xref: /linux/fs/inode.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __ro_after_init;
59 static unsigned int i_hash_shift __ro_after_init;
60 static struct hlist_head *inode_hashtable __ro_after_init;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 static DEFINE_PER_CPU(unsigned long, nr_inodes);
72 static DEFINE_PER_CPU(unsigned long, nr_unused);
73 
74 static struct kmem_cache *inode_cachep __ro_after_init;
75 
76 static long get_nr_inodes(void)
77 {
78 	int i;
79 	long sum = 0;
80 	for_each_possible_cpu(i)
81 		sum += per_cpu(nr_inodes, i);
82 	return sum < 0 ? 0 : sum;
83 }
84 
85 static inline long get_nr_inodes_unused(void)
86 {
87 	int i;
88 	long sum = 0;
89 	for_each_possible_cpu(i)
90 		sum += per_cpu(nr_unused, i);
91 	return sum < 0 ? 0 : sum;
92 }
93 
94 long get_nr_dirty_inodes(void)
95 {
96 	/* not actually dirty inodes, but a wild approximation */
97 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
98 	return nr_dirty > 0 ? nr_dirty : 0;
99 }
100 
101 /*
102  * Handle nr_inode sysctl
103  */
104 #ifdef CONFIG_SYSCTL
105 /*
106  * Statistics gathering..
107  */
108 static struct inodes_stat_t inodes_stat;
109 
110 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
111 			  size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 
118 static struct ctl_table inodes_sysctls[] = {
119 	{
120 		.procname	= "inode-nr",
121 		.data		= &inodes_stat,
122 		.maxlen		= 2*sizeof(long),
123 		.mode		= 0444,
124 		.proc_handler	= proc_nr_inodes,
125 	},
126 	{
127 		.procname	= "inode-state",
128 		.data		= &inodes_stat,
129 		.maxlen		= 7*sizeof(long),
130 		.mode		= 0444,
131 		.proc_handler	= proc_nr_inodes,
132 	},
133 };
134 
135 static int __init init_fs_inode_sysctls(void)
136 {
137 	register_sysctl_init("fs", inodes_sysctls);
138 	return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142 
143 static int no_open(struct inode *inode, struct file *file)
144 {
145 	return -ENXIO;
146 }
147 
148 /**
149  * inode_init_always - perform inode structure initialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 	static const struct inode_operations empty_iops;
159 	static const struct file_operations no_open_fops = {.open = no_open};
160 	struct address_space *const mapping = &inode->i_data;
161 
162 	inode->i_sb = sb;
163 	inode->i_blkbits = sb->s_blocksize_bits;
164 	inode->i_flags = 0;
165 	inode->i_state = 0;
166 	atomic64_set(&inode->i_sequence, 0);
167 	atomic_set(&inode->i_count, 1);
168 	inode->i_op = &empty_iops;
169 	inode->i_fop = &no_open_fops;
170 	inode->i_ino = 0;
171 	inode->__i_nlink = 1;
172 	inode->i_opflags = 0;
173 	if (sb->s_xattr)
174 		inode->i_opflags |= IOP_XATTR;
175 	i_uid_write(inode, 0);
176 	i_gid_write(inode, 0);
177 	atomic_set(&inode->i_writecount, 0);
178 	inode->i_size = 0;
179 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
180 	inode->i_blocks = 0;
181 	inode->i_bytes = 0;
182 	inode->i_generation = 0;
183 	inode->i_pipe = NULL;
184 	inode->i_cdev = NULL;
185 	inode->i_link = NULL;
186 	inode->i_dir_seq = 0;
187 	inode->i_rdev = 0;
188 	inode->dirtied_when = 0;
189 
190 #ifdef CONFIG_CGROUP_WRITEBACK
191 	inode->i_wb_frn_winner = 0;
192 	inode->i_wb_frn_avg_time = 0;
193 	inode->i_wb_frn_history = 0;
194 #endif
195 
196 	spin_lock_init(&inode->i_lock);
197 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
198 
199 	init_rwsem(&inode->i_rwsem);
200 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
201 
202 	atomic_set(&inode->i_dio_count, 0);
203 
204 	mapping->a_ops = &empty_aops;
205 	mapping->host = inode;
206 	mapping->flags = 0;
207 	mapping->wb_err = 0;
208 	atomic_set(&mapping->i_mmap_writable, 0);
209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
210 	atomic_set(&mapping->nr_thps, 0);
211 #endif
212 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
213 	mapping->i_private_data = NULL;
214 	mapping->writeback_index = 0;
215 	init_rwsem(&mapping->invalidate_lock);
216 	lockdep_set_class_and_name(&mapping->invalidate_lock,
217 				   &sb->s_type->invalidate_lock_key,
218 				   "mapping.invalidate_lock");
219 	if (sb->s_iflags & SB_I_STABLE_WRITES)
220 		mapping_set_stable_writes(mapping);
221 	inode->i_private = NULL;
222 	inode->i_mapping = mapping;
223 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
224 #ifdef CONFIG_FS_POSIX_ACL
225 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
226 #endif
227 
228 #ifdef CONFIG_FSNOTIFY
229 	inode->i_fsnotify_mask = 0;
230 #endif
231 	inode->i_flctx = NULL;
232 
233 	if (unlikely(security_inode_alloc(inode)))
234 		return -ENOMEM;
235 
236 	this_cpu_inc(nr_inodes);
237 
238 	return 0;
239 }
240 EXPORT_SYMBOL(inode_init_always);
241 
242 void free_inode_nonrcu(struct inode *inode)
243 {
244 	kmem_cache_free(inode_cachep, inode);
245 }
246 EXPORT_SYMBOL(free_inode_nonrcu);
247 
248 static void i_callback(struct rcu_head *head)
249 {
250 	struct inode *inode = container_of(head, struct inode, i_rcu);
251 	if (inode->free_inode)
252 		inode->free_inode(inode);
253 	else
254 		free_inode_nonrcu(inode);
255 }
256 
257 static struct inode *alloc_inode(struct super_block *sb)
258 {
259 	const struct super_operations *ops = sb->s_op;
260 	struct inode *inode;
261 
262 	if (ops->alloc_inode)
263 		inode = ops->alloc_inode(sb);
264 	else
265 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
266 
267 	if (!inode)
268 		return NULL;
269 
270 	if (unlikely(inode_init_always(sb, inode))) {
271 		if (ops->destroy_inode) {
272 			ops->destroy_inode(inode);
273 			if (!ops->free_inode)
274 				return NULL;
275 		}
276 		inode->free_inode = ops->free_inode;
277 		i_callback(&inode->i_rcu);
278 		return NULL;
279 	}
280 
281 	return inode;
282 }
283 
284 void __destroy_inode(struct inode *inode)
285 {
286 	BUG_ON(inode_has_buffers(inode));
287 	inode_detach_wb(inode);
288 	security_inode_free(inode);
289 	fsnotify_inode_delete(inode);
290 	locks_free_lock_context(inode);
291 	if (!inode->i_nlink) {
292 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
293 		atomic_long_dec(&inode->i_sb->s_remove_count);
294 	}
295 
296 #ifdef CONFIG_FS_POSIX_ACL
297 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
298 		posix_acl_release(inode->i_acl);
299 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
300 		posix_acl_release(inode->i_default_acl);
301 #endif
302 	this_cpu_dec(nr_inodes);
303 }
304 EXPORT_SYMBOL(__destroy_inode);
305 
306 static void destroy_inode(struct inode *inode)
307 {
308 	const struct super_operations *ops = inode->i_sb->s_op;
309 
310 	BUG_ON(!list_empty(&inode->i_lru));
311 	__destroy_inode(inode);
312 	if (ops->destroy_inode) {
313 		ops->destroy_inode(inode);
314 		if (!ops->free_inode)
315 			return;
316 	}
317 	inode->free_inode = ops->free_inode;
318 	call_rcu(&inode->i_rcu, i_callback);
319 }
320 
321 /**
322  * drop_nlink - directly drop an inode's link count
323  * @inode: inode
324  *
325  * This is a low-level filesystem helper to replace any
326  * direct filesystem manipulation of i_nlink.  In cases
327  * where we are attempting to track writes to the
328  * filesystem, a decrement to zero means an imminent
329  * write when the file is truncated and actually unlinked
330  * on the filesystem.
331  */
332 void drop_nlink(struct inode *inode)
333 {
334 	WARN_ON(inode->i_nlink == 0);
335 	inode->__i_nlink--;
336 	if (!inode->i_nlink)
337 		atomic_long_inc(&inode->i_sb->s_remove_count);
338 }
339 EXPORT_SYMBOL(drop_nlink);
340 
341 /**
342  * clear_nlink - directly zero an inode's link count
343  * @inode: inode
344  *
345  * This is a low-level filesystem helper to replace any
346  * direct filesystem manipulation of i_nlink.  See
347  * drop_nlink() for why we care about i_nlink hitting zero.
348  */
349 void clear_nlink(struct inode *inode)
350 {
351 	if (inode->i_nlink) {
352 		inode->__i_nlink = 0;
353 		atomic_long_inc(&inode->i_sb->s_remove_count);
354 	}
355 }
356 EXPORT_SYMBOL(clear_nlink);
357 
358 /**
359  * set_nlink - directly set an inode's link count
360  * @inode: inode
361  * @nlink: new nlink (should be non-zero)
362  *
363  * This is a low-level filesystem helper to replace any
364  * direct filesystem manipulation of i_nlink.
365  */
366 void set_nlink(struct inode *inode, unsigned int nlink)
367 {
368 	if (!nlink) {
369 		clear_nlink(inode);
370 	} else {
371 		/* Yes, some filesystems do change nlink from zero to one */
372 		if (inode->i_nlink == 0)
373 			atomic_long_dec(&inode->i_sb->s_remove_count);
374 
375 		inode->__i_nlink = nlink;
376 	}
377 }
378 EXPORT_SYMBOL(set_nlink);
379 
380 /**
381  * inc_nlink - directly increment an inode's link count
382  * @inode: inode
383  *
384  * This is a low-level filesystem helper to replace any
385  * direct filesystem manipulation of i_nlink.  Currently,
386  * it is only here for parity with dec_nlink().
387  */
388 void inc_nlink(struct inode *inode)
389 {
390 	if (unlikely(inode->i_nlink == 0)) {
391 		WARN_ON(!(inode->i_state & I_LINKABLE));
392 		atomic_long_dec(&inode->i_sb->s_remove_count);
393 	}
394 
395 	inode->__i_nlink++;
396 }
397 EXPORT_SYMBOL(inc_nlink);
398 
399 static void __address_space_init_once(struct address_space *mapping)
400 {
401 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
402 	init_rwsem(&mapping->i_mmap_rwsem);
403 	INIT_LIST_HEAD(&mapping->i_private_list);
404 	spin_lock_init(&mapping->i_private_lock);
405 	mapping->i_mmap = RB_ROOT_CACHED;
406 }
407 
408 void address_space_init_once(struct address_space *mapping)
409 {
410 	memset(mapping, 0, sizeof(*mapping));
411 	__address_space_init_once(mapping);
412 }
413 EXPORT_SYMBOL(address_space_init_once);
414 
415 /*
416  * These are initializations that only need to be done
417  * once, because the fields are idempotent across use
418  * of the inode, so let the slab aware of that.
419  */
420 void inode_init_once(struct inode *inode)
421 {
422 	memset(inode, 0, sizeof(*inode));
423 	INIT_HLIST_NODE(&inode->i_hash);
424 	INIT_LIST_HEAD(&inode->i_devices);
425 	INIT_LIST_HEAD(&inode->i_io_list);
426 	INIT_LIST_HEAD(&inode->i_wb_list);
427 	INIT_LIST_HEAD(&inode->i_lru);
428 	INIT_LIST_HEAD(&inode->i_sb_list);
429 	__address_space_init_once(&inode->i_data);
430 	i_size_ordered_init(inode);
431 }
432 EXPORT_SYMBOL(inode_init_once);
433 
434 static void init_once(void *foo)
435 {
436 	struct inode *inode = (struct inode *) foo;
437 
438 	inode_init_once(inode);
439 }
440 
441 /*
442  * inode->i_lock must be held
443  */
444 void __iget(struct inode *inode)
445 {
446 	atomic_inc(&inode->i_count);
447 }
448 
449 /*
450  * get additional reference to inode; caller must already hold one.
451  */
452 void ihold(struct inode *inode)
453 {
454 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
455 }
456 EXPORT_SYMBOL(ihold);
457 
458 static void __inode_add_lru(struct inode *inode, bool rotate)
459 {
460 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
461 		return;
462 	if (atomic_read(&inode->i_count))
463 		return;
464 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
465 		return;
466 	if (!mapping_shrinkable(&inode->i_data))
467 		return;
468 
469 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
470 		this_cpu_inc(nr_unused);
471 	else if (rotate)
472 		inode->i_state |= I_REFERENCED;
473 }
474 
475 /*
476  * Add inode to LRU if needed (inode is unused and clean).
477  *
478  * Needs inode->i_lock held.
479  */
480 void inode_add_lru(struct inode *inode)
481 {
482 	__inode_add_lru(inode, false);
483 }
484 
485 static void inode_lru_list_del(struct inode *inode)
486 {
487 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
488 		this_cpu_dec(nr_unused);
489 }
490 
491 static void inode_pin_lru_isolating(struct inode *inode)
492 {
493 	lockdep_assert_held(&inode->i_lock);
494 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
495 	inode->i_state |= I_LRU_ISOLATING;
496 }
497 
498 static void inode_unpin_lru_isolating(struct inode *inode)
499 {
500 	spin_lock(&inode->i_lock);
501 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
502 	inode->i_state &= ~I_LRU_ISOLATING;
503 	smp_mb();
504 	wake_up_bit(&inode->i_state, __I_LRU_ISOLATING);
505 	spin_unlock(&inode->i_lock);
506 }
507 
508 static void inode_wait_for_lru_isolating(struct inode *inode)
509 {
510 	spin_lock(&inode->i_lock);
511 	if (inode->i_state & I_LRU_ISOLATING) {
512 		DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING);
513 		wait_queue_head_t *wqh;
514 
515 		wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING);
516 		spin_unlock(&inode->i_lock);
517 		__wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE);
518 		spin_lock(&inode->i_lock);
519 		WARN_ON(inode->i_state & I_LRU_ISOLATING);
520 	}
521 	spin_unlock(&inode->i_lock);
522 }
523 
524 /**
525  * inode_sb_list_add - add inode to the superblock list of inodes
526  * @inode: inode to add
527  */
528 void inode_sb_list_add(struct inode *inode)
529 {
530 	spin_lock(&inode->i_sb->s_inode_list_lock);
531 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
532 	spin_unlock(&inode->i_sb->s_inode_list_lock);
533 }
534 EXPORT_SYMBOL_GPL(inode_sb_list_add);
535 
536 static inline void inode_sb_list_del(struct inode *inode)
537 {
538 	if (!list_empty(&inode->i_sb_list)) {
539 		spin_lock(&inode->i_sb->s_inode_list_lock);
540 		list_del_init(&inode->i_sb_list);
541 		spin_unlock(&inode->i_sb->s_inode_list_lock);
542 	}
543 }
544 
545 static unsigned long hash(struct super_block *sb, unsigned long hashval)
546 {
547 	unsigned long tmp;
548 
549 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
550 			L1_CACHE_BYTES;
551 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
552 	return tmp & i_hash_mask;
553 }
554 
555 /**
556  *	__insert_inode_hash - hash an inode
557  *	@inode: unhashed inode
558  *	@hashval: unsigned long value used to locate this object in the
559  *		inode_hashtable.
560  *
561  *	Add an inode to the inode hash for this superblock.
562  */
563 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
564 {
565 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
566 
567 	spin_lock(&inode_hash_lock);
568 	spin_lock(&inode->i_lock);
569 	hlist_add_head_rcu(&inode->i_hash, b);
570 	spin_unlock(&inode->i_lock);
571 	spin_unlock(&inode_hash_lock);
572 }
573 EXPORT_SYMBOL(__insert_inode_hash);
574 
575 /**
576  *	__remove_inode_hash - remove an inode from the hash
577  *	@inode: inode to unhash
578  *
579  *	Remove an inode from the superblock.
580  */
581 void __remove_inode_hash(struct inode *inode)
582 {
583 	spin_lock(&inode_hash_lock);
584 	spin_lock(&inode->i_lock);
585 	hlist_del_init_rcu(&inode->i_hash);
586 	spin_unlock(&inode->i_lock);
587 	spin_unlock(&inode_hash_lock);
588 }
589 EXPORT_SYMBOL(__remove_inode_hash);
590 
591 void dump_mapping(const struct address_space *mapping)
592 {
593 	struct inode *host;
594 	const struct address_space_operations *a_ops;
595 	struct hlist_node *dentry_first;
596 	struct dentry *dentry_ptr;
597 	struct dentry dentry;
598 	unsigned long ino;
599 
600 	/*
601 	 * If mapping is an invalid pointer, we don't want to crash
602 	 * accessing it, so probe everything depending on it carefully.
603 	 */
604 	if (get_kernel_nofault(host, &mapping->host) ||
605 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
606 		pr_warn("invalid mapping:%px\n", mapping);
607 		return;
608 	}
609 
610 	if (!host) {
611 		pr_warn("aops:%ps\n", a_ops);
612 		return;
613 	}
614 
615 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
616 	    get_kernel_nofault(ino, &host->i_ino)) {
617 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
618 		return;
619 	}
620 
621 	if (!dentry_first) {
622 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
623 		return;
624 	}
625 
626 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
627 	if (get_kernel_nofault(dentry, dentry_ptr) ||
628 	    !dentry.d_parent || !dentry.d_name.name) {
629 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
630 				a_ops, ino, dentry_ptr);
631 		return;
632 	}
633 
634 	/*
635 	 * if dentry is corrupted, the %pd handler may still crash,
636 	 * but it's unlikely that we reach here with a corrupt mapping
637 	 */
638 	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
639 }
640 
641 void clear_inode(struct inode *inode)
642 {
643 	/*
644 	 * We have to cycle the i_pages lock here because reclaim can be in the
645 	 * process of removing the last page (in __filemap_remove_folio())
646 	 * and we must not free the mapping under it.
647 	 */
648 	xa_lock_irq(&inode->i_data.i_pages);
649 	BUG_ON(inode->i_data.nrpages);
650 	/*
651 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
652 	 * two known and long-standing ways in which nodes may get left behind
653 	 * (when deep radix-tree node allocation failed partway; or when THP
654 	 * collapse_file() failed). Until those two known cases are cleaned up,
655 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
656 	 * nor even WARN_ON(!mapping_empty).
657 	 */
658 	xa_unlock_irq(&inode->i_data.i_pages);
659 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
660 	BUG_ON(!(inode->i_state & I_FREEING));
661 	BUG_ON(inode->i_state & I_CLEAR);
662 	BUG_ON(!list_empty(&inode->i_wb_list));
663 	/* don't need i_lock here, no concurrent mods to i_state */
664 	inode->i_state = I_FREEING | I_CLEAR;
665 }
666 EXPORT_SYMBOL(clear_inode);
667 
668 /*
669  * Free the inode passed in, removing it from the lists it is still connected
670  * to. We remove any pages still attached to the inode and wait for any IO that
671  * is still in progress before finally destroying the inode.
672  *
673  * An inode must already be marked I_FREEING so that we avoid the inode being
674  * moved back onto lists if we race with other code that manipulates the lists
675  * (e.g. writeback_single_inode). The caller is responsible for setting this.
676  *
677  * An inode must already be removed from the LRU list before being evicted from
678  * the cache. This should occur atomically with setting the I_FREEING state
679  * flag, so no inodes here should ever be on the LRU when being evicted.
680  */
681 static void evict(struct inode *inode)
682 {
683 	const struct super_operations *op = inode->i_sb->s_op;
684 
685 	BUG_ON(!(inode->i_state & I_FREEING));
686 	BUG_ON(!list_empty(&inode->i_lru));
687 
688 	if (!list_empty(&inode->i_io_list))
689 		inode_io_list_del(inode);
690 
691 	inode_sb_list_del(inode);
692 
693 	inode_wait_for_lru_isolating(inode);
694 
695 	/*
696 	 * Wait for flusher thread to be done with the inode so that filesystem
697 	 * does not start destroying it while writeback is still running. Since
698 	 * the inode has I_FREEING set, flusher thread won't start new work on
699 	 * the inode.  We just have to wait for running writeback to finish.
700 	 */
701 	inode_wait_for_writeback(inode);
702 
703 	if (op->evict_inode) {
704 		op->evict_inode(inode);
705 	} else {
706 		truncate_inode_pages_final(&inode->i_data);
707 		clear_inode(inode);
708 	}
709 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
710 		cd_forget(inode);
711 
712 	remove_inode_hash(inode);
713 
714 	/*
715 	 * Wake up waiters in __wait_on_freeing_inode().
716 	 *
717 	 * Lockless hash lookup may end up finding the inode before we removed
718 	 * it above, but only lock it *after* we are done with the wakeup below.
719 	 * In this case the potential waiter cannot safely block.
720 	 *
721 	 * The inode being unhashed after the call to remove_inode_hash() is
722 	 * used as an indicator whether blocking on it is safe.
723 	 */
724 	spin_lock(&inode->i_lock);
725 	wake_up_bit(&inode->i_state, __I_NEW);
726 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
727 	spin_unlock(&inode->i_lock);
728 
729 	destroy_inode(inode);
730 }
731 
732 /*
733  * dispose_list - dispose of the contents of a local list
734  * @head: the head of the list to free
735  *
736  * Dispose-list gets a local list with local inodes in it, so it doesn't
737  * need to worry about list corruption and SMP locks.
738  */
739 static void dispose_list(struct list_head *head)
740 {
741 	while (!list_empty(head)) {
742 		struct inode *inode;
743 
744 		inode = list_first_entry(head, struct inode, i_lru);
745 		list_del_init(&inode->i_lru);
746 
747 		evict(inode);
748 		cond_resched();
749 	}
750 }
751 
752 /**
753  * evict_inodes	- evict all evictable inodes for a superblock
754  * @sb:		superblock to operate on
755  *
756  * Make sure that no inodes with zero refcount are retained.  This is
757  * called by superblock shutdown after having SB_ACTIVE flag removed,
758  * so any inode reaching zero refcount during or after that call will
759  * be immediately evicted.
760  */
761 void evict_inodes(struct super_block *sb)
762 {
763 	struct inode *inode, *next;
764 	LIST_HEAD(dispose);
765 
766 again:
767 	spin_lock(&sb->s_inode_list_lock);
768 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
769 		if (atomic_read(&inode->i_count))
770 			continue;
771 
772 		spin_lock(&inode->i_lock);
773 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
774 			spin_unlock(&inode->i_lock);
775 			continue;
776 		}
777 
778 		inode->i_state |= I_FREEING;
779 		inode_lru_list_del(inode);
780 		spin_unlock(&inode->i_lock);
781 		list_add(&inode->i_lru, &dispose);
782 
783 		/*
784 		 * We can have a ton of inodes to evict at unmount time given
785 		 * enough memory, check to see if we need to go to sleep for a
786 		 * bit so we don't livelock.
787 		 */
788 		if (need_resched()) {
789 			spin_unlock(&sb->s_inode_list_lock);
790 			cond_resched();
791 			dispose_list(&dispose);
792 			goto again;
793 		}
794 	}
795 	spin_unlock(&sb->s_inode_list_lock);
796 
797 	dispose_list(&dispose);
798 }
799 EXPORT_SYMBOL_GPL(evict_inodes);
800 
801 /**
802  * invalidate_inodes	- attempt to free all inodes on a superblock
803  * @sb:		superblock to operate on
804  *
805  * Attempts to free all inodes (including dirty inodes) for a given superblock.
806  */
807 void invalidate_inodes(struct super_block *sb)
808 {
809 	struct inode *inode, *next;
810 	LIST_HEAD(dispose);
811 
812 again:
813 	spin_lock(&sb->s_inode_list_lock);
814 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
815 		spin_lock(&inode->i_lock);
816 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
817 			spin_unlock(&inode->i_lock);
818 			continue;
819 		}
820 		if (atomic_read(&inode->i_count)) {
821 			spin_unlock(&inode->i_lock);
822 			continue;
823 		}
824 
825 		inode->i_state |= I_FREEING;
826 		inode_lru_list_del(inode);
827 		spin_unlock(&inode->i_lock);
828 		list_add(&inode->i_lru, &dispose);
829 		if (need_resched()) {
830 			spin_unlock(&sb->s_inode_list_lock);
831 			cond_resched();
832 			dispose_list(&dispose);
833 			goto again;
834 		}
835 	}
836 	spin_unlock(&sb->s_inode_list_lock);
837 
838 	dispose_list(&dispose);
839 }
840 
841 /*
842  * Isolate the inode from the LRU in preparation for freeing it.
843  *
844  * If the inode has the I_REFERENCED flag set, then it means that it has been
845  * used recently - the flag is set in iput_final(). When we encounter such an
846  * inode, clear the flag and move it to the back of the LRU so it gets another
847  * pass through the LRU before it gets reclaimed. This is necessary because of
848  * the fact we are doing lazy LRU updates to minimise lock contention so the
849  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
850  * with this flag set because they are the inodes that are out of order.
851  */
852 static enum lru_status inode_lru_isolate(struct list_head *item,
853 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
854 {
855 	struct list_head *freeable = arg;
856 	struct inode	*inode = container_of(item, struct inode, i_lru);
857 
858 	/*
859 	 * We are inverting the lru lock/inode->i_lock here, so use a
860 	 * trylock. If we fail to get the lock, just skip it.
861 	 */
862 	if (!spin_trylock(&inode->i_lock))
863 		return LRU_SKIP;
864 
865 	/*
866 	 * Inodes can get referenced, redirtied, or repopulated while
867 	 * they're already on the LRU, and this can make them
868 	 * unreclaimable for a while. Remove them lazily here; iput,
869 	 * sync, or the last page cache deletion will requeue them.
870 	 */
871 	if (atomic_read(&inode->i_count) ||
872 	    (inode->i_state & ~I_REFERENCED) ||
873 	    !mapping_shrinkable(&inode->i_data)) {
874 		list_lru_isolate(lru, &inode->i_lru);
875 		spin_unlock(&inode->i_lock);
876 		this_cpu_dec(nr_unused);
877 		return LRU_REMOVED;
878 	}
879 
880 	/* Recently referenced inodes get one more pass */
881 	if (inode->i_state & I_REFERENCED) {
882 		inode->i_state &= ~I_REFERENCED;
883 		spin_unlock(&inode->i_lock);
884 		return LRU_ROTATE;
885 	}
886 
887 	/*
888 	 * On highmem systems, mapping_shrinkable() permits dropping
889 	 * page cache in order to free up struct inodes: lowmem might
890 	 * be under pressure before the cache inside the highmem zone.
891 	 */
892 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
893 		inode_pin_lru_isolating(inode);
894 		spin_unlock(&inode->i_lock);
895 		spin_unlock(lru_lock);
896 		if (remove_inode_buffers(inode)) {
897 			unsigned long reap;
898 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
899 			if (current_is_kswapd())
900 				__count_vm_events(KSWAPD_INODESTEAL, reap);
901 			else
902 				__count_vm_events(PGINODESTEAL, reap);
903 			mm_account_reclaimed_pages(reap);
904 		}
905 		inode_unpin_lru_isolating(inode);
906 		spin_lock(lru_lock);
907 		return LRU_RETRY;
908 	}
909 
910 	WARN_ON(inode->i_state & I_NEW);
911 	inode->i_state |= I_FREEING;
912 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
913 	spin_unlock(&inode->i_lock);
914 
915 	this_cpu_dec(nr_unused);
916 	return LRU_REMOVED;
917 }
918 
919 /*
920  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
921  * This is called from the superblock shrinker function with a number of inodes
922  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
923  * then are freed outside inode_lock by dispose_list().
924  */
925 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
926 {
927 	LIST_HEAD(freeable);
928 	long freed;
929 
930 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
931 				     inode_lru_isolate, &freeable);
932 	dispose_list(&freeable);
933 	return freed;
934 }
935 
936 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
937 /*
938  * Called with the inode lock held.
939  */
940 static struct inode *find_inode(struct super_block *sb,
941 				struct hlist_head *head,
942 				int (*test)(struct inode *, void *),
943 				void *data, bool is_inode_hash_locked)
944 {
945 	struct inode *inode = NULL;
946 
947 	if (is_inode_hash_locked)
948 		lockdep_assert_held(&inode_hash_lock);
949 	else
950 		lockdep_assert_not_held(&inode_hash_lock);
951 
952 	rcu_read_lock();
953 repeat:
954 	hlist_for_each_entry_rcu(inode, head, i_hash) {
955 		if (inode->i_sb != sb)
956 			continue;
957 		if (!test(inode, data))
958 			continue;
959 		spin_lock(&inode->i_lock);
960 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
961 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
962 			goto repeat;
963 		}
964 		if (unlikely(inode->i_state & I_CREATING)) {
965 			spin_unlock(&inode->i_lock);
966 			rcu_read_unlock();
967 			return ERR_PTR(-ESTALE);
968 		}
969 		__iget(inode);
970 		spin_unlock(&inode->i_lock);
971 		rcu_read_unlock();
972 		return inode;
973 	}
974 	rcu_read_unlock();
975 	return NULL;
976 }
977 
978 /*
979  * find_inode_fast is the fast path version of find_inode, see the comment at
980  * iget_locked for details.
981  */
982 static struct inode *find_inode_fast(struct super_block *sb,
983 				struct hlist_head *head, unsigned long ino,
984 				bool is_inode_hash_locked)
985 {
986 	struct inode *inode = NULL;
987 
988 	if (is_inode_hash_locked)
989 		lockdep_assert_held(&inode_hash_lock);
990 	else
991 		lockdep_assert_not_held(&inode_hash_lock);
992 
993 	rcu_read_lock();
994 repeat:
995 	hlist_for_each_entry_rcu(inode, head, i_hash) {
996 		if (inode->i_ino != ino)
997 			continue;
998 		if (inode->i_sb != sb)
999 			continue;
1000 		spin_lock(&inode->i_lock);
1001 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1002 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1003 			goto repeat;
1004 		}
1005 		if (unlikely(inode->i_state & I_CREATING)) {
1006 			spin_unlock(&inode->i_lock);
1007 			rcu_read_unlock();
1008 			return ERR_PTR(-ESTALE);
1009 		}
1010 		__iget(inode);
1011 		spin_unlock(&inode->i_lock);
1012 		rcu_read_unlock();
1013 		return inode;
1014 	}
1015 	rcu_read_unlock();
1016 	return NULL;
1017 }
1018 
1019 /*
1020  * Each cpu owns a range of LAST_INO_BATCH numbers.
1021  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1022  * to renew the exhausted range.
1023  *
1024  * This does not significantly increase overflow rate because every CPU can
1025  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1026  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1027  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1028  * overflow rate by 2x, which does not seem too significant.
1029  *
1030  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1031  * error if st_ino won't fit in target struct field. Use 32bit counter
1032  * here to attempt to avoid that.
1033  */
1034 #define LAST_INO_BATCH 1024
1035 static DEFINE_PER_CPU(unsigned int, last_ino);
1036 
1037 unsigned int get_next_ino(void)
1038 {
1039 	unsigned int *p = &get_cpu_var(last_ino);
1040 	unsigned int res = *p;
1041 
1042 #ifdef CONFIG_SMP
1043 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1044 		static atomic_t shared_last_ino;
1045 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1046 
1047 		res = next - LAST_INO_BATCH;
1048 	}
1049 #endif
1050 
1051 	res++;
1052 	/* get_next_ino should not provide a 0 inode number */
1053 	if (unlikely(!res))
1054 		res++;
1055 	*p = res;
1056 	put_cpu_var(last_ino);
1057 	return res;
1058 }
1059 EXPORT_SYMBOL(get_next_ino);
1060 
1061 /**
1062  *	new_inode_pseudo 	- obtain an inode
1063  *	@sb: superblock
1064  *
1065  *	Allocates a new inode for given superblock.
1066  *	Inode wont be chained in superblock s_inodes list
1067  *	This means :
1068  *	- fs can't be unmount
1069  *	- quotas, fsnotify, writeback can't work
1070  */
1071 struct inode *new_inode_pseudo(struct super_block *sb)
1072 {
1073 	return alloc_inode(sb);
1074 }
1075 
1076 /**
1077  *	new_inode 	- obtain an inode
1078  *	@sb: superblock
1079  *
1080  *	Allocates a new inode for given superblock. The default gfp_mask
1081  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1082  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1083  *	for the page cache are not reclaimable or migratable,
1084  *	mapping_set_gfp_mask() must be called with suitable flags on the
1085  *	newly created inode's mapping
1086  *
1087  */
1088 struct inode *new_inode(struct super_block *sb)
1089 {
1090 	struct inode *inode;
1091 
1092 	inode = new_inode_pseudo(sb);
1093 	if (inode)
1094 		inode_sb_list_add(inode);
1095 	return inode;
1096 }
1097 EXPORT_SYMBOL(new_inode);
1098 
1099 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1100 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1101 {
1102 	if (S_ISDIR(inode->i_mode)) {
1103 		struct file_system_type *type = inode->i_sb->s_type;
1104 
1105 		/* Set new key only if filesystem hasn't already changed it */
1106 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1107 			/*
1108 			 * ensure nobody is actually holding i_mutex
1109 			 */
1110 			// mutex_destroy(&inode->i_mutex);
1111 			init_rwsem(&inode->i_rwsem);
1112 			lockdep_set_class(&inode->i_rwsem,
1113 					  &type->i_mutex_dir_key);
1114 		}
1115 	}
1116 }
1117 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1118 #endif
1119 
1120 /**
1121  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1122  * @inode:	new inode to unlock
1123  *
1124  * Called when the inode is fully initialised to clear the new state of the
1125  * inode and wake up anyone waiting for the inode to finish initialisation.
1126  */
1127 void unlock_new_inode(struct inode *inode)
1128 {
1129 	lockdep_annotate_inode_mutex_key(inode);
1130 	spin_lock(&inode->i_lock);
1131 	WARN_ON(!(inode->i_state & I_NEW));
1132 	inode->i_state &= ~I_NEW & ~I_CREATING;
1133 	smp_mb();
1134 	wake_up_bit(&inode->i_state, __I_NEW);
1135 	spin_unlock(&inode->i_lock);
1136 }
1137 EXPORT_SYMBOL(unlock_new_inode);
1138 
1139 void discard_new_inode(struct inode *inode)
1140 {
1141 	lockdep_annotate_inode_mutex_key(inode);
1142 	spin_lock(&inode->i_lock);
1143 	WARN_ON(!(inode->i_state & I_NEW));
1144 	inode->i_state &= ~I_NEW;
1145 	smp_mb();
1146 	wake_up_bit(&inode->i_state, __I_NEW);
1147 	spin_unlock(&inode->i_lock);
1148 	iput(inode);
1149 }
1150 EXPORT_SYMBOL(discard_new_inode);
1151 
1152 /**
1153  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1154  *
1155  * Lock any non-NULL argument. Passed objects must not be directories.
1156  * Zero, one or two objects may be locked by this function.
1157  *
1158  * @inode1: first inode to lock
1159  * @inode2: second inode to lock
1160  */
1161 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1162 {
1163 	if (inode1)
1164 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1165 	if (inode2)
1166 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1167 	if (inode1 > inode2)
1168 		swap(inode1, inode2);
1169 	if (inode1)
1170 		inode_lock(inode1);
1171 	if (inode2 && inode2 != inode1)
1172 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1173 }
1174 EXPORT_SYMBOL(lock_two_nondirectories);
1175 
1176 /**
1177  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1178  * @inode1: first inode to unlock
1179  * @inode2: second inode to unlock
1180  */
1181 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1182 {
1183 	if (inode1) {
1184 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1185 		inode_unlock(inode1);
1186 	}
1187 	if (inode2 && inode2 != inode1) {
1188 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1189 		inode_unlock(inode2);
1190 	}
1191 }
1192 EXPORT_SYMBOL(unlock_two_nondirectories);
1193 
1194 /**
1195  * inode_insert5 - obtain an inode from a mounted file system
1196  * @inode:	pre-allocated inode to use for insert to cache
1197  * @hashval:	hash value (usually inode number) to get
1198  * @test:	callback used for comparisons between inodes
1199  * @set:	callback used to initialize a new struct inode
1200  * @data:	opaque data pointer to pass to @test and @set
1201  *
1202  * Search for the inode specified by @hashval and @data in the inode cache,
1203  * and if present it is return it with an increased reference count. This is
1204  * a variant of iget5_locked() for callers that don't want to fail on memory
1205  * allocation of inode.
1206  *
1207  * If the inode is not in cache, insert the pre-allocated inode to cache and
1208  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1209  * to fill it in before unlocking it via unlock_new_inode().
1210  *
1211  * Note both @test and @set are called with the inode_hash_lock held, so can't
1212  * sleep.
1213  */
1214 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1215 			    int (*test)(struct inode *, void *),
1216 			    int (*set)(struct inode *, void *), void *data)
1217 {
1218 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1219 	struct inode *old;
1220 
1221 again:
1222 	spin_lock(&inode_hash_lock);
1223 	old = find_inode(inode->i_sb, head, test, data, true);
1224 	if (unlikely(old)) {
1225 		/*
1226 		 * Uhhuh, somebody else created the same inode under us.
1227 		 * Use the old inode instead of the preallocated one.
1228 		 */
1229 		spin_unlock(&inode_hash_lock);
1230 		if (IS_ERR(old))
1231 			return NULL;
1232 		wait_on_inode(old);
1233 		if (unlikely(inode_unhashed(old))) {
1234 			iput(old);
1235 			goto again;
1236 		}
1237 		return old;
1238 	}
1239 
1240 	if (set && unlikely(set(inode, data))) {
1241 		inode = NULL;
1242 		goto unlock;
1243 	}
1244 
1245 	/*
1246 	 * Return the locked inode with I_NEW set, the
1247 	 * caller is responsible for filling in the contents
1248 	 */
1249 	spin_lock(&inode->i_lock);
1250 	inode->i_state |= I_NEW;
1251 	hlist_add_head_rcu(&inode->i_hash, head);
1252 	spin_unlock(&inode->i_lock);
1253 
1254 	/*
1255 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1256 	 * point, so it should be safe to test i_sb_list locklessly.
1257 	 */
1258 	if (list_empty(&inode->i_sb_list))
1259 		inode_sb_list_add(inode);
1260 unlock:
1261 	spin_unlock(&inode_hash_lock);
1262 
1263 	return inode;
1264 }
1265 EXPORT_SYMBOL(inode_insert5);
1266 
1267 /**
1268  * iget5_locked - obtain an inode from a mounted file system
1269  * @sb:		super block of file system
1270  * @hashval:	hash value (usually inode number) to get
1271  * @test:	callback used for comparisons between inodes
1272  * @set:	callback used to initialize a new struct inode
1273  * @data:	opaque data pointer to pass to @test and @set
1274  *
1275  * Search for the inode specified by @hashval and @data in the inode cache,
1276  * and if present it is return it with an increased reference count. This is
1277  * a generalized version of iget_locked() for file systems where the inode
1278  * number is not sufficient for unique identification of an inode.
1279  *
1280  * If the inode is not in cache, allocate a new inode and return it locked,
1281  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1282  * before unlocking it via unlock_new_inode().
1283  *
1284  * Note both @test and @set are called with the inode_hash_lock held, so can't
1285  * sleep.
1286  */
1287 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1288 		int (*test)(struct inode *, void *),
1289 		int (*set)(struct inode *, void *), void *data)
1290 {
1291 	struct inode *inode = ilookup5(sb, hashval, test, data);
1292 
1293 	if (!inode) {
1294 		struct inode *new = alloc_inode(sb);
1295 
1296 		if (new) {
1297 			inode = inode_insert5(new, hashval, test, set, data);
1298 			if (unlikely(inode != new))
1299 				destroy_inode(new);
1300 		}
1301 	}
1302 	return inode;
1303 }
1304 EXPORT_SYMBOL(iget5_locked);
1305 
1306 /**
1307  * iget5_locked_rcu - obtain an inode from a mounted file system
1308  * @sb:		super block of file system
1309  * @hashval:	hash value (usually inode number) to get
1310  * @test:	callback used for comparisons between inodes
1311  * @set:	callback used to initialize a new struct inode
1312  * @data:	opaque data pointer to pass to @test and @set
1313  *
1314  * This is equivalent to iget5_locked, except the @test callback must
1315  * tolerate the inode not being stable, including being mid-teardown.
1316  */
1317 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1318 		int (*test)(struct inode *, void *),
1319 		int (*set)(struct inode *, void *), void *data)
1320 {
1321 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1322 	struct inode *inode, *new;
1323 
1324 again:
1325 	inode = find_inode(sb, head, test, data, false);
1326 	if (inode) {
1327 		if (IS_ERR(inode))
1328 			return NULL;
1329 		wait_on_inode(inode);
1330 		if (unlikely(inode_unhashed(inode))) {
1331 			iput(inode);
1332 			goto again;
1333 		}
1334 		return inode;
1335 	}
1336 
1337 	new = alloc_inode(sb);
1338 	if (new) {
1339 		inode = inode_insert5(new, hashval, test, set, data);
1340 		if (unlikely(inode != new))
1341 			destroy_inode(new);
1342 	}
1343 	return inode;
1344 }
1345 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1346 
1347 /**
1348  * iget_locked - obtain an inode from a mounted file system
1349  * @sb:		super block of file system
1350  * @ino:	inode number to get
1351  *
1352  * Search for the inode specified by @ino in the inode cache and if present
1353  * return it with an increased reference count. This is for file systems
1354  * where the inode number is sufficient for unique identification of an inode.
1355  *
1356  * If the inode is not in cache, allocate a new inode and return it locked,
1357  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1358  * before unlocking it via unlock_new_inode().
1359  */
1360 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1361 {
1362 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1363 	struct inode *inode;
1364 again:
1365 	inode = find_inode_fast(sb, head, ino, false);
1366 	if (inode) {
1367 		if (IS_ERR(inode))
1368 			return NULL;
1369 		wait_on_inode(inode);
1370 		if (unlikely(inode_unhashed(inode))) {
1371 			iput(inode);
1372 			goto again;
1373 		}
1374 		return inode;
1375 	}
1376 
1377 	inode = alloc_inode(sb);
1378 	if (inode) {
1379 		struct inode *old;
1380 
1381 		spin_lock(&inode_hash_lock);
1382 		/* We released the lock, so.. */
1383 		old = find_inode_fast(sb, head, ino, true);
1384 		if (!old) {
1385 			inode->i_ino = ino;
1386 			spin_lock(&inode->i_lock);
1387 			inode->i_state = I_NEW;
1388 			hlist_add_head_rcu(&inode->i_hash, head);
1389 			spin_unlock(&inode->i_lock);
1390 			inode_sb_list_add(inode);
1391 			spin_unlock(&inode_hash_lock);
1392 
1393 			/* Return the locked inode with I_NEW set, the
1394 			 * caller is responsible for filling in the contents
1395 			 */
1396 			return inode;
1397 		}
1398 
1399 		/*
1400 		 * Uhhuh, somebody else created the same inode under
1401 		 * us. Use the old inode instead of the one we just
1402 		 * allocated.
1403 		 */
1404 		spin_unlock(&inode_hash_lock);
1405 		destroy_inode(inode);
1406 		if (IS_ERR(old))
1407 			return NULL;
1408 		inode = old;
1409 		wait_on_inode(inode);
1410 		if (unlikely(inode_unhashed(inode))) {
1411 			iput(inode);
1412 			goto again;
1413 		}
1414 	}
1415 	return inode;
1416 }
1417 EXPORT_SYMBOL(iget_locked);
1418 
1419 /*
1420  * search the inode cache for a matching inode number.
1421  * If we find one, then the inode number we are trying to
1422  * allocate is not unique and so we should not use it.
1423  *
1424  * Returns 1 if the inode number is unique, 0 if it is not.
1425  */
1426 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1427 {
1428 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1429 	struct inode *inode;
1430 
1431 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1432 		if (inode->i_ino == ino && inode->i_sb == sb)
1433 			return 0;
1434 	}
1435 	return 1;
1436 }
1437 
1438 /**
1439  *	iunique - get a unique inode number
1440  *	@sb: superblock
1441  *	@max_reserved: highest reserved inode number
1442  *
1443  *	Obtain an inode number that is unique on the system for a given
1444  *	superblock. This is used by file systems that have no natural
1445  *	permanent inode numbering system. An inode number is returned that
1446  *	is higher than the reserved limit but unique.
1447  *
1448  *	BUGS:
1449  *	With a large number of inodes live on the file system this function
1450  *	currently becomes quite slow.
1451  */
1452 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1453 {
1454 	/*
1455 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1456 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1457 	 * here to attempt to avoid that.
1458 	 */
1459 	static DEFINE_SPINLOCK(iunique_lock);
1460 	static unsigned int counter;
1461 	ino_t res;
1462 
1463 	rcu_read_lock();
1464 	spin_lock(&iunique_lock);
1465 	do {
1466 		if (counter <= max_reserved)
1467 			counter = max_reserved + 1;
1468 		res = counter++;
1469 	} while (!test_inode_iunique(sb, res));
1470 	spin_unlock(&iunique_lock);
1471 	rcu_read_unlock();
1472 
1473 	return res;
1474 }
1475 EXPORT_SYMBOL(iunique);
1476 
1477 struct inode *igrab(struct inode *inode)
1478 {
1479 	spin_lock(&inode->i_lock);
1480 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1481 		__iget(inode);
1482 		spin_unlock(&inode->i_lock);
1483 	} else {
1484 		spin_unlock(&inode->i_lock);
1485 		/*
1486 		 * Handle the case where s_op->clear_inode is not been
1487 		 * called yet, and somebody is calling igrab
1488 		 * while the inode is getting freed.
1489 		 */
1490 		inode = NULL;
1491 	}
1492 	return inode;
1493 }
1494 EXPORT_SYMBOL(igrab);
1495 
1496 /**
1497  * ilookup5_nowait - search for an inode in the inode cache
1498  * @sb:		super block of file system to search
1499  * @hashval:	hash value (usually inode number) to search for
1500  * @test:	callback used for comparisons between inodes
1501  * @data:	opaque data pointer to pass to @test
1502  *
1503  * Search for the inode specified by @hashval and @data in the inode cache.
1504  * If the inode is in the cache, the inode is returned with an incremented
1505  * reference count.
1506  *
1507  * Note: I_NEW is not waited upon so you have to be very careful what you do
1508  * with the returned inode.  You probably should be using ilookup5() instead.
1509  *
1510  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1511  */
1512 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1513 		int (*test)(struct inode *, void *), void *data)
1514 {
1515 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1516 	struct inode *inode;
1517 
1518 	spin_lock(&inode_hash_lock);
1519 	inode = find_inode(sb, head, test, data, true);
1520 	spin_unlock(&inode_hash_lock);
1521 
1522 	return IS_ERR(inode) ? NULL : inode;
1523 }
1524 EXPORT_SYMBOL(ilookup5_nowait);
1525 
1526 /**
1527  * ilookup5 - search for an inode in the inode cache
1528  * @sb:		super block of file system to search
1529  * @hashval:	hash value (usually inode number) to search for
1530  * @test:	callback used for comparisons between inodes
1531  * @data:	opaque data pointer to pass to @test
1532  *
1533  * Search for the inode specified by @hashval and @data in the inode cache,
1534  * and if the inode is in the cache, return the inode with an incremented
1535  * reference count.  Waits on I_NEW before returning the inode.
1536  * returned with an incremented reference count.
1537  *
1538  * This is a generalized version of ilookup() for file systems where the
1539  * inode number is not sufficient for unique identification of an inode.
1540  *
1541  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1542  */
1543 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1544 		int (*test)(struct inode *, void *), void *data)
1545 {
1546 	struct inode *inode;
1547 again:
1548 	inode = ilookup5_nowait(sb, hashval, test, data);
1549 	if (inode) {
1550 		wait_on_inode(inode);
1551 		if (unlikely(inode_unhashed(inode))) {
1552 			iput(inode);
1553 			goto again;
1554 		}
1555 	}
1556 	return inode;
1557 }
1558 EXPORT_SYMBOL(ilookup5);
1559 
1560 /**
1561  * ilookup - search for an inode in the inode cache
1562  * @sb:		super block of file system to search
1563  * @ino:	inode number to search for
1564  *
1565  * Search for the inode @ino in the inode cache, and if the inode is in the
1566  * cache, the inode is returned with an incremented reference count.
1567  */
1568 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1569 {
1570 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1571 	struct inode *inode;
1572 again:
1573 	spin_lock(&inode_hash_lock);
1574 	inode = find_inode_fast(sb, head, ino, true);
1575 	spin_unlock(&inode_hash_lock);
1576 
1577 	if (inode) {
1578 		if (IS_ERR(inode))
1579 			return NULL;
1580 		wait_on_inode(inode);
1581 		if (unlikely(inode_unhashed(inode))) {
1582 			iput(inode);
1583 			goto again;
1584 		}
1585 	}
1586 	return inode;
1587 }
1588 EXPORT_SYMBOL(ilookup);
1589 
1590 /**
1591  * find_inode_nowait - find an inode in the inode cache
1592  * @sb:		super block of file system to search
1593  * @hashval:	hash value (usually inode number) to search for
1594  * @match:	callback used for comparisons between inodes
1595  * @data:	opaque data pointer to pass to @match
1596  *
1597  * Search for the inode specified by @hashval and @data in the inode
1598  * cache, where the helper function @match will return 0 if the inode
1599  * does not match, 1 if the inode does match, and -1 if the search
1600  * should be stopped.  The @match function must be responsible for
1601  * taking the i_lock spin_lock and checking i_state for an inode being
1602  * freed or being initialized, and incrementing the reference count
1603  * before returning 1.  It also must not sleep, since it is called with
1604  * the inode_hash_lock spinlock held.
1605  *
1606  * This is a even more generalized version of ilookup5() when the
1607  * function must never block --- find_inode() can block in
1608  * __wait_on_freeing_inode() --- or when the caller can not increment
1609  * the reference count because the resulting iput() might cause an
1610  * inode eviction.  The tradeoff is that the @match funtion must be
1611  * very carefully implemented.
1612  */
1613 struct inode *find_inode_nowait(struct super_block *sb,
1614 				unsigned long hashval,
1615 				int (*match)(struct inode *, unsigned long,
1616 					     void *),
1617 				void *data)
1618 {
1619 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1620 	struct inode *inode, *ret_inode = NULL;
1621 	int mval;
1622 
1623 	spin_lock(&inode_hash_lock);
1624 	hlist_for_each_entry(inode, head, i_hash) {
1625 		if (inode->i_sb != sb)
1626 			continue;
1627 		mval = match(inode, hashval, data);
1628 		if (mval == 0)
1629 			continue;
1630 		if (mval == 1)
1631 			ret_inode = inode;
1632 		goto out;
1633 	}
1634 out:
1635 	spin_unlock(&inode_hash_lock);
1636 	return ret_inode;
1637 }
1638 EXPORT_SYMBOL(find_inode_nowait);
1639 
1640 /**
1641  * find_inode_rcu - find an inode in the inode cache
1642  * @sb:		Super block of file system to search
1643  * @hashval:	Key to hash
1644  * @test:	Function to test match on an inode
1645  * @data:	Data for test function
1646  *
1647  * Search for the inode specified by @hashval and @data in the inode cache,
1648  * where the helper function @test will return 0 if the inode does not match
1649  * and 1 if it does.  The @test function must be responsible for taking the
1650  * i_lock spin_lock and checking i_state for an inode being freed or being
1651  * initialized.
1652  *
1653  * If successful, this will return the inode for which the @test function
1654  * returned 1 and NULL otherwise.
1655  *
1656  * The @test function is not permitted to take a ref on any inode presented.
1657  * It is also not permitted to sleep.
1658  *
1659  * The caller must hold the RCU read lock.
1660  */
1661 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1662 			     int (*test)(struct inode *, void *), void *data)
1663 {
1664 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1665 	struct inode *inode;
1666 
1667 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1668 			 "suspicious find_inode_rcu() usage");
1669 
1670 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1671 		if (inode->i_sb == sb &&
1672 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1673 		    test(inode, data))
1674 			return inode;
1675 	}
1676 	return NULL;
1677 }
1678 EXPORT_SYMBOL(find_inode_rcu);
1679 
1680 /**
1681  * find_inode_by_ino_rcu - Find an inode in the inode cache
1682  * @sb:		Super block of file system to search
1683  * @ino:	The inode number to match
1684  *
1685  * Search for the inode specified by @hashval and @data in the inode cache,
1686  * where the helper function @test will return 0 if the inode does not match
1687  * and 1 if it does.  The @test function must be responsible for taking the
1688  * i_lock spin_lock and checking i_state for an inode being freed or being
1689  * initialized.
1690  *
1691  * If successful, this will return the inode for which the @test function
1692  * returned 1 and NULL otherwise.
1693  *
1694  * The @test function is not permitted to take a ref on any inode presented.
1695  * It is also not permitted to sleep.
1696  *
1697  * The caller must hold the RCU read lock.
1698  */
1699 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1700 				    unsigned long ino)
1701 {
1702 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1703 	struct inode *inode;
1704 
1705 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1706 			 "suspicious find_inode_by_ino_rcu() usage");
1707 
1708 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1709 		if (inode->i_ino == ino &&
1710 		    inode->i_sb == sb &&
1711 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1712 		    return inode;
1713 	}
1714 	return NULL;
1715 }
1716 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1717 
1718 int insert_inode_locked(struct inode *inode)
1719 {
1720 	struct super_block *sb = inode->i_sb;
1721 	ino_t ino = inode->i_ino;
1722 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1723 
1724 	while (1) {
1725 		struct inode *old = NULL;
1726 		spin_lock(&inode_hash_lock);
1727 		hlist_for_each_entry(old, head, i_hash) {
1728 			if (old->i_ino != ino)
1729 				continue;
1730 			if (old->i_sb != sb)
1731 				continue;
1732 			spin_lock(&old->i_lock);
1733 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1734 				spin_unlock(&old->i_lock);
1735 				continue;
1736 			}
1737 			break;
1738 		}
1739 		if (likely(!old)) {
1740 			spin_lock(&inode->i_lock);
1741 			inode->i_state |= I_NEW | I_CREATING;
1742 			hlist_add_head_rcu(&inode->i_hash, head);
1743 			spin_unlock(&inode->i_lock);
1744 			spin_unlock(&inode_hash_lock);
1745 			return 0;
1746 		}
1747 		if (unlikely(old->i_state & I_CREATING)) {
1748 			spin_unlock(&old->i_lock);
1749 			spin_unlock(&inode_hash_lock);
1750 			return -EBUSY;
1751 		}
1752 		__iget(old);
1753 		spin_unlock(&old->i_lock);
1754 		spin_unlock(&inode_hash_lock);
1755 		wait_on_inode(old);
1756 		if (unlikely(!inode_unhashed(old))) {
1757 			iput(old);
1758 			return -EBUSY;
1759 		}
1760 		iput(old);
1761 	}
1762 }
1763 EXPORT_SYMBOL(insert_inode_locked);
1764 
1765 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1766 		int (*test)(struct inode *, void *), void *data)
1767 {
1768 	struct inode *old;
1769 
1770 	inode->i_state |= I_CREATING;
1771 	old = inode_insert5(inode, hashval, test, NULL, data);
1772 
1773 	if (old != inode) {
1774 		iput(old);
1775 		return -EBUSY;
1776 	}
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(insert_inode_locked4);
1780 
1781 
1782 int generic_delete_inode(struct inode *inode)
1783 {
1784 	return 1;
1785 }
1786 EXPORT_SYMBOL(generic_delete_inode);
1787 
1788 /*
1789  * Called when we're dropping the last reference
1790  * to an inode.
1791  *
1792  * Call the FS "drop_inode()" function, defaulting to
1793  * the legacy UNIX filesystem behaviour.  If it tells
1794  * us to evict inode, do so.  Otherwise, retain inode
1795  * in cache if fs is alive, sync and evict if fs is
1796  * shutting down.
1797  */
1798 static void iput_final(struct inode *inode)
1799 {
1800 	struct super_block *sb = inode->i_sb;
1801 	const struct super_operations *op = inode->i_sb->s_op;
1802 	unsigned long state;
1803 	int drop;
1804 
1805 	WARN_ON(inode->i_state & I_NEW);
1806 
1807 	if (op->drop_inode)
1808 		drop = op->drop_inode(inode);
1809 	else
1810 		drop = generic_drop_inode(inode);
1811 
1812 	if (!drop &&
1813 	    !(inode->i_state & I_DONTCACHE) &&
1814 	    (sb->s_flags & SB_ACTIVE)) {
1815 		__inode_add_lru(inode, true);
1816 		spin_unlock(&inode->i_lock);
1817 		return;
1818 	}
1819 
1820 	state = inode->i_state;
1821 	if (!drop) {
1822 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1823 		spin_unlock(&inode->i_lock);
1824 
1825 		write_inode_now(inode, 1);
1826 
1827 		spin_lock(&inode->i_lock);
1828 		state = inode->i_state;
1829 		WARN_ON(state & I_NEW);
1830 		state &= ~I_WILL_FREE;
1831 	}
1832 
1833 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1834 	if (!list_empty(&inode->i_lru))
1835 		inode_lru_list_del(inode);
1836 	spin_unlock(&inode->i_lock);
1837 
1838 	evict(inode);
1839 }
1840 
1841 /**
1842  *	iput	- put an inode
1843  *	@inode: inode to put
1844  *
1845  *	Puts an inode, dropping its usage count. If the inode use count hits
1846  *	zero, the inode is then freed and may also be destroyed.
1847  *
1848  *	Consequently, iput() can sleep.
1849  */
1850 void iput(struct inode *inode)
1851 {
1852 	if (!inode)
1853 		return;
1854 	BUG_ON(inode->i_state & I_CLEAR);
1855 retry:
1856 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1857 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1858 			atomic_inc(&inode->i_count);
1859 			spin_unlock(&inode->i_lock);
1860 			trace_writeback_lazytime_iput(inode);
1861 			mark_inode_dirty_sync(inode);
1862 			goto retry;
1863 		}
1864 		iput_final(inode);
1865 	}
1866 }
1867 EXPORT_SYMBOL(iput);
1868 
1869 #ifdef CONFIG_BLOCK
1870 /**
1871  *	bmap	- find a block number in a file
1872  *	@inode:  inode owning the block number being requested
1873  *	@block: pointer containing the block to find
1874  *
1875  *	Replaces the value in ``*block`` with the block number on the device holding
1876  *	corresponding to the requested block number in the file.
1877  *	That is, asked for block 4 of inode 1 the function will replace the
1878  *	4 in ``*block``, with disk block relative to the disk start that holds that
1879  *	block of the file.
1880  *
1881  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1882  *	hole, returns 0 and ``*block`` is also set to 0.
1883  */
1884 int bmap(struct inode *inode, sector_t *block)
1885 {
1886 	if (!inode->i_mapping->a_ops->bmap)
1887 		return -EINVAL;
1888 
1889 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1890 	return 0;
1891 }
1892 EXPORT_SYMBOL(bmap);
1893 #endif
1894 
1895 /*
1896  * With relative atime, only update atime if the previous atime is
1897  * earlier than or equal to either the ctime or mtime,
1898  * or if at least a day has passed since the last atime update.
1899  */
1900 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1901 			     struct timespec64 now)
1902 {
1903 	struct timespec64 atime, mtime, ctime;
1904 
1905 	if (!(mnt->mnt_flags & MNT_RELATIME))
1906 		return true;
1907 	/*
1908 	 * Is mtime younger than or equal to atime? If yes, update atime:
1909 	 */
1910 	atime = inode_get_atime(inode);
1911 	mtime = inode_get_mtime(inode);
1912 	if (timespec64_compare(&mtime, &atime) >= 0)
1913 		return true;
1914 	/*
1915 	 * Is ctime younger than or equal to atime? If yes, update atime:
1916 	 */
1917 	ctime = inode_get_ctime(inode);
1918 	if (timespec64_compare(&ctime, &atime) >= 0)
1919 		return true;
1920 
1921 	/*
1922 	 * Is the previous atime value older than a day? If yes,
1923 	 * update atime:
1924 	 */
1925 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1926 		return true;
1927 	/*
1928 	 * Good, we can skip the atime update:
1929 	 */
1930 	return false;
1931 }
1932 
1933 /**
1934  * inode_update_timestamps - update the timestamps on the inode
1935  * @inode: inode to be updated
1936  * @flags: S_* flags that needed to be updated
1937  *
1938  * The update_time function is called when an inode's timestamps need to be
1939  * updated for a read or write operation. This function handles updating the
1940  * actual timestamps. It's up to the caller to ensure that the inode is marked
1941  * dirty appropriately.
1942  *
1943  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1944  * attempt to update all three of them. S_ATIME updates can be handled
1945  * independently of the rest.
1946  *
1947  * Returns a set of S_* flags indicating which values changed.
1948  */
1949 int inode_update_timestamps(struct inode *inode, int flags)
1950 {
1951 	int updated = 0;
1952 	struct timespec64 now;
1953 
1954 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1955 		struct timespec64 ctime = inode_get_ctime(inode);
1956 		struct timespec64 mtime = inode_get_mtime(inode);
1957 
1958 		now = inode_set_ctime_current(inode);
1959 		if (!timespec64_equal(&now, &ctime))
1960 			updated |= S_CTIME;
1961 		if (!timespec64_equal(&now, &mtime)) {
1962 			inode_set_mtime_to_ts(inode, now);
1963 			updated |= S_MTIME;
1964 		}
1965 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1966 			updated |= S_VERSION;
1967 	} else {
1968 		now = current_time(inode);
1969 	}
1970 
1971 	if (flags & S_ATIME) {
1972 		struct timespec64 atime = inode_get_atime(inode);
1973 
1974 		if (!timespec64_equal(&now, &atime)) {
1975 			inode_set_atime_to_ts(inode, now);
1976 			updated |= S_ATIME;
1977 		}
1978 	}
1979 	return updated;
1980 }
1981 EXPORT_SYMBOL(inode_update_timestamps);
1982 
1983 /**
1984  * generic_update_time - update the timestamps on the inode
1985  * @inode: inode to be updated
1986  * @flags: S_* flags that needed to be updated
1987  *
1988  * The update_time function is called when an inode's timestamps need to be
1989  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1990  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1991  * updates can be handled done independently of the rest.
1992  *
1993  * Returns a S_* mask indicating which fields were updated.
1994  */
1995 int generic_update_time(struct inode *inode, int flags)
1996 {
1997 	int updated = inode_update_timestamps(inode, flags);
1998 	int dirty_flags = 0;
1999 
2000 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
2001 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2002 	if (updated & S_VERSION)
2003 		dirty_flags |= I_DIRTY_SYNC;
2004 	__mark_inode_dirty(inode, dirty_flags);
2005 	return updated;
2006 }
2007 EXPORT_SYMBOL(generic_update_time);
2008 
2009 /*
2010  * This does the actual work of updating an inodes time or version.  Must have
2011  * had called mnt_want_write() before calling this.
2012  */
2013 int inode_update_time(struct inode *inode, int flags)
2014 {
2015 	if (inode->i_op->update_time)
2016 		return inode->i_op->update_time(inode, flags);
2017 	generic_update_time(inode, flags);
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL(inode_update_time);
2021 
2022 /**
2023  *	atime_needs_update	-	update the access time
2024  *	@path: the &struct path to update
2025  *	@inode: inode to update
2026  *
2027  *	Update the accessed time on an inode and mark it for writeback.
2028  *	This function automatically handles read only file systems and media,
2029  *	as well as the "noatime" flag and inode specific "noatime" markers.
2030  */
2031 bool atime_needs_update(const struct path *path, struct inode *inode)
2032 {
2033 	struct vfsmount *mnt = path->mnt;
2034 	struct timespec64 now, atime;
2035 
2036 	if (inode->i_flags & S_NOATIME)
2037 		return false;
2038 
2039 	/* Atime updates will likely cause i_uid and i_gid to be written
2040 	 * back improprely if their true value is unknown to the vfs.
2041 	 */
2042 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2043 		return false;
2044 
2045 	if (IS_NOATIME(inode))
2046 		return false;
2047 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2048 		return false;
2049 
2050 	if (mnt->mnt_flags & MNT_NOATIME)
2051 		return false;
2052 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2053 		return false;
2054 
2055 	now = current_time(inode);
2056 
2057 	if (!relatime_need_update(mnt, inode, now))
2058 		return false;
2059 
2060 	atime = inode_get_atime(inode);
2061 	if (timespec64_equal(&atime, &now))
2062 		return false;
2063 
2064 	return true;
2065 }
2066 
2067 void touch_atime(const struct path *path)
2068 {
2069 	struct vfsmount *mnt = path->mnt;
2070 	struct inode *inode = d_inode(path->dentry);
2071 
2072 	if (!atime_needs_update(path, inode))
2073 		return;
2074 
2075 	if (!sb_start_write_trylock(inode->i_sb))
2076 		return;
2077 
2078 	if (mnt_get_write_access(mnt) != 0)
2079 		goto skip_update;
2080 	/*
2081 	 * File systems can error out when updating inodes if they need to
2082 	 * allocate new space to modify an inode (such is the case for
2083 	 * Btrfs), but since we touch atime while walking down the path we
2084 	 * really don't care if we failed to update the atime of the file,
2085 	 * so just ignore the return value.
2086 	 * We may also fail on filesystems that have the ability to make parts
2087 	 * of the fs read only, e.g. subvolumes in Btrfs.
2088 	 */
2089 	inode_update_time(inode, S_ATIME);
2090 	mnt_put_write_access(mnt);
2091 skip_update:
2092 	sb_end_write(inode->i_sb);
2093 }
2094 EXPORT_SYMBOL(touch_atime);
2095 
2096 /*
2097  * Return mask of changes for notify_change() that need to be done as a
2098  * response to write or truncate. Return 0 if nothing has to be changed.
2099  * Negative value on error (change should be denied).
2100  */
2101 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2102 			      struct dentry *dentry)
2103 {
2104 	struct inode *inode = d_inode(dentry);
2105 	int mask = 0;
2106 	int ret;
2107 
2108 	if (IS_NOSEC(inode))
2109 		return 0;
2110 
2111 	mask = setattr_should_drop_suidgid(idmap, inode);
2112 	ret = security_inode_need_killpriv(dentry);
2113 	if (ret < 0)
2114 		return ret;
2115 	if (ret)
2116 		mask |= ATTR_KILL_PRIV;
2117 	return mask;
2118 }
2119 
2120 static int __remove_privs(struct mnt_idmap *idmap,
2121 			  struct dentry *dentry, int kill)
2122 {
2123 	struct iattr newattrs;
2124 
2125 	newattrs.ia_valid = ATTR_FORCE | kill;
2126 	/*
2127 	 * Note we call this on write, so notify_change will not
2128 	 * encounter any conflicting delegations:
2129 	 */
2130 	return notify_change(idmap, dentry, &newattrs, NULL);
2131 }
2132 
2133 int file_remove_privs_flags(struct file *file, unsigned int flags)
2134 {
2135 	struct dentry *dentry = file_dentry(file);
2136 	struct inode *inode = file_inode(file);
2137 	int error = 0;
2138 	int kill;
2139 
2140 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2141 		return 0;
2142 
2143 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2144 	if (kill < 0)
2145 		return kill;
2146 
2147 	if (kill) {
2148 		if (flags & IOCB_NOWAIT)
2149 			return -EAGAIN;
2150 
2151 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2152 	}
2153 
2154 	if (!error)
2155 		inode_has_no_xattr(inode);
2156 	return error;
2157 }
2158 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2159 
2160 /**
2161  * file_remove_privs - remove special file privileges (suid, capabilities)
2162  * @file: file to remove privileges from
2163  *
2164  * When file is modified by a write or truncation ensure that special
2165  * file privileges are removed.
2166  *
2167  * Return: 0 on success, negative errno on failure.
2168  */
2169 int file_remove_privs(struct file *file)
2170 {
2171 	return file_remove_privs_flags(file, 0);
2172 }
2173 EXPORT_SYMBOL(file_remove_privs);
2174 
2175 static int inode_needs_update_time(struct inode *inode)
2176 {
2177 	int sync_it = 0;
2178 	struct timespec64 now = current_time(inode);
2179 	struct timespec64 ts;
2180 
2181 	/* First try to exhaust all avenues to not sync */
2182 	if (IS_NOCMTIME(inode))
2183 		return 0;
2184 
2185 	ts = inode_get_mtime(inode);
2186 	if (!timespec64_equal(&ts, &now))
2187 		sync_it = S_MTIME;
2188 
2189 	ts = inode_get_ctime(inode);
2190 	if (!timespec64_equal(&ts, &now))
2191 		sync_it |= S_CTIME;
2192 
2193 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2194 		sync_it |= S_VERSION;
2195 
2196 	return sync_it;
2197 }
2198 
2199 static int __file_update_time(struct file *file, int sync_mode)
2200 {
2201 	int ret = 0;
2202 	struct inode *inode = file_inode(file);
2203 
2204 	/* try to update time settings */
2205 	if (!mnt_get_write_access_file(file)) {
2206 		ret = inode_update_time(inode, sync_mode);
2207 		mnt_put_write_access_file(file);
2208 	}
2209 
2210 	return ret;
2211 }
2212 
2213 /**
2214  * file_update_time - update mtime and ctime time
2215  * @file: file accessed
2216  *
2217  * Update the mtime and ctime members of an inode and mark the inode for
2218  * writeback. Note that this function is meant exclusively for usage in
2219  * the file write path of filesystems, and filesystems may choose to
2220  * explicitly ignore updates via this function with the _NOCMTIME inode
2221  * flag, e.g. for network filesystem where these imestamps are handled
2222  * by the server. This can return an error for file systems who need to
2223  * allocate space in order to update an inode.
2224  *
2225  * Return: 0 on success, negative errno on failure.
2226  */
2227 int file_update_time(struct file *file)
2228 {
2229 	int ret;
2230 	struct inode *inode = file_inode(file);
2231 
2232 	ret = inode_needs_update_time(inode);
2233 	if (ret <= 0)
2234 		return ret;
2235 
2236 	return __file_update_time(file, ret);
2237 }
2238 EXPORT_SYMBOL(file_update_time);
2239 
2240 /**
2241  * file_modified_flags - handle mandated vfs changes when modifying a file
2242  * @file: file that was modified
2243  * @flags: kiocb flags
2244  *
2245  * When file has been modified ensure that special
2246  * file privileges are removed and time settings are updated.
2247  *
2248  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2249  * time settings will not be updated. It will return -EAGAIN.
2250  *
2251  * Context: Caller must hold the file's inode lock.
2252  *
2253  * Return: 0 on success, negative errno on failure.
2254  */
2255 static int file_modified_flags(struct file *file, int flags)
2256 {
2257 	int ret;
2258 	struct inode *inode = file_inode(file);
2259 
2260 	/*
2261 	 * Clear the security bits if the process is not being run by root.
2262 	 * This keeps people from modifying setuid and setgid binaries.
2263 	 */
2264 	ret = file_remove_privs_flags(file, flags);
2265 	if (ret)
2266 		return ret;
2267 
2268 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2269 		return 0;
2270 
2271 	ret = inode_needs_update_time(inode);
2272 	if (ret <= 0)
2273 		return ret;
2274 	if (flags & IOCB_NOWAIT)
2275 		return -EAGAIN;
2276 
2277 	return __file_update_time(file, ret);
2278 }
2279 
2280 /**
2281  * file_modified - handle mandated vfs changes when modifying a file
2282  * @file: file that was modified
2283  *
2284  * When file has been modified ensure that special
2285  * file privileges are removed and time settings are updated.
2286  *
2287  * Context: Caller must hold the file's inode lock.
2288  *
2289  * Return: 0 on success, negative errno on failure.
2290  */
2291 int file_modified(struct file *file)
2292 {
2293 	return file_modified_flags(file, 0);
2294 }
2295 EXPORT_SYMBOL(file_modified);
2296 
2297 /**
2298  * kiocb_modified - handle mandated vfs changes when modifying a file
2299  * @iocb: iocb that was modified
2300  *
2301  * When file has been modified ensure that special
2302  * file privileges are removed and time settings are updated.
2303  *
2304  * Context: Caller must hold the file's inode lock.
2305  *
2306  * Return: 0 on success, negative errno on failure.
2307  */
2308 int kiocb_modified(struct kiocb *iocb)
2309 {
2310 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2311 }
2312 EXPORT_SYMBOL_GPL(kiocb_modified);
2313 
2314 int inode_needs_sync(struct inode *inode)
2315 {
2316 	if (IS_SYNC(inode))
2317 		return 1;
2318 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2319 		return 1;
2320 	return 0;
2321 }
2322 EXPORT_SYMBOL(inode_needs_sync);
2323 
2324 /*
2325  * If we try to find an inode in the inode hash while it is being
2326  * deleted, we have to wait until the filesystem completes its
2327  * deletion before reporting that it isn't found.  This function waits
2328  * until the deletion _might_ have completed.  Callers are responsible
2329  * to recheck inode state.
2330  *
2331  * It doesn't matter if I_NEW is not set initially, a call to
2332  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2333  * will DTRT.
2334  */
2335 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2336 {
2337 	wait_queue_head_t *wq;
2338 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2339 
2340 	/*
2341 	 * Handle racing against evict(), see that routine for more details.
2342 	 */
2343 	if (unlikely(inode_unhashed(inode))) {
2344 		WARN_ON(is_inode_hash_locked);
2345 		spin_unlock(&inode->i_lock);
2346 		return;
2347 	}
2348 
2349 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2350 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2351 	spin_unlock(&inode->i_lock);
2352 	rcu_read_unlock();
2353 	if (is_inode_hash_locked)
2354 		spin_unlock(&inode_hash_lock);
2355 	schedule();
2356 	finish_wait(wq, &wait.wq_entry);
2357 	if (is_inode_hash_locked)
2358 		spin_lock(&inode_hash_lock);
2359 	rcu_read_lock();
2360 }
2361 
2362 static __initdata unsigned long ihash_entries;
2363 static int __init set_ihash_entries(char *str)
2364 {
2365 	if (!str)
2366 		return 0;
2367 	ihash_entries = simple_strtoul(str, &str, 0);
2368 	return 1;
2369 }
2370 __setup("ihash_entries=", set_ihash_entries);
2371 
2372 /*
2373  * Initialize the waitqueues and inode hash table.
2374  */
2375 void __init inode_init_early(void)
2376 {
2377 	/* If hashes are distributed across NUMA nodes, defer
2378 	 * hash allocation until vmalloc space is available.
2379 	 */
2380 	if (hashdist)
2381 		return;
2382 
2383 	inode_hashtable =
2384 		alloc_large_system_hash("Inode-cache",
2385 					sizeof(struct hlist_head),
2386 					ihash_entries,
2387 					14,
2388 					HASH_EARLY | HASH_ZERO,
2389 					&i_hash_shift,
2390 					&i_hash_mask,
2391 					0,
2392 					0);
2393 }
2394 
2395 void __init inode_init(void)
2396 {
2397 	/* inode slab cache */
2398 	inode_cachep = kmem_cache_create("inode_cache",
2399 					 sizeof(struct inode),
2400 					 0,
2401 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2402 					 SLAB_ACCOUNT),
2403 					 init_once);
2404 
2405 	/* Hash may have been set up in inode_init_early */
2406 	if (!hashdist)
2407 		return;
2408 
2409 	inode_hashtable =
2410 		alloc_large_system_hash("Inode-cache",
2411 					sizeof(struct hlist_head),
2412 					ihash_entries,
2413 					14,
2414 					HASH_ZERO,
2415 					&i_hash_shift,
2416 					&i_hash_mask,
2417 					0,
2418 					0);
2419 }
2420 
2421 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2422 {
2423 	inode->i_mode = mode;
2424 	if (S_ISCHR(mode)) {
2425 		inode->i_fop = &def_chr_fops;
2426 		inode->i_rdev = rdev;
2427 	} else if (S_ISBLK(mode)) {
2428 		if (IS_ENABLED(CONFIG_BLOCK))
2429 			inode->i_fop = &def_blk_fops;
2430 		inode->i_rdev = rdev;
2431 	} else if (S_ISFIFO(mode))
2432 		inode->i_fop = &pipefifo_fops;
2433 	else if (S_ISSOCK(mode))
2434 		;	/* leave it no_open_fops */
2435 	else
2436 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2437 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2438 				  inode->i_ino);
2439 }
2440 EXPORT_SYMBOL(init_special_inode);
2441 
2442 /**
2443  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2444  * @idmap: idmap of the mount the inode was created from
2445  * @inode: New inode
2446  * @dir: Directory inode
2447  * @mode: mode of the new inode
2448  *
2449  * If the inode has been created through an idmapped mount the idmap of
2450  * the vfsmount must be passed through @idmap. This function will then take
2451  * care to map the inode according to @idmap before checking permissions
2452  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2453  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2454  */
2455 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2456 		      const struct inode *dir, umode_t mode)
2457 {
2458 	inode_fsuid_set(inode, idmap);
2459 	if (dir && dir->i_mode & S_ISGID) {
2460 		inode->i_gid = dir->i_gid;
2461 
2462 		/* Directories are special, and always inherit S_ISGID */
2463 		if (S_ISDIR(mode))
2464 			mode |= S_ISGID;
2465 	} else
2466 		inode_fsgid_set(inode, idmap);
2467 	inode->i_mode = mode;
2468 }
2469 EXPORT_SYMBOL(inode_init_owner);
2470 
2471 /**
2472  * inode_owner_or_capable - check current task permissions to inode
2473  * @idmap: idmap of the mount the inode was found from
2474  * @inode: inode being checked
2475  *
2476  * Return true if current either has CAP_FOWNER in a namespace with the
2477  * inode owner uid mapped, or owns the file.
2478  *
2479  * If the inode has been found through an idmapped mount the idmap of
2480  * the vfsmount must be passed through @idmap. This function will then take
2481  * care to map the inode according to @idmap before checking permissions.
2482  * On non-idmapped mounts or if permission checking is to be performed on the
2483  * raw inode simply pass @nop_mnt_idmap.
2484  */
2485 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2486 			    const struct inode *inode)
2487 {
2488 	vfsuid_t vfsuid;
2489 	struct user_namespace *ns;
2490 
2491 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2492 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2493 		return true;
2494 
2495 	ns = current_user_ns();
2496 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2497 		return true;
2498 	return false;
2499 }
2500 EXPORT_SYMBOL(inode_owner_or_capable);
2501 
2502 /*
2503  * Direct i/o helper functions
2504  */
2505 static void __inode_dio_wait(struct inode *inode)
2506 {
2507 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2508 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2509 
2510 	do {
2511 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2512 		if (atomic_read(&inode->i_dio_count))
2513 			schedule();
2514 	} while (atomic_read(&inode->i_dio_count));
2515 	finish_wait(wq, &q.wq_entry);
2516 }
2517 
2518 /**
2519  * inode_dio_wait - wait for outstanding DIO requests to finish
2520  * @inode: inode to wait for
2521  *
2522  * Waits for all pending direct I/O requests to finish so that we can
2523  * proceed with a truncate or equivalent operation.
2524  *
2525  * Must be called under a lock that serializes taking new references
2526  * to i_dio_count, usually by inode->i_mutex.
2527  */
2528 void inode_dio_wait(struct inode *inode)
2529 {
2530 	if (atomic_read(&inode->i_dio_count))
2531 		__inode_dio_wait(inode);
2532 }
2533 EXPORT_SYMBOL(inode_dio_wait);
2534 
2535 /*
2536  * inode_set_flags - atomically set some inode flags
2537  *
2538  * Note: the caller should be holding i_mutex, or else be sure that
2539  * they have exclusive access to the inode structure (i.e., while the
2540  * inode is being instantiated).  The reason for the cmpxchg() loop
2541  * --- which wouldn't be necessary if all code paths which modify
2542  * i_flags actually followed this rule, is that there is at least one
2543  * code path which doesn't today so we use cmpxchg() out of an abundance
2544  * of caution.
2545  *
2546  * In the long run, i_mutex is overkill, and we should probably look
2547  * at using the i_lock spinlock to protect i_flags, and then make sure
2548  * it is so documented in include/linux/fs.h and that all code follows
2549  * the locking convention!!
2550  */
2551 void inode_set_flags(struct inode *inode, unsigned int flags,
2552 		     unsigned int mask)
2553 {
2554 	WARN_ON_ONCE(flags & ~mask);
2555 	set_mask_bits(&inode->i_flags, mask, flags);
2556 }
2557 EXPORT_SYMBOL(inode_set_flags);
2558 
2559 void inode_nohighmem(struct inode *inode)
2560 {
2561 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2562 }
2563 EXPORT_SYMBOL(inode_nohighmem);
2564 
2565 /**
2566  * timestamp_truncate - Truncate timespec to a granularity
2567  * @t: Timespec
2568  * @inode: inode being updated
2569  *
2570  * Truncate a timespec to the granularity supported by the fs
2571  * containing the inode. Always rounds down. gran must
2572  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2573  */
2574 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2575 {
2576 	struct super_block *sb = inode->i_sb;
2577 	unsigned int gran = sb->s_time_gran;
2578 
2579 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2580 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2581 		t.tv_nsec = 0;
2582 
2583 	/* Avoid division in the common cases 1 ns and 1 s. */
2584 	if (gran == 1)
2585 		; /* nothing */
2586 	else if (gran == NSEC_PER_SEC)
2587 		t.tv_nsec = 0;
2588 	else if (gran > 1 && gran < NSEC_PER_SEC)
2589 		t.tv_nsec -= t.tv_nsec % gran;
2590 	else
2591 		WARN(1, "invalid file time granularity: %u", gran);
2592 	return t;
2593 }
2594 EXPORT_SYMBOL(timestamp_truncate);
2595 
2596 /**
2597  * current_time - Return FS time
2598  * @inode: inode.
2599  *
2600  * Return the current time truncated to the time granularity supported by
2601  * the fs.
2602  *
2603  * Note that inode and inode->sb cannot be NULL.
2604  * Otherwise, the function warns and returns time without truncation.
2605  */
2606 struct timespec64 current_time(struct inode *inode)
2607 {
2608 	struct timespec64 now;
2609 
2610 	ktime_get_coarse_real_ts64(&now);
2611 	return timestamp_truncate(now, inode);
2612 }
2613 EXPORT_SYMBOL(current_time);
2614 
2615 /**
2616  * inode_set_ctime_current - set the ctime to current_time
2617  * @inode: inode
2618  *
2619  * Set the inode->i_ctime to the current value for the inode. Returns
2620  * the current value that was assigned to i_ctime.
2621  */
2622 struct timespec64 inode_set_ctime_current(struct inode *inode)
2623 {
2624 	struct timespec64 now = current_time(inode);
2625 
2626 	inode_set_ctime_to_ts(inode, now);
2627 	return now;
2628 }
2629 EXPORT_SYMBOL(inode_set_ctime_current);
2630 
2631 /**
2632  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2633  * @idmap:	idmap of the mount @inode was found from
2634  * @inode:	inode to check
2635  * @vfsgid:	the new/current vfsgid of @inode
2636  *
2637  * Check wether @vfsgid is in the caller's group list or if the caller is
2638  * privileged with CAP_FSETID over @inode. This can be used to determine
2639  * whether the setgid bit can be kept or must be dropped.
2640  *
2641  * Return: true if the caller is sufficiently privileged, false if not.
2642  */
2643 bool in_group_or_capable(struct mnt_idmap *idmap,
2644 			 const struct inode *inode, vfsgid_t vfsgid)
2645 {
2646 	if (vfsgid_in_group_p(vfsgid))
2647 		return true;
2648 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2649 		return true;
2650 	return false;
2651 }
2652 EXPORT_SYMBOL(in_group_or_capable);
2653 
2654 /**
2655  * mode_strip_sgid - handle the sgid bit for non-directories
2656  * @idmap: idmap of the mount the inode was created from
2657  * @dir: parent directory inode
2658  * @mode: mode of the file to be created in @dir
2659  *
2660  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2661  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2662  * either in the group of the parent directory or they have CAP_FSETID
2663  * in their user namespace and are privileged over the parent directory.
2664  * In all other cases, strip the S_ISGID bit from @mode.
2665  *
2666  * Return: the new mode to use for the file
2667  */
2668 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2669 			const struct inode *dir, umode_t mode)
2670 {
2671 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2672 		return mode;
2673 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2674 		return mode;
2675 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2676 		return mode;
2677 	return mode & ~S_ISGID;
2678 }
2679 EXPORT_SYMBOL(mode_strip_sgid);
2680