if (mnt_want_write(mnt))
1422 		return;
1423 
1424 	inode->i_atime = now;
1425 	mark_inode_dirty_sync(inode);
1426 	mnt_drop_write(mnt);
1427 }
1428 EXPORT_SYMBOL(touch_atime);
1429 
1430 /**
1431  *	file_update_time	-	update mtime and ctime time
1432  *	@file: file accessed
1433  *
1434  *	Update the mtime and ctime members of an inode and mark the inode
1435  *	for writeback.  Note that this function is meant exclusively for
1436  *	usage in the file write path of filesystems, and filesystems may
1437  *	choose to explicitly ignore update via this function with the
1438  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1439  *	timestamps are handled by the server.
1440  */
1441 
1442 void file_update_time(struct file *file)
1443 {
1444 	struct inode *inode = file->f_path.dentry->d_inode;
1445 	struct timespec now;
1446 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1447 
1448 	/* First try to exhaust all avenues to not sync */
1449 	if (IS_NOCMTIME(inode))
1450 		return;
1451 
1452 	now = current_fs_time(inode->i_sb);
1453 	if (!timespec_equal(&inode->i_mtime, &now))
1454 		sync_it = S_MTIME;
1455 
1456 	if (!timespec_equal(&inode->i_ctime, &now))
1457 		sync_it |= S_CTIME;
1458 
1459 	if (IS_I_VERSION(inode))
1460 		sync_it |= S_VERSION;
1461 
1462 	if (!sync_it)
1463 		return;
1464 
1465 	/* Finally allowed to write? Takes lock. */
1466 	if (mnt_want_write_file(file))
1467 		return;
1468 
1469 	/* Only change inode inside the lock region */
1470 	if (sync_it & S_VERSION)
1471 		inode_inc_iversion(inode);
1472 	if (sync_it & S_CTIME)
1473 		inode->i_ctime = now;
1474 	if (sync_it & S_MTIME)
1475 		inode->i_mtime = now;
1476 	mark_inode_dirty_sync(inode);
1477 	mnt_drop_write(file->f_path.mnt);
1478 }
1479 EXPORT_SYMBOL(file_update_time);
1480 
1481 int inode_needs_sync(struct inode *inode)
1482 {
1483 	if (IS_SYNC(inode))
1484 		return 1;
1485 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1486 		return 1;
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(inode_needs_sync);
1490 
1491 int inode_wait(void *word)
1492 {
1493 	schedule();
1494 	return 0;
1495 }
1496 EXPORT_SYMBOL(inode_wait);
1497 
1498 /*
1499  * If we try to find an inode in the inode hash while it is being
1500  * deleted, we have to wait until the filesystem completes its
1501  * deletion before reporting that it isn't found.  This function waits
1502  * until the deletion _might_ have completed.  Callers are responsible
1503  * to recheck inode state.
1504  *
1505  * It doesn't matter if I_NEW is not set initially, a call to
1506  * wake_up_inode() after removing from the hash list will DTRT.
1507  *
1508  * This is called with inode_lock held.
1509  */
1510 static void __wait_on_freeing_inode(struct inode *inode)
1511 {
1512 	wait_queue_head_t *wq;
1513 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1514 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1515 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1516 	spin_unlock(&inode_lock);
1517 	schedule();
1518 	finish_wait(wq, &wait.wait);
1519 	spin_lock(&inode_lock);
1520 }
1521 
1522 static __initdata unsigned long ihash_entries;
1523 static int __init set_ihash_entries(char *str)
1524 {
1525 	if (!str)
1526 		return 0;
1527 	ihash_entries = simple_strtoul(str, &str, 0);
1528 	return 1;
1529 }
1530 __setup("ihash_entries=", set_ihash_entries);
1531 
1532 /*
1533  * Initialize the waitqueues and inode hash table.
1534  */
1535 void __init inode_init_early(void)
1536 {
1537 	int loop;
1538 
1539 	/* If hashes are distributed across NUMA nodes, defer
1540 	 * hash allocation until vmalloc space is available.
1541 	 */
1542 	if (hashdist)
1543 		return;
1544 
1545 	inode_hashtable =
1546 		alloc_large_system_hash("Inode-cache",
1547 					sizeof(struct hlist_head),
1548 					ihash_entries,
1549 					14,
1550 					HASH_EARLY,
1551 					&i_hash_shift,
1552 					&i_hash_mask,
1553 					0);
1554 
1555 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1556 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1557 }
1558 
1559 void __init inode_init(void)
1560 {
1561 	int loop;
1562 
1563 	/* inode slab cache */
1564 	inode_cachep = kmem_cache_create("inode_cache",
1565 					 sizeof(struct inode),
1566 					 0,
1567 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1568 					 SLAB_MEM_SPREAD),
1569 					 init_once);
1570 	register_shrinker(&icache_shrinker);
1571 
1572 	/* Hash may have been set up in inode_init_early */
1573 	if (!hashdist)
1574 		return;
1575 
1576 	inode_hashtable =
1577 		alloc_large_system_hash("Inode-cache",
1578 					sizeof(struct hlist_head),
1579 					ihash_entries,
1580 					14,
1581 					0,
1582 					&i_hash_shift,
1583 					&i_hash_mask,
1584 					0);
1585 
1586 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1587 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1588 }
1589 
1590 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1591 {
1592 	inode->i_mode = mode;
1593 	if (S_ISCHR(mode)) {
1594 		inode->i_fop = &def_chr_fops;
1595 		inode->i_rdev = rdev;
1596 	} else if (S_ISBLK(mode)) {
1597 		inode->i_fop = &def_blk_fops;
1598 		inode->i_rdev = rdev;
1599 	} else if (S_ISFIFO(mode))
1600 		inode->i_fop = &def_fifo_fops;
1601 	else if (S_ISSOCK(mode))
1602 		inode->i_fop = &bad_sock_fops;
1603 	else
1604 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1605 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1606 				  inode->i_ino);
1607 }
1608 EXPORT_SYMBOL(init_special_inode);
1609 
1610 /**
1611  * Init uid,gid,mode for new inode according to posix standards
1612  * @inode: New inode
1613  * @dir: Directory inode
1614  * @mode: mode of the new inode
1615  */
1616 void inode_init_owner(struct inode *inode, const struct inode *dir,
1617 			mode_t mode)
1618 {
1619 	inode->i_uid = current_fsuid();
1620 	if (dir && dir->i_mode & S_ISGID) {
1621 		inode->i_gid = dir->i_gid;
1622 		if (S_ISDIR(mode))
1623 			mode |= S_ISGID;
1624 	} else
1625 		inode->i_gid = current_fsgid();
1626 	inode->i_mode = mode;
1627 }
1628 EXPORT_SYMBOL(inode_init_owner);
1629