1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/backing-dev.h> 10 #include <linux/hash.h> 11 #include <linux/swap.h> 12 #include <linux/security.h> 13 #include <linux/cdev.h> 14 #include <linux/memblock.h> 15 #include <linux/fsnotify.h> 16 #include <linux/mount.h> 17 #include <linux/posix_acl.h> 18 #include <linux/prefetch.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __read_mostly; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 { } 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189 #ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193 #endif 194 195 spin_lock_init(&inode->i_lock); 196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 197 198 init_rwsem(&inode->i_rwsem); 199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 200 201 atomic_set(&inode->i_dio_count, 0); 202 203 mapping->a_ops = &empty_aops; 204 mapping->host = inode; 205 mapping->flags = 0; 206 mapping->wb_err = 0; 207 atomic_set(&mapping->i_mmap_writable, 0); 208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 209 atomic_set(&mapping->nr_thps, 0); 210 #endif 211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 212 mapping->private_data = NULL; 213 mapping->writeback_index = 0; 214 init_rwsem(&mapping->invalidate_lock); 215 lockdep_set_class_and_name(&mapping->invalidate_lock, 216 &sb->s_type->invalidate_lock_key, 217 "mapping.invalidate_lock"); 218 inode->i_private = NULL; 219 inode->i_mapping = mapping; 220 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 221 #ifdef CONFIG_FS_POSIX_ACL 222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 223 #endif 224 225 #ifdef CONFIG_FSNOTIFY 226 inode->i_fsnotify_mask = 0; 227 #endif 228 inode->i_flctx = NULL; 229 230 if (unlikely(security_inode_alloc(inode))) 231 return -ENOMEM; 232 this_cpu_inc(nr_inodes); 233 234 return 0; 235 } 236 EXPORT_SYMBOL(inode_init_always); 237 238 void free_inode_nonrcu(struct inode *inode) 239 { 240 kmem_cache_free(inode_cachep, inode); 241 } 242 EXPORT_SYMBOL(free_inode_nonrcu); 243 244 static void i_callback(struct rcu_head *head) 245 { 246 struct inode *inode = container_of(head, struct inode, i_rcu); 247 if (inode->free_inode) 248 inode->free_inode(inode); 249 else 250 free_inode_nonrcu(inode); 251 } 252 253 static struct inode *alloc_inode(struct super_block *sb) 254 { 255 const struct super_operations *ops = sb->s_op; 256 struct inode *inode; 257 258 if (ops->alloc_inode) 259 inode = ops->alloc_inode(sb); 260 else 261 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 262 263 if (!inode) 264 return NULL; 265 266 if (unlikely(inode_init_always(sb, inode))) { 267 if (ops->destroy_inode) { 268 ops->destroy_inode(inode); 269 if (!ops->free_inode) 270 return NULL; 271 } 272 inode->free_inode = ops->free_inode; 273 i_callback(&inode->i_rcu); 274 return NULL; 275 } 276 277 return inode; 278 } 279 280 void __destroy_inode(struct inode *inode) 281 { 282 BUG_ON(inode_has_buffers(inode)); 283 inode_detach_wb(inode); 284 security_inode_free(inode); 285 fsnotify_inode_delete(inode); 286 locks_free_lock_context(inode); 287 if (!inode->i_nlink) { 288 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 289 atomic_long_dec(&inode->i_sb->s_remove_count); 290 } 291 292 #ifdef CONFIG_FS_POSIX_ACL 293 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 294 posix_acl_release(inode->i_acl); 295 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 296 posix_acl_release(inode->i_default_acl); 297 #endif 298 this_cpu_dec(nr_inodes); 299 } 300 EXPORT_SYMBOL(__destroy_inode); 301 302 static void destroy_inode(struct inode *inode) 303 { 304 const struct super_operations *ops = inode->i_sb->s_op; 305 306 BUG_ON(!list_empty(&inode->i_lru)); 307 __destroy_inode(inode); 308 if (ops->destroy_inode) { 309 ops->destroy_inode(inode); 310 if (!ops->free_inode) 311 return; 312 } 313 inode->free_inode = ops->free_inode; 314 call_rcu(&inode->i_rcu, i_callback); 315 } 316 317 /** 318 * drop_nlink - directly drop an inode's link count 319 * @inode: inode 320 * 321 * This is a low-level filesystem helper to replace any 322 * direct filesystem manipulation of i_nlink. In cases 323 * where we are attempting to track writes to the 324 * filesystem, a decrement to zero means an imminent 325 * write when the file is truncated and actually unlinked 326 * on the filesystem. 327 */ 328 void drop_nlink(struct inode *inode) 329 { 330 WARN_ON(inode->i_nlink == 0); 331 inode->__i_nlink--; 332 if (!inode->i_nlink) 333 atomic_long_inc(&inode->i_sb->s_remove_count); 334 } 335 EXPORT_SYMBOL(drop_nlink); 336 337 /** 338 * clear_nlink - directly zero an inode's link count 339 * @inode: inode 340 * 341 * This is a low-level filesystem helper to replace any 342 * direct filesystem manipulation of i_nlink. See 343 * drop_nlink() for why we care about i_nlink hitting zero. 344 */ 345 void clear_nlink(struct inode *inode) 346 { 347 if (inode->i_nlink) { 348 inode->__i_nlink = 0; 349 atomic_long_inc(&inode->i_sb->s_remove_count); 350 } 351 } 352 EXPORT_SYMBOL(clear_nlink); 353 354 /** 355 * set_nlink - directly set an inode's link count 356 * @inode: inode 357 * @nlink: new nlink (should be non-zero) 358 * 359 * This is a low-level filesystem helper to replace any 360 * direct filesystem manipulation of i_nlink. 361 */ 362 void set_nlink(struct inode *inode, unsigned int nlink) 363 { 364 if (!nlink) { 365 clear_nlink(inode); 366 } else { 367 /* Yes, some filesystems do change nlink from zero to one */ 368 if (inode->i_nlink == 0) 369 atomic_long_dec(&inode->i_sb->s_remove_count); 370 371 inode->__i_nlink = nlink; 372 } 373 } 374 EXPORT_SYMBOL(set_nlink); 375 376 /** 377 * inc_nlink - directly increment an inode's link count 378 * @inode: inode 379 * 380 * This is a low-level filesystem helper to replace any 381 * direct filesystem manipulation of i_nlink. Currently, 382 * it is only here for parity with dec_nlink(). 383 */ 384 void inc_nlink(struct inode *inode) 385 { 386 if (unlikely(inode->i_nlink == 0)) { 387 WARN_ON(!(inode->i_state & I_LINKABLE)); 388 atomic_long_dec(&inode->i_sb->s_remove_count); 389 } 390 391 inode->__i_nlink++; 392 } 393 EXPORT_SYMBOL(inc_nlink); 394 395 static void __address_space_init_once(struct address_space *mapping) 396 { 397 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 398 init_rwsem(&mapping->i_mmap_rwsem); 399 INIT_LIST_HEAD(&mapping->private_list); 400 spin_lock_init(&mapping->private_lock); 401 mapping->i_mmap = RB_ROOT_CACHED; 402 } 403 404 void address_space_init_once(struct address_space *mapping) 405 { 406 memset(mapping, 0, sizeof(*mapping)); 407 __address_space_init_once(mapping); 408 } 409 EXPORT_SYMBOL(address_space_init_once); 410 411 /* 412 * These are initializations that only need to be done 413 * once, because the fields are idempotent across use 414 * of the inode, so let the slab aware of that. 415 */ 416 void inode_init_once(struct inode *inode) 417 { 418 memset(inode, 0, sizeof(*inode)); 419 INIT_HLIST_NODE(&inode->i_hash); 420 INIT_LIST_HEAD(&inode->i_devices); 421 INIT_LIST_HEAD(&inode->i_io_list); 422 INIT_LIST_HEAD(&inode->i_wb_list); 423 INIT_LIST_HEAD(&inode->i_lru); 424 INIT_LIST_HEAD(&inode->i_sb_list); 425 __address_space_init_once(&inode->i_data); 426 i_size_ordered_init(inode); 427 } 428 EXPORT_SYMBOL(inode_init_once); 429 430 static void init_once(void *foo) 431 { 432 struct inode *inode = (struct inode *) foo; 433 434 inode_init_once(inode); 435 } 436 437 /* 438 * inode->i_lock must be held 439 */ 440 void __iget(struct inode *inode) 441 { 442 atomic_inc(&inode->i_count); 443 } 444 445 /* 446 * get additional reference to inode; caller must already hold one. 447 */ 448 void ihold(struct inode *inode) 449 { 450 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 451 } 452 EXPORT_SYMBOL(ihold); 453 454 static void __inode_add_lru(struct inode *inode, bool rotate) 455 { 456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 457 return; 458 if (atomic_read(&inode->i_count)) 459 return; 460 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 461 return; 462 if (!mapping_shrinkable(&inode->i_data)) 463 return; 464 465 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 466 this_cpu_inc(nr_unused); 467 else if (rotate) 468 inode->i_state |= I_REFERENCED; 469 } 470 471 /* 472 * Add inode to LRU if needed (inode is unused and clean). 473 * 474 * Needs inode->i_lock held. 475 */ 476 void inode_add_lru(struct inode *inode) 477 { 478 __inode_add_lru(inode, false); 479 } 480 481 static void inode_lru_list_del(struct inode *inode) 482 { 483 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 484 this_cpu_dec(nr_unused); 485 } 486 487 /** 488 * inode_sb_list_add - add inode to the superblock list of inodes 489 * @inode: inode to add 490 */ 491 void inode_sb_list_add(struct inode *inode) 492 { 493 spin_lock(&inode->i_sb->s_inode_list_lock); 494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 495 spin_unlock(&inode->i_sb->s_inode_list_lock); 496 } 497 EXPORT_SYMBOL_GPL(inode_sb_list_add); 498 499 static inline void inode_sb_list_del(struct inode *inode) 500 { 501 if (!list_empty(&inode->i_sb_list)) { 502 spin_lock(&inode->i_sb->s_inode_list_lock); 503 list_del_init(&inode->i_sb_list); 504 spin_unlock(&inode->i_sb->s_inode_list_lock); 505 } 506 } 507 508 static unsigned long hash(struct super_block *sb, unsigned long hashval) 509 { 510 unsigned long tmp; 511 512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 513 L1_CACHE_BYTES; 514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 515 return tmp & i_hash_mask; 516 } 517 518 /** 519 * __insert_inode_hash - hash an inode 520 * @inode: unhashed inode 521 * @hashval: unsigned long value used to locate this object in the 522 * inode_hashtable. 523 * 524 * Add an inode to the inode hash for this superblock. 525 */ 526 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 527 { 528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 529 530 spin_lock(&inode_hash_lock); 531 spin_lock(&inode->i_lock); 532 hlist_add_head_rcu(&inode->i_hash, b); 533 spin_unlock(&inode->i_lock); 534 spin_unlock(&inode_hash_lock); 535 } 536 EXPORT_SYMBOL(__insert_inode_hash); 537 538 /** 539 * __remove_inode_hash - remove an inode from the hash 540 * @inode: inode to unhash 541 * 542 * Remove an inode from the superblock. 543 */ 544 void __remove_inode_hash(struct inode *inode) 545 { 546 spin_lock(&inode_hash_lock); 547 spin_lock(&inode->i_lock); 548 hlist_del_init_rcu(&inode->i_hash); 549 spin_unlock(&inode->i_lock); 550 spin_unlock(&inode_hash_lock); 551 } 552 EXPORT_SYMBOL(__remove_inode_hash); 553 554 void dump_mapping(const struct address_space *mapping) 555 { 556 struct inode *host; 557 const struct address_space_operations *a_ops; 558 struct hlist_node *dentry_first; 559 struct dentry *dentry_ptr; 560 struct dentry dentry; 561 unsigned long ino; 562 563 /* 564 * If mapping is an invalid pointer, we don't want to crash 565 * accessing it, so probe everything depending on it carefully. 566 */ 567 if (get_kernel_nofault(host, &mapping->host) || 568 get_kernel_nofault(a_ops, &mapping->a_ops)) { 569 pr_warn("invalid mapping:%px\n", mapping); 570 return; 571 } 572 573 if (!host) { 574 pr_warn("aops:%ps\n", a_ops); 575 return; 576 } 577 578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 579 get_kernel_nofault(ino, &host->i_ino)) { 580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 581 return; 582 } 583 584 if (!dentry_first) { 585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 586 return; 587 } 588 589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 590 if (get_kernel_nofault(dentry, dentry_ptr)) { 591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 592 a_ops, ino, dentry_ptr); 593 return; 594 } 595 596 /* 597 * if dentry is corrupted, the %pd handler may still crash, 598 * but it's unlikely that we reach here with a corrupt mapping 599 */ 600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 601 } 602 603 void clear_inode(struct inode *inode) 604 { 605 /* 606 * We have to cycle the i_pages lock here because reclaim can be in the 607 * process of removing the last page (in __filemap_remove_folio()) 608 * and we must not free the mapping under it. 609 */ 610 xa_lock_irq(&inode->i_data.i_pages); 611 BUG_ON(inode->i_data.nrpages); 612 /* 613 * Almost always, mapping_empty(&inode->i_data) here; but there are 614 * two known and long-standing ways in which nodes may get left behind 615 * (when deep radix-tree node allocation failed partway; or when THP 616 * collapse_file() failed). Until those two known cases are cleaned up, 617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 618 * nor even WARN_ON(!mapping_empty). 619 */ 620 xa_unlock_irq(&inode->i_data.i_pages); 621 BUG_ON(!list_empty(&inode->i_data.private_list)); 622 BUG_ON(!(inode->i_state & I_FREEING)); 623 BUG_ON(inode->i_state & I_CLEAR); 624 BUG_ON(!list_empty(&inode->i_wb_list)); 625 /* don't need i_lock here, no concurrent mods to i_state */ 626 inode->i_state = I_FREEING | I_CLEAR; 627 } 628 EXPORT_SYMBOL(clear_inode); 629 630 /* 631 * Free the inode passed in, removing it from the lists it is still connected 632 * to. We remove any pages still attached to the inode and wait for any IO that 633 * is still in progress before finally destroying the inode. 634 * 635 * An inode must already be marked I_FREEING so that we avoid the inode being 636 * moved back onto lists if we race with other code that manipulates the lists 637 * (e.g. writeback_single_inode). The caller is responsible for setting this. 638 * 639 * An inode must already be removed from the LRU list before being evicted from 640 * the cache. This should occur atomically with setting the I_FREEING state 641 * flag, so no inodes here should ever be on the LRU when being evicted. 642 */ 643 static void evict(struct inode *inode) 644 { 645 const struct super_operations *op = inode->i_sb->s_op; 646 647 BUG_ON(!(inode->i_state & I_FREEING)); 648 BUG_ON(!list_empty(&inode->i_lru)); 649 650 if (!list_empty(&inode->i_io_list)) 651 inode_io_list_del(inode); 652 653 inode_sb_list_del(inode); 654 655 /* 656 * Wait for flusher thread to be done with the inode so that filesystem 657 * does not start destroying it while writeback is still running. Since 658 * the inode has I_FREEING set, flusher thread won't start new work on 659 * the inode. We just have to wait for running writeback to finish. 660 */ 661 inode_wait_for_writeback(inode); 662 663 if (op->evict_inode) { 664 op->evict_inode(inode); 665 } else { 666 truncate_inode_pages_final(&inode->i_data); 667 clear_inode(inode); 668 } 669 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 670 cd_forget(inode); 671 672 remove_inode_hash(inode); 673 674 spin_lock(&inode->i_lock); 675 wake_up_bit(&inode->i_state, __I_NEW); 676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 677 spin_unlock(&inode->i_lock); 678 679 destroy_inode(inode); 680 } 681 682 /* 683 * dispose_list - dispose of the contents of a local list 684 * @head: the head of the list to free 685 * 686 * Dispose-list gets a local list with local inodes in it, so it doesn't 687 * need to worry about list corruption and SMP locks. 688 */ 689 static void dispose_list(struct list_head *head) 690 { 691 while (!list_empty(head)) { 692 struct inode *inode; 693 694 inode = list_first_entry(head, struct inode, i_lru); 695 list_del_init(&inode->i_lru); 696 697 evict(inode); 698 cond_resched(); 699 } 700 } 701 702 /** 703 * evict_inodes - evict all evictable inodes for a superblock 704 * @sb: superblock to operate on 705 * 706 * Make sure that no inodes with zero refcount are retained. This is 707 * called by superblock shutdown after having SB_ACTIVE flag removed, 708 * so any inode reaching zero refcount during or after that call will 709 * be immediately evicted. 710 */ 711 void evict_inodes(struct super_block *sb) 712 { 713 struct inode *inode, *next; 714 LIST_HEAD(dispose); 715 716 again: 717 spin_lock(&sb->s_inode_list_lock); 718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 719 if (atomic_read(&inode->i_count)) 720 continue; 721 722 spin_lock(&inode->i_lock); 723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 724 spin_unlock(&inode->i_lock); 725 continue; 726 } 727 728 inode->i_state |= I_FREEING; 729 inode_lru_list_del(inode); 730 spin_unlock(&inode->i_lock); 731 list_add(&inode->i_lru, &dispose); 732 733 /* 734 * We can have a ton of inodes to evict at unmount time given 735 * enough memory, check to see if we need to go to sleep for a 736 * bit so we don't livelock. 737 */ 738 if (need_resched()) { 739 spin_unlock(&sb->s_inode_list_lock); 740 cond_resched(); 741 dispose_list(&dispose); 742 goto again; 743 } 744 } 745 spin_unlock(&sb->s_inode_list_lock); 746 747 dispose_list(&dispose); 748 } 749 EXPORT_SYMBOL_GPL(evict_inodes); 750 751 /** 752 * invalidate_inodes - attempt to free all inodes on a superblock 753 * @sb: superblock to operate on 754 * @kill_dirty: flag to guide handling of dirty inodes 755 * 756 * Attempts to free all inodes for a given superblock. If there were any 757 * busy inodes return a non-zero value, else zero. 758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 759 * them as busy. 760 */ 761 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 762 { 763 int busy = 0; 764 struct inode *inode, *next; 765 LIST_HEAD(dispose); 766 767 again: 768 spin_lock(&sb->s_inode_list_lock); 769 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 770 spin_lock(&inode->i_lock); 771 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 772 spin_unlock(&inode->i_lock); 773 continue; 774 } 775 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 776 spin_unlock(&inode->i_lock); 777 busy = 1; 778 continue; 779 } 780 if (atomic_read(&inode->i_count)) { 781 spin_unlock(&inode->i_lock); 782 busy = 1; 783 continue; 784 } 785 786 inode->i_state |= I_FREEING; 787 inode_lru_list_del(inode); 788 spin_unlock(&inode->i_lock); 789 list_add(&inode->i_lru, &dispose); 790 if (need_resched()) { 791 spin_unlock(&sb->s_inode_list_lock); 792 cond_resched(); 793 dispose_list(&dispose); 794 goto again; 795 } 796 } 797 spin_unlock(&sb->s_inode_list_lock); 798 799 dispose_list(&dispose); 800 801 return busy; 802 } 803 804 /* 805 * Isolate the inode from the LRU in preparation for freeing it. 806 * 807 * If the inode has the I_REFERENCED flag set, then it means that it has been 808 * used recently - the flag is set in iput_final(). When we encounter such an 809 * inode, clear the flag and move it to the back of the LRU so it gets another 810 * pass through the LRU before it gets reclaimed. This is necessary because of 811 * the fact we are doing lazy LRU updates to minimise lock contention so the 812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 813 * with this flag set because they are the inodes that are out of order. 814 */ 815 static enum lru_status inode_lru_isolate(struct list_head *item, 816 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 817 { 818 struct list_head *freeable = arg; 819 struct inode *inode = container_of(item, struct inode, i_lru); 820 821 /* 822 * We are inverting the lru lock/inode->i_lock here, so use a 823 * trylock. If we fail to get the lock, just skip it. 824 */ 825 if (!spin_trylock(&inode->i_lock)) 826 return LRU_SKIP; 827 828 /* 829 * Inodes can get referenced, redirtied, or repopulated while 830 * they're already on the LRU, and this can make them 831 * unreclaimable for a while. Remove them lazily here; iput, 832 * sync, or the last page cache deletion will requeue them. 833 */ 834 if (atomic_read(&inode->i_count) || 835 (inode->i_state & ~I_REFERENCED) || 836 !mapping_shrinkable(&inode->i_data)) { 837 list_lru_isolate(lru, &inode->i_lru); 838 spin_unlock(&inode->i_lock); 839 this_cpu_dec(nr_unused); 840 return LRU_REMOVED; 841 } 842 843 /* Recently referenced inodes get one more pass */ 844 if (inode->i_state & I_REFERENCED) { 845 inode->i_state &= ~I_REFERENCED; 846 spin_unlock(&inode->i_lock); 847 return LRU_ROTATE; 848 } 849 850 /* 851 * On highmem systems, mapping_shrinkable() permits dropping 852 * page cache in order to free up struct inodes: lowmem might 853 * be under pressure before the cache inside the highmem zone. 854 */ 855 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 856 __iget(inode); 857 spin_unlock(&inode->i_lock); 858 spin_unlock(lru_lock); 859 if (remove_inode_buffers(inode)) { 860 unsigned long reap; 861 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 862 if (current_is_kswapd()) 863 __count_vm_events(KSWAPD_INODESTEAL, reap); 864 else 865 __count_vm_events(PGINODESTEAL, reap); 866 if (current->reclaim_state) 867 current->reclaim_state->reclaimed_slab += reap; 868 } 869 iput(inode); 870 spin_lock(lru_lock); 871 return LRU_RETRY; 872 } 873 874 WARN_ON(inode->i_state & I_NEW); 875 inode->i_state |= I_FREEING; 876 list_lru_isolate_move(lru, &inode->i_lru, freeable); 877 spin_unlock(&inode->i_lock); 878 879 this_cpu_dec(nr_unused); 880 return LRU_REMOVED; 881 } 882 883 /* 884 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 885 * This is called from the superblock shrinker function with a number of inodes 886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 887 * then are freed outside inode_lock by dispose_list(). 888 */ 889 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 890 { 891 LIST_HEAD(freeable); 892 long freed; 893 894 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 895 inode_lru_isolate, &freeable); 896 dispose_list(&freeable); 897 return freed; 898 } 899 900 static void __wait_on_freeing_inode(struct inode *inode); 901 /* 902 * Called with the inode lock held. 903 */ 904 static struct inode *find_inode(struct super_block *sb, 905 struct hlist_head *head, 906 int (*test)(struct inode *, void *), 907 void *data) 908 { 909 struct inode *inode = NULL; 910 911 repeat: 912 hlist_for_each_entry(inode, head, i_hash) { 913 if (inode->i_sb != sb) 914 continue; 915 if (!test(inode, data)) 916 continue; 917 spin_lock(&inode->i_lock); 918 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 919 __wait_on_freeing_inode(inode); 920 goto repeat; 921 } 922 if (unlikely(inode->i_state & I_CREATING)) { 923 spin_unlock(&inode->i_lock); 924 return ERR_PTR(-ESTALE); 925 } 926 __iget(inode); 927 spin_unlock(&inode->i_lock); 928 return inode; 929 } 930 return NULL; 931 } 932 933 /* 934 * find_inode_fast is the fast path version of find_inode, see the comment at 935 * iget_locked for details. 936 */ 937 static struct inode *find_inode_fast(struct super_block *sb, 938 struct hlist_head *head, unsigned long ino) 939 { 940 struct inode *inode = NULL; 941 942 repeat: 943 hlist_for_each_entry(inode, head, i_hash) { 944 if (inode->i_ino != ino) 945 continue; 946 if (inode->i_sb != sb) 947 continue; 948 spin_lock(&inode->i_lock); 949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 950 __wait_on_freeing_inode(inode); 951 goto repeat; 952 } 953 if (unlikely(inode->i_state & I_CREATING)) { 954 spin_unlock(&inode->i_lock); 955 return ERR_PTR(-ESTALE); 956 } 957 __iget(inode); 958 spin_unlock(&inode->i_lock); 959 return inode; 960 } 961 return NULL; 962 } 963 964 /* 965 * Each cpu owns a range of LAST_INO_BATCH numbers. 966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 967 * to renew the exhausted range. 968 * 969 * This does not significantly increase overflow rate because every CPU can 970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 973 * overflow rate by 2x, which does not seem too significant. 974 * 975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 976 * error if st_ino won't fit in target struct field. Use 32bit counter 977 * here to attempt to avoid that. 978 */ 979 #define LAST_INO_BATCH 1024 980 static DEFINE_PER_CPU(unsigned int, last_ino); 981 982 unsigned int get_next_ino(void) 983 { 984 unsigned int *p = &get_cpu_var(last_ino); 985 unsigned int res = *p; 986 987 #ifdef CONFIG_SMP 988 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 989 static atomic_t shared_last_ino; 990 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 991 992 res = next - LAST_INO_BATCH; 993 } 994 #endif 995 996 res++; 997 /* get_next_ino should not provide a 0 inode number */ 998 if (unlikely(!res)) 999 res++; 1000 *p = res; 1001 put_cpu_var(last_ino); 1002 return res; 1003 } 1004 EXPORT_SYMBOL(get_next_ino); 1005 1006 /** 1007 * new_inode_pseudo - obtain an inode 1008 * @sb: superblock 1009 * 1010 * Allocates a new inode for given superblock. 1011 * Inode wont be chained in superblock s_inodes list 1012 * This means : 1013 * - fs can't be unmount 1014 * - quotas, fsnotify, writeback can't work 1015 */ 1016 struct inode *new_inode_pseudo(struct super_block *sb) 1017 { 1018 struct inode *inode = alloc_inode(sb); 1019 1020 if (inode) { 1021 spin_lock(&inode->i_lock); 1022 inode->i_state = 0; 1023 spin_unlock(&inode->i_lock); 1024 } 1025 return inode; 1026 } 1027 1028 /** 1029 * new_inode - obtain an inode 1030 * @sb: superblock 1031 * 1032 * Allocates a new inode for given superblock. The default gfp_mask 1033 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1034 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1035 * for the page cache are not reclaimable or migratable, 1036 * mapping_set_gfp_mask() must be called with suitable flags on the 1037 * newly created inode's mapping 1038 * 1039 */ 1040 struct inode *new_inode(struct super_block *sb) 1041 { 1042 struct inode *inode; 1043 1044 spin_lock_prefetch(&sb->s_inode_list_lock); 1045 1046 inode = new_inode_pseudo(sb); 1047 if (inode) 1048 inode_sb_list_add(inode); 1049 return inode; 1050 } 1051 EXPORT_SYMBOL(new_inode); 1052 1053 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1054 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1055 { 1056 if (S_ISDIR(inode->i_mode)) { 1057 struct file_system_type *type = inode->i_sb->s_type; 1058 1059 /* Set new key only if filesystem hasn't already changed it */ 1060 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1061 /* 1062 * ensure nobody is actually holding i_mutex 1063 */ 1064 // mutex_destroy(&inode->i_mutex); 1065 init_rwsem(&inode->i_rwsem); 1066 lockdep_set_class(&inode->i_rwsem, 1067 &type->i_mutex_dir_key); 1068 } 1069 } 1070 } 1071 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1072 #endif 1073 1074 /** 1075 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1076 * @inode: new inode to unlock 1077 * 1078 * Called when the inode is fully initialised to clear the new state of the 1079 * inode and wake up anyone waiting for the inode to finish initialisation. 1080 */ 1081 void unlock_new_inode(struct inode *inode) 1082 { 1083 lockdep_annotate_inode_mutex_key(inode); 1084 spin_lock(&inode->i_lock); 1085 WARN_ON(!(inode->i_state & I_NEW)); 1086 inode->i_state &= ~I_NEW & ~I_CREATING; 1087 smp_mb(); 1088 wake_up_bit(&inode->i_state, __I_NEW); 1089 spin_unlock(&inode->i_lock); 1090 } 1091 EXPORT_SYMBOL(unlock_new_inode); 1092 1093 void discard_new_inode(struct inode *inode) 1094 { 1095 lockdep_annotate_inode_mutex_key(inode); 1096 spin_lock(&inode->i_lock); 1097 WARN_ON(!(inode->i_state & I_NEW)); 1098 inode->i_state &= ~I_NEW; 1099 smp_mb(); 1100 wake_up_bit(&inode->i_state, __I_NEW); 1101 spin_unlock(&inode->i_lock); 1102 iput(inode); 1103 } 1104 EXPORT_SYMBOL(discard_new_inode); 1105 1106 /** 1107 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1108 * 1109 * Lock any non-NULL argument that is not a directory. 1110 * Zero, one or two objects may be locked by this function. 1111 * 1112 * @inode1: first inode to lock 1113 * @inode2: second inode to lock 1114 */ 1115 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1116 { 1117 if (inode1 > inode2) 1118 swap(inode1, inode2); 1119 1120 if (inode1 && !S_ISDIR(inode1->i_mode)) 1121 inode_lock(inode1); 1122 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1123 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1124 } 1125 EXPORT_SYMBOL(lock_two_nondirectories); 1126 1127 /** 1128 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1129 * @inode1: first inode to unlock 1130 * @inode2: second inode to unlock 1131 */ 1132 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1133 { 1134 if (inode1 && !S_ISDIR(inode1->i_mode)) 1135 inode_unlock(inode1); 1136 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1137 inode_unlock(inode2); 1138 } 1139 EXPORT_SYMBOL(unlock_two_nondirectories); 1140 1141 /** 1142 * inode_insert5 - obtain an inode from a mounted file system 1143 * @inode: pre-allocated inode to use for insert to cache 1144 * @hashval: hash value (usually inode number) to get 1145 * @test: callback used for comparisons between inodes 1146 * @set: callback used to initialize a new struct inode 1147 * @data: opaque data pointer to pass to @test and @set 1148 * 1149 * Search for the inode specified by @hashval and @data in the inode cache, 1150 * and if present it is return it with an increased reference count. This is 1151 * a variant of iget5_locked() for callers that don't want to fail on memory 1152 * allocation of inode. 1153 * 1154 * If the inode is not in cache, insert the pre-allocated inode to cache and 1155 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1156 * to fill it in before unlocking it via unlock_new_inode(). 1157 * 1158 * Note both @test and @set are called with the inode_hash_lock held, so can't 1159 * sleep. 1160 */ 1161 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1162 int (*test)(struct inode *, void *), 1163 int (*set)(struct inode *, void *), void *data) 1164 { 1165 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1166 struct inode *old; 1167 1168 again: 1169 spin_lock(&inode_hash_lock); 1170 old = find_inode(inode->i_sb, head, test, data); 1171 if (unlikely(old)) { 1172 /* 1173 * Uhhuh, somebody else created the same inode under us. 1174 * Use the old inode instead of the preallocated one. 1175 */ 1176 spin_unlock(&inode_hash_lock); 1177 if (IS_ERR(old)) 1178 return NULL; 1179 wait_on_inode(old); 1180 if (unlikely(inode_unhashed(old))) { 1181 iput(old); 1182 goto again; 1183 } 1184 return old; 1185 } 1186 1187 if (set && unlikely(set(inode, data))) { 1188 inode = NULL; 1189 goto unlock; 1190 } 1191 1192 /* 1193 * Return the locked inode with I_NEW set, the 1194 * caller is responsible for filling in the contents 1195 */ 1196 spin_lock(&inode->i_lock); 1197 inode->i_state |= I_NEW; 1198 hlist_add_head_rcu(&inode->i_hash, head); 1199 spin_unlock(&inode->i_lock); 1200 1201 /* 1202 * Add inode to the sb list if it's not already. It has I_NEW at this 1203 * point, so it should be safe to test i_sb_list locklessly. 1204 */ 1205 if (list_empty(&inode->i_sb_list)) 1206 inode_sb_list_add(inode); 1207 unlock: 1208 spin_unlock(&inode_hash_lock); 1209 1210 return inode; 1211 } 1212 EXPORT_SYMBOL(inode_insert5); 1213 1214 /** 1215 * iget5_locked - obtain an inode from a mounted file system 1216 * @sb: super block of file system 1217 * @hashval: hash value (usually inode number) to get 1218 * @test: callback used for comparisons between inodes 1219 * @set: callback used to initialize a new struct inode 1220 * @data: opaque data pointer to pass to @test and @set 1221 * 1222 * Search for the inode specified by @hashval and @data in the inode cache, 1223 * and if present it is return it with an increased reference count. This is 1224 * a generalized version of iget_locked() for file systems where the inode 1225 * number is not sufficient for unique identification of an inode. 1226 * 1227 * If the inode is not in cache, allocate a new inode and return it locked, 1228 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1229 * before unlocking it via unlock_new_inode(). 1230 * 1231 * Note both @test and @set are called with the inode_hash_lock held, so can't 1232 * sleep. 1233 */ 1234 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1235 int (*test)(struct inode *, void *), 1236 int (*set)(struct inode *, void *), void *data) 1237 { 1238 struct inode *inode = ilookup5(sb, hashval, test, data); 1239 1240 if (!inode) { 1241 struct inode *new = alloc_inode(sb); 1242 1243 if (new) { 1244 new->i_state = 0; 1245 inode = inode_insert5(new, hashval, test, set, data); 1246 if (unlikely(inode != new)) 1247 destroy_inode(new); 1248 } 1249 } 1250 return inode; 1251 } 1252 EXPORT_SYMBOL(iget5_locked); 1253 1254 /** 1255 * iget_locked - obtain an inode from a mounted file system 1256 * @sb: super block of file system 1257 * @ino: inode number to get 1258 * 1259 * Search for the inode specified by @ino in the inode cache and if present 1260 * return it with an increased reference count. This is for file systems 1261 * where the inode number is sufficient for unique identification of an inode. 1262 * 1263 * If the inode is not in cache, allocate a new inode and return it locked, 1264 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1265 * before unlocking it via unlock_new_inode(). 1266 */ 1267 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1268 { 1269 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1270 struct inode *inode; 1271 again: 1272 spin_lock(&inode_hash_lock); 1273 inode = find_inode_fast(sb, head, ino); 1274 spin_unlock(&inode_hash_lock); 1275 if (inode) { 1276 if (IS_ERR(inode)) 1277 return NULL; 1278 wait_on_inode(inode); 1279 if (unlikely(inode_unhashed(inode))) { 1280 iput(inode); 1281 goto again; 1282 } 1283 return inode; 1284 } 1285 1286 inode = alloc_inode(sb); 1287 if (inode) { 1288 struct inode *old; 1289 1290 spin_lock(&inode_hash_lock); 1291 /* We released the lock, so.. */ 1292 old = find_inode_fast(sb, head, ino); 1293 if (!old) { 1294 inode->i_ino = ino; 1295 spin_lock(&inode->i_lock); 1296 inode->i_state = I_NEW; 1297 hlist_add_head_rcu(&inode->i_hash, head); 1298 spin_unlock(&inode->i_lock); 1299 inode_sb_list_add(inode); 1300 spin_unlock(&inode_hash_lock); 1301 1302 /* Return the locked inode with I_NEW set, the 1303 * caller is responsible for filling in the contents 1304 */ 1305 return inode; 1306 } 1307 1308 /* 1309 * Uhhuh, somebody else created the same inode under 1310 * us. Use the old inode instead of the one we just 1311 * allocated. 1312 */ 1313 spin_unlock(&inode_hash_lock); 1314 destroy_inode(inode); 1315 if (IS_ERR(old)) 1316 return NULL; 1317 inode = old; 1318 wait_on_inode(inode); 1319 if (unlikely(inode_unhashed(inode))) { 1320 iput(inode); 1321 goto again; 1322 } 1323 } 1324 return inode; 1325 } 1326 EXPORT_SYMBOL(iget_locked); 1327 1328 /* 1329 * search the inode cache for a matching inode number. 1330 * If we find one, then the inode number we are trying to 1331 * allocate is not unique and so we should not use it. 1332 * 1333 * Returns 1 if the inode number is unique, 0 if it is not. 1334 */ 1335 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1336 { 1337 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1338 struct inode *inode; 1339 1340 hlist_for_each_entry_rcu(inode, b, i_hash) { 1341 if (inode->i_ino == ino && inode->i_sb == sb) 1342 return 0; 1343 } 1344 return 1; 1345 } 1346 1347 /** 1348 * iunique - get a unique inode number 1349 * @sb: superblock 1350 * @max_reserved: highest reserved inode number 1351 * 1352 * Obtain an inode number that is unique on the system for a given 1353 * superblock. This is used by file systems that have no natural 1354 * permanent inode numbering system. An inode number is returned that 1355 * is higher than the reserved limit but unique. 1356 * 1357 * BUGS: 1358 * With a large number of inodes live on the file system this function 1359 * currently becomes quite slow. 1360 */ 1361 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1362 { 1363 /* 1364 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1365 * error if st_ino won't fit in target struct field. Use 32bit counter 1366 * here to attempt to avoid that. 1367 */ 1368 static DEFINE_SPINLOCK(iunique_lock); 1369 static unsigned int counter; 1370 ino_t res; 1371 1372 rcu_read_lock(); 1373 spin_lock(&iunique_lock); 1374 do { 1375 if (counter <= max_reserved) 1376 counter = max_reserved + 1; 1377 res = counter++; 1378 } while (!test_inode_iunique(sb, res)); 1379 spin_unlock(&iunique_lock); 1380 rcu_read_unlock(); 1381 1382 return res; 1383 } 1384 EXPORT_SYMBOL(iunique); 1385 1386 struct inode *igrab(struct inode *inode) 1387 { 1388 spin_lock(&inode->i_lock); 1389 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1390 __iget(inode); 1391 spin_unlock(&inode->i_lock); 1392 } else { 1393 spin_unlock(&inode->i_lock); 1394 /* 1395 * Handle the case where s_op->clear_inode is not been 1396 * called yet, and somebody is calling igrab 1397 * while the inode is getting freed. 1398 */ 1399 inode = NULL; 1400 } 1401 return inode; 1402 } 1403 EXPORT_SYMBOL(igrab); 1404 1405 /** 1406 * ilookup5_nowait - search for an inode in the inode cache 1407 * @sb: super block of file system to search 1408 * @hashval: hash value (usually inode number) to search for 1409 * @test: callback used for comparisons between inodes 1410 * @data: opaque data pointer to pass to @test 1411 * 1412 * Search for the inode specified by @hashval and @data in the inode cache. 1413 * If the inode is in the cache, the inode is returned with an incremented 1414 * reference count. 1415 * 1416 * Note: I_NEW is not waited upon so you have to be very careful what you do 1417 * with the returned inode. You probably should be using ilookup5() instead. 1418 * 1419 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1420 */ 1421 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1422 int (*test)(struct inode *, void *), void *data) 1423 { 1424 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1425 struct inode *inode; 1426 1427 spin_lock(&inode_hash_lock); 1428 inode = find_inode(sb, head, test, data); 1429 spin_unlock(&inode_hash_lock); 1430 1431 return IS_ERR(inode) ? NULL : inode; 1432 } 1433 EXPORT_SYMBOL(ilookup5_nowait); 1434 1435 /** 1436 * ilookup5 - search for an inode in the inode cache 1437 * @sb: super block of file system to search 1438 * @hashval: hash value (usually inode number) to search for 1439 * @test: callback used for comparisons between inodes 1440 * @data: opaque data pointer to pass to @test 1441 * 1442 * Search for the inode specified by @hashval and @data in the inode cache, 1443 * and if the inode is in the cache, return the inode with an incremented 1444 * reference count. Waits on I_NEW before returning the inode. 1445 * returned with an incremented reference count. 1446 * 1447 * This is a generalized version of ilookup() for file systems where the 1448 * inode number is not sufficient for unique identification of an inode. 1449 * 1450 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1451 */ 1452 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1453 int (*test)(struct inode *, void *), void *data) 1454 { 1455 struct inode *inode; 1456 again: 1457 inode = ilookup5_nowait(sb, hashval, test, data); 1458 if (inode) { 1459 wait_on_inode(inode); 1460 if (unlikely(inode_unhashed(inode))) { 1461 iput(inode); 1462 goto again; 1463 } 1464 } 1465 return inode; 1466 } 1467 EXPORT_SYMBOL(ilookup5); 1468 1469 /** 1470 * ilookup - search for an inode in the inode cache 1471 * @sb: super block of file system to search 1472 * @ino: inode number to search for 1473 * 1474 * Search for the inode @ino in the inode cache, and if the inode is in the 1475 * cache, the inode is returned with an incremented reference count. 1476 */ 1477 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1478 { 1479 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1480 struct inode *inode; 1481 again: 1482 spin_lock(&inode_hash_lock); 1483 inode = find_inode_fast(sb, head, ino); 1484 spin_unlock(&inode_hash_lock); 1485 1486 if (inode) { 1487 if (IS_ERR(inode)) 1488 return NULL; 1489 wait_on_inode(inode); 1490 if (unlikely(inode_unhashed(inode))) { 1491 iput(inode); 1492 goto again; 1493 } 1494 } 1495 return inode; 1496 } 1497 EXPORT_SYMBOL(ilookup); 1498 1499 /** 1500 * find_inode_nowait - find an inode in the inode cache 1501 * @sb: super block of file system to search 1502 * @hashval: hash value (usually inode number) to search for 1503 * @match: callback used for comparisons between inodes 1504 * @data: opaque data pointer to pass to @match 1505 * 1506 * Search for the inode specified by @hashval and @data in the inode 1507 * cache, where the helper function @match will return 0 if the inode 1508 * does not match, 1 if the inode does match, and -1 if the search 1509 * should be stopped. The @match function must be responsible for 1510 * taking the i_lock spin_lock and checking i_state for an inode being 1511 * freed or being initialized, and incrementing the reference count 1512 * before returning 1. It also must not sleep, since it is called with 1513 * the inode_hash_lock spinlock held. 1514 * 1515 * This is a even more generalized version of ilookup5() when the 1516 * function must never block --- find_inode() can block in 1517 * __wait_on_freeing_inode() --- or when the caller can not increment 1518 * the reference count because the resulting iput() might cause an 1519 * inode eviction. The tradeoff is that the @match funtion must be 1520 * very carefully implemented. 1521 */ 1522 struct inode *find_inode_nowait(struct super_block *sb, 1523 unsigned long hashval, 1524 int (*match)(struct inode *, unsigned long, 1525 void *), 1526 void *data) 1527 { 1528 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1529 struct inode *inode, *ret_inode = NULL; 1530 int mval; 1531 1532 spin_lock(&inode_hash_lock); 1533 hlist_for_each_entry(inode, head, i_hash) { 1534 if (inode->i_sb != sb) 1535 continue; 1536 mval = match(inode, hashval, data); 1537 if (mval == 0) 1538 continue; 1539 if (mval == 1) 1540 ret_inode = inode; 1541 goto out; 1542 } 1543 out: 1544 spin_unlock(&inode_hash_lock); 1545 return ret_inode; 1546 } 1547 EXPORT_SYMBOL(find_inode_nowait); 1548 1549 /** 1550 * find_inode_rcu - find an inode in the inode cache 1551 * @sb: Super block of file system to search 1552 * @hashval: Key to hash 1553 * @test: Function to test match on an inode 1554 * @data: Data for test function 1555 * 1556 * Search for the inode specified by @hashval and @data in the inode cache, 1557 * where the helper function @test will return 0 if the inode does not match 1558 * and 1 if it does. The @test function must be responsible for taking the 1559 * i_lock spin_lock and checking i_state for an inode being freed or being 1560 * initialized. 1561 * 1562 * If successful, this will return the inode for which the @test function 1563 * returned 1 and NULL otherwise. 1564 * 1565 * The @test function is not permitted to take a ref on any inode presented. 1566 * It is also not permitted to sleep. 1567 * 1568 * The caller must hold the RCU read lock. 1569 */ 1570 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1571 int (*test)(struct inode *, void *), void *data) 1572 { 1573 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1574 struct inode *inode; 1575 1576 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1577 "suspicious find_inode_rcu() usage"); 1578 1579 hlist_for_each_entry_rcu(inode, head, i_hash) { 1580 if (inode->i_sb == sb && 1581 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1582 test(inode, data)) 1583 return inode; 1584 } 1585 return NULL; 1586 } 1587 EXPORT_SYMBOL(find_inode_rcu); 1588 1589 /** 1590 * find_inode_by_ino_rcu - Find an inode in the inode cache 1591 * @sb: Super block of file system to search 1592 * @ino: The inode number to match 1593 * 1594 * Search for the inode specified by @hashval and @data in the inode cache, 1595 * where the helper function @test will return 0 if the inode does not match 1596 * and 1 if it does. The @test function must be responsible for taking the 1597 * i_lock spin_lock and checking i_state for an inode being freed or being 1598 * initialized. 1599 * 1600 * If successful, this will return the inode for which the @test function 1601 * returned 1 and NULL otherwise. 1602 * 1603 * The @test function is not permitted to take a ref on any inode presented. 1604 * It is also not permitted to sleep. 1605 * 1606 * The caller must hold the RCU read lock. 1607 */ 1608 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1609 unsigned long ino) 1610 { 1611 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1612 struct inode *inode; 1613 1614 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1615 "suspicious find_inode_by_ino_rcu() usage"); 1616 1617 hlist_for_each_entry_rcu(inode, head, i_hash) { 1618 if (inode->i_ino == ino && 1619 inode->i_sb == sb && 1620 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1621 return inode; 1622 } 1623 return NULL; 1624 } 1625 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1626 1627 int insert_inode_locked(struct inode *inode) 1628 { 1629 struct super_block *sb = inode->i_sb; 1630 ino_t ino = inode->i_ino; 1631 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1632 1633 while (1) { 1634 struct inode *old = NULL; 1635 spin_lock(&inode_hash_lock); 1636 hlist_for_each_entry(old, head, i_hash) { 1637 if (old->i_ino != ino) 1638 continue; 1639 if (old->i_sb != sb) 1640 continue; 1641 spin_lock(&old->i_lock); 1642 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1643 spin_unlock(&old->i_lock); 1644 continue; 1645 } 1646 break; 1647 } 1648 if (likely(!old)) { 1649 spin_lock(&inode->i_lock); 1650 inode->i_state |= I_NEW | I_CREATING; 1651 hlist_add_head_rcu(&inode->i_hash, head); 1652 spin_unlock(&inode->i_lock); 1653 spin_unlock(&inode_hash_lock); 1654 return 0; 1655 } 1656 if (unlikely(old->i_state & I_CREATING)) { 1657 spin_unlock(&old->i_lock); 1658 spin_unlock(&inode_hash_lock); 1659 return -EBUSY; 1660 } 1661 __iget(old); 1662 spin_unlock(&old->i_lock); 1663 spin_unlock(&inode_hash_lock); 1664 wait_on_inode(old); 1665 if (unlikely(!inode_unhashed(old))) { 1666 iput(old); 1667 return -EBUSY; 1668 } 1669 iput(old); 1670 } 1671 } 1672 EXPORT_SYMBOL(insert_inode_locked); 1673 1674 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1675 int (*test)(struct inode *, void *), void *data) 1676 { 1677 struct inode *old; 1678 1679 inode->i_state |= I_CREATING; 1680 old = inode_insert5(inode, hashval, test, NULL, data); 1681 1682 if (old != inode) { 1683 iput(old); 1684 return -EBUSY; 1685 } 1686 return 0; 1687 } 1688 EXPORT_SYMBOL(insert_inode_locked4); 1689 1690 1691 int generic_delete_inode(struct inode *inode) 1692 { 1693 return 1; 1694 } 1695 EXPORT_SYMBOL(generic_delete_inode); 1696 1697 /* 1698 * Called when we're dropping the last reference 1699 * to an inode. 1700 * 1701 * Call the FS "drop_inode()" function, defaulting to 1702 * the legacy UNIX filesystem behaviour. If it tells 1703 * us to evict inode, do so. Otherwise, retain inode 1704 * in cache if fs is alive, sync and evict if fs is 1705 * shutting down. 1706 */ 1707 static void iput_final(struct inode *inode) 1708 { 1709 struct super_block *sb = inode->i_sb; 1710 const struct super_operations *op = inode->i_sb->s_op; 1711 unsigned long state; 1712 int drop; 1713 1714 WARN_ON(inode->i_state & I_NEW); 1715 1716 if (op->drop_inode) 1717 drop = op->drop_inode(inode); 1718 else 1719 drop = generic_drop_inode(inode); 1720 1721 if (!drop && 1722 !(inode->i_state & I_DONTCACHE) && 1723 (sb->s_flags & SB_ACTIVE)) { 1724 __inode_add_lru(inode, true); 1725 spin_unlock(&inode->i_lock); 1726 return; 1727 } 1728 1729 state = inode->i_state; 1730 if (!drop) { 1731 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1732 spin_unlock(&inode->i_lock); 1733 1734 write_inode_now(inode, 1); 1735 1736 spin_lock(&inode->i_lock); 1737 state = inode->i_state; 1738 WARN_ON(state & I_NEW); 1739 state &= ~I_WILL_FREE; 1740 } 1741 1742 WRITE_ONCE(inode->i_state, state | I_FREEING); 1743 if (!list_empty(&inode->i_lru)) 1744 inode_lru_list_del(inode); 1745 spin_unlock(&inode->i_lock); 1746 1747 evict(inode); 1748 } 1749 1750 /** 1751 * iput - put an inode 1752 * @inode: inode to put 1753 * 1754 * Puts an inode, dropping its usage count. If the inode use count hits 1755 * zero, the inode is then freed and may also be destroyed. 1756 * 1757 * Consequently, iput() can sleep. 1758 */ 1759 void iput(struct inode *inode) 1760 { 1761 if (!inode) 1762 return; 1763 BUG_ON(inode->i_state & I_CLEAR); 1764 retry: 1765 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1766 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1767 atomic_inc(&inode->i_count); 1768 spin_unlock(&inode->i_lock); 1769 trace_writeback_lazytime_iput(inode); 1770 mark_inode_dirty_sync(inode); 1771 goto retry; 1772 } 1773 iput_final(inode); 1774 } 1775 } 1776 EXPORT_SYMBOL(iput); 1777 1778 #ifdef CONFIG_BLOCK 1779 /** 1780 * bmap - find a block number in a file 1781 * @inode: inode owning the block number being requested 1782 * @block: pointer containing the block to find 1783 * 1784 * Replaces the value in ``*block`` with the block number on the device holding 1785 * corresponding to the requested block number in the file. 1786 * That is, asked for block 4 of inode 1 the function will replace the 1787 * 4 in ``*block``, with disk block relative to the disk start that holds that 1788 * block of the file. 1789 * 1790 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1791 * hole, returns 0 and ``*block`` is also set to 0. 1792 */ 1793 int bmap(struct inode *inode, sector_t *block) 1794 { 1795 if (!inode->i_mapping->a_ops->bmap) 1796 return -EINVAL; 1797 1798 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1799 return 0; 1800 } 1801 EXPORT_SYMBOL(bmap); 1802 #endif 1803 1804 /* 1805 * With relative atime, only update atime if the previous atime is 1806 * earlier than either the ctime or mtime or if at least a day has 1807 * passed since the last atime update. 1808 */ 1809 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1810 struct timespec64 now) 1811 { 1812 1813 if (!(mnt->mnt_flags & MNT_RELATIME)) 1814 return 1; 1815 /* 1816 * Is mtime younger than atime? If yes, update atime: 1817 */ 1818 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1819 return 1; 1820 /* 1821 * Is ctime younger than atime? If yes, update atime: 1822 */ 1823 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1824 return 1; 1825 1826 /* 1827 * Is the previous atime value older than a day? If yes, 1828 * update atime: 1829 */ 1830 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1831 return 1; 1832 /* 1833 * Good, we can skip the atime update: 1834 */ 1835 return 0; 1836 } 1837 1838 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1839 { 1840 int dirty_flags = 0; 1841 1842 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1843 if (flags & S_ATIME) 1844 inode->i_atime = *time; 1845 if (flags & S_CTIME) 1846 inode->i_ctime = *time; 1847 if (flags & S_MTIME) 1848 inode->i_mtime = *time; 1849 1850 if (inode->i_sb->s_flags & SB_LAZYTIME) 1851 dirty_flags |= I_DIRTY_TIME; 1852 else 1853 dirty_flags |= I_DIRTY_SYNC; 1854 } 1855 1856 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1857 dirty_flags |= I_DIRTY_SYNC; 1858 1859 __mark_inode_dirty(inode, dirty_flags); 1860 return 0; 1861 } 1862 EXPORT_SYMBOL(generic_update_time); 1863 1864 /* 1865 * This does the actual work of updating an inodes time or version. Must have 1866 * had called mnt_want_write() before calling this. 1867 */ 1868 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags) 1869 { 1870 if (inode->i_op->update_time) 1871 return inode->i_op->update_time(inode, time, flags); 1872 return generic_update_time(inode, time, flags); 1873 } 1874 EXPORT_SYMBOL(inode_update_time); 1875 1876 /** 1877 * atime_needs_update - update the access time 1878 * @path: the &struct path to update 1879 * @inode: inode to update 1880 * 1881 * Update the accessed time on an inode and mark it for writeback. 1882 * This function automatically handles read only file systems and media, 1883 * as well as the "noatime" flag and inode specific "noatime" markers. 1884 */ 1885 bool atime_needs_update(const struct path *path, struct inode *inode) 1886 { 1887 struct vfsmount *mnt = path->mnt; 1888 struct timespec64 now; 1889 1890 if (inode->i_flags & S_NOATIME) 1891 return false; 1892 1893 /* Atime updates will likely cause i_uid and i_gid to be written 1894 * back improprely if their true value is unknown to the vfs. 1895 */ 1896 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode)) 1897 return false; 1898 1899 if (IS_NOATIME(inode)) 1900 return false; 1901 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1902 return false; 1903 1904 if (mnt->mnt_flags & MNT_NOATIME) 1905 return false; 1906 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1907 return false; 1908 1909 now = current_time(inode); 1910 1911 if (!relatime_need_update(mnt, inode, now)) 1912 return false; 1913 1914 if (timespec64_equal(&inode->i_atime, &now)) 1915 return false; 1916 1917 return true; 1918 } 1919 1920 void touch_atime(const struct path *path) 1921 { 1922 struct vfsmount *mnt = path->mnt; 1923 struct inode *inode = d_inode(path->dentry); 1924 struct timespec64 now; 1925 1926 if (!atime_needs_update(path, inode)) 1927 return; 1928 1929 if (!sb_start_write_trylock(inode->i_sb)) 1930 return; 1931 1932 if (__mnt_want_write(mnt) != 0) 1933 goto skip_update; 1934 /* 1935 * File systems can error out when updating inodes if they need to 1936 * allocate new space to modify an inode (such is the case for 1937 * Btrfs), but since we touch atime while walking down the path we 1938 * really don't care if we failed to update the atime of the file, 1939 * so just ignore the return value. 1940 * We may also fail on filesystems that have the ability to make parts 1941 * of the fs read only, e.g. subvolumes in Btrfs. 1942 */ 1943 now = current_time(inode); 1944 inode_update_time(inode, &now, S_ATIME); 1945 __mnt_drop_write(mnt); 1946 skip_update: 1947 sb_end_write(inode->i_sb); 1948 } 1949 EXPORT_SYMBOL(touch_atime); 1950 1951 /* 1952 * Return mask of changes for notify_change() that need to be done as a 1953 * response to write or truncate. Return 0 if nothing has to be changed. 1954 * Negative value on error (change should be denied). 1955 */ 1956 int dentry_needs_remove_privs(struct user_namespace *mnt_userns, 1957 struct dentry *dentry) 1958 { 1959 struct inode *inode = d_inode(dentry); 1960 int mask = 0; 1961 int ret; 1962 1963 if (IS_NOSEC(inode)) 1964 return 0; 1965 1966 mask = setattr_should_drop_suidgid(mnt_userns, inode); 1967 ret = security_inode_need_killpriv(dentry); 1968 if (ret < 0) 1969 return ret; 1970 if (ret) 1971 mask |= ATTR_KILL_PRIV; 1972 return mask; 1973 } 1974 1975 static int __remove_privs(struct user_namespace *mnt_userns, 1976 struct dentry *dentry, int kill) 1977 { 1978 struct iattr newattrs; 1979 1980 newattrs.ia_valid = ATTR_FORCE | kill; 1981 /* 1982 * Note we call this on write, so notify_change will not 1983 * encounter any conflicting delegations: 1984 */ 1985 return notify_change(mnt_userns, dentry, &newattrs, NULL); 1986 } 1987 1988 static int __file_remove_privs(struct file *file, unsigned int flags) 1989 { 1990 struct dentry *dentry = file_dentry(file); 1991 struct inode *inode = file_inode(file); 1992 int error = 0; 1993 int kill; 1994 1995 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 1996 return 0; 1997 1998 kill = dentry_needs_remove_privs(file_mnt_user_ns(file), dentry); 1999 if (kill < 0) 2000 return kill; 2001 2002 if (kill) { 2003 if (flags & IOCB_NOWAIT) 2004 return -EAGAIN; 2005 2006 error = __remove_privs(file_mnt_user_ns(file), dentry, kill); 2007 } 2008 2009 if (!error) 2010 inode_has_no_xattr(inode); 2011 return error; 2012 } 2013 2014 /** 2015 * file_remove_privs - remove special file privileges (suid, capabilities) 2016 * @file: file to remove privileges from 2017 * 2018 * When file is modified by a write or truncation ensure that special 2019 * file privileges are removed. 2020 * 2021 * Return: 0 on success, negative errno on failure. 2022 */ 2023 int file_remove_privs(struct file *file) 2024 { 2025 return __file_remove_privs(file, 0); 2026 } 2027 EXPORT_SYMBOL(file_remove_privs); 2028 2029 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now) 2030 { 2031 int sync_it = 0; 2032 2033 /* First try to exhaust all avenues to not sync */ 2034 if (IS_NOCMTIME(inode)) 2035 return 0; 2036 2037 if (!timespec64_equal(&inode->i_mtime, now)) 2038 sync_it = S_MTIME; 2039 2040 if (!timespec64_equal(&inode->i_ctime, now)) 2041 sync_it |= S_CTIME; 2042 2043 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2044 sync_it |= S_VERSION; 2045 2046 return sync_it; 2047 } 2048 2049 static int __file_update_time(struct file *file, struct timespec64 *now, 2050 int sync_mode) 2051 { 2052 int ret = 0; 2053 struct inode *inode = file_inode(file); 2054 2055 /* try to update time settings */ 2056 if (!__mnt_want_write_file(file)) { 2057 ret = inode_update_time(inode, now, sync_mode); 2058 __mnt_drop_write_file(file); 2059 } 2060 2061 return ret; 2062 } 2063 2064 /** 2065 * file_update_time - update mtime and ctime time 2066 * @file: file accessed 2067 * 2068 * Update the mtime and ctime members of an inode and mark the inode for 2069 * writeback. Note that this function is meant exclusively for usage in 2070 * the file write path of filesystems, and filesystems may choose to 2071 * explicitly ignore updates via this function with the _NOCMTIME inode 2072 * flag, e.g. for network filesystem where these imestamps are handled 2073 * by the server. This can return an error for file systems who need to 2074 * allocate space in order to update an inode. 2075 * 2076 * Return: 0 on success, negative errno on failure. 2077 */ 2078 int file_update_time(struct file *file) 2079 { 2080 int ret; 2081 struct inode *inode = file_inode(file); 2082 struct timespec64 now = current_time(inode); 2083 2084 ret = inode_needs_update_time(inode, &now); 2085 if (ret <= 0) 2086 return ret; 2087 2088 return __file_update_time(file, &now, ret); 2089 } 2090 EXPORT_SYMBOL(file_update_time); 2091 2092 /** 2093 * file_modified_flags - handle mandated vfs changes when modifying a file 2094 * @file: file that was modified 2095 * @flags: kiocb flags 2096 * 2097 * When file has been modified ensure that special 2098 * file privileges are removed and time settings are updated. 2099 * 2100 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2101 * time settings will not be updated. It will return -EAGAIN. 2102 * 2103 * Context: Caller must hold the file's inode lock. 2104 * 2105 * Return: 0 on success, negative errno on failure. 2106 */ 2107 static int file_modified_flags(struct file *file, int flags) 2108 { 2109 int ret; 2110 struct inode *inode = file_inode(file); 2111 struct timespec64 now = current_time(inode); 2112 2113 /* 2114 * Clear the security bits if the process is not being run by root. 2115 * This keeps people from modifying setuid and setgid binaries. 2116 */ 2117 ret = __file_remove_privs(file, flags); 2118 if (ret) 2119 return ret; 2120 2121 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2122 return 0; 2123 2124 ret = inode_needs_update_time(inode, &now); 2125 if (ret <= 0) 2126 return ret; 2127 if (flags & IOCB_NOWAIT) 2128 return -EAGAIN; 2129 2130 return __file_update_time(file, &now, ret); 2131 } 2132 2133 /** 2134 * file_modified - handle mandated vfs changes when modifying a file 2135 * @file: file that was modified 2136 * 2137 * When file has been modified ensure that special 2138 * file privileges are removed and time settings are updated. 2139 * 2140 * Context: Caller must hold the file's inode lock. 2141 * 2142 * Return: 0 on success, negative errno on failure. 2143 */ 2144 int file_modified(struct file *file) 2145 { 2146 return file_modified_flags(file, 0); 2147 } 2148 EXPORT_SYMBOL(file_modified); 2149 2150 /** 2151 * kiocb_modified - handle mandated vfs changes when modifying a file 2152 * @iocb: iocb that was modified 2153 * 2154 * When file has been modified ensure that special 2155 * file privileges are removed and time settings are updated. 2156 * 2157 * Context: Caller must hold the file's inode lock. 2158 * 2159 * Return: 0 on success, negative errno on failure. 2160 */ 2161 int kiocb_modified(struct kiocb *iocb) 2162 { 2163 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2164 } 2165 EXPORT_SYMBOL_GPL(kiocb_modified); 2166 2167 int inode_needs_sync(struct inode *inode) 2168 { 2169 if (IS_SYNC(inode)) 2170 return 1; 2171 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2172 return 1; 2173 return 0; 2174 } 2175 EXPORT_SYMBOL(inode_needs_sync); 2176 2177 /* 2178 * If we try to find an inode in the inode hash while it is being 2179 * deleted, we have to wait until the filesystem completes its 2180 * deletion before reporting that it isn't found. This function waits 2181 * until the deletion _might_ have completed. Callers are responsible 2182 * to recheck inode state. 2183 * 2184 * It doesn't matter if I_NEW is not set initially, a call to 2185 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2186 * will DTRT. 2187 */ 2188 static void __wait_on_freeing_inode(struct inode *inode) 2189 { 2190 wait_queue_head_t *wq; 2191 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2192 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2193 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2194 spin_unlock(&inode->i_lock); 2195 spin_unlock(&inode_hash_lock); 2196 schedule(); 2197 finish_wait(wq, &wait.wq_entry); 2198 spin_lock(&inode_hash_lock); 2199 } 2200 2201 static __initdata unsigned long ihash_entries; 2202 static int __init set_ihash_entries(char *str) 2203 { 2204 if (!str) 2205 return 0; 2206 ihash_entries = simple_strtoul(str, &str, 0); 2207 return 1; 2208 } 2209 __setup("ihash_entries=", set_ihash_entries); 2210 2211 /* 2212 * Initialize the waitqueues and inode hash table. 2213 */ 2214 void __init inode_init_early(void) 2215 { 2216 /* If hashes are distributed across NUMA nodes, defer 2217 * hash allocation until vmalloc space is available. 2218 */ 2219 if (hashdist) 2220 return; 2221 2222 inode_hashtable = 2223 alloc_large_system_hash("Inode-cache", 2224 sizeof(struct hlist_head), 2225 ihash_entries, 2226 14, 2227 HASH_EARLY | HASH_ZERO, 2228 &i_hash_shift, 2229 &i_hash_mask, 2230 0, 2231 0); 2232 } 2233 2234 void __init inode_init(void) 2235 { 2236 /* inode slab cache */ 2237 inode_cachep = kmem_cache_create("inode_cache", 2238 sizeof(struct inode), 2239 0, 2240 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2241 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2242 init_once); 2243 2244 /* Hash may have been set up in inode_init_early */ 2245 if (!hashdist) 2246 return; 2247 2248 inode_hashtable = 2249 alloc_large_system_hash("Inode-cache", 2250 sizeof(struct hlist_head), 2251 ihash_entries, 2252 14, 2253 HASH_ZERO, 2254 &i_hash_shift, 2255 &i_hash_mask, 2256 0, 2257 0); 2258 } 2259 2260 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2261 { 2262 inode->i_mode = mode; 2263 if (S_ISCHR(mode)) { 2264 inode->i_fop = &def_chr_fops; 2265 inode->i_rdev = rdev; 2266 } else if (S_ISBLK(mode)) { 2267 inode->i_fop = &def_blk_fops; 2268 inode->i_rdev = rdev; 2269 } else if (S_ISFIFO(mode)) 2270 inode->i_fop = &pipefifo_fops; 2271 else if (S_ISSOCK(mode)) 2272 ; /* leave it no_open_fops */ 2273 else 2274 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2275 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2276 inode->i_ino); 2277 } 2278 EXPORT_SYMBOL(init_special_inode); 2279 2280 /** 2281 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2282 * @mnt_userns: User namespace of the mount the inode was created from 2283 * @inode: New inode 2284 * @dir: Directory inode 2285 * @mode: mode of the new inode 2286 * 2287 * If the inode has been created through an idmapped mount the user namespace of 2288 * the vfsmount must be passed through @mnt_userns. This function will then take 2289 * care to map the inode according to @mnt_userns before checking permissions 2290 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2291 * checking is to be performed on the raw inode simply passs init_user_ns. 2292 */ 2293 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, 2294 const struct inode *dir, umode_t mode) 2295 { 2296 inode_fsuid_set(inode, mnt_userns); 2297 if (dir && dir->i_mode & S_ISGID) { 2298 inode->i_gid = dir->i_gid; 2299 2300 /* Directories are special, and always inherit S_ISGID */ 2301 if (S_ISDIR(mode)) 2302 mode |= S_ISGID; 2303 } else 2304 inode_fsgid_set(inode, mnt_userns); 2305 inode->i_mode = mode; 2306 } 2307 EXPORT_SYMBOL(inode_init_owner); 2308 2309 /** 2310 * inode_owner_or_capable - check current task permissions to inode 2311 * @mnt_userns: user namespace of the mount the inode was found from 2312 * @inode: inode being checked 2313 * 2314 * Return true if current either has CAP_FOWNER in a namespace with the 2315 * inode owner uid mapped, or owns the file. 2316 * 2317 * If the inode has been found through an idmapped mount the user namespace of 2318 * the vfsmount must be passed through @mnt_userns. This function will then take 2319 * care to map the inode according to @mnt_userns before checking permissions. 2320 * On non-idmapped mounts or if permission checking is to be performed on the 2321 * raw inode simply passs init_user_ns. 2322 */ 2323 bool inode_owner_or_capable(struct user_namespace *mnt_userns, 2324 const struct inode *inode) 2325 { 2326 vfsuid_t vfsuid; 2327 struct user_namespace *ns; 2328 2329 vfsuid = i_uid_into_vfsuid(mnt_userns, inode); 2330 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2331 return true; 2332 2333 ns = current_user_ns(); 2334 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2335 return true; 2336 return false; 2337 } 2338 EXPORT_SYMBOL(inode_owner_or_capable); 2339 2340 /* 2341 * Direct i/o helper functions 2342 */ 2343 static void __inode_dio_wait(struct inode *inode) 2344 { 2345 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2346 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2347 2348 do { 2349 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2350 if (atomic_read(&inode->i_dio_count)) 2351 schedule(); 2352 } while (atomic_read(&inode->i_dio_count)); 2353 finish_wait(wq, &q.wq_entry); 2354 } 2355 2356 /** 2357 * inode_dio_wait - wait for outstanding DIO requests to finish 2358 * @inode: inode to wait for 2359 * 2360 * Waits for all pending direct I/O requests to finish so that we can 2361 * proceed with a truncate or equivalent operation. 2362 * 2363 * Must be called under a lock that serializes taking new references 2364 * to i_dio_count, usually by inode->i_mutex. 2365 */ 2366 void inode_dio_wait(struct inode *inode) 2367 { 2368 if (atomic_read(&inode->i_dio_count)) 2369 __inode_dio_wait(inode); 2370 } 2371 EXPORT_SYMBOL(inode_dio_wait); 2372 2373 /* 2374 * inode_set_flags - atomically set some inode flags 2375 * 2376 * Note: the caller should be holding i_mutex, or else be sure that 2377 * they have exclusive access to the inode structure (i.e., while the 2378 * inode is being instantiated). The reason for the cmpxchg() loop 2379 * --- which wouldn't be necessary if all code paths which modify 2380 * i_flags actually followed this rule, is that there is at least one 2381 * code path which doesn't today so we use cmpxchg() out of an abundance 2382 * of caution. 2383 * 2384 * In the long run, i_mutex is overkill, and we should probably look 2385 * at using the i_lock spinlock to protect i_flags, and then make sure 2386 * it is so documented in include/linux/fs.h and that all code follows 2387 * the locking convention!! 2388 */ 2389 void inode_set_flags(struct inode *inode, unsigned int flags, 2390 unsigned int mask) 2391 { 2392 WARN_ON_ONCE(flags & ~mask); 2393 set_mask_bits(&inode->i_flags, mask, flags); 2394 } 2395 EXPORT_SYMBOL(inode_set_flags); 2396 2397 void inode_nohighmem(struct inode *inode) 2398 { 2399 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2400 } 2401 EXPORT_SYMBOL(inode_nohighmem); 2402 2403 /** 2404 * timestamp_truncate - Truncate timespec to a granularity 2405 * @t: Timespec 2406 * @inode: inode being updated 2407 * 2408 * Truncate a timespec to the granularity supported by the fs 2409 * containing the inode. Always rounds down. gran must 2410 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2411 */ 2412 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2413 { 2414 struct super_block *sb = inode->i_sb; 2415 unsigned int gran = sb->s_time_gran; 2416 2417 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2418 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2419 t.tv_nsec = 0; 2420 2421 /* Avoid division in the common cases 1 ns and 1 s. */ 2422 if (gran == 1) 2423 ; /* nothing */ 2424 else if (gran == NSEC_PER_SEC) 2425 t.tv_nsec = 0; 2426 else if (gran > 1 && gran < NSEC_PER_SEC) 2427 t.tv_nsec -= t.tv_nsec % gran; 2428 else 2429 WARN(1, "invalid file time granularity: %u", gran); 2430 return t; 2431 } 2432 EXPORT_SYMBOL(timestamp_truncate); 2433 2434 /** 2435 * current_time - Return FS time 2436 * @inode: inode. 2437 * 2438 * Return the current time truncated to the time granularity supported by 2439 * the fs. 2440 * 2441 * Note that inode and inode->sb cannot be NULL. 2442 * Otherwise, the function warns and returns time without truncation. 2443 */ 2444 struct timespec64 current_time(struct inode *inode) 2445 { 2446 struct timespec64 now; 2447 2448 ktime_get_coarse_real_ts64(&now); 2449 2450 if (unlikely(!inode->i_sb)) { 2451 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2452 return now; 2453 } 2454 2455 return timestamp_truncate(now, inode); 2456 } 2457 EXPORT_SYMBOL(current_time); 2458 2459 /** 2460 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2461 * @mnt_userns: user namespace of the mount @inode was found from 2462 * @inode: inode to check 2463 * @vfsgid: the new/current vfsgid of @inode 2464 * 2465 * Check wether @vfsgid is in the caller's group list or if the caller is 2466 * privileged with CAP_FSETID over @inode. This can be used to determine 2467 * whether the setgid bit can be kept or must be dropped. 2468 * 2469 * Return: true if the caller is sufficiently privileged, false if not. 2470 */ 2471 bool in_group_or_capable(struct user_namespace *mnt_userns, 2472 const struct inode *inode, vfsgid_t vfsgid) 2473 { 2474 if (vfsgid_in_group_p(vfsgid)) 2475 return true; 2476 if (capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) 2477 return true; 2478 return false; 2479 } 2480 2481 /** 2482 * mode_strip_sgid - handle the sgid bit for non-directories 2483 * @mnt_userns: User namespace of the mount the inode was created from 2484 * @dir: parent directory inode 2485 * @mode: mode of the file to be created in @dir 2486 * 2487 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2488 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2489 * either in the group of the parent directory or they have CAP_FSETID 2490 * in their user namespace and are privileged over the parent directory. 2491 * In all other cases, strip the S_ISGID bit from @mode. 2492 * 2493 * Return: the new mode to use for the file 2494 */ 2495 umode_t mode_strip_sgid(struct user_namespace *mnt_userns, 2496 const struct inode *dir, umode_t mode) 2497 { 2498 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2499 return mode; 2500 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2501 return mode; 2502 if (in_group_or_capable(mnt_userns, dir, 2503 i_gid_into_vfsgid(mnt_userns, dir))) 2504 return mode; 2505 return mode & ~S_ISGID; 2506 } 2507 EXPORT_SYMBOL(mode_strip_sgid); 2508