xref: /linux/fs/inode.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static struct kmem_cache * inode_cachep __read_mostly;
101 
102 static struct inode *alloc_inode(struct super_block *sb)
103 {
104 	static const struct address_space_operations empty_aops;
105 	static struct inode_operations empty_iops;
106 	static const struct file_operations empty_fops;
107 	struct inode *inode;
108 
109 	if (sb->s_op->alloc_inode)
110 		inode = sb->s_op->alloc_inode(sb);
111 	else
112 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
113 
114 	if (inode) {
115 		struct address_space * const mapping = &inode->i_data;
116 
117 		inode->i_sb = sb;
118 		inode->i_blkbits = sb->s_blocksize_bits;
119 		inode->i_flags = 0;
120 		atomic_set(&inode->i_count, 1);
121 		inode->i_op = &empty_iops;
122 		inode->i_fop = &empty_fops;
123 		inode->i_nlink = 1;
124 		atomic_set(&inode->i_writecount, 0);
125 		inode->i_size = 0;
126 		inode->i_blocks = 0;
127 		inode->i_bytes = 0;
128 		inode->i_generation = 0;
129 #ifdef CONFIG_QUOTA
130 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
131 #endif
132 		inode->i_pipe = NULL;
133 		inode->i_bdev = NULL;
134 		inode->i_cdev = NULL;
135 		inode->i_rdev = 0;
136 		inode->dirtied_when = 0;
137 		if (security_inode_alloc(inode)) {
138 			if (inode->i_sb->s_op->destroy_inode)
139 				inode->i_sb->s_op->destroy_inode(inode);
140 			else
141 				kmem_cache_free(inode_cachep, (inode));
142 			return NULL;
143 		}
144 
145 		spin_lock_init(&inode->i_lock);
146 		lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
147 
148 		mutex_init(&inode->i_mutex);
149 		lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
150 
151 		init_rwsem(&inode->i_alloc_sem);
152 		lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
153 
154 		mapping->a_ops = &empty_aops;
155  		mapping->host = inode;
156 		mapping->flags = 0;
157 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE);
158 		mapping->assoc_mapping = NULL;
159 		mapping->backing_dev_info = &default_backing_dev_info;
160 
161 		/*
162 		 * If the block_device provides a backing_dev_info for client
163 		 * inodes then use that.  Otherwise the inode share the bdev's
164 		 * backing_dev_info.
165 		 */
166 		if (sb->s_bdev) {
167 			struct backing_dev_info *bdi;
168 
169 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
170 			if (!bdi)
171 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
172 			mapping->backing_dev_info = bdi;
173 		}
174 		inode->i_private = NULL;
175 		inode->i_mapping = mapping;
176 	}
177 	return inode;
178 }
179 
180 void destroy_inode(struct inode *inode)
181 {
182 	BUG_ON(inode_has_buffers(inode));
183 	security_inode_free(inode);
184 	if (inode->i_sb->s_op->destroy_inode)
185 		inode->i_sb->s_op->destroy_inode(inode);
186 	else
187 		kmem_cache_free(inode_cachep, (inode));
188 }
189 
190 
191 /*
192  * These are initializations that only need to be done
193  * once, because the fields are idempotent across use
194  * of the inode, so let the slab aware of that.
195  */
196 void inode_init_once(struct inode *inode)
197 {
198 	memset(inode, 0, sizeof(*inode));
199 	INIT_HLIST_NODE(&inode->i_hash);
200 	INIT_LIST_HEAD(&inode->i_dentry);
201 	INIT_LIST_HEAD(&inode->i_devices);
202 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
203 	rwlock_init(&inode->i_data.tree_lock);
204 	spin_lock_init(&inode->i_data.i_mmap_lock);
205 	INIT_LIST_HEAD(&inode->i_data.private_list);
206 	spin_lock_init(&inode->i_data.private_lock);
207 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
208 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
209 	i_size_ordered_init(inode);
210 #ifdef CONFIG_INOTIFY
211 	INIT_LIST_HEAD(&inode->inotify_watches);
212 	mutex_init(&inode->inotify_mutex);
213 #endif
214 }
215 
216 EXPORT_SYMBOL(inode_init_once);
217 
218 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags)
219 {
220 	struct inode * inode = (struct inode *) foo;
221 
222 	inode_init_once(inode);
223 }
224 
225 /*
226  * inode_lock must be held
227  */
228 void __iget(struct inode * inode)
229 {
230 	if (atomic_read(&inode->i_count)) {
231 		atomic_inc(&inode->i_count);
232 		return;
233 	}
234 	atomic_inc(&inode->i_count);
235 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
236 		list_move(&inode->i_list, &inode_in_use);
237 	inodes_stat.nr_unused--;
238 }
239 
240 /**
241  * clear_inode - clear an inode
242  * @inode: inode to clear
243  *
244  * This is called by the filesystem to tell us
245  * that the inode is no longer useful. We just
246  * terminate it with extreme prejudice.
247  */
248 void clear_inode(struct inode *inode)
249 {
250 	might_sleep();
251 	invalidate_inode_buffers(inode);
252 
253 	BUG_ON(inode->i_data.nrpages);
254 	BUG_ON(!(inode->i_state & I_FREEING));
255 	BUG_ON(inode->i_state & I_CLEAR);
256 	wait_on_inode(inode);
257 	DQUOT_DROP(inode);
258 	if (inode->i_sb->s_op->clear_inode)
259 		inode->i_sb->s_op->clear_inode(inode);
260 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
261 		bd_forget(inode);
262 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
263 		cd_forget(inode);
264 	inode->i_state = I_CLEAR;
265 }
266 
267 EXPORT_SYMBOL(clear_inode);
268 
269 /*
270  * dispose_list - dispose of the contents of a local list
271  * @head: the head of the list to free
272  *
273  * Dispose-list gets a local list with local inodes in it, so it doesn't
274  * need to worry about list corruption and SMP locks.
275  */
276 static void dispose_list(struct list_head *head)
277 {
278 	int nr_disposed = 0;
279 
280 	while (!list_empty(head)) {
281 		struct inode *inode;
282 
283 		inode = list_first_entry(head, struct inode, i_list);
284 		list_del(&inode->i_list);
285 
286 		if (inode->i_data.nrpages)
287 			truncate_inode_pages(&inode->i_data, 0);
288 		clear_inode(inode);
289 
290 		spin_lock(&inode_lock);
291 		hlist_del_init(&inode->i_hash);
292 		list_del_init(&inode->i_sb_list);
293 		spin_unlock(&inode_lock);
294 
295 		wake_up_inode(inode);
296 		destroy_inode(inode);
297 		nr_disposed++;
298 	}
299 	spin_lock(&inode_lock);
300 	inodes_stat.nr_inodes -= nr_disposed;
301 	spin_unlock(&inode_lock);
302 }
303 
304 /*
305  * Invalidate all inodes for a device.
306  */
307 static int invalidate_list(struct list_head *head, struct list_head *dispose)
308 {
309 	struct list_head *next;
310 	int busy = 0, count = 0;
311 
312 	next = head->next;
313 	for (;;) {
314 		struct list_head * tmp = next;
315 		struct inode * inode;
316 
317 		/*
318 		 * We can reschedule here without worrying about the list's
319 		 * consistency because the per-sb list of inodes must not
320 		 * change during umount anymore, and because iprune_mutex keeps
321 		 * shrink_icache_memory() away.
322 		 */
323 		cond_resched_lock(&inode_lock);
324 
325 		next = next->next;
326 		if (tmp == head)
327 			break;
328 		inode = list_entry(tmp, struct inode, i_sb_list);
329 		invalidate_inode_buffers(inode);
330 		if (!atomic_read(&inode->i_count)) {
331 			list_move(&inode->i_list, dispose);
332 			inode->i_state |= I_FREEING;
333 			count++;
334 			continue;
335 		}
336 		busy = 1;
337 	}
338 	/* only unused inodes may be cached with i_count zero */
339 	inodes_stat.nr_unused -= count;
340 	return busy;
341 }
342 
343 /**
344  *	invalidate_inodes	- discard the inodes on a device
345  *	@sb: superblock
346  *
347  *	Discard all of the inodes for a given superblock. If the discard
348  *	fails because there are busy inodes then a non zero value is returned.
349  *	If the discard is successful all the inodes have been discarded.
350  */
351 int invalidate_inodes(struct super_block * sb)
352 {
353 	int busy;
354 	LIST_HEAD(throw_away);
355 
356 	mutex_lock(&iprune_mutex);
357 	spin_lock(&inode_lock);
358 	inotify_unmount_inodes(&sb->s_inodes);
359 	busy = invalidate_list(&sb->s_inodes, &throw_away);
360 	spin_unlock(&inode_lock);
361 
362 	dispose_list(&throw_away);
363 	mutex_unlock(&iprune_mutex);
364 
365 	return busy;
366 }
367 
368 EXPORT_SYMBOL(invalidate_inodes);
369 
370 static int can_unuse(struct inode *inode)
371 {
372 	if (inode->i_state)
373 		return 0;
374 	if (inode_has_buffers(inode))
375 		return 0;
376 	if (atomic_read(&inode->i_count))
377 		return 0;
378 	if (inode->i_data.nrpages)
379 		return 0;
380 	return 1;
381 }
382 
383 /*
384  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
385  * a temporary list and then are freed outside inode_lock by dispose_list().
386  *
387  * Any inodes which are pinned purely because of attached pagecache have their
388  * pagecache removed.  We expect the final iput() on that inode to add it to
389  * the front of the inode_unused list.  So look for it there and if the
390  * inode is still freeable, proceed.  The right inode is found 99.9% of the
391  * time in testing on a 4-way.
392  *
393  * If the inode has metadata buffers attached to mapping->private_list then
394  * try to remove them.
395  */
396 static void prune_icache(int nr_to_scan)
397 {
398 	LIST_HEAD(freeable);
399 	int nr_pruned = 0;
400 	int nr_scanned;
401 	unsigned long reap = 0;
402 
403 	mutex_lock(&iprune_mutex);
404 	spin_lock(&inode_lock);
405 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
406 		struct inode *inode;
407 
408 		if (list_empty(&inode_unused))
409 			break;
410 
411 		inode = list_entry(inode_unused.prev, struct inode, i_list);
412 
413 		if (inode->i_state || atomic_read(&inode->i_count)) {
414 			list_move(&inode->i_list, &inode_unused);
415 			continue;
416 		}
417 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
418 			__iget(inode);
419 			spin_unlock(&inode_lock);
420 			if (remove_inode_buffers(inode))
421 				reap += invalidate_mapping_pages(&inode->i_data,
422 								0, -1);
423 			iput(inode);
424 			spin_lock(&inode_lock);
425 
426 			if (inode != list_entry(inode_unused.next,
427 						struct inode, i_list))
428 				continue;	/* wrong inode or list_empty */
429 			if (!can_unuse(inode))
430 				continue;
431 		}
432 		list_move(&inode->i_list, &freeable);
433 		inode->i_state |= I_FREEING;
434 		nr_pruned++;
435 	}
436 	inodes_stat.nr_unused -= nr_pruned;
437 	if (current_is_kswapd())
438 		__count_vm_events(KSWAPD_INODESTEAL, reap);
439 	else
440 		__count_vm_events(PGINODESTEAL, reap);
441 	spin_unlock(&inode_lock);
442 
443 	dispose_list(&freeable);
444 	mutex_unlock(&iprune_mutex);
445 }
446 
447 /*
448  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
449  * "unused" means that no dentries are referring to the inodes: the files are
450  * not open and the dcache references to those inodes have already been
451  * reclaimed.
452  *
453  * This function is passed the number of inodes to scan, and it returns the
454  * total number of remaining possibly-reclaimable inodes.
455  */
456 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
457 {
458 	if (nr) {
459 		/*
460 		 * Nasty deadlock avoidance.  We may hold various FS locks,
461 		 * and we don't want to recurse into the FS that called us
462 		 * in clear_inode() and friends..
463 	 	 */
464 		if (!(gfp_mask & __GFP_FS))
465 			return -1;
466 		prune_icache(nr);
467 	}
468 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
469 }
470 
471 static struct shrinker icache_shrinker = {
472 	.shrink = shrink_icache_memory,
473 	.seeks = DEFAULT_SEEKS,
474 };
475 
476 static void __wait_on_freeing_inode(struct inode *inode);
477 /*
478  * Called with the inode lock held.
479  * NOTE: we are not increasing the inode-refcount, you must call __iget()
480  * by hand after calling find_inode now! This simplifies iunique and won't
481  * add any additional branch in the common code.
482  */
483 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
484 {
485 	struct hlist_node *node;
486 	struct inode * inode = NULL;
487 
488 repeat:
489 	hlist_for_each (node, head) {
490 		inode = hlist_entry(node, struct inode, i_hash);
491 		if (inode->i_sb != sb)
492 			continue;
493 		if (!test(inode, data))
494 			continue;
495 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
496 			__wait_on_freeing_inode(inode);
497 			goto repeat;
498 		}
499 		break;
500 	}
501 	return node ? inode : NULL;
502 }
503 
504 /*
505  * find_inode_fast is the fast path version of find_inode, see the comment at
506  * iget_locked for details.
507  */
508 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
509 {
510 	struct hlist_node *node;
511 	struct inode * inode = NULL;
512 
513 repeat:
514 	hlist_for_each (node, head) {
515 		inode = hlist_entry(node, struct inode, i_hash);
516 		if (inode->i_ino != ino)
517 			continue;
518 		if (inode->i_sb != sb)
519 			continue;
520 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
521 			__wait_on_freeing_inode(inode);
522 			goto repeat;
523 		}
524 		break;
525 	}
526 	return node ? inode : NULL;
527 }
528 
529 /**
530  *	new_inode 	- obtain an inode
531  *	@sb: superblock
532  *
533  *	Allocates a new inode for given superblock. The default gfp_mask
534  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE.
535  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
536  *	for the page cache are not reclaimable or migratable,
537  *	mapping_set_gfp_mask() must be called with suitable flags on the
538  *	newly created inode's mapping
539  *
540  */
541 struct inode *new_inode(struct super_block *sb)
542 {
543 	/*
544 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
545 	 * error if st_ino won't fit in target struct field. Use 32bit counter
546 	 * here to attempt to avoid that.
547 	 */
548 	static unsigned int last_ino;
549 	struct inode * inode;
550 
551 	spin_lock_prefetch(&inode_lock);
552 
553 	inode = alloc_inode(sb);
554 	if (inode) {
555 		spin_lock(&inode_lock);
556 		inodes_stat.nr_inodes++;
557 		list_add(&inode->i_list, &inode_in_use);
558 		list_add(&inode->i_sb_list, &sb->s_inodes);
559 		inode->i_ino = ++last_ino;
560 		inode->i_state = 0;
561 		spin_unlock(&inode_lock);
562 	}
563 	return inode;
564 }
565 
566 EXPORT_SYMBOL(new_inode);
567 
568 void unlock_new_inode(struct inode *inode)
569 {
570 #ifdef CONFIG_DEBUG_LOCK_ALLOC
571 	struct file_system_type *type = inode->i_sb->s_type;
572 	/*
573 	 * ensure nobody is actually holding i_mutex
574 	 */
575 	mutex_destroy(&inode->i_mutex);
576 	mutex_init(&inode->i_mutex);
577 	if (inode->i_mode & S_IFDIR)
578 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
579 	else
580 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_key);
581 #endif
582 	/*
583 	 * This is special!  We do not need the spinlock
584 	 * when clearing I_LOCK, because we're guaranteed
585 	 * that nobody else tries to do anything about the
586 	 * state of the inode when it is locked, as we
587 	 * just created it (so there can be no old holders
588 	 * that haven't tested I_LOCK).
589 	 */
590 	inode->i_state &= ~(I_LOCK|I_NEW);
591 	wake_up_inode(inode);
592 }
593 
594 EXPORT_SYMBOL(unlock_new_inode);
595 
596 /*
597  * This is called without the inode lock held.. Be careful.
598  *
599  * We no longer cache the sb_flags in i_flags - see fs.h
600  *	-- rmk@arm.uk.linux.org
601  */
602 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
603 {
604 	struct inode * inode;
605 
606 	inode = alloc_inode(sb);
607 	if (inode) {
608 		struct inode * old;
609 
610 		spin_lock(&inode_lock);
611 		/* We released the lock, so.. */
612 		old = find_inode(sb, head, test, data);
613 		if (!old) {
614 			if (set(inode, data))
615 				goto set_failed;
616 
617 			inodes_stat.nr_inodes++;
618 			list_add(&inode->i_list, &inode_in_use);
619 			list_add(&inode->i_sb_list, &sb->s_inodes);
620 			hlist_add_head(&inode->i_hash, head);
621 			inode->i_state = I_LOCK|I_NEW;
622 			spin_unlock(&inode_lock);
623 
624 			/* Return the locked inode with I_NEW set, the
625 			 * caller is responsible for filling in the contents
626 			 */
627 			return inode;
628 		}
629 
630 		/*
631 		 * Uhhuh, somebody else created the same inode under
632 		 * us. Use the old inode instead of the one we just
633 		 * allocated.
634 		 */
635 		__iget(old);
636 		spin_unlock(&inode_lock);
637 		destroy_inode(inode);
638 		inode = old;
639 		wait_on_inode(inode);
640 	}
641 	return inode;
642 
643 set_failed:
644 	spin_unlock(&inode_lock);
645 	destroy_inode(inode);
646 	return NULL;
647 }
648 
649 /*
650  * get_new_inode_fast is the fast path version of get_new_inode, see the
651  * comment at iget_locked for details.
652  */
653 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
654 {
655 	struct inode * inode;
656 
657 	inode = alloc_inode(sb);
658 	if (inode) {
659 		struct inode * old;
660 
661 		spin_lock(&inode_lock);
662 		/* We released the lock, so.. */
663 		old = find_inode_fast(sb, head, ino);
664 		if (!old) {
665 			inode->i_ino = ino;
666 			inodes_stat.nr_inodes++;
667 			list_add(&inode->i_list, &inode_in_use);
668 			list_add(&inode->i_sb_list, &sb->s_inodes);
669 			hlist_add_head(&inode->i_hash, head);
670 			inode->i_state = I_LOCK|I_NEW;
671 			spin_unlock(&inode_lock);
672 
673 			/* Return the locked inode with I_NEW set, the
674 			 * caller is responsible for filling in the contents
675 			 */
676 			return inode;
677 		}
678 
679 		/*
680 		 * Uhhuh, somebody else created the same inode under
681 		 * us. Use the old inode instead of the one we just
682 		 * allocated.
683 		 */
684 		__iget(old);
685 		spin_unlock(&inode_lock);
686 		destroy_inode(inode);
687 		inode = old;
688 		wait_on_inode(inode);
689 	}
690 	return inode;
691 }
692 
693 static unsigned long hash(struct super_block *sb, unsigned long hashval)
694 {
695 	unsigned long tmp;
696 
697 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
698 			L1_CACHE_BYTES;
699 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
700 	return tmp & I_HASHMASK;
701 }
702 
703 /**
704  *	iunique - get a unique inode number
705  *	@sb: superblock
706  *	@max_reserved: highest reserved inode number
707  *
708  *	Obtain an inode number that is unique on the system for a given
709  *	superblock. This is used by file systems that have no natural
710  *	permanent inode numbering system. An inode number is returned that
711  *	is higher than the reserved limit but unique.
712  *
713  *	BUGS:
714  *	With a large number of inodes live on the file system this function
715  *	currently becomes quite slow.
716  */
717 ino_t iunique(struct super_block *sb, ino_t max_reserved)
718 {
719 	/*
720 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
721 	 * error if st_ino won't fit in target struct field. Use 32bit counter
722 	 * here to attempt to avoid that.
723 	 */
724 	static unsigned int counter;
725 	struct inode *inode;
726 	struct hlist_head *head;
727 	ino_t res;
728 
729 	spin_lock(&inode_lock);
730 	do {
731 		if (counter <= max_reserved)
732 			counter = max_reserved + 1;
733 		res = counter++;
734 		head = inode_hashtable + hash(sb, res);
735 		inode = find_inode_fast(sb, head, res);
736 	} while (inode != NULL);
737 	spin_unlock(&inode_lock);
738 
739 	return res;
740 }
741 EXPORT_SYMBOL(iunique);
742 
743 struct inode *igrab(struct inode *inode)
744 {
745 	spin_lock(&inode_lock);
746 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
747 		__iget(inode);
748 	else
749 		/*
750 		 * Handle the case where s_op->clear_inode is not been
751 		 * called yet, and somebody is calling igrab
752 		 * while the inode is getting freed.
753 		 */
754 		inode = NULL;
755 	spin_unlock(&inode_lock);
756 	return inode;
757 }
758 
759 EXPORT_SYMBOL(igrab);
760 
761 /**
762  * ifind - internal function, you want ilookup5() or iget5().
763  * @sb:		super block of file system to search
764  * @head:       the head of the list to search
765  * @test:	callback used for comparisons between inodes
766  * @data:	opaque data pointer to pass to @test
767  * @wait:	if true wait for the inode to be unlocked, if false do not
768  *
769  * ifind() searches for the inode specified by @data in the inode
770  * cache. This is a generalized version of ifind_fast() for file systems where
771  * the inode number is not sufficient for unique identification of an inode.
772  *
773  * If the inode is in the cache, the inode is returned with an incremented
774  * reference count.
775  *
776  * Otherwise NULL is returned.
777  *
778  * Note, @test is called with the inode_lock held, so can't sleep.
779  */
780 static struct inode *ifind(struct super_block *sb,
781 		struct hlist_head *head, int (*test)(struct inode *, void *),
782 		void *data, const int wait)
783 {
784 	struct inode *inode;
785 
786 	spin_lock(&inode_lock);
787 	inode = find_inode(sb, head, test, data);
788 	if (inode) {
789 		__iget(inode);
790 		spin_unlock(&inode_lock);
791 		if (likely(wait))
792 			wait_on_inode(inode);
793 		return inode;
794 	}
795 	spin_unlock(&inode_lock);
796 	return NULL;
797 }
798 
799 /**
800  * ifind_fast - internal function, you want ilookup() or iget().
801  * @sb:		super block of file system to search
802  * @head:       head of the list to search
803  * @ino:	inode number to search for
804  *
805  * ifind_fast() searches for the inode @ino in the inode cache. This is for
806  * file systems where the inode number is sufficient for unique identification
807  * of an inode.
808  *
809  * If the inode is in the cache, the inode is returned with an incremented
810  * reference count.
811  *
812  * Otherwise NULL is returned.
813  */
814 static struct inode *ifind_fast(struct super_block *sb,
815 		struct hlist_head *head, unsigned long ino)
816 {
817 	struct inode *inode;
818 
819 	spin_lock(&inode_lock);
820 	inode = find_inode_fast(sb, head, ino);
821 	if (inode) {
822 		__iget(inode);
823 		spin_unlock(&inode_lock);
824 		wait_on_inode(inode);
825 		return inode;
826 	}
827 	spin_unlock(&inode_lock);
828 	return NULL;
829 }
830 
831 /**
832  * ilookup5_nowait - search for an inode in the inode cache
833  * @sb:		super block of file system to search
834  * @hashval:	hash value (usually inode number) to search for
835  * @test:	callback used for comparisons between inodes
836  * @data:	opaque data pointer to pass to @test
837  *
838  * ilookup5() uses ifind() to search for the inode specified by @hashval and
839  * @data in the inode cache. This is a generalized version of ilookup() for
840  * file systems where the inode number is not sufficient for unique
841  * identification of an inode.
842  *
843  * If the inode is in the cache, the inode is returned with an incremented
844  * reference count.  Note, the inode lock is not waited upon so you have to be
845  * very careful what you do with the returned inode.  You probably should be
846  * using ilookup5() instead.
847  *
848  * Otherwise NULL is returned.
849  *
850  * Note, @test is called with the inode_lock held, so can't sleep.
851  */
852 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
853 		int (*test)(struct inode *, void *), void *data)
854 {
855 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
856 
857 	return ifind(sb, head, test, data, 0);
858 }
859 
860 EXPORT_SYMBOL(ilookup5_nowait);
861 
862 /**
863  * ilookup5 - search for an inode in the inode cache
864  * @sb:		super block of file system to search
865  * @hashval:	hash value (usually inode number) to search for
866  * @test:	callback used for comparisons between inodes
867  * @data:	opaque data pointer to pass to @test
868  *
869  * ilookup5() uses ifind() to search for the inode specified by @hashval and
870  * @data in the inode cache. This is a generalized version of ilookup() for
871  * file systems where the inode number is not sufficient for unique
872  * identification of an inode.
873  *
874  * If the inode is in the cache, the inode lock is waited upon and the inode is
875  * returned with an incremented reference count.
876  *
877  * Otherwise NULL is returned.
878  *
879  * Note, @test is called with the inode_lock held, so can't sleep.
880  */
881 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
882 		int (*test)(struct inode *, void *), void *data)
883 {
884 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
885 
886 	return ifind(sb, head, test, data, 1);
887 }
888 
889 EXPORT_SYMBOL(ilookup5);
890 
891 /**
892  * ilookup - search for an inode in the inode cache
893  * @sb:		super block of file system to search
894  * @ino:	inode number to search for
895  *
896  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
897  * This is for file systems where the inode number is sufficient for unique
898  * identification of an inode.
899  *
900  * If the inode is in the cache, the inode is returned with an incremented
901  * reference count.
902  *
903  * Otherwise NULL is returned.
904  */
905 struct inode *ilookup(struct super_block *sb, unsigned long ino)
906 {
907 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
908 
909 	return ifind_fast(sb, head, ino);
910 }
911 
912 EXPORT_SYMBOL(ilookup);
913 
914 /**
915  * iget5_locked - obtain an inode from a mounted file system
916  * @sb:		super block of file system
917  * @hashval:	hash value (usually inode number) to get
918  * @test:	callback used for comparisons between inodes
919  * @set:	callback used to initialize a new struct inode
920  * @data:	opaque data pointer to pass to @test and @set
921  *
922  * This is iget() without the read_inode() portion of get_new_inode().
923  *
924  * iget5_locked() uses ifind() to search for the inode specified by @hashval
925  * and @data in the inode cache and if present it is returned with an increased
926  * reference count. This is a generalized version of iget_locked() for file
927  * systems where the inode number is not sufficient for unique identification
928  * of an inode.
929  *
930  * If the inode is not in cache, get_new_inode() is called to allocate a new
931  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
932  * file system gets to fill it in before unlocking it via unlock_new_inode().
933  *
934  * Note both @test and @set are called with the inode_lock held, so can't sleep.
935  */
936 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
937 		int (*test)(struct inode *, void *),
938 		int (*set)(struct inode *, void *), void *data)
939 {
940 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
941 	struct inode *inode;
942 
943 	inode = ifind(sb, head, test, data, 1);
944 	if (inode)
945 		return inode;
946 	/*
947 	 * get_new_inode() will do the right thing, re-trying the search
948 	 * in case it had to block at any point.
949 	 */
950 	return get_new_inode(sb, head, test, set, data);
951 }
952 
953 EXPORT_SYMBOL(iget5_locked);
954 
955 /**
956  * iget_locked - obtain an inode from a mounted file system
957  * @sb:		super block of file system
958  * @ino:	inode number to get
959  *
960  * This is iget() without the read_inode() portion of get_new_inode_fast().
961  *
962  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
963  * the inode cache and if present it is returned with an increased reference
964  * count. This is for file systems where the inode number is sufficient for
965  * unique identification of an inode.
966  *
967  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
968  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
969  * The file system gets to fill it in before unlocking it via
970  * unlock_new_inode().
971  */
972 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
973 {
974 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
975 	struct inode *inode;
976 
977 	inode = ifind_fast(sb, head, ino);
978 	if (inode)
979 		return inode;
980 	/*
981 	 * get_new_inode_fast() will do the right thing, re-trying the search
982 	 * in case it had to block at any point.
983 	 */
984 	return get_new_inode_fast(sb, head, ino);
985 }
986 
987 EXPORT_SYMBOL(iget_locked);
988 
989 /**
990  *	__insert_inode_hash - hash an inode
991  *	@inode: unhashed inode
992  *	@hashval: unsigned long value used to locate this object in the
993  *		inode_hashtable.
994  *
995  *	Add an inode to the inode hash for this superblock.
996  */
997 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
998 {
999 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1000 	spin_lock(&inode_lock);
1001 	hlist_add_head(&inode->i_hash, head);
1002 	spin_unlock(&inode_lock);
1003 }
1004 
1005 EXPORT_SYMBOL(__insert_inode_hash);
1006 
1007 /**
1008  *	remove_inode_hash - remove an inode from the hash
1009  *	@inode: inode to unhash
1010  *
1011  *	Remove an inode from the superblock.
1012  */
1013 void remove_inode_hash(struct inode *inode)
1014 {
1015 	spin_lock(&inode_lock);
1016 	hlist_del_init(&inode->i_hash);
1017 	spin_unlock(&inode_lock);
1018 }
1019 
1020 EXPORT_SYMBOL(remove_inode_hash);
1021 
1022 /*
1023  * Tell the filesystem that this inode is no longer of any interest and should
1024  * be completely destroyed.
1025  *
1026  * We leave the inode in the inode hash table until *after* the filesystem's
1027  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1028  * instigate) will always find up-to-date information either in the hash or on
1029  * disk.
1030  *
1031  * I_FREEING is set so that no-one will take a new reference to the inode while
1032  * it is being deleted.
1033  */
1034 void generic_delete_inode(struct inode *inode)
1035 {
1036 	const struct super_operations *op = inode->i_sb->s_op;
1037 
1038 	list_del_init(&inode->i_list);
1039 	list_del_init(&inode->i_sb_list);
1040 	inode->i_state |= I_FREEING;
1041 	inodes_stat.nr_inodes--;
1042 	spin_unlock(&inode_lock);
1043 
1044 	security_inode_delete(inode);
1045 
1046 	if (op->delete_inode) {
1047 		void (*delete)(struct inode *) = op->delete_inode;
1048 		if (!is_bad_inode(inode))
1049 			DQUOT_INIT(inode);
1050 		/* Filesystems implementing their own
1051 		 * s_op->delete_inode are required to call
1052 		 * truncate_inode_pages and clear_inode()
1053 		 * internally */
1054 		delete(inode);
1055 	} else {
1056 		truncate_inode_pages(&inode->i_data, 0);
1057 		clear_inode(inode);
1058 	}
1059 	spin_lock(&inode_lock);
1060 	hlist_del_init(&inode->i_hash);
1061 	spin_unlock(&inode_lock);
1062 	wake_up_inode(inode);
1063 	BUG_ON(inode->i_state != I_CLEAR);
1064 	destroy_inode(inode);
1065 }
1066 
1067 EXPORT_SYMBOL(generic_delete_inode);
1068 
1069 static void generic_forget_inode(struct inode *inode)
1070 {
1071 	struct super_block *sb = inode->i_sb;
1072 
1073 	if (!hlist_unhashed(&inode->i_hash)) {
1074 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1075 			list_move(&inode->i_list, &inode_unused);
1076 		inodes_stat.nr_unused++;
1077 		if (sb->s_flags & MS_ACTIVE) {
1078 			spin_unlock(&inode_lock);
1079 			return;
1080 		}
1081 		inode->i_state |= I_WILL_FREE;
1082 		spin_unlock(&inode_lock);
1083 		write_inode_now(inode, 1);
1084 		spin_lock(&inode_lock);
1085 		inode->i_state &= ~I_WILL_FREE;
1086 		inodes_stat.nr_unused--;
1087 		hlist_del_init(&inode->i_hash);
1088 	}
1089 	list_del_init(&inode->i_list);
1090 	list_del_init(&inode->i_sb_list);
1091 	inode->i_state |= I_FREEING;
1092 	inodes_stat.nr_inodes--;
1093 	spin_unlock(&inode_lock);
1094 	if (inode->i_data.nrpages)
1095 		truncate_inode_pages(&inode->i_data, 0);
1096 	clear_inode(inode);
1097 	wake_up_inode(inode);
1098 	destroy_inode(inode);
1099 }
1100 
1101 /*
1102  * Normal UNIX filesystem behaviour: delete the
1103  * inode when the usage count drops to zero, and
1104  * i_nlink is zero.
1105  */
1106 void generic_drop_inode(struct inode *inode)
1107 {
1108 	if (!inode->i_nlink)
1109 		generic_delete_inode(inode);
1110 	else
1111 		generic_forget_inode(inode);
1112 }
1113 
1114 EXPORT_SYMBOL_GPL(generic_drop_inode);
1115 
1116 /*
1117  * Called when we're dropping the last reference
1118  * to an inode.
1119  *
1120  * Call the FS "drop()" function, defaulting to
1121  * the legacy UNIX filesystem behaviour..
1122  *
1123  * NOTE! NOTE! NOTE! We're called with the inode lock
1124  * held, and the drop function is supposed to release
1125  * the lock!
1126  */
1127 static inline void iput_final(struct inode *inode)
1128 {
1129 	const struct super_operations *op = inode->i_sb->s_op;
1130 	void (*drop)(struct inode *) = generic_drop_inode;
1131 
1132 	if (op && op->drop_inode)
1133 		drop = op->drop_inode;
1134 	drop(inode);
1135 }
1136 
1137 /**
1138  *	iput	- put an inode
1139  *	@inode: inode to put
1140  *
1141  *	Puts an inode, dropping its usage count. If the inode use count hits
1142  *	zero, the inode is then freed and may also be destroyed.
1143  *
1144  *	Consequently, iput() can sleep.
1145  */
1146 void iput(struct inode *inode)
1147 {
1148 	if (inode) {
1149 		const struct super_operations *op = inode->i_sb->s_op;
1150 
1151 		BUG_ON(inode->i_state == I_CLEAR);
1152 
1153 		if (op && op->put_inode)
1154 			op->put_inode(inode);
1155 
1156 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1157 			iput_final(inode);
1158 	}
1159 }
1160 
1161 EXPORT_SYMBOL(iput);
1162 
1163 /**
1164  *	bmap	- find a block number in a file
1165  *	@inode: inode of file
1166  *	@block: block to find
1167  *
1168  *	Returns the block number on the device holding the inode that
1169  *	is the disk block number for the block of the file requested.
1170  *	That is, asked for block 4 of inode 1 the function will return the
1171  *	disk block relative to the disk start that holds that block of the
1172  *	file.
1173  */
1174 sector_t bmap(struct inode * inode, sector_t block)
1175 {
1176 	sector_t res = 0;
1177 	if (inode->i_mapping->a_ops->bmap)
1178 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1179 	return res;
1180 }
1181 EXPORT_SYMBOL(bmap);
1182 
1183 /**
1184  *	touch_atime	-	update the access time
1185  *	@mnt: mount the inode is accessed on
1186  *	@dentry: dentry accessed
1187  *
1188  *	Update the accessed time on an inode and mark it for writeback.
1189  *	This function automatically handles read only file systems and media,
1190  *	as well as the "noatime" flag and inode specific "noatime" markers.
1191  */
1192 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1193 {
1194 	struct inode *inode = dentry->d_inode;
1195 	struct timespec now;
1196 
1197 	if (inode->i_flags & S_NOATIME)
1198 		return;
1199 	if (IS_NOATIME(inode))
1200 		return;
1201 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1202 		return;
1203 
1204 	/*
1205 	 * We may have a NULL vfsmount when coming from NFSD
1206 	 */
1207 	if (mnt) {
1208 		if (mnt->mnt_flags & MNT_NOATIME)
1209 			return;
1210 		if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1211 			return;
1212 
1213 		if (mnt->mnt_flags & MNT_RELATIME) {
1214 			/*
1215 			 * With relative atime, only update atime if the
1216 			 * previous atime is earlier than either the ctime or
1217 			 * mtime.
1218 			 */
1219 			if (timespec_compare(&inode->i_mtime,
1220 						&inode->i_atime) < 0 &&
1221 			    timespec_compare(&inode->i_ctime,
1222 						&inode->i_atime) < 0)
1223 				return;
1224 		}
1225 	}
1226 
1227 	now = current_fs_time(inode->i_sb);
1228 	if (timespec_equal(&inode->i_atime, &now))
1229 		return;
1230 
1231 	inode->i_atime = now;
1232 	mark_inode_dirty_sync(inode);
1233 }
1234 EXPORT_SYMBOL(touch_atime);
1235 
1236 /**
1237  *	file_update_time	-	update mtime and ctime time
1238  *	@file: file accessed
1239  *
1240  *	Update the mtime and ctime members of an inode and mark the inode
1241  *	for writeback.  Note that this function is meant exclusively for
1242  *	usage in the file write path of filesystems, and filesystems may
1243  *	choose to explicitly ignore update via this function with the
1244  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1245  *	timestamps are handled by the server.
1246  */
1247 
1248 void file_update_time(struct file *file)
1249 {
1250 	struct inode *inode = file->f_path.dentry->d_inode;
1251 	struct timespec now;
1252 	int sync_it = 0;
1253 
1254 	if (IS_NOCMTIME(inode))
1255 		return;
1256 	if (IS_RDONLY(inode))
1257 		return;
1258 
1259 	now = current_fs_time(inode->i_sb);
1260 	if (!timespec_equal(&inode->i_mtime, &now)) {
1261 		inode->i_mtime = now;
1262 		sync_it = 1;
1263 	}
1264 
1265 	if (!timespec_equal(&inode->i_ctime, &now)) {
1266 		inode->i_ctime = now;
1267 		sync_it = 1;
1268 	}
1269 
1270 	if (sync_it)
1271 		mark_inode_dirty_sync(inode);
1272 }
1273 
1274 EXPORT_SYMBOL(file_update_time);
1275 
1276 int inode_needs_sync(struct inode *inode)
1277 {
1278 	if (IS_SYNC(inode))
1279 		return 1;
1280 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1281 		return 1;
1282 	return 0;
1283 }
1284 
1285 EXPORT_SYMBOL(inode_needs_sync);
1286 
1287 int inode_wait(void *word)
1288 {
1289 	schedule();
1290 	return 0;
1291 }
1292 
1293 /*
1294  * If we try to find an inode in the inode hash while it is being
1295  * deleted, we have to wait until the filesystem completes its
1296  * deletion before reporting that it isn't found.  This function waits
1297  * until the deletion _might_ have completed.  Callers are responsible
1298  * to recheck inode state.
1299  *
1300  * It doesn't matter if I_LOCK is not set initially, a call to
1301  * wake_up_inode() after removing from the hash list will DTRT.
1302  *
1303  * This is called with inode_lock held.
1304  */
1305 static void __wait_on_freeing_inode(struct inode *inode)
1306 {
1307 	wait_queue_head_t *wq;
1308 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1309 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1310 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1311 	spin_unlock(&inode_lock);
1312 	schedule();
1313 	finish_wait(wq, &wait.wait);
1314 	spin_lock(&inode_lock);
1315 }
1316 
1317 void wake_up_inode(struct inode *inode)
1318 {
1319 	/*
1320 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1321 	 */
1322 	smp_mb();
1323 	wake_up_bit(&inode->i_state, __I_LOCK);
1324 }
1325 
1326 /*
1327  * We rarely want to lock two inodes that do not have a parent/child
1328  * relationship (such as directory, child inode) simultaneously. The
1329  * vast majority of file systems should be able to get along fine
1330  * without this. Do not use these functions except as a last resort.
1331  */
1332 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1333 {
1334 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1335 		if (inode1)
1336 			mutex_lock(&inode1->i_mutex);
1337 		else if (inode2)
1338 			mutex_lock(&inode2->i_mutex);
1339 		return;
1340 	}
1341 
1342 	if (inode1 < inode2) {
1343 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1344 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1345 	} else {
1346 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1347 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1348 	}
1349 }
1350 EXPORT_SYMBOL(inode_double_lock);
1351 
1352 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1353 {
1354 	if (inode1)
1355 		mutex_unlock(&inode1->i_mutex);
1356 
1357 	if (inode2 && inode2 != inode1)
1358 		mutex_unlock(&inode2->i_mutex);
1359 }
1360 EXPORT_SYMBOL(inode_double_unlock);
1361 
1362 static __initdata unsigned long ihash_entries;
1363 static int __init set_ihash_entries(char *str)
1364 {
1365 	if (!str)
1366 		return 0;
1367 	ihash_entries = simple_strtoul(str, &str, 0);
1368 	return 1;
1369 }
1370 __setup("ihash_entries=", set_ihash_entries);
1371 
1372 /*
1373  * Initialize the waitqueues and inode hash table.
1374  */
1375 void __init inode_init_early(void)
1376 {
1377 	int loop;
1378 
1379 	/* If hashes are distributed across NUMA nodes, defer
1380 	 * hash allocation until vmalloc space is available.
1381 	 */
1382 	if (hashdist)
1383 		return;
1384 
1385 	inode_hashtable =
1386 		alloc_large_system_hash("Inode-cache",
1387 					sizeof(struct hlist_head),
1388 					ihash_entries,
1389 					14,
1390 					HASH_EARLY,
1391 					&i_hash_shift,
1392 					&i_hash_mask,
1393 					0);
1394 
1395 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1396 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1397 }
1398 
1399 void __init inode_init(unsigned long mempages)
1400 {
1401 	int loop;
1402 
1403 	/* inode slab cache */
1404 	inode_cachep = kmem_cache_create("inode_cache",
1405 					 sizeof(struct inode),
1406 					 0,
1407 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1408 					 SLAB_MEM_SPREAD),
1409 					 init_once);
1410 	register_shrinker(&icache_shrinker);
1411 
1412 	/* Hash may have been set up in inode_init_early */
1413 	if (!hashdist)
1414 		return;
1415 
1416 	inode_hashtable =
1417 		alloc_large_system_hash("Inode-cache",
1418 					sizeof(struct hlist_head),
1419 					ihash_entries,
1420 					14,
1421 					0,
1422 					&i_hash_shift,
1423 					&i_hash_mask,
1424 					0);
1425 
1426 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1427 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1428 }
1429 
1430 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1431 {
1432 	inode->i_mode = mode;
1433 	if (S_ISCHR(mode)) {
1434 		inode->i_fop = &def_chr_fops;
1435 		inode->i_rdev = rdev;
1436 	} else if (S_ISBLK(mode)) {
1437 		inode->i_fop = &def_blk_fops;
1438 		inode->i_rdev = rdev;
1439 	} else if (S_ISFIFO(mode))
1440 		inode->i_fop = &def_fifo_fops;
1441 	else if (S_ISSOCK(mode))
1442 		inode->i_fop = &bad_sock_fops;
1443 	else
1444 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1445 		       mode);
1446 }
1447 EXPORT_SYMBOL(init_special_inode);
1448