1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <trace/events/writeback.h> 25 #include "internal.h" 26 27 /* 28 * Inode locking rules: 29 * 30 * inode->i_lock protects: 31 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 32 * Inode LRU list locks protect: 33 * inode->i_sb->s_inode_lru, inode->i_lru 34 * inode->i_sb->s_inode_list_lock protects: 35 * inode->i_sb->s_inodes, inode->i_sb_list 36 * bdi->wb.list_lock protects: 37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 38 * inode_hash_lock protects: 39 * inode_hashtable, inode->i_hash 40 * 41 * Lock ordering: 42 * 43 * inode->i_sb->s_inode_list_lock 44 * inode->i_lock 45 * Inode LRU list locks 46 * 47 * bdi->wb.list_lock 48 * inode->i_lock 49 * 50 * inode_hash_lock 51 * inode->i_sb->s_inode_list_lock 52 * inode->i_lock 53 * 54 * iunique_lock 55 * inode_hash_lock 56 */ 57 58 static unsigned int i_hash_mask __ro_after_init; 59 static unsigned int i_hash_shift __ro_after_init; 60 static struct hlist_head *inode_hashtable __ro_after_init; 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 62 63 /* 64 * Empty aops. Can be used for the cases where the user does not 65 * define any of the address_space operations. 66 */ 67 const struct address_space_operations empty_aops = { 68 }; 69 EXPORT_SYMBOL(empty_aops); 70 71 static DEFINE_PER_CPU(unsigned long, nr_inodes); 72 static DEFINE_PER_CPU(unsigned long, nr_unused); 73 74 static struct kmem_cache *inode_cachep __ro_after_init; 75 76 static long get_nr_inodes(void) 77 { 78 int i; 79 long sum = 0; 80 for_each_possible_cpu(i) 81 sum += per_cpu(nr_inodes, i); 82 return sum < 0 ? 0 : sum; 83 } 84 85 static inline long get_nr_inodes_unused(void) 86 { 87 int i; 88 long sum = 0; 89 for_each_possible_cpu(i) 90 sum += per_cpu(nr_unused, i); 91 return sum < 0 ? 0 : sum; 92 } 93 94 long get_nr_dirty_inodes(void) 95 { 96 /* not actually dirty inodes, but a wild approximation */ 97 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 98 return nr_dirty > 0 ? nr_dirty : 0; 99 } 100 101 /* 102 * Handle nr_inode sysctl 103 */ 104 #ifdef CONFIG_SYSCTL 105 /* 106 * Statistics gathering.. 107 */ 108 static struct inodes_stat_t inodes_stat; 109 110 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, 111 size_t *lenp, loff_t *ppos) 112 { 113 inodes_stat.nr_inodes = get_nr_inodes(); 114 inodes_stat.nr_unused = get_nr_inodes_unused(); 115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 116 } 117 118 static struct ctl_table inodes_sysctls[] = { 119 { 120 .procname = "inode-nr", 121 .data = &inodes_stat, 122 .maxlen = 2*sizeof(long), 123 .mode = 0444, 124 .proc_handler = proc_nr_inodes, 125 }, 126 { 127 .procname = "inode-state", 128 .data = &inodes_stat, 129 .maxlen = 7*sizeof(long), 130 .mode = 0444, 131 .proc_handler = proc_nr_inodes, 132 }, 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 inode->i_state = 0; 166 atomic64_set(&inode->i_sequence, 0); 167 atomic_set(&inode->i_count, 1); 168 inode->i_op = &empty_iops; 169 inode->i_fop = &no_open_fops; 170 inode->i_ino = 0; 171 inode->__i_nlink = 1; 172 inode->i_opflags = 0; 173 if (sb->s_xattr) 174 inode->i_opflags |= IOP_XATTR; 175 i_uid_write(inode, 0); 176 i_gid_write(inode, 0); 177 atomic_set(&inode->i_writecount, 0); 178 inode->i_size = 0; 179 inode->i_write_hint = WRITE_LIFE_NOT_SET; 180 inode->i_blocks = 0; 181 inode->i_bytes = 0; 182 inode->i_generation = 0; 183 inode->i_pipe = NULL; 184 inode->i_cdev = NULL; 185 inode->i_link = NULL; 186 inode->i_dir_seq = 0; 187 inode->i_rdev = 0; 188 inode->dirtied_when = 0; 189 190 #ifdef CONFIG_CGROUP_WRITEBACK 191 inode->i_wb_frn_winner = 0; 192 inode->i_wb_frn_avg_time = 0; 193 inode->i_wb_frn_history = 0; 194 #endif 195 196 spin_lock_init(&inode->i_lock); 197 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 198 199 init_rwsem(&inode->i_rwsem); 200 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 201 202 atomic_set(&inode->i_dio_count, 0); 203 204 mapping->a_ops = &empty_aops; 205 mapping->host = inode; 206 mapping->flags = 0; 207 mapping->wb_err = 0; 208 atomic_set(&mapping->i_mmap_writable, 0); 209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 210 atomic_set(&mapping->nr_thps, 0); 211 #endif 212 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 213 mapping->i_private_data = NULL; 214 mapping->writeback_index = 0; 215 init_rwsem(&mapping->invalidate_lock); 216 lockdep_set_class_and_name(&mapping->invalidate_lock, 217 &sb->s_type->invalidate_lock_key, 218 "mapping.invalidate_lock"); 219 if (sb->s_iflags & SB_I_STABLE_WRITES) 220 mapping_set_stable_writes(mapping); 221 inode->i_private = NULL; 222 inode->i_mapping = mapping; 223 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 224 #ifdef CONFIG_FS_POSIX_ACL 225 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 226 #endif 227 228 #ifdef CONFIG_FSNOTIFY 229 inode->i_fsnotify_mask = 0; 230 #endif 231 inode->i_flctx = NULL; 232 233 if (unlikely(security_inode_alloc(inode))) 234 return -ENOMEM; 235 236 this_cpu_inc(nr_inodes); 237 238 return 0; 239 } 240 EXPORT_SYMBOL(inode_init_always); 241 242 void free_inode_nonrcu(struct inode *inode) 243 { 244 kmem_cache_free(inode_cachep, inode); 245 } 246 EXPORT_SYMBOL(free_inode_nonrcu); 247 248 static void i_callback(struct rcu_head *head) 249 { 250 struct inode *inode = container_of(head, struct inode, i_rcu); 251 if (inode->free_inode) 252 inode->free_inode(inode); 253 else 254 free_inode_nonrcu(inode); 255 } 256 257 static struct inode *alloc_inode(struct super_block *sb) 258 { 259 const struct super_operations *ops = sb->s_op; 260 struct inode *inode; 261 262 if (ops->alloc_inode) 263 inode = ops->alloc_inode(sb); 264 else 265 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 266 267 if (!inode) 268 return NULL; 269 270 if (unlikely(inode_init_always(sb, inode))) { 271 if (ops->destroy_inode) { 272 ops->destroy_inode(inode); 273 if (!ops->free_inode) 274 return NULL; 275 } 276 inode->free_inode = ops->free_inode; 277 i_callback(&inode->i_rcu); 278 return NULL; 279 } 280 281 return inode; 282 } 283 284 void __destroy_inode(struct inode *inode) 285 { 286 BUG_ON(inode_has_buffers(inode)); 287 inode_detach_wb(inode); 288 security_inode_free(inode); 289 fsnotify_inode_delete(inode); 290 locks_free_lock_context(inode); 291 if (!inode->i_nlink) { 292 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 293 atomic_long_dec(&inode->i_sb->s_remove_count); 294 } 295 296 #ifdef CONFIG_FS_POSIX_ACL 297 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 298 posix_acl_release(inode->i_acl); 299 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 300 posix_acl_release(inode->i_default_acl); 301 #endif 302 this_cpu_dec(nr_inodes); 303 } 304 EXPORT_SYMBOL(__destroy_inode); 305 306 static void destroy_inode(struct inode *inode) 307 { 308 const struct super_operations *ops = inode->i_sb->s_op; 309 310 BUG_ON(!list_empty(&inode->i_lru)); 311 __destroy_inode(inode); 312 if (ops->destroy_inode) { 313 ops->destroy_inode(inode); 314 if (!ops->free_inode) 315 return; 316 } 317 inode->free_inode = ops->free_inode; 318 call_rcu(&inode->i_rcu, i_callback); 319 } 320 321 /** 322 * drop_nlink - directly drop an inode's link count 323 * @inode: inode 324 * 325 * This is a low-level filesystem helper to replace any 326 * direct filesystem manipulation of i_nlink. In cases 327 * where we are attempting to track writes to the 328 * filesystem, a decrement to zero means an imminent 329 * write when the file is truncated and actually unlinked 330 * on the filesystem. 331 */ 332 void drop_nlink(struct inode *inode) 333 { 334 WARN_ON(inode->i_nlink == 0); 335 inode->__i_nlink--; 336 if (!inode->i_nlink) 337 atomic_long_inc(&inode->i_sb->s_remove_count); 338 } 339 EXPORT_SYMBOL(drop_nlink); 340 341 /** 342 * clear_nlink - directly zero an inode's link count 343 * @inode: inode 344 * 345 * This is a low-level filesystem helper to replace any 346 * direct filesystem manipulation of i_nlink. See 347 * drop_nlink() for why we care about i_nlink hitting zero. 348 */ 349 void clear_nlink(struct inode *inode) 350 { 351 if (inode->i_nlink) { 352 inode->__i_nlink = 0; 353 atomic_long_inc(&inode->i_sb->s_remove_count); 354 } 355 } 356 EXPORT_SYMBOL(clear_nlink); 357 358 /** 359 * set_nlink - directly set an inode's link count 360 * @inode: inode 361 * @nlink: new nlink (should be non-zero) 362 * 363 * This is a low-level filesystem helper to replace any 364 * direct filesystem manipulation of i_nlink. 365 */ 366 void set_nlink(struct inode *inode, unsigned int nlink) 367 { 368 if (!nlink) { 369 clear_nlink(inode); 370 } else { 371 /* Yes, some filesystems do change nlink from zero to one */ 372 if (inode->i_nlink == 0) 373 atomic_long_dec(&inode->i_sb->s_remove_count); 374 375 inode->__i_nlink = nlink; 376 } 377 } 378 EXPORT_SYMBOL(set_nlink); 379 380 /** 381 * inc_nlink - directly increment an inode's link count 382 * @inode: inode 383 * 384 * This is a low-level filesystem helper to replace any 385 * direct filesystem manipulation of i_nlink. Currently, 386 * it is only here for parity with dec_nlink(). 387 */ 388 void inc_nlink(struct inode *inode) 389 { 390 if (unlikely(inode->i_nlink == 0)) { 391 WARN_ON(!(inode->i_state & I_LINKABLE)); 392 atomic_long_dec(&inode->i_sb->s_remove_count); 393 } 394 395 inode->__i_nlink++; 396 } 397 EXPORT_SYMBOL(inc_nlink); 398 399 static void __address_space_init_once(struct address_space *mapping) 400 { 401 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 402 init_rwsem(&mapping->i_mmap_rwsem); 403 INIT_LIST_HEAD(&mapping->i_private_list); 404 spin_lock_init(&mapping->i_private_lock); 405 mapping->i_mmap = RB_ROOT_CACHED; 406 } 407 408 void address_space_init_once(struct address_space *mapping) 409 { 410 memset(mapping, 0, sizeof(*mapping)); 411 __address_space_init_once(mapping); 412 } 413 EXPORT_SYMBOL(address_space_init_once); 414 415 /* 416 * These are initializations that only need to be done 417 * once, because the fields are idempotent across use 418 * of the inode, so let the slab aware of that. 419 */ 420 void inode_init_once(struct inode *inode) 421 { 422 memset(inode, 0, sizeof(*inode)); 423 INIT_HLIST_NODE(&inode->i_hash); 424 INIT_LIST_HEAD(&inode->i_devices); 425 INIT_LIST_HEAD(&inode->i_io_list); 426 INIT_LIST_HEAD(&inode->i_wb_list); 427 INIT_LIST_HEAD(&inode->i_lru); 428 INIT_LIST_HEAD(&inode->i_sb_list); 429 __address_space_init_once(&inode->i_data); 430 i_size_ordered_init(inode); 431 } 432 EXPORT_SYMBOL(inode_init_once); 433 434 static void init_once(void *foo) 435 { 436 struct inode *inode = (struct inode *) foo; 437 438 inode_init_once(inode); 439 } 440 441 /* 442 * inode->i_lock must be held 443 */ 444 void __iget(struct inode *inode) 445 { 446 atomic_inc(&inode->i_count); 447 } 448 449 /* 450 * get additional reference to inode; caller must already hold one. 451 */ 452 void ihold(struct inode *inode) 453 { 454 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 455 } 456 EXPORT_SYMBOL(ihold); 457 458 static void __inode_add_lru(struct inode *inode, bool rotate) 459 { 460 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 461 return; 462 if (atomic_read(&inode->i_count)) 463 return; 464 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 465 return; 466 if (!mapping_shrinkable(&inode->i_data)) 467 return; 468 469 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 470 this_cpu_inc(nr_unused); 471 else if (rotate) 472 inode->i_state |= I_REFERENCED; 473 } 474 475 /* 476 * Add inode to LRU if needed (inode is unused and clean). 477 * 478 * Needs inode->i_lock held. 479 */ 480 void inode_add_lru(struct inode *inode) 481 { 482 __inode_add_lru(inode, false); 483 } 484 485 static void inode_lru_list_del(struct inode *inode) 486 { 487 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 488 this_cpu_dec(nr_unused); 489 } 490 491 static void inode_pin_lru_isolating(struct inode *inode) 492 { 493 lockdep_assert_held(&inode->i_lock); 494 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 495 inode->i_state |= I_LRU_ISOLATING; 496 } 497 498 static void inode_unpin_lru_isolating(struct inode *inode) 499 { 500 spin_lock(&inode->i_lock); 501 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 502 inode->i_state &= ~I_LRU_ISOLATING; 503 smp_mb(); 504 wake_up_bit(&inode->i_state, __I_LRU_ISOLATING); 505 spin_unlock(&inode->i_lock); 506 } 507 508 static void inode_wait_for_lru_isolating(struct inode *inode) 509 { 510 spin_lock(&inode->i_lock); 511 if (inode->i_state & I_LRU_ISOLATING) { 512 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING); 513 wait_queue_head_t *wqh; 514 515 wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING); 516 spin_unlock(&inode->i_lock); 517 __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE); 518 spin_lock(&inode->i_lock); 519 WARN_ON(inode->i_state & I_LRU_ISOLATING); 520 } 521 spin_unlock(&inode->i_lock); 522 } 523 524 /** 525 * inode_sb_list_add - add inode to the superblock list of inodes 526 * @inode: inode to add 527 */ 528 void inode_sb_list_add(struct inode *inode) 529 { 530 spin_lock(&inode->i_sb->s_inode_list_lock); 531 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 532 spin_unlock(&inode->i_sb->s_inode_list_lock); 533 } 534 EXPORT_SYMBOL_GPL(inode_sb_list_add); 535 536 static inline void inode_sb_list_del(struct inode *inode) 537 { 538 if (!list_empty(&inode->i_sb_list)) { 539 spin_lock(&inode->i_sb->s_inode_list_lock); 540 list_del_init(&inode->i_sb_list); 541 spin_unlock(&inode->i_sb->s_inode_list_lock); 542 } 543 } 544 545 static unsigned long hash(struct super_block *sb, unsigned long hashval) 546 { 547 unsigned long tmp; 548 549 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 550 L1_CACHE_BYTES; 551 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 552 return tmp & i_hash_mask; 553 } 554 555 /** 556 * __insert_inode_hash - hash an inode 557 * @inode: unhashed inode 558 * @hashval: unsigned long value used to locate this object in the 559 * inode_hashtable. 560 * 561 * Add an inode to the inode hash for this superblock. 562 */ 563 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 564 { 565 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 566 567 spin_lock(&inode_hash_lock); 568 spin_lock(&inode->i_lock); 569 hlist_add_head_rcu(&inode->i_hash, b); 570 spin_unlock(&inode->i_lock); 571 spin_unlock(&inode_hash_lock); 572 } 573 EXPORT_SYMBOL(__insert_inode_hash); 574 575 /** 576 * __remove_inode_hash - remove an inode from the hash 577 * @inode: inode to unhash 578 * 579 * Remove an inode from the superblock. 580 */ 581 void __remove_inode_hash(struct inode *inode) 582 { 583 spin_lock(&inode_hash_lock); 584 spin_lock(&inode->i_lock); 585 hlist_del_init_rcu(&inode->i_hash); 586 spin_unlock(&inode->i_lock); 587 spin_unlock(&inode_hash_lock); 588 } 589 EXPORT_SYMBOL(__remove_inode_hash); 590 591 void dump_mapping(const struct address_space *mapping) 592 { 593 struct inode *host; 594 const struct address_space_operations *a_ops; 595 struct hlist_node *dentry_first; 596 struct dentry *dentry_ptr; 597 struct dentry dentry; 598 unsigned long ino; 599 600 /* 601 * If mapping is an invalid pointer, we don't want to crash 602 * accessing it, so probe everything depending on it carefully. 603 */ 604 if (get_kernel_nofault(host, &mapping->host) || 605 get_kernel_nofault(a_ops, &mapping->a_ops)) { 606 pr_warn("invalid mapping:%px\n", mapping); 607 return; 608 } 609 610 if (!host) { 611 pr_warn("aops:%ps\n", a_ops); 612 return; 613 } 614 615 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 616 get_kernel_nofault(ino, &host->i_ino)) { 617 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 618 return; 619 } 620 621 if (!dentry_first) { 622 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 623 return; 624 } 625 626 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 627 if (get_kernel_nofault(dentry, dentry_ptr) || 628 !dentry.d_parent || !dentry.d_name.name) { 629 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 630 a_ops, ino, dentry_ptr); 631 return; 632 } 633 634 /* 635 * if dentry is corrupted, the %pd handler may still crash, 636 * but it's unlikely that we reach here with a corrupt mapping 637 */ 638 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 639 } 640 641 void clear_inode(struct inode *inode) 642 { 643 /* 644 * We have to cycle the i_pages lock here because reclaim can be in the 645 * process of removing the last page (in __filemap_remove_folio()) 646 * and we must not free the mapping under it. 647 */ 648 xa_lock_irq(&inode->i_data.i_pages); 649 BUG_ON(inode->i_data.nrpages); 650 /* 651 * Almost always, mapping_empty(&inode->i_data) here; but there are 652 * two known and long-standing ways in which nodes may get left behind 653 * (when deep radix-tree node allocation failed partway; or when THP 654 * collapse_file() failed). Until those two known cases are cleaned up, 655 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 656 * nor even WARN_ON(!mapping_empty). 657 */ 658 xa_unlock_irq(&inode->i_data.i_pages); 659 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 660 BUG_ON(!(inode->i_state & I_FREEING)); 661 BUG_ON(inode->i_state & I_CLEAR); 662 BUG_ON(!list_empty(&inode->i_wb_list)); 663 /* don't need i_lock here, no concurrent mods to i_state */ 664 inode->i_state = I_FREEING | I_CLEAR; 665 } 666 EXPORT_SYMBOL(clear_inode); 667 668 /* 669 * Free the inode passed in, removing it from the lists it is still connected 670 * to. We remove any pages still attached to the inode and wait for any IO that 671 * is still in progress before finally destroying the inode. 672 * 673 * An inode must already be marked I_FREEING so that we avoid the inode being 674 * moved back onto lists if we race with other code that manipulates the lists 675 * (e.g. writeback_single_inode). The caller is responsible for setting this. 676 * 677 * An inode must already be removed from the LRU list before being evicted from 678 * the cache. This should occur atomically with setting the I_FREEING state 679 * flag, so no inodes here should ever be on the LRU when being evicted. 680 */ 681 static void evict(struct inode *inode) 682 { 683 const struct super_operations *op = inode->i_sb->s_op; 684 685 BUG_ON(!(inode->i_state & I_FREEING)); 686 BUG_ON(!list_empty(&inode->i_lru)); 687 688 if (!list_empty(&inode->i_io_list)) 689 inode_io_list_del(inode); 690 691 inode_sb_list_del(inode); 692 693 inode_wait_for_lru_isolating(inode); 694 695 /* 696 * Wait for flusher thread to be done with the inode so that filesystem 697 * does not start destroying it while writeback is still running. Since 698 * the inode has I_FREEING set, flusher thread won't start new work on 699 * the inode. We just have to wait for running writeback to finish. 700 */ 701 inode_wait_for_writeback(inode); 702 703 if (op->evict_inode) { 704 op->evict_inode(inode); 705 } else { 706 truncate_inode_pages_final(&inode->i_data); 707 clear_inode(inode); 708 } 709 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 710 cd_forget(inode); 711 712 remove_inode_hash(inode); 713 714 /* 715 * Wake up waiters in __wait_on_freeing_inode(). 716 * 717 * Lockless hash lookup may end up finding the inode before we removed 718 * it above, but only lock it *after* we are done with the wakeup below. 719 * In this case the potential waiter cannot safely block. 720 * 721 * The inode being unhashed after the call to remove_inode_hash() is 722 * used as an indicator whether blocking on it is safe. 723 */ 724 spin_lock(&inode->i_lock); 725 wake_up_bit(&inode->i_state, __I_NEW); 726 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 727 spin_unlock(&inode->i_lock); 728 729 destroy_inode(inode); 730 } 731 732 /* 733 * dispose_list - dispose of the contents of a local list 734 * @head: the head of the list to free 735 * 736 * Dispose-list gets a local list with local inodes in it, so it doesn't 737 * need to worry about list corruption and SMP locks. 738 */ 739 static void dispose_list(struct list_head *head) 740 { 741 while (!list_empty(head)) { 742 struct inode *inode; 743 744 inode = list_first_entry(head, struct inode, i_lru); 745 list_del_init(&inode->i_lru); 746 747 evict(inode); 748 cond_resched(); 749 } 750 } 751 752 /** 753 * evict_inodes - evict all evictable inodes for a superblock 754 * @sb: superblock to operate on 755 * 756 * Make sure that no inodes with zero refcount are retained. This is 757 * called by superblock shutdown after having SB_ACTIVE flag removed, 758 * so any inode reaching zero refcount during or after that call will 759 * be immediately evicted. 760 */ 761 void evict_inodes(struct super_block *sb) 762 { 763 struct inode *inode, *next; 764 LIST_HEAD(dispose); 765 766 again: 767 spin_lock(&sb->s_inode_list_lock); 768 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 769 if (atomic_read(&inode->i_count)) 770 continue; 771 772 spin_lock(&inode->i_lock); 773 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 774 spin_unlock(&inode->i_lock); 775 continue; 776 } 777 778 inode->i_state |= I_FREEING; 779 inode_lru_list_del(inode); 780 spin_unlock(&inode->i_lock); 781 list_add(&inode->i_lru, &dispose); 782 783 /* 784 * We can have a ton of inodes to evict at unmount time given 785 * enough memory, check to see if we need to go to sleep for a 786 * bit so we don't livelock. 787 */ 788 if (need_resched()) { 789 spin_unlock(&sb->s_inode_list_lock); 790 cond_resched(); 791 dispose_list(&dispose); 792 goto again; 793 } 794 } 795 spin_unlock(&sb->s_inode_list_lock); 796 797 dispose_list(&dispose); 798 } 799 EXPORT_SYMBOL_GPL(evict_inodes); 800 801 /** 802 * invalidate_inodes - attempt to free all inodes on a superblock 803 * @sb: superblock to operate on 804 * 805 * Attempts to free all inodes (including dirty inodes) for a given superblock. 806 */ 807 void invalidate_inodes(struct super_block *sb) 808 { 809 struct inode *inode, *next; 810 LIST_HEAD(dispose); 811 812 again: 813 spin_lock(&sb->s_inode_list_lock); 814 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 815 spin_lock(&inode->i_lock); 816 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 817 spin_unlock(&inode->i_lock); 818 continue; 819 } 820 if (atomic_read(&inode->i_count)) { 821 spin_unlock(&inode->i_lock); 822 continue; 823 } 824 825 inode->i_state |= I_FREEING; 826 inode_lru_list_del(inode); 827 spin_unlock(&inode->i_lock); 828 list_add(&inode->i_lru, &dispose); 829 if (need_resched()) { 830 spin_unlock(&sb->s_inode_list_lock); 831 cond_resched(); 832 dispose_list(&dispose); 833 goto again; 834 } 835 } 836 spin_unlock(&sb->s_inode_list_lock); 837 838 dispose_list(&dispose); 839 } 840 841 /* 842 * Isolate the inode from the LRU in preparation for freeing it. 843 * 844 * If the inode has the I_REFERENCED flag set, then it means that it has been 845 * used recently - the flag is set in iput_final(). When we encounter such an 846 * inode, clear the flag and move it to the back of the LRU so it gets another 847 * pass through the LRU before it gets reclaimed. This is necessary because of 848 * the fact we are doing lazy LRU updates to minimise lock contention so the 849 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 850 * with this flag set because they are the inodes that are out of order. 851 */ 852 static enum lru_status inode_lru_isolate(struct list_head *item, 853 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 854 { 855 struct list_head *freeable = arg; 856 struct inode *inode = container_of(item, struct inode, i_lru); 857 858 /* 859 * We are inverting the lru lock/inode->i_lock here, so use a 860 * trylock. If we fail to get the lock, just skip it. 861 */ 862 if (!spin_trylock(&inode->i_lock)) 863 return LRU_SKIP; 864 865 /* 866 * Inodes can get referenced, redirtied, or repopulated while 867 * they're already on the LRU, and this can make them 868 * unreclaimable for a while. Remove them lazily here; iput, 869 * sync, or the last page cache deletion will requeue them. 870 */ 871 if (atomic_read(&inode->i_count) || 872 (inode->i_state & ~I_REFERENCED) || 873 !mapping_shrinkable(&inode->i_data)) { 874 list_lru_isolate(lru, &inode->i_lru); 875 spin_unlock(&inode->i_lock); 876 this_cpu_dec(nr_unused); 877 return LRU_REMOVED; 878 } 879 880 /* Recently referenced inodes get one more pass */ 881 if (inode->i_state & I_REFERENCED) { 882 inode->i_state &= ~I_REFERENCED; 883 spin_unlock(&inode->i_lock); 884 return LRU_ROTATE; 885 } 886 887 /* 888 * On highmem systems, mapping_shrinkable() permits dropping 889 * page cache in order to free up struct inodes: lowmem might 890 * be under pressure before the cache inside the highmem zone. 891 */ 892 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 893 inode_pin_lru_isolating(inode); 894 spin_unlock(&inode->i_lock); 895 spin_unlock(lru_lock); 896 if (remove_inode_buffers(inode)) { 897 unsigned long reap; 898 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 899 if (current_is_kswapd()) 900 __count_vm_events(KSWAPD_INODESTEAL, reap); 901 else 902 __count_vm_events(PGINODESTEAL, reap); 903 mm_account_reclaimed_pages(reap); 904 } 905 inode_unpin_lru_isolating(inode); 906 spin_lock(lru_lock); 907 return LRU_RETRY; 908 } 909 910 WARN_ON(inode->i_state & I_NEW); 911 inode->i_state |= I_FREEING; 912 list_lru_isolate_move(lru, &inode->i_lru, freeable); 913 spin_unlock(&inode->i_lock); 914 915 this_cpu_dec(nr_unused); 916 return LRU_REMOVED; 917 } 918 919 /* 920 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 921 * This is called from the superblock shrinker function with a number of inodes 922 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 923 * then are freed outside inode_lock by dispose_list(). 924 */ 925 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 926 { 927 LIST_HEAD(freeable); 928 long freed; 929 930 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 931 inode_lru_isolate, &freeable); 932 dispose_list(&freeable); 933 return freed; 934 } 935 936 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); 937 /* 938 * Called with the inode lock held. 939 */ 940 static struct inode *find_inode(struct super_block *sb, 941 struct hlist_head *head, 942 int (*test)(struct inode *, void *), 943 void *data, bool is_inode_hash_locked) 944 { 945 struct inode *inode = NULL; 946 947 if (is_inode_hash_locked) 948 lockdep_assert_held(&inode_hash_lock); 949 else 950 lockdep_assert_not_held(&inode_hash_lock); 951 952 rcu_read_lock(); 953 repeat: 954 hlist_for_each_entry_rcu(inode, head, i_hash) { 955 if (inode->i_sb != sb) 956 continue; 957 if (!test(inode, data)) 958 continue; 959 spin_lock(&inode->i_lock); 960 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 961 __wait_on_freeing_inode(inode, is_inode_hash_locked); 962 goto repeat; 963 } 964 if (unlikely(inode->i_state & I_CREATING)) { 965 spin_unlock(&inode->i_lock); 966 rcu_read_unlock(); 967 return ERR_PTR(-ESTALE); 968 } 969 __iget(inode); 970 spin_unlock(&inode->i_lock); 971 rcu_read_unlock(); 972 return inode; 973 } 974 rcu_read_unlock(); 975 return NULL; 976 } 977 978 /* 979 * find_inode_fast is the fast path version of find_inode, see the comment at 980 * iget_locked for details. 981 */ 982 static struct inode *find_inode_fast(struct super_block *sb, 983 struct hlist_head *head, unsigned long ino, 984 bool is_inode_hash_locked) 985 { 986 struct inode *inode = NULL; 987 988 if (is_inode_hash_locked) 989 lockdep_assert_held(&inode_hash_lock); 990 else 991 lockdep_assert_not_held(&inode_hash_lock); 992 993 rcu_read_lock(); 994 repeat: 995 hlist_for_each_entry_rcu(inode, head, i_hash) { 996 if (inode->i_ino != ino) 997 continue; 998 if (inode->i_sb != sb) 999 continue; 1000 spin_lock(&inode->i_lock); 1001 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1002 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1003 goto repeat; 1004 } 1005 if (unlikely(inode->i_state & I_CREATING)) { 1006 spin_unlock(&inode->i_lock); 1007 rcu_read_unlock(); 1008 return ERR_PTR(-ESTALE); 1009 } 1010 __iget(inode); 1011 spin_unlock(&inode->i_lock); 1012 rcu_read_unlock(); 1013 return inode; 1014 } 1015 rcu_read_unlock(); 1016 return NULL; 1017 } 1018 1019 /* 1020 * Each cpu owns a range of LAST_INO_BATCH numbers. 1021 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 1022 * to renew the exhausted range. 1023 * 1024 * This does not significantly increase overflow rate because every CPU can 1025 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1026 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1027 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1028 * overflow rate by 2x, which does not seem too significant. 1029 * 1030 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1031 * error if st_ino won't fit in target struct field. Use 32bit counter 1032 * here to attempt to avoid that. 1033 */ 1034 #define LAST_INO_BATCH 1024 1035 static DEFINE_PER_CPU(unsigned int, last_ino); 1036 1037 unsigned int get_next_ino(void) 1038 { 1039 unsigned int *p = &get_cpu_var(last_ino); 1040 unsigned int res = *p; 1041 1042 #ifdef CONFIG_SMP 1043 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1044 static atomic_t shared_last_ino; 1045 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1046 1047 res = next - LAST_INO_BATCH; 1048 } 1049 #endif 1050 1051 res++; 1052 /* get_next_ino should not provide a 0 inode number */ 1053 if (unlikely(!res)) 1054 res++; 1055 *p = res; 1056 put_cpu_var(last_ino); 1057 return res; 1058 } 1059 EXPORT_SYMBOL(get_next_ino); 1060 1061 /** 1062 * new_inode_pseudo - obtain an inode 1063 * @sb: superblock 1064 * 1065 * Allocates a new inode for given superblock. 1066 * Inode wont be chained in superblock s_inodes list 1067 * This means : 1068 * - fs can't be unmount 1069 * - quotas, fsnotify, writeback can't work 1070 */ 1071 struct inode *new_inode_pseudo(struct super_block *sb) 1072 { 1073 return alloc_inode(sb); 1074 } 1075 1076 /** 1077 * new_inode - obtain an inode 1078 * @sb: superblock 1079 * 1080 * Allocates a new inode for given superblock. The default gfp_mask 1081 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1082 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1083 * for the page cache are not reclaimable or migratable, 1084 * mapping_set_gfp_mask() must be called with suitable flags on the 1085 * newly created inode's mapping 1086 * 1087 */ 1088 struct inode *new_inode(struct super_block *sb) 1089 { 1090 struct inode *inode; 1091 1092 inode = new_inode_pseudo(sb); 1093 if (inode) 1094 inode_sb_list_add(inode); 1095 return inode; 1096 } 1097 EXPORT_SYMBOL(new_inode); 1098 1099 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1100 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1101 { 1102 if (S_ISDIR(inode->i_mode)) { 1103 struct file_system_type *type = inode->i_sb->s_type; 1104 1105 /* Set new key only if filesystem hasn't already changed it */ 1106 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1107 /* 1108 * ensure nobody is actually holding i_mutex 1109 */ 1110 // mutex_destroy(&inode->i_mutex); 1111 init_rwsem(&inode->i_rwsem); 1112 lockdep_set_class(&inode->i_rwsem, 1113 &type->i_mutex_dir_key); 1114 } 1115 } 1116 } 1117 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1118 #endif 1119 1120 /** 1121 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1122 * @inode: new inode to unlock 1123 * 1124 * Called when the inode is fully initialised to clear the new state of the 1125 * inode and wake up anyone waiting for the inode to finish initialisation. 1126 */ 1127 void unlock_new_inode(struct inode *inode) 1128 { 1129 lockdep_annotate_inode_mutex_key(inode); 1130 spin_lock(&inode->i_lock); 1131 WARN_ON(!(inode->i_state & I_NEW)); 1132 inode->i_state &= ~I_NEW & ~I_CREATING; 1133 smp_mb(); 1134 wake_up_bit(&inode->i_state, __I_NEW); 1135 spin_unlock(&inode->i_lock); 1136 } 1137 EXPORT_SYMBOL(unlock_new_inode); 1138 1139 void discard_new_inode(struct inode *inode) 1140 { 1141 lockdep_annotate_inode_mutex_key(inode); 1142 spin_lock(&inode->i_lock); 1143 WARN_ON(!(inode->i_state & I_NEW)); 1144 inode->i_state &= ~I_NEW; 1145 smp_mb(); 1146 wake_up_bit(&inode->i_state, __I_NEW); 1147 spin_unlock(&inode->i_lock); 1148 iput(inode); 1149 } 1150 EXPORT_SYMBOL(discard_new_inode); 1151 1152 /** 1153 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1154 * 1155 * Lock any non-NULL argument. Passed objects must not be directories. 1156 * Zero, one or two objects may be locked by this function. 1157 * 1158 * @inode1: first inode to lock 1159 * @inode2: second inode to lock 1160 */ 1161 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1162 { 1163 if (inode1) 1164 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1165 if (inode2) 1166 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1167 if (inode1 > inode2) 1168 swap(inode1, inode2); 1169 if (inode1) 1170 inode_lock(inode1); 1171 if (inode2 && inode2 != inode1) 1172 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1173 } 1174 EXPORT_SYMBOL(lock_two_nondirectories); 1175 1176 /** 1177 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1178 * @inode1: first inode to unlock 1179 * @inode2: second inode to unlock 1180 */ 1181 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1182 { 1183 if (inode1) { 1184 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1185 inode_unlock(inode1); 1186 } 1187 if (inode2 && inode2 != inode1) { 1188 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1189 inode_unlock(inode2); 1190 } 1191 } 1192 EXPORT_SYMBOL(unlock_two_nondirectories); 1193 1194 /** 1195 * inode_insert5 - obtain an inode from a mounted file system 1196 * @inode: pre-allocated inode to use for insert to cache 1197 * @hashval: hash value (usually inode number) to get 1198 * @test: callback used for comparisons between inodes 1199 * @set: callback used to initialize a new struct inode 1200 * @data: opaque data pointer to pass to @test and @set 1201 * 1202 * Search for the inode specified by @hashval and @data in the inode cache, 1203 * and if present it is return it with an increased reference count. This is 1204 * a variant of iget5_locked() for callers that don't want to fail on memory 1205 * allocation of inode. 1206 * 1207 * If the inode is not in cache, insert the pre-allocated inode to cache and 1208 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1209 * to fill it in before unlocking it via unlock_new_inode(). 1210 * 1211 * Note both @test and @set are called with the inode_hash_lock held, so can't 1212 * sleep. 1213 */ 1214 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1215 int (*test)(struct inode *, void *), 1216 int (*set)(struct inode *, void *), void *data) 1217 { 1218 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1219 struct inode *old; 1220 1221 again: 1222 spin_lock(&inode_hash_lock); 1223 old = find_inode(inode->i_sb, head, test, data, true); 1224 if (unlikely(old)) { 1225 /* 1226 * Uhhuh, somebody else created the same inode under us. 1227 * Use the old inode instead of the preallocated one. 1228 */ 1229 spin_unlock(&inode_hash_lock); 1230 if (IS_ERR(old)) 1231 return NULL; 1232 wait_on_inode(old); 1233 if (unlikely(inode_unhashed(old))) { 1234 iput(old); 1235 goto again; 1236 } 1237 return old; 1238 } 1239 1240 if (set && unlikely(set(inode, data))) { 1241 inode = NULL; 1242 goto unlock; 1243 } 1244 1245 /* 1246 * Return the locked inode with I_NEW set, the 1247 * caller is responsible for filling in the contents 1248 */ 1249 spin_lock(&inode->i_lock); 1250 inode->i_state |= I_NEW; 1251 hlist_add_head_rcu(&inode->i_hash, head); 1252 spin_unlock(&inode->i_lock); 1253 1254 /* 1255 * Add inode to the sb list if it's not already. It has I_NEW at this 1256 * point, so it should be safe to test i_sb_list locklessly. 1257 */ 1258 if (list_empty(&inode->i_sb_list)) 1259 inode_sb_list_add(inode); 1260 unlock: 1261 spin_unlock(&inode_hash_lock); 1262 1263 return inode; 1264 } 1265 EXPORT_SYMBOL(inode_insert5); 1266 1267 /** 1268 * iget5_locked - obtain an inode from a mounted file system 1269 * @sb: super block of file system 1270 * @hashval: hash value (usually inode number) to get 1271 * @test: callback used for comparisons between inodes 1272 * @set: callback used to initialize a new struct inode 1273 * @data: opaque data pointer to pass to @test and @set 1274 * 1275 * Search for the inode specified by @hashval and @data in the inode cache, 1276 * and if present it is return it with an increased reference count. This is 1277 * a generalized version of iget_locked() for file systems where the inode 1278 * number is not sufficient for unique identification of an inode. 1279 * 1280 * If the inode is not in cache, allocate a new inode and return it locked, 1281 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1282 * before unlocking it via unlock_new_inode(). 1283 * 1284 * Note both @test and @set are called with the inode_hash_lock held, so can't 1285 * sleep. 1286 */ 1287 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1288 int (*test)(struct inode *, void *), 1289 int (*set)(struct inode *, void *), void *data) 1290 { 1291 struct inode *inode = ilookup5(sb, hashval, test, data); 1292 1293 if (!inode) { 1294 struct inode *new = alloc_inode(sb); 1295 1296 if (new) { 1297 inode = inode_insert5(new, hashval, test, set, data); 1298 if (unlikely(inode != new)) 1299 destroy_inode(new); 1300 } 1301 } 1302 return inode; 1303 } 1304 EXPORT_SYMBOL(iget5_locked); 1305 1306 /** 1307 * iget5_locked_rcu - obtain an inode from a mounted file system 1308 * @sb: super block of file system 1309 * @hashval: hash value (usually inode number) to get 1310 * @test: callback used for comparisons between inodes 1311 * @set: callback used to initialize a new struct inode 1312 * @data: opaque data pointer to pass to @test and @set 1313 * 1314 * This is equivalent to iget5_locked, except the @test callback must 1315 * tolerate the inode not being stable, including being mid-teardown. 1316 */ 1317 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1318 int (*test)(struct inode *, void *), 1319 int (*set)(struct inode *, void *), void *data) 1320 { 1321 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1322 struct inode *inode, *new; 1323 1324 again: 1325 inode = find_inode(sb, head, test, data, false); 1326 if (inode) { 1327 if (IS_ERR(inode)) 1328 return NULL; 1329 wait_on_inode(inode); 1330 if (unlikely(inode_unhashed(inode))) { 1331 iput(inode); 1332 goto again; 1333 } 1334 return inode; 1335 } 1336 1337 new = alloc_inode(sb); 1338 if (new) { 1339 inode = inode_insert5(new, hashval, test, set, data); 1340 if (unlikely(inode != new)) 1341 destroy_inode(new); 1342 } 1343 return inode; 1344 } 1345 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1346 1347 /** 1348 * iget_locked - obtain an inode from a mounted file system 1349 * @sb: super block of file system 1350 * @ino: inode number to get 1351 * 1352 * Search for the inode specified by @ino in the inode cache and if present 1353 * return it with an increased reference count. This is for file systems 1354 * where the inode number is sufficient for unique identification of an inode. 1355 * 1356 * If the inode is not in cache, allocate a new inode and return it locked, 1357 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1358 * before unlocking it via unlock_new_inode(). 1359 */ 1360 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1361 { 1362 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1363 struct inode *inode; 1364 again: 1365 inode = find_inode_fast(sb, head, ino, false); 1366 if (inode) { 1367 if (IS_ERR(inode)) 1368 return NULL; 1369 wait_on_inode(inode); 1370 if (unlikely(inode_unhashed(inode))) { 1371 iput(inode); 1372 goto again; 1373 } 1374 return inode; 1375 } 1376 1377 inode = alloc_inode(sb); 1378 if (inode) { 1379 struct inode *old; 1380 1381 spin_lock(&inode_hash_lock); 1382 /* We released the lock, so.. */ 1383 old = find_inode_fast(sb, head, ino, true); 1384 if (!old) { 1385 inode->i_ino = ino; 1386 spin_lock(&inode->i_lock); 1387 inode->i_state = I_NEW; 1388 hlist_add_head_rcu(&inode->i_hash, head); 1389 spin_unlock(&inode->i_lock); 1390 inode_sb_list_add(inode); 1391 spin_unlock(&inode_hash_lock); 1392 1393 /* Return the locked inode with I_NEW set, the 1394 * caller is responsible for filling in the contents 1395 */ 1396 return inode; 1397 } 1398 1399 /* 1400 * Uhhuh, somebody else created the same inode under 1401 * us. Use the old inode instead of the one we just 1402 * allocated. 1403 */ 1404 spin_unlock(&inode_hash_lock); 1405 destroy_inode(inode); 1406 if (IS_ERR(old)) 1407 return NULL; 1408 inode = old; 1409 wait_on_inode(inode); 1410 if (unlikely(inode_unhashed(inode))) { 1411 iput(inode); 1412 goto again; 1413 } 1414 } 1415 return inode; 1416 } 1417 EXPORT_SYMBOL(iget_locked); 1418 1419 /* 1420 * search the inode cache for a matching inode number. 1421 * If we find one, then the inode number we are trying to 1422 * allocate is not unique and so we should not use it. 1423 * 1424 * Returns 1 if the inode number is unique, 0 if it is not. 1425 */ 1426 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1427 { 1428 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1429 struct inode *inode; 1430 1431 hlist_for_each_entry_rcu(inode, b, i_hash) { 1432 if (inode->i_ino == ino && inode->i_sb == sb) 1433 return 0; 1434 } 1435 return 1; 1436 } 1437 1438 /** 1439 * iunique - get a unique inode number 1440 * @sb: superblock 1441 * @max_reserved: highest reserved inode number 1442 * 1443 * Obtain an inode number that is unique on the system for a given 1444 * superblock. This is used by file systems that have no natural 1445 * permanent inode numbering system. An inode number is returned that 1446 * is higher than the reserved limit but unique. 1447 * 1448 * BUGS: 1449 * With a large number of inodes live on the file system this function 1450 * currently becomes quite slow. 1451 */ 1452 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1453 { 1454 /* 1455 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1456 * error if st_ino won't fit in target struct field. Use 32bit counter 1457 * here to attempt to avoid that. 1458 */ 1459 static DEFINE_SPINLOCK(iunique_lock); 1460 static unsigned int counter; 1461 ino_t res; 1462 1463 rcu_read_lock(); 1464 spin_lock(&iunique_lock); 1465 do { 1466 if (counter <= max_reserved) 1467 counter = max_reserved + 1; 1468 res = counter++; 1469 } while (!test_inode_iunique(sb, res)); 1470 spin_unlock(&iunique_lock); 1471 rcu_read_unlock(); 1472 1473 return res; 1474 } 1475 EXPORT_SYMBOL(iunique); 1476 1477 struct inode *igrab(struct inode *inode) 1478 { 1479 spin_lock(&inode->i_lock); 1480 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1481 __iget(inode); 1482 spin_unlock(&inode->i_lock); 1483 } else { 1484 spin_unlock(&inode->i_lock); 1485 /* 1486 * Handle the case where s_op->clear_inode is not been 1487 * called yet, and somebody is calling igrab 1488 * while the inode is getting freed. 1489 */ 1490 inode = NULL; 1491 } 1492 return inode; 1493 } 1494 EXPORT_SYMBOL(igrab); 1495 1496 /** 1497 * ilookup5_nowait - search for an inode in the inode cache 1498 * @sb: super block of file system to search 1499 * @hashval: hash value (usually inode number) to search for 1500 * @test: callback used for comparisons between inodes 1501 * @data: opaque data pointer to pass to @test 1502 * 1503 * Search for the inode specified by @hashval and @data in the inode cache. 1504 * If the inode is in the cache, the inode is returned with an incremented 1505 * reference count. 1506 * 1507 * Note: I_NEW is not waited upon so you have to be very careful what you do 1508 * with the returned inode. You probably should be using ilookup5() instead. 1509 * 1510 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1511 */ 1512 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1513 int (*test)(struct inode *, void *), void *data) 1514 { 1515 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1516 struct inode *inode; 1517 1518 spin_lock(&inode_hash_lock); 1519 inode = find_inode(sb, head, test, data, true); 1520 spin_unlock(&inode_hash_lock); 1521 1522 return IS_ERR(inode) ? NULL : inode; 1523 } 1524 EXPORT_SYMBOL(ilookup5_nowait); 1525 1526 /** 1527 * ilookup5 - search for an inode in the inode cache 1528 * @sb: super block of file system to search 1529 * @hashval: hash value (usually inode number) to search for 1530 * @test: callback used for comparisons between inodes 1531 * @data: opaque data pointer to pass to @test 1532 * 1533 * Search for the inode specified by @hashval and @data in the inode cache, 1534 * and if the inode is in the cache, return the inode with an incremented 1535 * reference count. Waits on I_NEW before returning the inode. 1536 * returned with an incremented reference count. 1537 * 1538 * This is a generalized version of ilookup() for file systems where the 1539 * inode number is not sufficient for unique identification of an inode. 1540 * 1541 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1542 */ 1543 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1544 int (*test)(struct inode *, void *), void *data) 1545 { 1546 struct inode *inode; 1547 again: 1548 inode = ilookup5_nowait(sb, hashval, test, data); 1549 if (inode) { 1550 wait_on_inode(inode); 1551 if (unlikely(inode_unhashed(inode))) { 1552 iput(inode); 1553 goto again; 1554 } 1555 } 1556 return inode; 1557 } 1558 EXPORT_SYMBOL(ilookup5); 1559 1560 /** 1561 * ilookup - search for an inode in the inode cache 1562 * @sb: super block of file system to search 1563 * @ino: inode number to search for 1564 * 1565 * Search for the inode @ino in the inode cache, and if the inode is in the 1566 * cache, the inode is returned with an incremented reference count. 1567 */ 1568 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1569 { 1570 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1571 struct inode *inode; 1572 again: 1573 spin_lock(&inode_hash_lock); 1574 inode = find_inode_fast(sb, head, ino, true); 1575 spin_unlock(&inode_hash_lock); 1576 1577 if (inode) { 1578 if (IS_ERR(inode)) 1579 return NULL; 1580 wait_on_inode(inode); 1581 if (unlikely(inode_unhashed(inode))) { 1582 iput(inode); 1583 goto again; 1584 } 1585 } 1586 return inode; 1587 } 1588 EXPORT_SYMBOL(ilookup); 1589 1590 /** 1591 * find_inode_nowait - find an inode in the inode cache 1592 * @sb: super block of file system to search 1593 * @hashval: hash value (usually inode number) to search for 1594 * @match: callback used for comparisons between inodes 1595 * @data: opaque data pointer to pass to @match 1596 * 1597 * Search for the inode specified by @hashval and @data in the inode 1598 * cache, where the helper function @match will return 0 if the inode 1599 * does not match, 1 if the inode does match, and -1 if the search 1600 * should be stopped. The @match function must be responsible for 1601 * taking the i_lock spin_lock and checking i_state for an inode being 1602 * freed or being initialized, and incrementing the reference count 1603 * before returning 1. It also must not sleep, since it is called with 1604 * the inode_hash_lock spinlock held. 1605 * 1606 * This is a even more generalized version of ilookup5() when the 1607 * function must never block --- find_inode() can block in 1608 * __wait_on_freeing_inode() --- or when the caller can not increment 1609 * the reference count because the resulting iput() might cause an 1610 * inode eviction. The tradeoff is that the @match funtion must be 1611 * very carefully implemented. 1612 */ 1613 struct inode *find_inode_nowait(struct super_block *sb, 1614 unsigned long hashval, 1615 int (*match)(struct inode *, unsigned long, 1616 void *), 1617 void *data) 1618 { 1619 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1620 struct inode *inode, *ret_inode = NULL; 1621 int mval; 1622 1623 spin_lock(&inode_hash_lock); 1624 hlist_for_each_entry(inode, head, i_hash) { 1625 if (inode->i_sb != sb) 1626 continue; 1627 mval = match(inode, hashval, data); 1628 if (mval == 0) 1629 continue; 1630 if (mval == 1) 1631 ret_inode = inode; 1632 goto out; 1633 } 1634 out: 1635 spin_unlock(&inode_hash_lock); 1636 return ret_inode; 1637 } 1638 EXPORT_SYMBOL(find_inode_nowait); 1639 1640 /** 1641 * find_inode_rcu - find an inode in the inode cache 1642 * @sb: Super block of file system to search 1643 * @hashval: Key to hash 1644 * @test: Function to test match on an inode 1645 * @data: Data for test function 1646 * 1647 * Search for the inode specified by @hashval and @data in the inode cache, 1648 * where the helper function @test will return 0 if the inode does not match 1649 * and 1 if it does. The @test function must be responsible for taking the 1650 * i_lock spin_lock and checking i_state for an inode being freed or being 1651 * initialized. 1652 * 1653 * If successful, this will return the inode for which the @test function 1654 * returned 1 and NULL otherwise. 1655 * 1656 * The @test function is not permitted to take a ref on any inode presented. 1657 * It is also not permitted to sleep. 1658 * 1659 * The caller must hold the RCU read lock. 1660 */ 1661 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1662 int (*test)(struct inode *, void *), void *data) 1663 { 1664 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1665 struct inode *inode; 1666 1667 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1668 "suspicious find_inode_rcu() usage"); 1669 1670 hlist_for_each_entry_rcu(inode, head, i_hash) { 1671 if (inode->i_sb == sb && 1672 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1673 test(inode, data)) 1674 return inode; 1675 } 1676 return NULL; 1677 } 1678 EXPORT_SYMBOL(find_inode_rcu); 1679 1680 /** 1681 * find_inode_by_ino_rcu - Find an inode in the inode cache 1682 * @sb: Super block of file system to search 1683 * @ino: The inode number to match 1684 * 1685 * Search for the inode specified by @hashval and @data in the inode cache, 1686 * where the helper function @test will return 0 if the inode does not match 1687 * and 1 if it does. The @test function must be responsible for taking the 1688 * i_lock spin_lock and checking i_state for an inode being freed or being 1689 * initialized. 1690 * 1691 * If successful, this will return the inode for which the @test function 1692 * returned 1 and NULL otherwise. 1693 * 1694 * The @test function is not permitted to take a ref on any inode presented. 1695 * It is also not permitted to sleep. 1696 * 1697 * The caller must hold the RCU read lock. 1698 */ 1699 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1700 unsigned long ino) 1701 { 1702 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1703 struct inode *inode; 1704 1705 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1706 "suspicious find_inode_by_ino_rcu() usage"); 1707 1708 hlist_for_each_entry_rcu(inode, head, i_hash) { 1709 if (inode->i_ino == ino && 1710 inode->i_sb == sb && 1711 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1712 return inode; 1713 } 1714 return NULL; 1715 } 1716 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1717 1718 int insert_inode_locked(struct inode *inode) 1719 { 1720 struct super_block *sb = inode->i_sb; 1721 ino_t ino = inode->i_ino; 1722 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1723 1724 while (1) { 1725 struct inode *old = NULL; 1726 spin_lock(&inode_hash_lock); 1727 hlist_for_each_entry(old, head, i_hash) { 1728 if (old->i_ino != ino) 1729 continue; 1730 if (old->i_sb != sb) 1731 continue; 1732 spin_lock(&old->i_lock); 1733 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1734 spin_unlock(&old->i_lock); 1735 continue; 1736 } 1737 break; 1738 } 1739 if (likely(!old)) { 1740 spin_lock(&inode->i_lock); 1741 inode->i_state |= I_NEW | I_CREATING; 1742 hlist_add_head_rcu(&inode->i_hash, head); 1743 spin_unlock(&inode->i_lock); 1744 spin_unlock(&inode_hash_lock); 1745 return 0; 1746 } 1747 if (unlikely(old->i_state & I_CREATING)) { 1748 spin_unlock(&old->i_lock); 1749 spin_unlock(&inode_hash_lock); 1750 return -EBUSY; 1751 } 1752 __iget(old); 1753 spin_unlock(&old->i_lock); 1754 spin_unlock(&inode_hash_lock); 1755 wait_on_inode(old); 1756 if (unlikely(!inode_unhashed(old))) { 1757 iput(old); 1758 return -EBUSY; 1759 } 1760 iput(old); 1761 } 1762 } 1763 EXPORT_SYMBOL(insert_inode_locked); 1764 1765 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1766 int (*test)(struct inode *, void *), void *data) 1767 { 1768 struct inode *old; 1769 1770 inode->i_state |= I_CREATING; 1771 old = inode_insert5(inode, hashval, test, NULL, data); 1772 1773 if (old != inode) { 1774 iput(old); 1775 return -EBUSY; 1776 } 1777 return 0; 1778 } 1779 EXPORT_SYMBOL(insert_inode_locked4); 1780 1781 1782 int generic_delete_inode(struct inode *inode) 1783 { 1784 return 1; 1785 } 1786 EXPORT_SYMBOL(generic_delete_inode); 1787 1788 /* 1789 * Called when we're dropping the last reference 1790 * to an inode. 1791 * 1792 * Call the FS "drop_inode()" function, defaulting to 1793 * the legacy UNIX filesystem behaviour. If it tells 1794 * us to evict inode, do so. Otherwise, retain inode 1795 * in cache if fs is alive, sync and evict if fs is 1796 * shutting down. 1797 */ 1798 static void iput_final(struct inode *inode) 1799 { 1800 struct super_block *sb = inode->i_sb; 1801 const struct super_operations *op = inode->i_sb->s_op; 1802 unsigned long state; 1803 int drop; 1804 1805 WARN_ON(inode->i_state & I_NEW); 1806 1807 if (op->drop_inode) 1808 drop = op->drop_inode(inode); 1809 else 1810 drop = generic_drop_inode(inode); 1811 1812 if (!drop && 1813 !(inode->i_state & I_DONTCACHE) && 1814 (sb->s_flags & SB_ACTIVE)) { 1815 __inode_add_lru(inode, true); 1816 spin_unlock(&inode->i_lock); 1817 return; 1818 } 1819 1820 state = inode->i_state; 1821 if (!drop) { 1822 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1823 spin_unlock(&inode->i_lock); 1824 1825 write_inode_now(inode, 1); 1826 1827 spin_lock(&inode->i_lock); 1828 state = inode->i_state; 1829 WARN_ON(state & I_NEW); 1830 state &= ~I_WILL_FREE; 1831 } 1832 1833 WRITE_ONCE(inode->i_state, state | I_FREEING); 1834 if (!list_empty(&inode->i_lru)) 1835 inode_lru_list_del(inode); 1836 spin_unlock(&inode->i_lock); 1837 1838 evict(inode); 1839 } 1840 1841 /** 1842 * iput - put an inode 1843 * @inode: inode to put 1844 * 1845 * Puts an inode, dropping its usage count. If the inode use count hits 1846 * zero, the inode is then freed and may also be destroyed. 1847 * 1848 * Consequently, iput() can sleep. 1849 */ 1850 void iput(struct inode *inode) 1851 { 1852 if (!inode) 1853 return; 1854 BUG_ON(inode->i_state & I_CLEAR); 1855 retry: 1856 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1857 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1858 atomic_inc(&inode->i_count); 1859 spin_unlock(&inode->i_lock); 1860 trace_writeback_lazytime_iput(inode); 1861 mark_inode_dirty_sync(inode); 1862 goto retry; 1863 } 1864 iput_final(inode); 1865 } 1866 } 1867 EXPORT_SYMBOL(iput); 1868 1869 #ifdef CONFIG_BLOCK 1870 /** 1871 * bmap - find a block number in a file 1872 * @inode: inode owning the block number being requested 1873 * @block: pointer containing the block to find 1874 * 1875 * Replaces the value in ``*block`` with the block number on the device holding 1876 * corresponding to the requested block number in the file. 1877 * That is, asked for block 4 of inode 1 the function will replace the 1878 * 4 in ``*block``, with disk block relative to the disk start that holds that 1879 * block of the file. 1880 * 1881 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1882 * hole, returns 0 and ``*block`` is also set to 0. 1883 */ 1884 int bmap(struct inode *inode, sector_t *block) 1885 { 1886 if (!inode->i_mapping->a_ops->bmap) 1887 return -EINVAL; 1888 1889 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1890 return 0; 1891 } 1892 EXPORT_SYMBOL(bmap); 1893 #endif 1894 1895 /* 1896 * With relative atime, only update atime if the previous atime is 1897 * earlier than or equal to either the ctime or mtime, 1898 * or if at least a day has passed since the last atime update. 1899 */ 1900 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1901 struct timespec64 now) 1902 { 1903 struct timespec64 atime, mtime, ctime; 1904 1905 if (!(mnt->mnt_flags & MNT_RELATIME)) 1906 return true; 1907 /* 1908 * Is mtime younger than or equal to atime? If yes, update atime: 1909 */ 1910 atime = inode_get_atime(inode); 1911 mtime = inode_get_mtime(inode); 1912 if (timespec64_compare(&mtime, &atime) >= 0) 1913 return true; 1914 /* 1915 * Is ctime younger than or equal to atime? If yes, update atime: 1916 */ 1917 ctime = inode_get_ctime(inode); 1918 if (timespec64_compare(&ctime, &atime) >= 0) 1919 return true; 1920 1921 /* 1922 * Is the previous atime value older than a day? If yes, 1923 * update atime: 1924 */ 1925 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1926 return true; 1927 /* 1928 * Good, we can skip the atime update: 1929 */ 1930 return false; 1931 } 1932 1933 /** 1934 * inode_update_timestamps - update the timestamps on the inode 1935 * @inode: inode to be updated 1936 * @flags: S_* flags that needed to be updated 1937 * 1938 * The update_time function is called when an inode's timestamps need to be 1939 * updated for a read or write operation. This function handles updating the 1940 * actual timestamps. It's up to the caller to ensure that the inode is marked 1941 * dirty appropriately. 1942 * 1943 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1944 * attempt to update all three of them. S_ATIME updates can be handled 1945 * independently of the rest. 1946 * 1947 * Returns a set of S_* flags indicating which values changed. 1948 */ 1949 int inode_update_timestamps(struct inode *inode, int flags) 1950 { 1951 int updated = 0; 1952 struct timespec64 now; 1953 1954 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1955 struct timespec64 ctime = inode_get_ctime(inode); 1956 struct timespec64 mtime = inode_get_mtime(inode); 1957 1958 now = inode_set_ctime_current(inode); 1959 if (!timespec64_equal(&now, &ctime)) 1960 updated |= S_CTIME; 1961 if (!timespec64_equal(&now, &mtime)) { 1962 inode_set_mtime_to_ts(inode, now); 1963 updated |= S_MTIME; 1964 } 1965 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1966 updated |= S_VERSION; 1967 } else { 1968 now = current_time(inode); 1969 } 1970 1971 if (flags & S_ATIME) { 1972 struct timespec64 atime = inode_get_atime(inode); 1973 1974 if (!timespec64_equal(&now, &atime)) { 1975 inode_set_atime_to_ts(inode, now); 1976 updated |= S_ATIME; 1977 } 1978 } 1979 return updated; 1980 } 1981 EXPORT_SYMBOL(inode_update_timestamps); 1982 1983 /** 1984 * generic_update_time - update the timestamps on the inode 1985 * @inode: inode to be updated 1986 * @flags: S_* flags that needed to be updated 1987 * 1988 * The update_time function is called when an inode's timestamps need to be 1989 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1990 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1991 * updates can be handled done independently of the rest. 1992 * 1993 * Returns a S_* mask indicating which fields were updated. 1994 */ 1995 int generic_update_time(struct inode *inode, int flags) 1996 { 1997 int updated = inode_update_timestamps(inode, flags); 1998 int dirty_flags = 0; 1999 2000 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 2001 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 2002 if (updated & S_VERSION) 2003 dirty_flags |= I_DIRTY_SYNC; 2004 __mark_inode_dirty(inode, dirty_flags); 2005 return updated; 2006 } 2007 EXPORT_SYMBOL(generic_update_time); 2008 2009 /* 2010 * This does the actual work of updating an inodes time or version. Must have 2011 * had called mnt_want_write() before calling this. 2012 */ 2013 int inode_update_time(struct inode *inode, int flags) 2014 { 2015 if (inode->i_op->update_time) 2016 return inode->i_op->update_time(inode, flags); 2017 generic_update_time(inode, flags); 2018 return 0; 2019 } 2020 EXPORT_SYMBOL(inode_update_time); 2021 2022 /** 2023 * atime_needs_update - update the access time 2024 * @path: the &struct path to update 2025 * @inode: inode to update 2026 * 2027 * Update the accessed time on an inode and mark it for writeback. 2028 * This function automatically handles read only file systems and media, 2029 * as well as the "noatime" flag and inode specific "noatime" markers. 2030 */ 2031 bool atime_needs_update(const struct path *path, struct inode *inode) 2032 { 2033 struct vfsmount *mnt = path->mnt; 2034 struct timespec64 now, atime; 2035 2036 if (inode->i_flags & S_NOATIME) 2037 return false; 2038 2039 /* Atime updates will likely cause i_uid and i_gid to be written 2040 * back improprely if their true value is unknown to the vfs. 2041 */ 2042 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2043 return false; 2044 2045 if (IS_NOATIME(inode)) 2046 return false; 2047 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2048 return false; 2049 2050 if (mnt->mnt_flags & MNT_NOATIME) 2051 return false; 2052 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2053 return false; 2054 2055 now = current_time(inode); 2056 2057 if (!relatime_need_update(mnt, inode, now)) 2058 return false; 2059 2060 atime = inode_get_atime(inode); 2061 if (timespec64_equal(&atime, &now)) 2062 return false; 2063 2064 return true; 2065 } 2066 2067 void touch_atime(const struct path *path) 2068 { 2069 struct vfsmount *mnt = path->mnt; 2070 struct inode *inode = d_inode(path->dentry); 2071 2072 if (!atime_needs_update(path, inode)) 2073 return; 2074 2075 if (!sb_start_write_trylock(inode->i_sb)) 2076 return; 2077 2078 if (mnt_get_write_access(mnt) != 0) 2079 goto skip_update; 2080 /* 2081 * File systems can error out when updating inodes if they need to 2082 * allocate new space to modify an inode (such is the case for 2083 * Btrfs), but since we touch atime while walking down the path we 2084 * really don't care if we failed to update the atime of the file, 2085 * so just ignore the return value. 2086 * We may also fail on filesystems that have the ability to make parts 2087 * of the fs read only, e.g. subvolumes in Btrfs. 2088 */ 2089 inode_update_time(inode, S_ATIME); 2090 mnt_put_write_access(mnt); 2091 skip_update: 2092 sb_end_write(inode->i_sb); 2093 } 2094 EXPORT_SYMBOL(touch_atime); 2095 2096 /* 2097 * Return mask of changes for notify_change() that need to be done as a 2098 * response to write or truncate. Return 0 if nothing has to be changed. 2099 * Negative value on error (change should be denied). 2100 */ 2101 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2102 struct dentry *dentry) 2103 { 2104 struct inode *inode = d_inode(dentry); 2105 int mask = 0; 2106 int ret; 2107 2108 if (IS_NOSEC(inode)) 2109 return 0; 2110 2111 mask = setattr_should_drop_suidgid(idmap, inode); 2112 ret = security_inode_need_killpriv(dentry); 2113 if (ret < 0) 2114 return ret; 2115 if (ret) 2116 mask |= ATTR_KILL_PRIV; 2117 return mask; 2118 } 2119 2120 static int __remove_privs(struct mnt_idmap *idmap, 2121 struct dentry *dentry, int kill) 2122 { 2123 struct iattr newattrs; 2124 2125 newattrs.ia_valid = ATTR_FORCE | kill; 2126 /* 2127 * Note we call this on write, so notify_change will not 2128 * encounter any conflicting delegations: 2129 */ 2130 return notify_change(idmap, dentry, &newattrs, NULL); 2131 } 2132 2133 int file_remove_privs_flags(struct file *file, unsigned int flags) 2134 { 2135 struct dentry *dentry = file_dentry(file); 2136 struct inode *inode = file_inode(file); 2137 int error = 0; 2138 int kill; 2139 2140 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2141 return 0; 2142 2143 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2144 if (kill < 0) 2145 return kill; 2146 2147 if (kill) { 2148 if (flags & IOCB_NOWAIT) 2149 return -EAGAIN; 2150 2151 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2152 } 2153 2154 if (!error) 2155 inode_has_no_xattr(inode); 2156 return error; 2157 } 2158 EXPORT_SYMBOL_GPL(file_remove_privs_flags); 2159 2160 /** 2161 * file_remove_privs - remove special file privileges (suid, capabilities) 2162 * @file: file to remove privileges from 2163 * 2164 * When file is modified by a write or truncation ensure that special 2165 * file privileges are removed. 2166 * 2167 * Return: 0 on success, negative errno on failure. 2168 */ 2169 int file_remove_privs(struct file *file) 2170 { 2171 return file_remove_privs_flags(file, 0); 2172 } 2173 EXPORT_SYMBOL(file_remove_privs); 2174 2175 static int inode_needs_update_time(struct inode *inode) 2176 { 2177 int sync_it = 0; 2178 struct timespec64 now = current_time(inode); 2179 struct timespec64 ts; 2180 2181 /* First try to exhaust all avenues to not sync */ 2182 if (IS_NOCMTIME(inode)) 2183 return 0; 2184 2185 ts = inode_get_mtime(inode); 2186 if (!timespec64_equal(&ts, &now)) 2187 sync_it = S_MTIME; 2188 2189 ts = inode_get_ctime(inode); 2190 if (!timespec64_equal(&ts, &now)) 2191 sync_it |= S_CTIME; 2192 2193 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2194 sync_it |= S_VERSION; 2195 2196 return sync_it; 2197 } 2198 2199 static int __file_update_time(struct file *file, int sync_mode) 2200 { 2201 int ret = 0; 2202 struct inode *inode = file_inode(file); 2203 2204 /* try to update time settings */ 2205 if (!mnt_get_write_access_file(file)) { 2206 ret = inode_update_time(inode, sync_mode); 2207 mnt_put_write_access_file(file); 2208 } 2209 2210 return ret; 2211 } 2212 2213 /** 2214 * file_update_time - update mtime and ctime time 2215 * @file: file accessed 2216 * 2217 * Update the mtime and ctime members of an inode and mark the inode for 2218 * writeback. Note that this function is meant exclusively for usage in 2219 * the file write path of filesystems, and filesystems may choose to 2220 * explicitly ignore updates via this function with the _NOCMTIME inode 2221 * flag, e.g. for network filesystem where these imestamps are handled 2222 * by the server. This can return an error for file systems who need to 2223 * allocate space in order to update an inode. 2224 * 2225 * Return: 0 on success, negative errno on failure. 2226 */ 2227 int file_update_time(struct file *file) 2228 { 2229 int ret; 2230 struct inode *inode = file_inode(file); 2231 2232 ret = inode_needs_update_time(inode); 2233 if (ret <= 0) 2234 return ret; 2235 2236 return __file_update_time(file, ret); 2237 } 2238 EXPORT_SYMBOL(file_update_time); 2239 2240 /** 2241 * file_modified_flags - handle mandated vfs changes when modifying a file 2242 * @file: file that was modified 2243 * @flags: kiocb flags 2244 * 2245 * When file has been modified ensure that special 2246 * file privileges are removed and time settings are updated. 2247 * 2248 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2249 * time settings will not be updated. It will return -EAGAIN. 2250 * 2251 * Context: Caller must hold the file's inode lock. 2252 * 2253 * Return: 0 on success, negative errno on failure. 2254 */ 2255 static int file_modified_flags(struct file *file, int flags) 2256 { 2257 int ret; 2258 struct inode *inode = file_inode(file); 2259 2260 /* 2261 * Clear the security bits if the process is not being run by root. 2262 * This keeps people from modifying setuid and setgid binaries. 2263 */ 2264 ret = file_remove_privs_flags(file, flags); 2265 if (ret) 2266 return ret; 2267 2268 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2269 return 0; 2270 2271 ret = inode_needs_update_time(inode); 2272 if (ret <= 0) 2273 return ret; 2274 if (flags & IOCB_NOWAIT) 2275 return -EAGAIN; 2276 2277 return __file_update_time(file, ret); 2278 } 2279 2280 /** 2281 * file_modified - handle mandated vfs changes when modifying a file 2282 * @file: file that was modified 2283 * 2284 * When file has been modified ensure that special 2285 * file privileges are removed and time settings are updated. 2286 * 2287 * Context: Caller must hold the file's inode lock. 2288 * 2289 * Return: 0 on success, negative errno on failure. 2290 */ 2291 int file_modified(struct file *file) 2292 { 2293 return file_modified_flags(file, 0); 2294 } 2295 EXPORT_SYMBOL(file_modified); 2296 2297 /** 2298 * kiocb_modified - handle mandated vfs changes when modifying a file 2299 * @iocb: iocb that was modified 2300 * 2301 * When file has been modified ensure that special 2302 * file privileges are removed and time settings are updated. 2303 * 2304 * Context: Caller must hold the file's inode lock. 2305 * 2306 * Return: 0 on success, negative errno on failure. 2307 */ 2308 int kiocb_modified(struct kiocb *iocb) 2309 { 2310 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2311 } 2312 EXPORT_SYMBOL_GPL(kiocb_modified); 2313 2314 int inode_needs_sync(struct inode *inode) 2315 { 2316 if (IS_SYNC(inode)) 2317 return 1; 2318 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2319 return 1; 2320 return 0; 2321 } 2322 EXPORT_SYMBOL(inode_needs_sync); 2323 2324 /* 2325 * If we try to find an inode in the inode hash while it is being 2326 * deleted, we have to wait until the filesystem completes its 2327 * deletion before reporting that it isn't found. This function waits 2328 * until the deletion _might_ have completed. Callers are responsible 2329 * to recheck inode state. 2330 * 2331 * It doesn't matter if I_NEW is not set initially, a call to 2332 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2333 * will DTRT. 2334 */ 2335 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) 2336 { 2337 wait_queue_head_t *wq; 2338 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2339 2340 /* 2341 * Handle racing against evict(), see that routine for more details. 2342 */ 2343 if (unlikely(inode_unhashed(inode))) { 2344 WARN_ON(is_inode_hash_locked); 2345 spin_unlock(&inode->i_lock); 2346 return; 2347 } 2348 2349 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2350 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2351 spin_unlock(&inode->i_lock); 2352 rcu_read_unlock(); 2353 if (is_inode_hash_locked) 2354 spin_unlock(&inode_hash_lock); 2355 schedule(); 2356 finish_wait(wq, &wait.wq_entry); 2357 if (is_inode_hash_locked) 2358 spin_lock(&inode_hash_lock); 2359 rcu_read_lock(); 2360 } 2361 2362 static __initdata unsigned long ihash_entries; 2363 static int __init set_ihash_entries(char *str) 2364 { 2365 if (!str) 2366 return 0; 2367 ihash_entries = simple_strtoul(str, &str, 0); 2368 return 1; 2369 } 2370 __setup("ihash_entries=", set_ihash_entries); 2371 2372 /* 2373 * Initialize the waitqueues and inode hash table. 2374 */ 2375 void __init inode_init_early(void) 2376 { 2377 /* If hashes are distributed across NUMA nodes, defer 2378 * hash allocation until vmalloc space is available. 2379 */ 2380 if (hashdist) 2381 return; 2382 2383 inode_hashtable = 2384 alloc_large_system_hash("Inode-cache", 2385 sizeof(struct hlist_head), 2386 ihash_entries, 2387 14, 2388 HASH_EARLY | HASH_ZERO, 2389 &i_hash_shift, 2390 &i_hash_mask, 2391 0, 2392 0); 2393 } 2394 2395 void __init inode_init(void) 2396 { 2397 /* inode slab cache */ 2398 inode_cachep = kmem_cache_create("inode_cache", 2399 sizeof(struct inode), 2400 0, 2401 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2402 SLAB_ACCOUNT), 2403 init_once); 2404 2405 /* Hash may have been set up in inode_init_early */ 2406 if (!hashdist) 2407 return; 2408 2409 inode_hashtable = 2410 alloc_large_system_hash("Inode-cache", 2411 sizeof(struct hlist_head), 2412 ihash_entries, 2413 14, 2414 HASH_ZERO, 2415 &i_hash_shift, 2416 &i_hash_mask, 2417 0, 2418 0); 2419 } 2420 2421 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2422 { 2423 inode->i_mode = mode; 2424 if (S_ISCHR(mode)) { 2425 inode->i_fop = &def_chr_fops; 2426 inode->i_rdev = rdev; 2427 } else if (S_ISBLK(mode)) { 2428 if (IS_ENABLED(CONFIG_BLOCK)) 2429 inode->i_fop = &def_blk_fops; 2430 inode->i_rdev = rdev; 2431 } else if (S_ISFIFO(mode)) 2432 inode->i_fop = &pipefifo_fops; 2433 else if (S_ISSOCK(mode)) 2434 ; /* leave it no_open_fops */ 2435 else 2436 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2437 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2438 inode->i_ino); 2439 } 2440 EXPORT_SYMBOL(init_special_inode); 2441 2442 /** 2443 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2444 * @idmap: idmap of the mount the inode was created from 2445 * @inode: New inode 2446 * @dir: Directory inode 2447 * @mode: mode of the new inode 2448 * 2449 * If the inode has been created through an idmapped mount the idmap of 2450 * the vfsmount must be passed through @idmap. This function will then take 2451 * care to map the inode according to @idmap before checking permissions 2452 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2453 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2454 */ 2455 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2456 const struct inode *dir, umode_t mode) 2457 { 2458 inode_fsuid_set(inode, idmap); 2459 if (dir && dir->i_mode & S_ISGID) { 2460 inode->i_gid = dir->i_gid; 2461 2462 /* Directories are special, and always inherit S_ISGID */ 2463 if (S_ISDIR(mode)) 2464 mode |= S_ISGID; 2465 } else 2466 inode_fsgid_set(inode, idmap); 2467 inode->i_mode = mode; 2468 } 2469 EXPORT_SYMBOL(inode_init_owner); 2470 2471 /** 2472 * inode_owner_or_capable - check current task permissions to inode 2473 * @idmap: idmap of the mount the inode was found from 2474 * @inode: inode being checked 2475 * 2476 * Return true if current either has CAP_FOWNER in a namespace with the 2477 * inode owner uid mapped, or owns the file. 2478 * 2479 * If the inode has been found through an idmapped mount the idmap of 2480 * the vfsmount must be passed through @idmap. This function will then take 2481 * care to map the inode according to @idmap before checking permissions. 2482 * On non-idmapped mounts or if permission checking is to be performed on the 2483 * raw inode simply pass @nop_mnt_idmap. 2484 */ 2485 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2486 const struct inode *inode) 2487 { 2488 vfsuid_t vfsuid; 2489 struct user_namespace *ns; 2490 2491 vfsuid = i_uid_into_vfsuid(idmap, inode); 2492 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2493 return true; 2494 2495 ns = current_user_ns(); 2496 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2497 return true; 2498 return false; 2499 } 2500 EXPORT_SYMBOL(inode_owner_or_capable); 2501 2502 /* 2503 * Direct i/o helper functions 2504 */ 2505 static void __inode_dio_wait(struct inode *inode) 2506 { 2507 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2508 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2509 2510 do { 2511 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2512 if (atomic_read(&inode->i_dio_count)) 2513 schedule(); 2514 } while (atomic_read(&inode->i_dio_count)); 2515 finish_wait(wq, &q.wq_entry); 2516 } 2517 2518 /** 2519 * inode_dio_wait - wait for outstanding DIO requests to finish 2520 * @inode: inode to wait for 2521 * 2522 * Waits for all pending direct I/O requests to finish so that we can 2523 * proceed with a truncate or equivalent operation. 2524 * 2525 * Must be called under a lock that serializes taking new references 2526 * to i_dio_count, usually by inode->i_mutex. 2527 */ 2528 void inode_dio_wait(struct inode *inode) 2529 { 2530 if (atomic_read(&inode->i_dio_count)) 2531 __inode_dio_wait(inode); 2532 } 2533 EXPORT_SYMBOL(inode_dio_wait); 2534 2535 /* 2536 * inode_set_flags - atomically set some inode flags 2537 * 2538 * Note: the caller should be holding i_mutex, or else be sure that 2539 * they have exclusive access to the inode structure (i.e., while the 2540 * inode is being instantiated). The reason for the cmpxchg() loop 2541 * --- which wouldn't be necessary if all code paths which modify 2542 * i_flags actually followed this rule, is that there is at least one 2543 * code path which doesn't today so we use cmpxchg() out of an abundance 2544 * of caution. 2545 * 2546 * In the long run, i_mutex is overkill, and we should probably look 2547 * at using the i_lock spinlock to protect i_flags, and then make sure 2548 * it is so documented in include/linux/fs.h and that all code follows 2549 * the locking convention!! 2550 */ 2551 void inode_set_flags(struct inode *inode, unsigned int flags, 2552 unsigned int mask) 2553 { 2554 WARN_ON_ONCE(flags & ~mask); 2555 set_mask_bits(&inode->i_flags, mask, flags); 2556 } 2557 EXPORT_SYMBOL(inode_set_flags); 2558 2559 void inode_nohighmem(struct inode *inode) 2560 { 2561 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2562 } 2563 EXPORT_SYMBOL(inode_nohighmem); 2564 2565 /** 2566 * timestamp_truncate - Truncate timespec to a granularity 2567 * @t: Timespec 2568 * @inode: inode being updated 2569 * 2570 * Truncate a timespec to the granularity supported by the fs 2571 * containing the inode. Always rounds down. gran must 2572 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2573 */ 2574 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2575 { 2576 struct super_block *sb = inode->i_sb; 2577 unsigned int gran = sb->s_time_gran; 2578 2579 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2580 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2581 t.tv_nsec = 0; 2582 2583 /* Avoid division in the common cases 1 ns and 1 s. */ 2584 if (gran == 1) 2585 ; /* nothing */ 2586 else if (gran == NSEC_PER_SEC) 2587 t.tv_nsec = 0; 2588 else if (gran > 1 && gran < NSEC_PER_SEC) 2589 t.tv_nsec -= t.tv_nsec % gran; 2590 else 2591 WARN(1, "invalid file time granularity: %u", gran); 2592 return t; 2593 } 2594 EXPORT_SYMBOL(timestamp_truncate); 2595 2596 /** 2597 * current_time - Return FS time 2598 * @inode: inode. 2599 * 2600 * Return the current time truncated to the time granularity supported by 2601 * the fs. 2602 * 2603 * Note that inode and inode->sb cannot be NULL. 2604 * Otherwise, the function warns and returns time without truncation. 2605 */ 2606 struct timespec64 current_time(struct inode *inode) 2607 { 2608 struct timespec64 now; 2609 2610 ktime_get_coarse_real_ts64(&now); 2611 return timestamp_truncate(now, inode); 2612 } 2613 EXPORT_SYMBOL(current_time); 2614 2615 /** 2616 * inode_set_ctime_current - set the ctime to current_time 2617 * @inode: inode 2618 * 2619 * Set the inode->i_ctime to the current value for the inode. Returns 2620 * the current value that was assigned to i_ctime. 2621 */ 2622 struct timespec64 inode_set_ctime_current(struct inode *inode) 2623 { 2624 struct timespec64 now = current_time(inode); 2625 2626 inode_set_ctime_to_ts(inode, now); 2627 return now; 2628 } 2629 EXPORT_SYMBOL(inode_set_ctime_current); 2630 2631 /** 2632 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2633 * @idmap: idmap of the mount @inode was found from 2634 * @inode: inode to check 2635 * @vfsgid: the new/current vfsgid of @inode 2636 * 2637 * Check wether @vfsgid is in the caller's group list or if the caller is 2638 * privileged with CAP_FSETID over @inode. This can be used to determine 2639 * whether the setgid bit can be kept or must be dropped. 2640 * 2641 * Return: true if the caller is sufficiently privileged, false if not. 2642 */ 2643 bool in_group_or_capable(struct mnt_idmap *idmap, 2644 const struct inode *inode, vfsgid_t vfsgid) 2645 { 2646 if (vfsgid_in_group_p(vfsgid)) 2647 return true; 2648 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2649 return true; 2650 return false; 2651 } 2652 EXPORT_SYMBOL(in_group_or_capable); 2653 2654 /** 2655 * mode_strip_sgid - handle the sgid bit for non-directories 2656 * @idmap: idmap of the mount the inode was created from 2657 * @dir: parent directory inode 2658 * @mode: mode of the file to be created in @dir 2659 * 2660 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2661 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2662 * either in the group of the parent directory or they have CAP_FSETID 2663 * in their user namespace and are privileged over the parent directory. 2664 * In all other cases, strip the S_ISGID bit from @mode. 2665 * 2666 * Return: the new mode to use for the file 2667 */ 2668 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2669 const struct inode *dir, umode_t mode) 2670 { 2671 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2672 return mode; 2673 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2674 return mode; 2675 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2676 return mode; 2677 return mode & ~S_ISGID; 2678 } 2679 EXPORT_SYMBOL(mode_strip_sgid); 2680