xref: /linux/fs/inode.c (revision 4b4e41f35cc700e328e693f0c18b24424ab47ff0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget()
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic_set(&inode->i_count, 1);
141 	inode->i_op = &empty_iops;
142 	inode->i_fop = &no_open_fops;
143 	inode->__i_nlink = 1;
144 	inode->i_opflags = 0;
145 	if (sb->s_xattr)
146 		inode->i_opflags |= IOP_XATTR;
147 	i_uid_write(inode, 0);
148 	i_gid_write(inode, 0);
149 	atomic_set(&inode->i_writecount, 0);
150 	inode->i_size = 0;
151 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 	inode->i_blocks = 0;
153 	inode->i_bytes = 0;
154 	inode->i_generation = 0;
155 	inode->i_pipe = NULL;
156 	inode->i_bdev = NULL;
157 	inode->i_cdev = NULL;
158 	inode->i_link = NULL;
159 	inode->i_dir_seq = 0;
160 	inode->i_rdev = 0;
161 	inode->dirtied_when = 0;
162 
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 	inode->i_wb_frn_winner = 0;
165 	inode->i_wb_frn_avg_time = 0;
166 	inode->i_wb_frn_history = 0;
167 #endif
168 
169 	if (security_inode_alloc(inode))
170 		goto out;
171 	spin_lock_init(&inode->i_lock);
172 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173 
174 	init_rwsem(&inode->i_rwsem);
175 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176 
177 	atomic_set(&inode->i_dio_count, 0);
178 
179 	mapping->a_ops = &empty_aops;
180 	mapping->host = inode;
181 	mapping->flags = 0;
182 	mapping->wb_err = 0;
183 	atomic_set(&mapping->i_mmap_writable, 0);
184 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
185 	atomic_set(&mapping->nr_thps, 0);
186 #endif
187 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
188 	mapping->private_data = NULL;
189 	mapping->writeback_index = 0;
190 	inode->i_private = NULL;
191 	inode->i_mapping = mapping;
192 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
193 #ifdef CONFIG_FS_POSIX_ACL
194 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196 
197 #ifdef CONFIG_FSNOTIFY
198 	inode->i_fsnotify_mask = 0;
199 #endif
200 	inode->i_flctx = NULL;
201 	this_cpu_inc(nr_inodes);
202 
203 	return 0;
204 out:
205 	return -ENOMEM;
206 }
207 EXPORT_SYMBOL(inode_init_always);
208 
209 void free_inode_nonrcu(struct inode *inode)
210 {
211 	kmem_cache_free(inode_cachep, inode);
212 }
213 EXPORT_SYMBOL(free_inode_nonrcu);
214 
215 static void i_callback(struct rcu_head *head)
216 {
217 	struct inode *inode = container_of(head, struct inode, i_rcu);
218 	if (inode->free_inode)
219 		inode->free_inode(inode);
220 	else
221 		free_inode_nonrcu(inode);
222 }
223 
224 static struct inode *alloc_inode(struct super_block *sb)
225 {
226 	const struct super_operations *ops = sb->s_op;
227 	struct inode *inode;
228 
229 	if (ops->alloc_inode)
230 		inode = ops->alloc_inode(sb);
231 	else
232 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
233 
234 	if (!inode)
235 		return NULL;
236 
237 	if (unlikely(inode_init_always(sb, inode))) {
238 		if (ops->destroy_inode) {
239 			ops->destroy_inode(inode);
240 			if (!ops->free_inode)
241 				return NULL;
242 		}
243 		inode->free_inode = ops->free_inode;
244 		i_callback(&inode->i_rcu);
245 		return NULL;
246 	}
247 
248 	return inode;
249 }
250 
251 void __destroy_inode(struct inode *inode)
252 {
253 	BUG_ON(inode_has_buffers(inode));
254 	inode_detach_wb(inode);
255 	security_inode_free(inode);
256 	fsnotify_inode_delete(inode);
257 	locks_free_lock_context(inode);
258 	if (!inode->i_nlink) {
259 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
260 		atomic_long_dec(&inode->i_sb->s_remove_count);
261 	}
262 
263 #ifdef CONFIG_FS_POSIX_ACL
264 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
265 		posix_acl_release(inode->i_acl);
266 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
267 		posix_acl_release(inode->i_default_acl);
268 #endif
269 	this_cpu_dec(nr_inodes);
270 }
271 EXPORT_SYMBOL(__destroy_inode);
272 
273 static void destroy_inode(struct inode *inode)
274 {
275 	const struct super_operations *ops = inode->i_sb->s_op;
276 
277 	BUG_ON(!list_empty(&inode->i_lru));
278 	__destroy_inode(inode);
279 	if (ops->destroy_inode) {
280 		ops->destroy_inode(inode);
281 		if (!ops->free_inode)
282 			return;
283 	}
284 	inode->free_inode = ops->free_inode;
285 	call_rcu(&inode->i_rcu, i_callback);
286 }
287 
288 /**
289  * drop_nlink - directly drop an inode's link count
290  * @inode: inode
291  *
292  * This is a low-level filesystem helper to replace any
293  * direct filesystem manipulation of i_nlink.  In cases
294  * where we are attempting to track writes to the
295  * filesystem, a decrement to zero means an imminent
296  * write when the file is truncated and actually unlinked
297  * on the filesystem.
298  */
299 void drop_nlink(struct inode *inode)
300 {
301 	WARN_ON(inode->i_nlink == 0);
302 	inode->__i_nlink--;
303 	if (!inode->i_nlink)
304 		atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306 EXPORT_SYMBOL(drop_nlink);
307 
308 /**
309  * clear_nlink - directly zero an inode's link count
310  * @inode: inode
311  *
312  * This is a low-level filesystem helper to replace any
313  * direct filesystem manipulation of i_nlink.  See
314  * drop_nlink() for why we care about i_nlink hitting zero.
315  */
316 void clear_nlink(struct inode *inode)
317 {
318 	if (inode->i_nlink) {
319 		inode->__i_nlink = 0;
320 		atomic_long_inc(&inode->i_sb->s_remove_count);
321 	}
322 }
323 EXPORT_SYMBOL(clear_nlink);
324 
325 /**
326  * set_nlink - directly set an inode's link count
327  * @inode: inode
328  * @nlink: new nlink (should be non-zero)
329  *
330  * This is a low-level filesystem helper to replace any
331  * direct filesystem manipulation of i_nlink.
332  */
333 void set_nlink(struct inode *inode, unsigned int nlink)
334 {
335 	if (!nlink) {
336 		clear_nlink(inode);
337 	} else {
338 		/* Yes, some filesystems do change nlink from zero to one */
339 		if (inode->i_nlink == 0)
340 			atomic_long_dec(&inode->i_sb->s_remove_count);
341 
342 		inode->__i_nlink = nlink;
343 	}
344 }
345 EXPORT_SYMBOL(set_nlink);
346 
347 /**
348  * inc_nlink - directly increment an inode's link count
349  * @inode: inode
350  *
351  * This is a low-level filesystem helper to replace any
352  * direct filesystem manipulation of i_nlink.  Currently,
353  * it is only here for parity with dec_nlink().
354  */
355 void inc_nlink(struct inode *inode)
356 {
357 	if (unlikely(inode->i_nlink == 0)) {
358 		WARN_ON(!(inode->i_state & I_LINKABLE));
359 		atomic_long_dec(&inode->i_sb->s_remove_count);
360 	}
361 
362 	inode->__i_nlink++;
363 }
364 EXPORT_SYMBOL(inc_nlink);
365 
366 static void __address_space_init_once(struct address_space *mapping)
367 {
368 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
369 	init_rwsem(&mapping->i_mmap_rwsem);
370 	INIT_LIST_HEAD(&mapping->private_list);
371 	spin_lock_init(&mapping->private_lock);
372 	mapping->i_mmap = RB_ROOT_CACHED;
373 }
374 
375 void address_space_init_once(struct address_space *mapping)
376 {
377 	memset(mapping, 0, sizeof(*mapping));
378 	__address_space_init_once(mapping);
379 }
380 EXPORT_SYMBOL(address_space_init_once);
381 
382 /*
383  * These are initializations that only need to be done
384  * once, because the fields are idempotent across use
385  * of the inode, so let the slab aware of that.
386  */
387 void inode_init_once(struct inode *inode)
388 {
389 	memset(inode, 0, sizeof(*inode));
390 	INIT_HLIST_NODE(&inode->i_hash);
391 	INIT_LIST_HEAD(&inode->i_devices);
392 	INIT_LIST_HEAD(&inode->i_io_list);
393 	INIT_LIST_HEAD(&inode->i_wb_list);
394 	INIT_LIST_HEAD(&inode->i_lru);
395 	__address_space_init_once(&inode->i_data);
396 	i_size_ordered_init(inode);
397 }
398 EXPORT_SYMBOL(inode_init_once);
399 
400 static void init_once(void *foo)
401 {
402 	struct inode *inode = (struct inode *) foo;
403 
404 	inode_init_once(inode);
405 }
406 
407 /*
408  * inode->i_lock must be held
409  */
410 void __iget(struct inode *inode)
411 {
412 	atomic_inc(&inode->i_count);
413 }
414 
415 /*
416  * get additional reference to inode; caller must already hold one.
417  */
418 void ihold(struct inode *inode)
419 {
420 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
421 }
422 EXPORT_SYMBOL(ihold);
423 
424 static void inode_lru_list_add(struct inode *inode)
425 {
426 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
427 		this_cpu_inc(nr_unused);
428 	else
429 		inode->i_state |= I_REFERENCED;
430 }
431 
432 /*
433  * Add inode to LRU if needed (inode is unused and clean).
434  *
435  * Needs inode->i_lock held.
436  */
437 void inode_add_lru(struct inode *inode)
438 {
439 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
440 				I_FREEING | I_WILL_FREE)) &&
441 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
442 		inode_lru_list_add(inode);
443 }
444 
445 
446 static void inode_lru_list_del(struct inode *inode)
447 {
448 
449 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
450 		this_cpu_dec(nr_unused);
451 }
452 
453 /**
454  * inode_sb_list_add - add inode to the superblock list of inodes
455  * @inode: inode to add
456  */
457 void inode_sb_list_add(struct inode *inode)
458 {
459 	spin_lock(&inode->i_sb->s_inode_list_lock);
460 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
461 	spin_unlock(&inode->i_sb->s_inode_list_lock);
462 }
463 EXPORT_SYMBOL_GPL(inode_sb_list_add);
464 
465 static inline void inode_sb_list_del(struct inode *inode)
466 {
467 	if (!list_empty(&inode->i_sb_list)) {
468 		spin_lock(&inode->i_sb->s_inode_list_lock);
469 		list_del_init(&inode->i_sb_list);
470 		spin_unlock(&inode->i_sb->s_inode_list_lock);
471 	}
472 }
473 
474 static unsigned long hash(struct super_block *sb, unsigned long hashval)
475 {
476 	unsigned long tmp;
477 
478 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
479 			L1_CACHE_BYTES;
480 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
481 	return tmp & i_hash_mask;
482 }
483 
484 /**
485  *	__insert_inode_hash - hash an inode
486  *	@inode: unhashed inode
487  *	@hashval: unsigned long value used to locate this object in the
488  *		inode_hashtable.
489  *
490  *	Add an inode to the inode hash for this superblock.
491  */
492 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
493 {
494 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
495 
496 	spin_lock(&inode_hash_lock);
497 	spin_lock(&inode->i_lock);
498 	hlist_add_head(&inode->i_hash, b);
499 	spin_unlock(&inode->i_lock);
500 	spin_unlock(&inode_hash_lock);
501 }
502 EXPORT_SYMBOL(__insert_inode_hash);
503 
504 /**
505  *	__remove_inode_hash - remove an inode from the hash
506  *	@inode: inode to unhash
507  *
508  *	Remove an inode from the superblock.
509  */
510 void __remove_inode_hash(struct inode *inode)
511 {
512 	spin_lock(&inode_hash_lock);
513 	spin_lock(&inode->i_lock);
514 	hlist_del_init(&inode->i_hash);
515 	spin_unlock(&inode->i_lock);
516 	spin_unlock(&inode_hash_lock);
517 }
518 EXPORT_SYMBOL(__remove_inode_hash);
519 
520 void clear_inode(struct inode *inode)
521 {
522 	/*
523 	 * We have to cycle the i_pages lock here because reclaim can be in the
524 	 * process of removing the last page (in __delete_from_page_cache())
525 	 * and we must not free the mapping under it.
526 	 */
527 	xa_lock_irq(&inode->i_data.i_pages);
528 	BUG_ON(inode->i_data.nrpages);
529 	BUG_ON(inode->i_data.nrexceptional);
530 	xa_unlock_irq(&inode->i_data.i_pages);
531 	BUG_ON(!list_empty(&inode->i_data.private_list));
532 	BUG_ON(!(inode->i_state & I_FREEING));
533 	BUG_ON(inode->i_state & I_CLEAR);
534 	BUG_ON(!list_empty(&inode->i_wb_list));
535 	/* don't need i_lock here, no concurrent mods to i_state */
536 	inode->i_state = I_FREEING | I_CLEAR;
537 }
538 EXPORT_SYMBOL(clear_inode);
539 
540 /*
541  * Free the inode passed in, removing it from the lists it is still connected
542  * to. We remove any pages still attached to the inode and wait for any IO that
543  * is still in progress before finally destroying the inode.
544  *
545  * An inode must already be marked I_FREEING so that we avoid the inode being
546  * moved back onto lists if we race with other code that manipulates the lists
547  * (e.g. writeback_single_inode). The caller is responsible for setting this.
548  *
549  * An inode must already be removed from the LRU list before being evicted from
550  * the cache. This should occur atomically with setting the I_FREEING state
551  * flag, so no inodes here should ever be on the LRU when being evicted.
552  */
553 static void evict(struct inode *inode)
554 {
555 	const struct super_operations *op = inode->i_sb->s_op;
556 
557 	BUG_ON(!(inode->i_state & I_FREEING));
558 	BUG_ON(!list_empty(&inode->i_lru));
559 
560 	if (!list_empty(&inode->i_io_list))
561 		inode_io_list_del(inode);
562 
563 	inode_sb_list_del(inode);
564 
565 	/*
566 	 * Wait for flusher thread to be done with the inode so that filesystem
567 	 * does not start destroying it while writeback is still running. Since
568 	 * the inode has I_FREEING set, flusher thread won't start new work on
569 	 * the inode.  We just have to wait for running writeback to finish.
570 	 */
571 	inode_wait_for_writeback(inode);
572 
573 	if (op->evict_inode) {
574 		op->evict_inode(inode);
575 	} else {
576 		truncate_inode_pages_final(&inode->i_data);
577 		clear_inode(inode);
578 	}
579 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
580 		bd_forget(inode);
581 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
582 		cd_forget(inode);
583 
584 	remove_inode_hash(inode);
585 
586 	spin_lock(&inode->i_lock);
587 	wake_up_bit(&inode->i_state, __I_NEW);
588 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
589 	spin_unlock(&inode->i_lock);
590 
591 	destroy_inode(inode);
592 }
593 
594 /*
595  * dispose_list - dispose of the contents of a local list
596  * @head: the head of the list to free
597  *
598  * Dispose-list gets a local list with local inodes in it, so it doesn't
599  * need to worry about list corruption and SMP locks.
600  */
601 static void dispose_list(struct list_head *head)
602 {
603 	while (!list_empty(head)) {
604 		struct inode *inode;
605 
606 		inode = list_first_entry(head, struct inode, i_lru);
607 		list_del_init(&inode->i_lru);
608 
609 		evict(inode);
610 		cond_resched();
611 	}
612 }
613 
614 /**
615  * evict_inodes	- evict all evictable inodes for a superblock
616  * @sb:		superblock to operate on
617  *
618  * Make sure that no inodes with zero refcount are retained.  This is
619  * called by superblock shutdown after having SB_ACTIVE flag removed,
620  * so any inode reaching zero refcount during or after that call will
621  * be immediately evicted.
622  */
623 void evict_inodes(struct super_block *sb)
624 {
625 	struct inode *inode, *next;
626 	LIST_HEAD(dispose);
627 
628 again:
629 	spin_lock(&sb->s_inode_list_lock);
630 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
631 		if (atomic_read(&inode->i_count))
632 			continue;
633 
634 		spin_lock(&inode->i_lock);
635 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
636 			spin_unlock(&inode->i_lock);
637 			continue;
638 		}
639 
640 		inode->i_state |= I_FREEING;
641 		inode_lru_list_del(inode);
642 		spin_unlock(&inode->i_lock);
643 		list_add(&inode->i_lru, &dispose);
644 
645 		/*
646 		 * We can have a ton of inodes to evict at unmount time given
647 		 * enough memory, check to see if we need to go to sleep for a
648 		 * bit so we don't livelock.
649 		 */
650 		if (need_resched()) {
651 			spin_unlock(&sb->s_inode_list_lock);
652 			cond_resched();
653 			dispose_list(&dispose);
654 			goto again;
655 		}
656 	}
657 	spin_unlock(&sb->s_inode_list_lock);
658 
659 	dispose_list(&dispose);
660 }
661 EXPORT_SYMBOL_GPL(evict_inodes);
662 
663 /**
664  * invalidate_inodes	- attempt to free all inodes on a superblock
665  * @sb:		superblock to operate on
666  * @kill_dirty: flag to guide handling of dirty inodes
667  *
668  * Attempts to free all inodes for a given superblock.  If there were any
669  * busy inodes return a non-zero value, else zero.
670  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
671  * them as busy.
672  */
673 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
674 {
675 	int busy = 0;
676 	struct inode *inode, *next;
677 	LIST_HEAD(dispose);
678 
679 again:
680 	spin_lock(&sb->s_inode_list_lock);
681 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
682 		spin_lock(&inode->i_lock);
683 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
684 			spin_unlock(&inode->i_lock);
685 			continue;
686 		}
687 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
688 			spin_unlock(&inode->i_lock);
689 			busy = 1;
690 			continue;
691 		}
692 		if (atomic_read(&inode->i_count)) {
693 			spin_unlock(&inode->i_lock);
694 			busy = 1;
695 			continue;
696 		}
697 
698 		inode->i_state |= I_FREEING;
699 		inode_lru_list_del(inode);
700 		spin_unlock(&inode->i_lock);
701 		list_add(&inode->i_lru, &dispose);
702 		if (need_resched()) {
703 			spin_unlock(&sb->s_inode_list_lock);
704 			cond_resched();
705 			dispose_list(&dispose);
706 			goto again;
707 		}
708 	}
709 	spin_unlock(&sb->s_inode_list_lock);
710 
711 	dispose_list(&dispose);
712 
713 	return busy;
714 }
715 
716 /*
717  * Isolate the inode from the LRU in preparation for freeing it.
718  *
719  * Any inodes which are pinned purely because of attached pagecache have their
720  * pagecache removed.  If the inode has metadata buffers attached to
721  * mapping->private_list then try to remove them.
722  *
723  * If the inode has the I_REFERENCED flag set, then it means that it has been
724  * used recently - the flag is set in iput_final(). When we encounter such an
725  * inode, clear the flag and move it to the back of the LRU so it gets another
726  * pass through the LRU before it gets reclaimed. This is necessary because of
727  * the fact we are doing lazy LRU updates to minimise lock contention so the
728  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
729  * with this flag set because they are the inodes that are out of order.
730  */
731 static enum lru_status inode_lru_isolate(struct list_head *item,
732 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
733 {
734 	struct list_head *freeable = arg;
735 	struct inode	*inode = container_of(item, struct inode, i_lru);
736 
737 	/*
738 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
739 	 * If we fail to get the lock, just skip it.
740 	 */
741 	if (!spin_trylock(&inode->i_lock))
742 		return LRU_SKIP;
743 
744 	/*
745 	 * Referenced or dirty inodes are still in use. Give them another pass
746 	 * through the LRU as we canot reclaim them now.
747 	 */
748 	if (atomic_read(&inode->i_count) ||
749 	    (inode->i_state & ~I_REFERENCED)) {
750 		list_lru_isolate(lru, &inode->i_lru);
751 		spin_unlock(&inode->i_lock);
752 		this_cpu_dec(nr_unused);
753 		return LRU_REMOVED;
754 	}
755 
756 	/* recently referenced inodes get one more pass */
757 	if (inode->i_state & I_REFERENCED) {
758 		inode->i_state &= ~I_REFERENCED;
759 		spin_unlock(&inode->i_lock);
760 		return LRU_ROTATE;
761 	}
762 
763 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
764 		__iget(inode);
765 		spin_unlock(&inode->i_lock);
766 		spin_unlock(lru_lock);
767 		if (remove_inode_buffers(inode)) {
768 			unsigned long reap;
769 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
770 			if (current_is_kswapd())
771 				__count_vm_events(KSWAPD_INODESTEAL, reap);
772 			else
773 				__count_vm_events(PGINODESTEAL, reap);
774 			if (current->reclaim_state)
775 				current->reclaim_state->reclaimed_slab += reap;
776 		}
777 		iput(inode);
778 		spin_lock(lru_lock);
779 		return LRU_RETRY;
780 	}
781 
782 	WARN_ON(inode->i_state & I_NEW);
783 	inode->i_state |= I_FREEING;
784 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
785 	spin_unlock(&inode->i_lock);
786 
787 	this_cpu_dec(nr_unused);
788 	return LRU_REMOVED;
789 }
790 
791 /*
792  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
793  * This is called from the superblock shrinker function with a number of inodes
794  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
795  * then are freed outside inode_lock by dispose_list().
796  */
797 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
798 {
799 	LIST_HEAD(freeable);
800 	long freed;
801 
802 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
803 				     inode_lru_isolate, &freeable);
804 	dispose_list(&freeable);
805 	return freed;
806 }
807 
808 static void __wait_on_freeing_inode(struct inode *inode);
809 /*
810  * Called with the inode lock held.
811  */
812 static struct inode *find_inode(struct super_block *sb,
813 				struct hlist_head *head,
814 				int (*test)(struct inode *, void *),
815 				void *data)
816 {
817 	struct inode *inode = NULL;
818 
819 repeat:
820 	hlist_for_each_entry(inode, head, i_hash) {
821 		if (inode->i_sb != sb)
822 			continue;
823 		if (!test(inode, data))
824 			continue;
825 		spin_lock(&inode->i_lock);
826 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
827 			__wait_on_freeing_inode(inode);
828 			goto repeat;
829 		}
830 		if (unlikely(inode->i_state & I_CREATING)) {
831 			spin_unlock(&inode->i_lock);
832 			return ERR_PTR(-ESTALE);
833 		}
834 		__iget(inode);
835 		spin_unlock(&inode->i_lock);
836 		return inode;
837 	}
838 	return NULL;
839 }
840 
841 /*
842  * find_inode_fast is the fast path version of find_inode, see the comment at
843  * iget_locked for details.
844  */
845 static struct inode *find_inode_fast(struct super_block *sb,
846 				struct hlist_head *head, unsigned long ino)
847 {
848 	struct inode *inode = NULL;
849 
850 repeat:
851 	hlist_for_each_entry(inode, head, i_hash) {
852 		if (inode->i_ino != ino)
853 			continue;
854 		if (inode->i_sb != sb)
855 			continue;
856 		spin_lock(&inode->i_lock);
857 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
858 			__wait_on_freeing_inode(inode);
859 			goto repeat;
860 		}
861 		if (unlikely(inode->i_state & I_CREATING)) {
862 			spin_unlock(&inode->i_lock);
863 			return ERR_PTR(-ESTALE);
864 		}
865 		__iget(inode);
866 		spin_unlock(&inode->i_lock);
867 		return inode;
868 	}
869 	return NULL;
870 }
871 
872 /*
873  * Each cpu owns a range of LAST_INO_BATCH numbers.
874  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
875  * to renew the exhausted range.
876  *
877  * This does not significantly increase overflow rate because every CPU can
878  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
879  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
880  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
881  * overflow rate by 2x, which does not seem too significant.
882  *
883  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
884  * error if st_ino won't fit in target struct field. Use 32bit counter
885  * here to attempt to avoid that.
886  */
887 #define LAST_INO_BATCH 1024
888 static DEFINE_PER_CPU(unsigned int, last_ino);
889 
890 unsigned int get_next_ino(void)
891 {
892 	unsigned int *p = &get_cpu_var(last_ino);
893 	unsigned int res = *p;
894 
895 #ifdef CONFIG_SMP
896 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
897 		static atomic_t shared_last_ino;
898 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
899 
900 		res = next - LAST_INO_BATCH;
901 	}
902 #endif
903 
904 	res++;
905 	/* get_next_ino should not provide a 0 inode number */
906 	if (unlikely(!res))
907 		res++;
908 	*p = res;
909 	put_cpu_var(last_ino);
910 	return res;
911 }
912 EXPORT_SYMBOL(get_next_ino);
913 
914 /**
915  *	new_inode_pseudo 	- obtain an inode
916  *	@sb: superblock
917  *
918  *	Allocates a new inode for given superblock.
919  *	Inode wont be chained in superblock s_inodes list
920  *	This means :
921  *	- fs can't be unmount
922  *	- quotas, fsnotify, writeback can't work
923  */
924 struct inode *new_inode_pseudo(struct super_block *sb)
925 {
926 	struct inode *inode = alloc_inode(sb);
927 
928 	if (inode) {
929 		spin_lock(&inode->i_lock);
930 		inode->i_state = 0;
931 		spin_unlock(&inode->i_lock);
932 		INIT_LIST_HEAD(&inode->i_sb_list);
933 	}
934 	return inode;
935 }
936 
937 /**
938  *	new_inode 	- obtain an inode
939  *	@sb: superblock
940  *
941  *	Allocates a new inode for given superblock. The default gfp_mask
942  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
943  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
944  *	for the page cache are not reclaimable or migratable,
945  *	mapping_set_gfp_mask() must be called with suitable flags on the
946  *	newly created inode's mapping
947  *
948  */
949 struct inode *new_inode(struct super_block *sb)
950 {
951 	struct inode *inode;
952 
953 	spin_lock_prefetch(&sb->s_inode_list_lock);
954 
955 	inode = new_inode_pseudo(sb);
956 	if (inode)
957 		inode_sb_list_add(inode);
958 	return inode;
959 }
960 EXPORT_SYMBOL(new_inode);
961 
962 #ifdef CONFIG_DEBUG_LOCK_ALLOC
963 void lockdep_annotate_inode_mutex_key(struct inode *inode)
964 {
965 	if (S_ISDIR(inode->i_mode)) {
966 		struct file_system_type *type = inode->i_sb->s_type;
967 
968 		/* Set new key only if filesystem hasn't already changed it */
969 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
970 			/*
971 			 * ensure nobody is actually holding i_mutex
972 			 */
973 			// mutex_destroy(&inode->i_mutex);
974 			init_rwsem(&inode->i_rwsem);
975 			lockdep_set_class(&inode->i_rwsem,
976 					  &type->i_mutex_dir_key);
977 		}
978 	}
979 }
980 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
981 #endif
982 
983 /**
984  * unlock_new_inode - clear the I_NEW state and wake up any waiters
985  * @inode:	new inode to unlock
986  *
987  * Called when the inode is fully initialised to clear the new state of the
988  * inode and wake up anyone waiting for the inode to finish initialisation.
989  */
990 void unlock_new_inode(struct inode *inode)
991 {
992 	lockdep_annotate_inode_mutex_key(inode);
993 	spin_lock(&inode->i_lock);
994 	WARN_ON(!(inode->i_state & I_NEW));
995 	inode->i_state &= ~I_NEW & ~I_CREATING;
996 	smp_mb();
997 	wake_up_bit(&inode->i_state, __I_NEW);
998 	spin_unlock(&inode->i_lock);
999 }
1000 EXPORT_SYMBOL(unlock_new_inode);
1001 
1002 void discard_new_inode(struct inode *inode)
1003 {
1004 	lockdep_annotate_inode_mutex_key(inode);
1005 	spin_lock(&inode->i_lock);
1006 	WARN_ON(!(inode->i_state & I_NEW));
1007 	inode->i_state &= ~I_NEW;
1008 	smp_mb();
1009 	wake_up_bit(&inode->i_state, __I_NEW);
1010 	spin_unlock(&inode->i_lock);
1011 	iput(inode);
1012 }
1013 EXPORT_SYMBOL(discard_new_inode);
1014 
1015 /**
1016  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1017  *
1018  * Lock any non-NULL argument that is not a directory.
1019  * Zero, one or two objects may be locked by this function.
1020  *
1021  * @inode1: first inode to lock
1022  * @inode2: second inode to lock
1023  */
1024 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1025 {
1026 	if (inode1 > inode2)
1027 		swap(inode1, inode2);
1028 
1029 	if (inode1 && !S_ISDIR(inode1->i_mode))
1030 		inode_lock(inode1);
1031 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1032 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1033 }
1034 EXPORT_SYMBOL(lock_two_nondirectories);
1035 
1036 /**
1037  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1038  * @inode1: first inode to unlock
1039  * @inode2: second inode to unlock
1040  */
1041 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1042 {
1043 	if (inode1 && !S_ISDIR(inode1->i_mode))
1044 		inode_unlock(inode1);
1045 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1046 		inode_unlock(inode2);
1047 }
1048 EXPORT_SYMBOL(unlock_two_nondirectories);
1049 
1050 /**
1051  * inode_insert5 - obtain an inode from a mounted file system
1052  * @inode:	pre-allocated inode to use for insert to cache
1053  * @hashval:	hash value (usually inode number) to get
1054  * @test:	callback used for comparisons between inodes
1055  * @set:	callback used to initialize a new struct inode
1056  * @data:	opaque data pointer to pass to @test and @set
1057  *
1058  * Search for the inode specified by @hashval and @data in the inode cache,
1059  * and if present it is return it with an increased reference count. This is
1060  * a variant of iget5_locked() for callers that don't want to fail on memory
1061  * allocation of inode.
1062  *
1063  * If the inode is not in cache, insert the pre-allocated inode to cache and
1064  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1065  * to fill it in before unlocking it via unlock_new_inode().
1066  *
1067  * Note both @test and @set are called with the inode_hash_lock held, so can't
1068  * sleep.
1069  */
1070 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1071 			    int (*test)(struct inode *, void *),
1072 			    int (*set)(struct inode *, void *), void *data)
1073 {
1074 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1075 	struct inode *old;
1076 	bool creating = inode->i_state & I_CREATING;
1077 
1078 again:
1079 	spin_lock(&inode_hash_lock);
1080 	old = find_inode(inode->i_sb, head, test, data);
1081 	if (unlikely(old)) {
1082 		/*
1083 		 * Uhhuh, somebody else created the same inode under us.
1084 		 * Use the old inode instead of the preallocated one.
1085 		 */
1086 		spin_unlock(&inode_hash_lock);
1087 		if (IS_ERR(old))
1088 			return NULL;
1089 		wait_on_inode(old);
1090 		if (unlikely(inode_unhashed(old))) {
1091 			iput(old);
1092 			goto again;
1093 		}
1094 		return old;
1095 	}
1096 
1097 	if (set && unlikely(set(inode, data))) {
1098 		inode = NULL;
1099 		goto unlock;
1100 	}
1101 
1102 	/*
1103 	 * Return the locked inode with I_NEW set, the
1104 	 * caller is responsible for filling in the contents
1105 	 */
1106 	spin_lock(&inode->i_lock);
1107 	inode->i_state |= I_NEW;
1108 	hlist_add_head(&inode->i_hash, head);
1109 	spin_unlock(&inode->i_lock);
1110 	if (!creating)
1111 		inode_sb_list_add(inode);
1112 unlock:
1113 	spin_unlock(&inode_hash_lock);
1114 
1115 	return inode;
1116 }
1117 EXPORT_SYMBOL(inode_insert5);
1118 
1119 /**
1120  * iget5_locked - obtain an inode from a mounted file system
1121  * @sb:		super block of file system
1122  * @hashval:	hash value (usually inode number) to get
1123  * @test:	callback used for comparisons between inodes
1124  * @set:	callback used to initialize a new struct inode
1125  * @data:	opaque data pointer to pass to @test and @set
1126  *
1127  * Search for the inode specified by @hashval and @data in the inode cache,
1128  * and if present it is return it with an increased reference count. This is
1129  * a generalized version of iget_locked() for file systems where the inode
1130  * number is not sufficient for unique identification of an inode.
1131  *
1132  * If the inode is not in cache, allocate a new inode and return it locked,
1133  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1134  * before unlocking it via unlock_new_inode().
1135  *
1136  * Note both @test and @set are called with the inode_hash_lock held, so can't
1137  * sleep.
1138  */
1139 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1140 		int (*test)(struct inode *, void *),
1141 		int (*set)(struct inode *, void *), void *data)
1142 {
1143 	struct inode *inode = ilookup5(sb, hashval, test, data);
1144 
1145 	if (!inode) {
1146 		struct inode *new = alloc_inode(sb);
1147 
1148 		if (new) {
1149 			new->i_state = 0;
1150 			inode = inode_insert5(new, hashval, test, set, data);
1151 			if (unlikely(inode != new))
1152 				destroy_inode(new);
1153 		}
1154 	}
1155 	return inode;
1156 }
1157 EXPORT_SYMBOL(iget5_locked);
1158 
1159 /**
1160  * iget_locked - obtain an inode from a mounted file system
1161  * @sb:		super block of file system
1162  * @ino:	inode number to get
1163  *
1164  * Search for the inode specified by @ino in the inode cache and if present
1165  * return it with an increased reference count. This is for file systems
1166  * where the inode number is sufficient for unique identification of an inode.
1167  *
1168  * If the inode is not in cache, allocate a new inode and return it locked,
1169  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1170  * before unlocking it via unlock_new_inode().
1171  */
1172 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1173 {
1174 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1175 	struct inode *inode;
1176 again:
1177 	spin_lock(&inode_hash_lock);
1178 	inode = find_inode_fast(sb, head, ino);
1179 	spin_unlock(&inode_hash_lock);
1180 	if (inode) {
1181 		if (IS_ERR(inode))
1182 			return NULL;
1183 		wait_on_inode(inode);
1184 		if (unlikely(inode_unhashed(inode))) {
1185 			iput(inode);
1186 			goto again;
1187 		}
1188 		return inode;
1189 	}
1190 
1191 	inode = alloc_inode(sb);
1192 	if (inode) {
1193 		struct inode *old;
1194 
1195 		spin_lock(&inode_hash_lock);
1196 		/* We released the lock, so.. */
1197 		old = find_inode_fast(sb, head, ino);
1198 		if (!old) {
1199 			inode->i_ino = ino;
1200 			spin_lock(&inode->i_lock);
1201 			inode->i_state = I_NEW;
1202 			hlist_add_head(&inode->i_hash, head);
1203 			spin_unlock(&inode->i_lock);
1204 			inode_sb_list_add(inode);
1205 			spin_unlock(&inode_hash_lock);
1206 
1207 			/* Return the locked inode with I_NEW set, the
1208 			 * caller is responsible for filling in the contents
1209 			 */
1210 			return inode;
1211 		}
1212 
1213 		/*
1214 		 * Uhhuh, somebody else created the same inode under
1215 		 * us. Use the old inode instead of the one we just
1216 		 * allocated.
1217 		 */
1218 		spin_unlock(&inode_hash_lock);
1219 		destroy_inode(inode);
1220 		if (IS_ERR(old))
1221 			return NULL;
1222 		inode = old;
1223 		wait_on_inode(inode);
1224 		if (unlikely(inode_unhashed(inode))) {
1225 			iput(inode);
1226 			goto again;
1227 		}
1228 	}
1229 	return inode;
1230 }
1231 EXPORT_SYMBOL(iget_locked);
1232 
1233 /*
1234  * search the inode cache for a matching inode number.
1235  * If we find one, then the inode number we are trying to
1236  * allocate is not unique and so we should not use it.
1237  *
1238  * Returns 1 if the inode number is unique, 0 if it is not.
1239  */
1240 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1241 {
1242 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1243 	struct inode *inode;
1244 
1245 	spin_lock(&inode_hash_lock);
1246 	hlist_for_each_entry(inode, b, i_hash) {
1247 		if (inode->i_ino == ino && inode->i_sb == sb) {
1248 			spin_unlock(&inode_hash_lock);
1249 			return 0;
1250 		}
1251 	}
1252 	spin_unlock(&inode_hash_lock);
1253 
1254 	return 1;
1255 }
1256 
1257 /**
1258  *	iunique - get a unique inode number
1259  *	@sb: superblock
1260  *	@max_reserved: highest reserved inode number
1261  *
1262  *	Obtain an inode number that is unique on the system for a given
1263  *	superblock. This is used by file systems that have no natural
1264  *	permanent inode numbering system. An inode number is returned that
1265  *	is higher than the reserved limit but unique.
1266  *
1267  *	BUGS:
1268  *	With a large number of inodes live on the file system this function
1269  *	currently becomes quite slow.
1270  */
1271 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1272 {
1273 	/*
1274 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1275 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1276 	 * here to attempt to avoid that.
1277 	 */
1278 	static DEFINE_SPINLOCK(iunique_lock);
1279 	static unsigned int counter;
1280 	ino_t res;
1281 
1282 	spin_lock(&iunique_lock);
1283 	do {
1284 		if (counter <= max_reserved)
1285 			counter = max_reserved + 1;
1286 		res = counter++;
1287 	} while (!test_inode_iunique(sb, res));
1288 	spin_unlock(&iunique_lock);
1289 
1290 	return res;
1291 }
1292 EXPORT_SYMBOL(iunique);
1293 
1294 struct inode *igrab(struct inode *inode)
1295 {
1296 	spin_lock(&inode->i_lock);
1297 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1298 		__iget(inode);
1299 		spin_unlock(&inode->i_lock);
1300 	} else {
1301 		spin_unlock(&inode->i_lock);
1302 		/*
1303 		 * Handle the case where s_op->clear_inode is not been
1304 		 * called yet, and somebody is calling igrab
1305 		 * while the inode is getting freed.
1306 		 */
1307 		inode = NULL;
1308 	}
1309 	return inode;
1310 }
1311 EXPORT_SYMBOL(igrab);
1312 
1313 /**
1314  * ilookup5_nowait - search for an inode in the inode cache
1315  * @sb:		super block of file system to search
1316  * @hashval:	hash value (usually inode number) to search for
1317  * @test:	callback used for comparisons between inodes
1318  * @data:	opaque data pointer to pass to @test
1319  *
1320  * Search for the inode specified by @hashval and @data in the inode cache.
1321  * If the inode is in the cache, the inode is returned with an incremented
1322  * reference count.
1323  *
1324  * Note: I_NEW is not waited upon so you have to be very careful what you do
1325  * with the returned inode.  You probably should be using ilookup5() instead.
1326  *
1327  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1328  */
1329 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1330 		int (*test)(struct inode *, void *), void *data)
1331 {
1332 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1333 	struct inode *inode;
1334 
1335 	spin_lock(&inode_hash_lock);
1336 	inode = find_inode(sb, head, test, data);
1337 	spin_unlock(&inode_hash_lock);
1338 
1339 	return IS_ERR(inode) ? NULL : inode;
1340 }
1341 EXPORT_SYMBOL(ilookup5_nowait);
1342 
1343 /**
1344  * ilookup5 - search for an inode in the inode cache
1345  * @sb:		super block of file system to search
1346  * @hashval:	hash value (usually inode number) to search for
1347  * @test:	callback used for comparisons between inodes
1348  * @data:	opaque data pointer to pass to @test
1349  *
1350  * Search for the inode specified by @hashval and @data in the inode cache,
1351  * and if the inode is in the cache, return the inode with an incremented
1352  * reference count.  Waits on I_NEW before returning the inode.
1353  * returned with an incremented reference count.
1354  *
1355  * This is a generalized version of ilookup() for file systems where the
1356  * inode number is not sufficient for unique identification of an inode.
1357  *
1358  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1359  */
1360 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1361 		int (*test)(struct inode *, void *), void *data)
1362 {
1363 	struct inode *inode;
1364 again:
1365 	inode = ilookup5_nowait(sb, hashval, test, data);
1366 	if (inode) {
1367 		wait_on_inode(inode);
1368 		if (unlikely(inode_unhashed(inode))) {
1369 			iput(inode);
1370 			goto again;
1371 		}
1372 	}
1373 	return inode;
1374 }
1375 EXPORT_SYMBOL(ilookup5);
1376 
1377 /**
1378  * ilookup - search for an inode in the inode cache
1379  * @sb:		super block of file system to search
1380  * @ino:	inode number to search for
1381  *
1382  * Search for the inode @ino in the inode cache, and if the inode is in the
1383  * cache, the inode is returned with an incremented reference count.
1384  */
1385 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1386 {
1387 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1388 	struct inode *inode;
1389 again:
1390 	spin_lock(&inode_hash_lock);
1391 	inode = find_inode_fast(sb, head, ino);
1392 	spin_unlock(&inode_hash_lock);
1393 
1394 	if (inode) {
1395 		if (IS_ERR(inode))
1396 			return NULL;
1397 		wait_on_inode(inode);
1398 		if (unlikely(inode_unhashed(inode))) {
1399 			iput(inode);
1400 			goto again;
1401 		}
1402 	}
1403 	return inode;
1404 }
1405 EXPORT_SYMBOL(ilookup);
1406 
1407 /**
1408  * find_inode_nowait - find an inode in the inode cache
1409  * @sb:		super block of file system to search
1410  * @hashval:	hash value (usually inode number) to search for
1411  * @match:	callback used for comparisons between inodes
1412  * @data:	opaque data pointer to pass to @match
1413  *
1414  * Search for the inode specified by @hashval and @data in the inode
1415  * cache, where the helper function @match will return 0 if the inode
1416  * does not match, 1 if the inode does match, and -1 if the search
1417  * should be stopped.  The @match function must be responsible for
1418  * taking the i_lock spin_lock and checking i_state for an inode being
1419  * freed or being initialized, and incrementing the reference count
1420  * before returning 1.  It also must not sleep, since it is called with
1421  * the inode_hash_lock spinlock held.
1422  *
1423  * This is a even more generalized version of ilookup5() when the
1424  * function must never block --- find_inode() can block in
1425  * __wait_on_freeing_inode() --- or when the caller can not increment
1426  * the reference count because the resulting iput() might cause an
1427  * inode eviction.  The tradeoff is that the @match funtion must be
1428  * very carefully implemented.
1429  */
1430 struct inode *find_inode_nowait(struct super_block *sb,
1431 				unsigned long hashval,
1432 				int (*match)(struct inode *, unsigned long,
1433 					     void *),
1434 				void *data)
1435 {
1436 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1437 	struct inode *inode, *ret_inode = NULL;
1438 	int mval;
1439 
1440 	spin_lock(&inode_hash_lock);
1441 	hlist_for_each_entry(inode, head, i_hash) {
1442 		if (inode->i_sb != sb)
1443 			continue;
1444 		mval = match(inode, hashval, data);
1445 		if (mval == 0)
1446 			continue;
1447 		if (mval == 1)
1448 			ret_inode = inode;
1449 		goto out;
1450 	}
1451 out:
1452 	spin_unlock(&inode_hash_lock);
1453 	return ret_inode;
1454 }
1455 EXPORT_SYMBOL(find_inode_nowait);
1456 
1457 int insert_inode_locked(struct inode *inode)
1458 {
1459 	struct super_block *sb = inode->i_sb;
1460 	ino_t ino = inode->i_ino;
1461 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1462 
1463 	while (1) {
1464 		struct inode *old = NULL;
1465 		spin_lock(&inode_hash_lock);
1466 		hlist_for_each_entry(old, head, i_hash) {
1467 			if (old->i_ino != ino)
1468 				continue;
1469 			if (old->i_sb != sb)
1470 				continue;
1471 			spin_lock(&old->i_lock);
1472 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1473 				spin_unlock(&old->i_lock);
1474 				continue;
1475 			}
1476 			break;
1477 		}
1478 		if (likely(!old)) {
1479 			spin_lock(&inode->i_lock);
1480 			inode->i_state |= I_NEW | I_CREATING;
1481 			hlist_add_head(&inode->i_hash, head);
1482 			spin_unlock(&inode->i_lock);
1483 			spin_unlock(&inode_hash_lock);
1484 			return 0;
1485 		}
1486 		if (unlikely(old->i_state & I_CREATING)) {
1487 			spin_unlock(&old->i_lock);
1488 			spin_unlock(&inode_hash_lock);
1489 			return -EBUSY;
1490 		}
1491 		__iget(old);
1492 		spin_unlock(&old->i_lock);
1493 		spin_unlock(&inode_hash_lock);
1494 		wait_on_inode(old);
1495 		if (unlikely(!inode_unhashed(old))) {
1496 			iput(old);
1497 			return -EBUSY;
1498 		}
1499 		iput(old);
1500 	}
1501 }
1502 EXPORT_SYMBOL(insert_inode_locked);
1503 
1504 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1505 		int (*test)(struct inode *, void *), void *data)
1506 {
1507 	struct inode *old;
1508 
1509 	inode->i_state |= I_CREATING;
1510 	old = inode_insert5(inode, hashval, test, NULL, data);
1511 
1512 	if (old != inode) {
1513 		iput(old);
1514 		return -EBUSY;
1515 	}
1516 	return 0;
1517 }
1518 EXPORT_SYMBOL(insert_inode_locked4);
1519 
1520 
1521 int generic_delete_inode(struct inode *inode)
1522 {
1523 	return 1;
1524 }
1525 EXPORT_SYMBOL(generic_delete_inode);
1526 
1527 /*
1528  * Called when we're dropping the last reference
1529  * to an inode.
1530  *
1531  * Call the FS "drop_inode()" function, defaulting to
1532  * the legacy UNIX filesystem behaviour.  If it tells
1533  * us to evict inode, do so.  Otherwise, retain inode
1534  * in cache if fs is alive, sync and evict if fs is
1535  * shutting down.
1536  */
1537 static void iput_final(struct inode *inode)
1538 {
1539 	struct super_block *sb = inode->i_sb;
1540 	const struct super_operations *op = inode->i_sb->s_op;
1541 	int drop;
1542 
1543 	WARN_ON(inode->i_state & I_NEW);
1544 
1545 	if (op->drop_inode)
1546 		drop = op->drop_inode(inode);
1547 	else
1548 		drop = generic_drop_inode(inode);
1549 
1550 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1551 		inode_add_lru(inode);
1552 		spin_unlock(&inode->i_lock);
1553 		return;
1554 	}
1555 
1556 	if (!drop) {
1557 		inode->i_state |= I_WILL_FREE;
1558 		spin_unlock(&inode->i_lock);
1559 		write_inode_now(inode, 1);
1560 		spin_lock(&inode->i_lock);
1561 		WARN_ON(inode->i_state & I_NEW);
1562 		inode->i_state &= ~I_WILL_FREE;
1563 	}
1564 
1565 	inode->i_state |= I_FREEING;
1566 	if (!list_empty(&inode->i_lru))
1567 		inode_lru_list_del(inode);
1568 	spin_unlock(&inode->i_lock);
1569 
1570 	evict(inode);
1571 }
1572 
1573 /**
1574  *	iput	- put an inode
1575  *	@inode: inode to put
1576  *
1577  *	Puts an inode, dropping its usage count. If the inode use count hits
1578  *	zero, the inode is then freed and may also be destroyed.
1579  *
1580  *	Consequently, iput() can sleep.
1581  */
1582 void iput(struct inode *inode)
1583 {
1584 	if (!inode)
1585 		return;
1586 	BUG_ON(inode->i_state & I_CLEAR);
1587 retry:
1588 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1589 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1590 			atomic_inc(&inode->i_count);
1591 			spin_unlock(&inode->i_lock);
1592 			trace_writeback_lazytime_iput(inode);
1593 			mark_inode_dirty_sync(inode);
1594 			goto retry;
1595 		}
1596 		iput_final(inode);
1597 	}
1598 }
1599 EXPORT_SYMBOL(iput);
1600 
1601 /**
1602  *	bmap	- find a block number in a file
1603  *	@inode: inode of file
1604  *	@block: block to find
1605  *
1606  *	Returns the block number on the device holding the inode that
1607  *	is the disk block number for the block of the file requested.
1608  *	That is, asked for block 4 of inode 1 the function will return the
1609  *	disk block relative to the disk start that holds that block of the
1610  *	file.
1611  */
1612 sector_t bmap(struct inode *inode, sector_t block)
1613 {
1614 	sector_t res = 0;
1615 	if (inode->i_mapping->a_ops->bmap)
1616 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1617 	return res;
1618 }
1619 EXPORT_SYMBOL(bmap);
1620 
1621 /*
1622  * With relative atime, only update atime if the previous atime is
1623  * earlier than either the ctime or mtime or if at least a day has
1624  * passed since the last atime update.
1625  */
1626 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1627 			     struct timespec64 now)
1628 {
1629 
1630 	if (!(mnt->mnt_flags & MNT_RELATIME))
1631 		return 1;
1632 	/*
1633 	 * Is mtime younger than atime? If yes, update atime:
1634 	 */
1635 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1636 		return 1;
1637 	/*
1638 	 * Is ctime younger than atime? If yes, update atime:
1639 	 */
1640 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1641 		return 1;
1642 
1643 	/*
1644 	 * Is the previous atime value older than a day? If yes,
1645 	 * update atime:
1646 	 */
1647 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1648 		return 1;
1649 	/*
1650 	 * Good, we can skip the atime update:
1651 	 */
1652 	return 0;
1653 }
1654 
1655 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1656 {
1657 	int iflags = I_DIRTY_TIME;
1658 	bool dirty = false;
1659 
1660 	if (flags & S_ATIME)
1661 		inode->i_atime = *time;
1662 	if (flags & S_VERSION)
1663 		dirty = inode_maybe_inc_iversion(inode, false);
1664 	if (flags & S_CTIME)
1665 		inode->i_ctime = *time;
1666 	if (flags & S_MTIME)
1667 		inode->i_mtime = *time;
1668 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1669 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1670 		dirty = true;
1671 
1672 	if (dirty)
1673 		iflags |= I_DIRTY_SYNC;
1674 	__mark_inode_dirty(inode, iflags);
1675 	return 0;
1676 }
1677 EXPORT_SYMBOL(generic_update_time);
1678 
1679 /*
1680  * This does the actual work of updating an inodes time or version.  Must have
1681  * had called mnt_want_write() before calling this.
1682  */
1683 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1684 {
1685 	int (*update_time)(struct inode *, struct timespec64 *, int);
1686 
1687 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1688 		generic_update_time;
1689 
1690 	return update_time(inode, time, flags);
1691 }
1692 
1693 /**
1694  *	touch_atime	-	update the access time
1695  *	@path: the &struct path to update
1696  *	@inode: inode to update
1697  *
1698  *	Update the accessed time on an inode and mark it for writeback.
1699  *	This function automatically handles read only file systems and media,
1700  *	as well as the "noatime" flag and inode specific "noatime" markers.
1701  */
1702 bool atime_needs_update(const struct path *path, struct inode *inode)
1703 {
1704 	struct vfsmount *mnt = path->mnt;
1705 	struct timespec64 now;
1706 
1707 	if (inode->i_flags & S_NOATIME)
1708 		return false;
1709 
1710 	/* Atime updates will likely cause i_uid and i_gid to be written
1711 	 * back improprely if their true value is unknown to the vfs.
1712 	 */
1713 	if (HAS_UNMAPPED_ID(inode))
1714 		return false;
1715 
1716 	if (IS_NOATIME(inode))
1717 		return false;
1718 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1719 		return false;
1720 
1721 	if (mnt->mnt_flags & MNT_NOATIME)
1722 		return false;
1723 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1724 		return false;
1725 
1726 	now = current_time(inode);
1727 
1728 	if (!relatime_need_update(mnt, inode, now))
1729 		return false;
1730 
1731 	if (timespec64_equal(&inode->i_atime, &now))
1732 		return false;
1733 
1734 	return true;
1735 }
1736 
1737 void touch_atime(const struct path *path)
1738 {
1739 	struct vfsmount *mnt = path->mnt;
1740 	struct inode *inode = d_inode(path->dentry);
1741 	struct timespec64 now;
1742 
1743 	if (!atime_needs_update(path, inode))
1744 		return;
1745 
1746 	if (!sb_start_write_trylock(inode->i_sb))
1747 		return;
1748 
1749 	if (__mnt_want_write(mnt) != 0)
1750 		goto skip_update;
1751 	/*
1752 	 * File systems can error out when updating inodes if they need to
1753 	 * allocate new space to modify an inode (such is the case for
1754 	 * Btrfs), but since we touch atime while walking down the path we
1755 	 * really don't care if we failed to update the atime of the file,
1756 	 * so just ignore the return value.
1757 	 * We may also fail on filesystems that have the ability to make parts
1758 	 * of the fs read only, e.g. subvolumes in Btrfs.
1759 	 */
1760 	now = current_time(inode);
1761 	update_time(inode, &now, S_ATIME);
1762 	__mnt_drop_write(mnt);
1763 skip_update:
1764 	sb_end_write(inode->i_sb);
1765 }
1766 EXPORT_SYMBOL(touch_atime);
1767 
1768 /*
1769  * The logic we want is
1770  *
1771  *	if suid or (sgid and xgrp)
1772  *		remove privs
1773  */
1774 int should_remove_suid(struct dentry *dentry)
1775 {
1776 	umode_t mode = d_inode(dentry)->i_mode;
1777 	int kill = 0;
1778 
1779 	/* suid always must be killed */
1780 	if (unlikely(mode & S_ISUID))
1781 		kill = ATTR_KILL_SUID;
1782 
1783 	/*
1784 	 * sgid without any exec bits is just a mandatory locking mark; leave
1785 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1786 	 */
1787 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1788 		kill |= ATTR_KILL_SGID;
1789 
1790 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1791 		return kill;
1792 
1793 	return 0;
1794 }
1795 EXPORT_SYMBOL(should_remove_suid);
1796 
1797 /*
1798  * Return mask of changes for notify_change() that need to be done as a
1799  * response to write or truncate. Return 0 if nothing has to be changed.
1800  * Negative value on error (change should be denied).
1801  */
1802 int dentry_needs_remove_privs(struct dentry *dentry)
1803 {
1804 	struct inode *inode = d_inode(dentry);
1805 	int mask = 0;
1806 	int ret;
1807 
1808 	if (IS_NOSEC(inode))
1809 		return 0;
1810 
1811 	mask = should_remove_suid(dentry);
1812 	ret = security_inode_need_killpriv(dentry);
1813 	if (ret < 0)
1814 		return ret;
1815 	if (ret)
1816 		mask |= ATTR_KILL_PRIV;
1817 	return mask;
1818 }
1819 
1820 static int __remove_privs(struct dentry *dentry, int kill)
1821 {
1822 	struct iattr newattrs;
1823 
1824 	newattrs.ia_valid = ATTR_FORCE | kill;
1825 	/*
1826 	 * Note we call this on write, so notify_change will not
1827 	 * encounter any conflicting delegations:
1828 	 */
1829 	return notify_change(dentry, &newattrs, NULL);
1830 }
1831 
1832 /*
1833  * Remove special file priviledges (suid, capabilities) when file is written
1834  * to or truncated.
1835  */
1836 int file_remove_privs(struct file *file)
1837 {
1838 	struct dentry *dentry = file_dentry(file);
1839 	struct inode *inode = file_inode(file);
1840 	int kill;
1841 	int error = 0;
1842 
1843 	/*
1844 	 * Fast path for nothing security related.
1845 	 * As well for non-regular files, e.g. blkdev inodes.
1846 	 * For example, blkdev_write_iter() might get here
1847 	 * trying to remove privs which it is not allowed to.
1848 	 */
1849 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1850 		return 0;
1851 
1852 	kill = dentry_needs_remove_privs(dentry);
1853 	if (kill < 0)
1854 		return kill;
1855 	if (kill)
1856 		error = __remove_privs(dentry, kill);
1857 	if (!error)
1858 		inode_has_no_xattr(inode);
1859 
1860 	return error;
1861 }
1862 EXPORT_SYMBOL(file_remove_privs);
1863 
1864 /**
1865  *	file_update_time	-	update mtime and ctime time
1866  *	@file: file accessed
1867  *
1868  *	Update the mtime and ctime members of an inode and mark the inode
1869  *	for writeback.  Note that this function is meant exclusively for
1870  *	usage in the file write path of filesystems, and filesystems may
1871  *	choose to explicitly ignore update via this function with the
1872  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1873  *	timestamps are handled by the server.  This can return an error for
1874  *	file systems who need to allocate space in order to update an inode.
1875  */
1876 
1877 int file_update_time(struct file *file)
1878 {
1879 	struct inode *inode = file_inode(file);
1880 	struct timespec64 now;
1881 	int sync_it = 0;
1882 	int ret;
1883 
1884 	/* First try to exhaust all avenues to not sync */
1885 	if (IS_NOCMTIME(inode))
1886 		return 0;
1887 
1888 	now = current_time(inode);
1889 	if (!timespec64_equal(&inode->i_mtime, &now))
1890 		sync_it = S_MTIME;
1891 
1892 	if (!timespec64_equal(&inode->i_ctime, &now))
1893 		sync_it |= S_CTIME;
1894 
1895 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1896 		sync_it |= S_VERSION;
1897 
1898 	if (!sync_it)
1899 		return 0;
1900 
1901 	/* Finally allowed to write? Takes lock. */
1902 	if (__mnt_want_write_file(file))
1903 		return 0;
1904 
1905 	ret = update_time(inode, &now, sync_it);
1906 	__mnt_drop_write_file(file);
1907 
1908 	return ret;
1909 }
1910 EXPORT_SYMBOL(file_update_time);
1911 
1912 /* Caller must hold the file's inode lock */
1913 int file_modified(struct file *file)
1914 {
1915 	int err;
1916 
1917 	/*
1918 	 * Clear the security bits if the process is not being run by root.
1919 	 * This keeps people from modifying setuid and setgid binaries.
1920 	 */
1921 	err = file_remove_privs(file);
1922 	if (err)
1923 		return err;
1924 
1925 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
1926 		return 0;
1927 
1928 	return file_update_time(file);
1929 }
1930 EXPORT_SYMBOL(file_modified);
1931 
1932 int inode_needs_sync(struct inode *inode)
1933 {
1934 	if (IS_SYNC(inode))
1935 		return 1;
1936 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1937 		return 1;
1938 	return 0;
1939 }
1940 EXPORT_SYMBOL(inode_needs_sync);
1941 
1942 /*
1943  * If we try to find an inode in the inode hash while it is being
1944  * deleted, we have to wait until the filesystem completes its
1945  * deletion before reporting that it isn't found.  This function waits
1946  * until the deletion _might_ have completed.  Callers are responsible
1947  * to recheck inode state.
1948  *
1949  * It doesn't matter if I_NEW is not set initially, a call to
1950  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1951  * will DTRT.
1952  */
1953 static void __wait_on_freeing_inode(struct inode *inode)
1954 {
1955 	wait_queue_head_t *wq;
1956 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1957 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1958 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1959 	spin_unlock(&inode->i_lock);
1960 	spin_unlock(&inode_hash_lock);
1961 	schedule();
1962 	finish_wait(wq, &wait.wq_entry);
1963 	spin_lock(&inode_hash_lock);
1964 }
1965 
1966 static __initdata unsigned long ihash_entries;
1967 static int __init set_ihash_entries(char *str)
1968 {
1969 	if (!str)
1970 		return 0;
1971 	ihash_entries = simple_strtoul(str, &str, 0);
1972 	return 1;
1973 }
1974 __setup("ihash_entries=", set_ihash_entries);
1975 
1976 /*
1977  * Initialize the waitqueues and inode hash table.
1978  */
1979 void __init inode_init_early(void)
1980 {
1981 	/* If hashes are distributed across NUMA nodes, defer
1982 	 * hash allocation until vmalloc space is available.
1983 	 */
1984 	if (hashdist)
1985 		return;
1986 
1987 	inode_hashtable =
1988 		alloc_large_system_hash("Inode-cache",
1989 					sizeof(struct hlist_head),
1990 					ihash_entries,
1991 					14,
1992 					HASH_EARLY | HASH_ZERO,
1993 					&i_hash_shift,
1994 					&i_hash_mask,
1995 					0,
1996 					0);
1997 }
1998 
1999 void __init inode_init(void)
2000 {
2001 	/* inode slab cache */
2002 	inode_cachep = kmem_cache_create("inode_cache",
2003 					 sizeof(struct inode),
2004 					 0,
2005 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2006 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2007 					 init_once);
2008 
2009 	/* Hash may have been set up in inode_init_early */
2010 	if (!hashdist)
2011 		return;
2012 
2013 	inode_hashtable =
2014 		alloc_large_system_hash("Inode-cache",
2015 					sizeof(struct hlist_head),
2016 					ihash_entries,
2017 					14,
2018 					HASH_ZERO,
2019 					&i_hash_shift,
2020 					&i_hash_mask,
2021 					0,
2022 					0);
2023 }
2024 
2025 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2026 {
2027 	inode->i_mode = mode;
2028 	if (S_ISCHR(mode)) {
2029 		inode->i_fop = &def_chr_fops;
2030 		inode->i_rdev = rdev;
2031 	} else if (S_ISBLK(mode)) {
2032 		inode->i_fop = &def_blk_fops;
2033 		inode->i_rdev = rdev;
2034 	} else if (S_ISFIFO(mode))
2035 		inode->i_fop = &pipefifo_fops;
2036 	else if (S_ISSOCK(mode))
2037 		;	/* leave it no_open_fops */
2038 	else
2039 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2040 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2041 				  inode->i_ino);
2042 }
2043 EXPORT_SYMBOL(init_special_inode);
2044 
2045 /**
2046  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2047  * @inode: New inode
2048  * @dir: Directory inode
2049  * @mode: mode of the new inode
2050  */
2051 void inode_init_owner(struct inode *inode, const struct inode *dir,
2052 			umode_t mode)
2053 {
2054 	inode->i_uid = current_fsuid();
2055 	if (dir && dir->i_mode & S_ISGID) {
2056 		inode->i_gid = dir->i_gid;
2057 
2058 		/* Directories are special, and always inherit S_ISGID */
2059 		if (S_ISDIR(mode))
2060 			mode |= S_ISGID;
2061 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2062 			 !in_group_p(inode->i_gid) &&
2063 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2064 			mode &= ~S_ISGID;
2065 	} else
2066 		inode->i_gid = current_fsgid();
2067 	inode->i_mode = mode;
2068 }
2069 EXPORT_SYMBOL(inode_init_owner);
2070 
2071 /**
2072  * inode_owner_or_capable - check current task permissions to inode
2073  * @inode: inode being checked
2074  *
2075  * Return true if current either has CAP_FOWNER in a namespace with the
2076  * inode owner uid mapped, or owns the file.
2077  */
2078 bool inode_owner_or_capable(const struct inode *inode)
2079 {
2080 	struct user_namespace *ns;
2081 
2082 	if (uid_eq(current_fsuid(), inode->i_uid))
2083 		return true;
2084 
2085 	ns = current_user_ns();
2086 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2087 		return true;
2088 	return false;
2089 }
2090 EXPORT_SYMBOL(inode_owner_or_capable);
2091 
2092 /*
2093  * Direct i/o helper functions
2094  */
2095 static void __inode_dio_wait(struct inode *inode)
2096 {
2097 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2098 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2099 
2100 	do {
2101 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2102 		if (atomic_read(&inode->i_dio_count))
2103 			schedule();
2104 	} while (atomic_read(&inode->i_dio_count));
2105 	finish_wait(wq, &q.wq_entry);
2106 }
2107 
2108 /**
2109  * inode_dio_wait - wait for outstanding DIO requests to finish
2110  * @inode: inode to wait for
2111  *
2112  * Waits for all pending direct I/O requests to finish so that we can
2113  * proceed with a truncate or equivalent operation.
2114  *
2115  * Must be called under a lock that serializes taking new references
2116  * to i_dio_count, usually by inode->i_mutex.
2117  */
2118 void inode_dio_wait(struct inode *inode)
2119 {
2120 	if (atomic_read(&inode->i_dio_count))
2121 		__inode_dio_wait(inode);
2122 }
2123 EXPORT_SYMBOL(inode_dio_wait);
2124 
2125 /*
2126  * inode_set_flags - atomically set some inode flags
2127  *
2128  * Note: the caller should be holding i_mutex, or else be sure that
2129  * they have exclusive access to the inode structure (i.e., while the
2130  * inode is being instantiated).  The reason for the cmpxchg() loop
2131  * --- which wouldn't be necessary if all code paths which modify
2132  * i_flags actually followed this rule, is that there is at least one
2133  * code path which doesn't today so we use cmpxchg() out of an abundance
2134  * of caution.
2135  *
2136  * In the long run, i_mutex is overkill, and we should probably look
2137  * at using the i_lock spinlock to protect i_flags, and then make sure
2138  * it is so documented in include/linux/fs.h and that all code follows
2139  * the locking convention!!
2140  */
2141 void inode_set_flags(struct inode *inode, unsigned int flags,
2142 		     unsigned int mask)
2143 {
2144 	WARN_ON_ONCE(flags & ~mask);
2145 	set_mask_bits(&inode->i_flags, mask, flags);
2146 }
2147 EXPORT_SYMBOL(inode_set_flags);
2148 
2149 void inode_nohighmem(struct inode *inode)
2150 {
2151 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2152 }
2153 EXPORT_SYMBOL(inode_nohighmem);
2154 
2155 /**
2156  * timespec64_trunc - Truncate timespec64 to a granularity
2157  * @t: Timespec64
2158  * @gran: Granularity in ns.
2159  *
2160  * Truncate a timespec64 to a granularity. Always rounds down. gran must
2161  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2162  */
2163 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2164 {
2165 	/* Avoid division in the common cases 1 ns and 1 s. */
2166 	if (gran == 1) {
2167 		/* nothing */
2168 	} else if (gran == NSEC_PER_SEC) {
2169 		t.tv_nsec = 0;
2170 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2171 		t.tv_nsec -= t.tv_nsec % gran;
2172 	} else {
2173 		WARN(1, "illegal file time granularity: %u", gran);
2174 	}
2175 	return t;
2176 }
2177 EXPORT_SYMBOL(timespec64_trunc);
2178 
2179 /**
2180  * timestamp_truncate - Truncate timespec to a granularity
2181  * @t: Timespec
2182  * @inode: inode being updated
2183  *
2184  * Truncate a timespec to the granularity supported by the fs
2185  * containing the inode. Always rounds down. gran must
2186  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2187  */
2188 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2189 {
2190 	struct super_block *sb = inode->i_sb;
2191 	unsigned int gran = sb->s_time_gran;
2192 
2193 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2194 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2195 		t.tv_nsec = 0;
2196 
2197 	/* Avoid division in the common cases 1 ns and 1 s. */
2198 	if (gran == 1)
2199 		; /* nothing */
2200 	else if (gran == NSEC_PER_SEC)
2201 		t.tv_nsec = 0;
2202 	else if (gran > 1 && gran < NSEC_PER_SEC)
2203 		t.tv_nsec -= t.tv_nsec % gran;
2204 	else
2205 		WARN(1, "invalid file time granularity: %u", gran);
2206 	return t;
2207 }
2208 EXPORT_SYMBOL(timestamp_truncate);
2209 
2210 /**
2211  * current_time - Return FS time
2212  * @inode: inode.
2213  *
2214  * Return the current time truncated to the time granularity supported by
2215  * the fs.
2216  *
2217  * Note that inode and inode->sb cannot be NULL.
2218  * Otherwise, the function warns and returns time without truncation.
2219  */
2220 struct timespec64 current_time(struct inode *inode)
2221 {
2222 	struct timespec64 now;
2223 
2224 	ktime_get_coarse_real_ts64(&now);
2225 
2226 	if (unlikely(!inode->i_sb)) {
2227 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2228 		return now;
2229 	}
2230 
2231 	return timestamp_truncate(now, inode);
2232 }
2233 EXPORT_SYMBOL(current_time);
2234 
2235 /*
2236  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2237  * configurations.
2238  *
2239  * Note: the caller should be holding i_mutex, or else be sure that they have
2240  * exclusive access to the inode structure.
2241  */
2242 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2243 			     unsigned int flags)
2244 {
2245 	/*
2246 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2247 	 * the relevant capability.
2248 	 *
2249 	 * This test looks nicer. Thanks to Pauline Middelink
2250 	 */
2251 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2252 	    !capable(CAP_LINUX_IMMUTABLE))
2253 		return -EPERM;
2254 
2255 	return 0;
2256 }
2257 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2258 
2259 /*
2260  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2261  * configurations.
2262  *
2263  * Note: the caller should be holding i_mutex, or else be sure that they have
2264  * exclusive access to the inode structure.
2265  */
2266 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2267 			     struct fsxattr *fa)
2268 {
2269 	/*
2270 	 * Can't modify an immutable/append-only file unless we have
2271 	 * appropriate permission.
2272 	 */
2273 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2274 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2275 	    !capable(CAP_LINUX_IMMUTABLE))
2276 		return -EPERM;
2277 
2278 	/*
2279 	 * Project Quota ID state is only allowed to change from within the init
2280 	 * namespace. Enforce that restriction only if we are trying to change
2281 	 * the quota ID state. Everything else is allowed in user namespaces.
2282 	 */
2283 	if (current_user_ns() != &init_user_ns) {
2284 		if (old_fa->fsx_projid != fa->fsx_projid)
2285 			return -EINVAL;
2286 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2287 				FS_XFLAG_PROJINHERIT)
2288 			return -EINVAL;
2289 	}
2290 
2291 	/* Check extent size hints. */
2292 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2293 		return -EINVAL;
2294 
2295 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2296 			!S_ISDIR(inode->i_mode))
2297 		return -EINVAL;
2298 
2299 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2300 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2301 		return -EINVAL;
2302 
2303 	/*
2304 	 * It is only valid to set the DAX flag on regular files and
2305 	 * directories on filesystems.
2306 	 */
2307 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2308 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2309 		return -EINVAL;
2310 
2311 	/* Extent size hints of zero turn off the flags. */
2312 	if (fa->fsx_extsize == 0)
2313 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2314 	if (fa->fsx_cowextsize == 0)
2315 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2316 
2317 	return 0;
2318 }
2319 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2320