1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/mount.h> 25 26 /* 27 * This is needed for the following functions: 28 * - inode_has_buffers 29 * - invalidate_inode_buffers 30 * - invalidate_bdev 31 * 32 * FIXME: remove all knowledge of the buffer layer from this file 33 */ 34 #include <linux/buffer_head.h> 35 36 /* 37 * New inode.c implementation. 38 * 39 * This implementation has the basic premise of trying 40 * to be extremely low-overhead and SMP-safe, yet be 41 * simple enough to be "obviously correct". 42 * 43 * Famous last words. 44 */ 45 46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 47 48 /* #define INODE_PARANOIA 1 */ 49 /* #define INODE_DEBUG 1 */ 50 51 /* 52 * Inode lookup is no longer as critical as it used to be: 53 * most of the lookups are going to be through the dcache. 54 */ 55 #define I_HASHBITS i_hash_shift 56 #define I_HASHMASK i_hash_mask 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 61 /* 62 * Each inode can be on two separate lists. One is 63 * the hash list of the inode, used for lookups. The 64 * other linked list is the "type" list: 65 * "in_use" - valid inode, i_count > 0, i_nlink > 0 66 * "dirty" - as "in_use" but also dirty 67 * "unused" - valid inode, i_count = 0 68 * 69 * A "dirty" list is maintained for each super block, 70 * allowing for low-overhead inode sync() operations. 71 */ 72 73 LIST_HEAD(inode_in_use); 74 LIST_HEAD(inode_unused); 75 static struct hlist_head *inode_hashtable __read_mostly; 76 77 /* 78 * A simple spinlock to protect the list manipulations. 79 * 80 * NOTE! You also have to own the lock if you change 81 * the i_state of an inode while it is in use.. 82 */ 83 DEFINE_SPINLOCK(inode_lock); 84 85 /* 86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 87 * icache shrinking path, and the umount path. Without this exclusion, 88 * by the time prune_icache calls iput for the inode whose pages it has 89 * been invalidating, or by the time it calls clear_inode & destroy_inode 90 * from its final dispose_list, the struct super_block they refer to 91 * (for inode->i_sb->s_op) may already have been freed and reused. 92 */ 93 static DEFINE_MUTEX(iprune_mutex); 94 95 /* 96 * Statistics gathering.. 97 */ 98 struct inodes_stat_t inodes_stat; 99 100 static struct kmem_cache * inode_cachep __read_mostly; 101 102 static struct inode *alloc_inode(struct super_block *sb) 103 { 104 static const struct address_space_operations empty_aops; 105 static struct inode_operations empty_iops; 106 static const struct file_operations empty_fops; 107 struct inode *inode; 108 109 if (sb->s_op->alloc_inode) 110 inode = sb->s_op->alloc_inode(sb); 111 else 112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL); 113 114 if (inode) { 115 struct address_space * const mapping = &inode->i_data; 116 117 inode->i_sb = sb; 118 inode->i_blkbits = sb->s_blocksize_bits; 119 inode->i_flags = 0; 120 atomic_set(&inode->i_count, 1); 121 inode->i_op = &empty_iops; 122 inode->i_fop = &empty_fops; 123 inode->i_nlink = 1; 124 atomic_set(&inode->i_writecount, 0); 125 inode->i_size = 0; 126 inode->i_blocks = 0; 127 inode->i_bytes = 0; 128 inode->i_generation = 0; 129 #ifdef CONFIG_QUOTA 130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 131 #endif 132 inode->i_pipe = NULL; 133 inode->i_bdev = NULL; 134 inode->i_cdev = NULL; 135 inode->i_rdev = 0; 136 inode->dirtied_when = 0; 137 if (security_inode_alloc(inode)) { 138 if (inode->i_sb->s_op->destroy_inode) 139 inode->i_sb->s_op->destroy_inode(inode); 140 else 141 kmem_cache_free(inode_cachep, (inode)); 142 return NULL; 143 } 144 145 spin_lock_init(&inode->i_lock); 146 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 147 148 mutex_init(&inode->i_mutex); 149 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 150 151 init_rwsem(&inode->i_alloc_sem); 152 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 153 154 mapping->a_ops = &empty_aops; 155 mapping->host = inode; 156 mapping->flags = 0; 157 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE); 158 mapping->assoc_mapping = NULL; 159 mapping->backing_dev_info = &default_backing_dev_info; 160 161 /* 162 * If the block_device provides a backing_dev_info for client 163 * inodes then use that. Otherwise the inode share the bdev's 164 * backing_dev_info. 165 */ 166 if (sb->s_bdev) { 167 struct backing_dev_info *bdi; 168 169 bdi = sb->s_bdev->bd_inode_backing_dev_info; 170 if (!bdi) 171 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 172 mapping->backing_dev_info = bdi; 173 } 174 inode->i_private = NULL; 175 inode->i_mapping = mapping; 176 } 177 return inode; 178 } 179 180 void destroy_inode(struct inode *inode) 181 { 182 BUG_ON(inode_has_buffers(inode)); 183 security_inode_free(inode); 184 if (inode->i_sb->s_op->destroy_inode) 185 inode->i_sb->s_op->destroy_inode(inode); 186 else 187 kmem_cache_free(inode_cachep, (inode)); 188 } 189 190 191 /* 192 * These are initializations that only need to be done 193 * once, because the fields are idempotent across use 194 * of the inode, so let the slab aware of that. 195 */ 196 void inode_init_once(struct inode *inode) 197 { 198 memset(inode, 0, sizeof(*inode)); 199 INIT_HLIST_NODE(&inode->i_hash); 200 INIT_LIST_HEAD(&inode->i_dentry); 201 INIT_LIST_HEAD(&inode->i_devices); 202 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 203 rwlock_init(&inode->i_data.tree_lock); 204 spin_lock_init(&inode->i_data.i_mmap_lock); 205 INIT_LIST_HEAD(&inode->i_data.private_list); 206 spin_lock_init(&inode->i_data.private_lock); 207 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 208 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 209 i_size_ordered_init(inode); 210 #ifdef CONFIG_INOTIFY 211 INIT_LIST_HEAD(&inode->inotify_watches); 212 mutex_init(&inode->inotify_mutex); 213 #endif 214 } 215 216 EXPORT_SYMBOL(inode_init_once); 217 218 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) 219 { 220 struct inode * inode = (struct inode *) foo; 221 222 inode_init_once(inode); 223 } 224 225 /* 226 * inode_lock must be held 227 */ 228 void __iget(struct inode * inode) 229 { 230 if (atomic_read(&inode->i_count)) { 231 atomic_inc(&inode->i_count); 232 return; 233 } 234 atomic_inc(&inode->i_count); 235 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 236 list_move(&inode->i_list, &inode_in_use); 237 inodes_stat.nr_unused--; 238 } 239 240 /** 241 * clear_inode - clear an inode 242 * @inode: inode to clear 243 * 244 * This is called by the filesystem to tell us 245 * that the inode is no longer useful. We just 246 * terminate it with extreme prejudice. 247 */ 248 void clear_inode(struct inode *inode) 249 { 250 might_sleep(); 251 invalidate_inode_buffers(inode); 252 253 BUG_ON(inode->i_data.nrpages); 254 BUG_ON(!(inode->i_state & I_FREEING)); 255 BUG_ON(inode->i_state & I_CLEAR); 256 wait_on_inode(inode); 257 DQUOT_DROP(inode); 258 if (inode->i_sb->s_op->clear_inode) 259 inode->i_sb->s_op->clear_inode(inode); 260 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 261 bd_forget(inode); 262 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 263 cd_forget(inode); 264 inode->i_state = I_CLEAR; 265 } 266 267 EXPORT_SYMBOL(clear_inode); 268 269 /* 270 * dispose_list - dispose of the contents of a local list 271 * @head: the head of the list to free 272 * 273 * Dispose-list gets a local list with local inodes in it, so it doesn't 274 * need to worry about list corruption and SMP locks. 275 */ 276 static void dispose_list(struct list_head *head) 277 { 278 int nr_disposed = 0; 279 280 while (!list_empty(head)) { 281 struct inode *inode; 282 283 inode = list_first_entry(head, struct inode, i_list); 284 list_del(&inode->i_list); 285 286 if (inode->i_data.nrpages) 287 truncate_inode_pages(&inode->i_data, 0); 288 clear_inode(inode); 289 290 spin_lock(&inode_lock); 291 hlist_del_init(&inode->i_hash); 292 list_del_init(&inode->i_sb_list); 293 spin_unlock(&inode_lock); 294 295 wake_up_inode(inode); 296 destroy_inode(inode); 297 nr_disposed++; 298 } 299 spin_lock(&inode_lock); 300 inodes_stat.nr_inodes -= nr_disposed; 301 spin_unlock(&inode_lock); 302 } 303 304 /* 305 * Invalidate all inodes for a device. 306 */ 307 static int invalidate_list(struct list_head *head, struct list_head *dispose) 308 { 309 struct list_head *next; 310 int busy = 0, count = 0; 311 312 next = head->next; 313 for (;;) { 314 struct list_head * tmp = next; 315 struct inode * inode; 316 317 /* 318 * We can reschedule here without worrying about the list's 319 * consistency because the per-sb list of inodes must not 320 * change during umount anymore, and because iprune_mutex keeps 321 * shrink_icache_memory() away. 322 */ 323 cond_resched_lock(&inode_lock); 324 325 next = next->next; 326 if (tmp == head) 327 break; 328 inode = list_entry(tmp, struct inode, i_sb_list); 329 invalidate_inode_buffers(inode); 330 if (!atomic_read(&inode->i_count)) { 331 list_move(&inode->i_list, dispose); 332 inode->i_state |= I_FREEING; 333 count++; 334 continue; 335 } 336 busy = 1; 337 } 338 /* only unused inodes may be cached with i_count zero */ 339 inodes_stat.nr_unused -= count; 340 return busy; 341 } 342 343 /** 344 * invalidate_inodes - discard the inodes on a device 345 * @sb: superblock 346 * 347 * Discard all of the inodes for a given superblock. If the discard 348 * fails because there are busy inodes then a non zero value is returned. 349 * If the discard is successful all the inodes have been discarded. 350 */ 351 int invalidate_inodes(struct super_block * sb) 352 { 353 int busy; 354 LIST_HEAD(throw_away); 355 356 mutex_lock(&iprune_mutex); 357 spin_lock(&inode_lock); 358 inotify_unmount_inodes(&sb->s_inodes); 359 busy = invalidate_list(&sb->s_inodes, &throw_away); 360 spin_unlock(&inode_lock); 361 362 dispose_list(&throw_away); 363 mutex_unlock(&iprune_mutex); 364 365 return busy; 366 } 367 368 EXPORT_SYMBOL(invalidate_inodes); 369 370 static int can_unuse(struct inode *inode) 371 { 372 if (inode->i_state) 373 return 0; 374 if (inode_has_buffers(inode)) 375 return 0; 376 if (atomic_read(&inode->i_count)) 377 return 0; 378 if (inode->i_data.nrpages) 379 return 0; 380 return 1; 381 } 382 383 /* 384 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 385 * a temporary list and then are freed outside inode_lock by dispose_list(). 386 * 387 * Any inodes which are pinned purely because of attached pagecache have their 388 * pagecache removed. We expect the final iput() on that inode to add it to 389 * the front of the inode_unused list. So look for it there and if the 390 * inode is still freeable, proceed. The right inode is found 99.9% of the 391 * time in testing on a 4-way. 392 * 393 * If the inode has metadata buffers attached to mapping->private_list then 394 * try to remove them. 395 */ 396 static void prune_icache(int nr_to_scan) 397 { 398 LIST_HEAD(freeable); 399 int nr_pruned = 0; 400 int nr_scanned; 401 unsigned long reap = 0; 402 403 mutex_lock(&iprune_mutex); 404 spin_lock(&inode_lock); 405 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 406 struct inode *inode; 407 408 if (list_empty(&inode_unused)) 409 break; 410 411 inode = list_entry(inode_unused.prev, struct inode, i_list); 412 413 if (inode->i_state || atomic_read(&inode->i_count)) { 414 list_move(&inode->i_list, &inode_unused); 415 continue; 416 } 417 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 418 __iget(inode); 419 spin_unlock(&inode_lock); 420 if (remove_inode_buffers(inode)) 421 reap += invalidate_mapping_pages(&inode->i_data, 422 0, -1); 423 iput(inode); 424 spin_lock(&inode_lock); 425 426 if (inode != list_entry(inode_unused.next, 427 struct inode, i_list)) 428 continue; /* wrong inode or list_empty */ 429 if (!can_unuse(inode)) 430 continue; 431 } 432 list_move(&inode->i_list, &freeable); 433 inode->i_state |= I_FREEING; 434 nr_pruned++; 435 } 436 inodes_stat.nr_unused -= nr_pruned; 437 if (current_is_kswapd()) 438 __count_vm_events(KSWAPD_INODESTEAL, reap); 439 else 440 __count_vm_events(PGINODESTEAL, reap); 441 spin_unlock(&inode_lock); 442 443 dispose_list(&freeable); 444 mutex_unlock(&iprune_mutex); 445 } 446 447 /* 448 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 449 * "unused" means that no dentries are referring to the inodes: the files are 450 * not open and the dcache references to those inodes have already been 451 * reclaimed. 452 * 453 * This function is passed the number of inodes to scan, and it returns the 454 * total number of remaining possibly-reclaimable inodes. 455 */ 456 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 457 { 458 if (nr) { 459 /* 460 * Nasty deadlock avoidance. We may hold various FS locks, 461 * and we don't want to recurse into the FS that called us 462 * in clear_inode() and friends.. 463 */ 464 if (!(gfp_mask & __GFP_FS)) 465 return -1; 466 prune_icache(nr); 467 } 468 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 469 } 470 471 static struct shrinker icache_shrinker = { 472 .shrink = shrink_icache_memory, 473 .seeks = DEFAULT_SEEKS, 474 }; 475 476 static void __wait_on_freeing_inode(struct inode *inode); 477 /* 478 * Called with the inode lock held. 479 * NOTE: we are not increasing the inode-refcount, you must call __iget() 480 * by hand after calling find_inode now! This simplifies iunique and won't 481 * add any additional branch in the common code. 482 */ 483 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 484 { 485 struct hlist_node *node; 486 struct inode * inode = NULL; 487 488 repeat: 489 hlist_for_each (node, head) { 490 inode = hlist_entry(node, struct inode, i_hash); 491 if (inode->i_sb != sb) 492 continue; 493 if (!test(inode, data)) 494 continue; 495 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 496 __wait_on_freeing_inode(inode); 497 goto repeat; 498 } 499 break; 500 } 501 return node ? inode : NULL; 502 } 503 504 /* 505 * find_inode_fast is the fast path version of find_inode, see the comment at 506 * iget_locked for details. 507 */ 508 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 509 { 510 struct hlist_node *node; 511 struct inode * inode = NULL; 512 513 repeat: 514 hlist_for_each (node, head) { 515 inode = hlist_entry(node, struct inode, i_hash); 516 if (inode->i_ino != ino) 517 continue; 518 if (inode->i_sb != sb) 519 continue; 520 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 521 __wait_on_freeing_inode(inode); 522 goto repeat; 523 } 524 break; 525 } 526 return node ? inode : NULL; 527 } 528 529 /** 530 * new_inode - obtain an inode 531 * @sb: superblock 532 * 533 * Allocates a new inode for given superblock. The default gfp_mask 534 * for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE. 535 * If HIGHMEM pages are unsuitable or it is known that pages allocated 536 * for the page cache are not reclaimable or migratable, 537 * mapping_set_gfp_mask() must be called with suitable flags on the 538 * newly created inode's mapping 539 * 540 */ 541 struct inode *new_inode(struct super_block *sb) 542 { 543 /* 544 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 545 * error if st_ino won't fit in target struct field. Use 32bit counter 546 * here to attempt to avoid that. 547 */ 548 static unsigned int last_ino; 549 struct inode * inode; 550 551 spin_lock_prefetch(&inode_lock); 552 553 inode = alloc_inode(sb); 554 if (inode) { 555 spin_lock(&inode_lock); 556 inodes_stat.nr_inodes++; 557 list_add(&inode->i_list, &inode_in_use); 558 list_add(&inode->i_sb_list, &sb->s_inodes); 559 inode->i_ino = ++last_ino; 560 inode->i_state = 0; 561 spin_unlock(&inode_lock); 562 } 563 return inode; 564 } 565 566 EXPORT_SYMBOL(new_inode); 567 568 void unlock_new_inode(struct inode *inode) 569 { 570 #ifdef CONFIG_DEBUG_LOCK_ALLOC 571 struct file_system_type *type = inode->i_sb->s_type; 572 /* 573 * ensure nobody is actually holding i_mutex 574 */ 575 mutex_destroy(&inode->i_mutex); 576 mutex_init(&inode->i_mutex); 577 if (inode->i_mode & S_IFDIR) 578 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 579 else 580 lockdep_set_class(&inode->i_mutex, &type->i_mutex_key); 581 #endif 582 /* 583 * This is special! We do not need the spinlock 584 * when clearing I_LOCK, because we're guaranteed 585 * that nobody else tries to do anything about the 586 * state of the inode when it is locked, as we 587 * just created it (so there can be no old holders 588 * that haven't tested I_LOCK). 589 */ 590 inode->i_state &= ~(I_LOCK|I_NEW); 591 wake_up_inode(inode); 592 } 593 594 EXPORT_SYMBOL(unlock_new_inode); 595 596 /* 597 * This is called without the inode lock held.. Be careful. 598 * 599 * We no longer cache the sb_flags in i_flags - see fs.h 600 * -- rmk@arm.uk.linux.org 601 */ 602 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 603 { 604 struct inode * inode; 605 606 inode = alloc_inode(sb); 607 if (inode) { 608 struct inode * old; 609 610 spin_lock(&inode_lock); 611 /* We released the lock, so.. */ 612 old = find_inode(sb, head, test, data); 613 if (!old) { 614 if (set(inode, data)) 615 goto set_failed; 616 617 inodes_stat.nr_inodes++; 618 list_add(&inode->i_list, &inode_in_use); 619 list_add(&inode->i_sb_list, &sb->s_inodes); 620 hlist_add_head(&inode->i_hash, head); 621 inode->i_state = I_LOCK|I_NEW; 622 spin_unlock(&inode_lock); 623 624 /* Return the locked inode with I_NEW set, the 625 * caller is responsible for filling in the contents 626 */ 627 return inode; 628 } 629 630 /* 631 * Uhhuh, somebody else created the same inode under 632 * us. Use the old inode instead of the one we just 633 * allocated. 634 */ 635 __iget(old); 636 spin_unlock(&inode_lock); 637 destroy_inode(inode); 638 inode = old; 639 wait_on_inode(inode); 640 } 641 return inode; 642 643 set_failed: 644 spin_unlock(&inode_lock); 645 destroy_inode(inode); 646 return NULL; 647 } 648 649 /* 650 * get_new_inode_fast is the fast path version of get_new_inode, see the 651 * comment at iget_locked for details. 652 */ 653 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 654 { 655 struct inode * inode; 656 657 inode = alloc_inode(sb); 658 if (inode) { 659 struct inode * old; 660 661 spin_lock(&inode_lock); 662 /* We released the lock, so.. */ 663 old = find_inode_fast(sb, head, ino); 664 if (!old) { 665 inode->i_ino = ino; 666 inodes_stat.nr_inodes++; 667 list_add(&inode->i_list, &inode_in_use); 668 list_add(&inode->i_sb_list, &sb->s_inodes); 669 hlist_add_head(&inode->i_hash, head); 670 inode->i_state = I_LOCK|I_NEW; 671 spin_unlock(&inode_lock); 672 673 /* Return the locked inode with I_NEW set, the 674 * caller is responsible for filling in the contents 675 */ 676 return inode; 677 } 678 679 /* 680 * Uhhuh, somebody else created the same inode under 681 * us. Use the old inode instead of the one we just 682 * allocated. 683 */ 684 __iget(old); 685 spin_unlock(&inode_lock); 686 destroy_inode(inode); 687 inode = old; 688 wait_on_inode(inode); 689 } 690 return inode; 691 } 692 693 static unsigned long hash(struct super_block *sb, unsigned long hashval) 694 { 695 unsigned long tmp; 696 697 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 698 L1_CACHE_BYTES; 699 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 700 return tmp & I_HASHMASK; 701 } 702 703 /** 704 * iunique - get a unique inode number 705 * @sb: superblock 706 * @max_reserved: highest reserved inode number 707 * 708 * Obtain an inode number that is unique on the system for a given 709 * superblock. This is used by file systems that have no natural 710 * permanent inode numbering system. An inode number is returned that 711 * is higher than the reserved limit but unique. 712 * 713 * BUGS: 714 * With a large number of inodes live on the file system this function 715 * currently becomes quite slow. 716 */ 717 ino_t iunique(struct super_block *sb, ino_t max_reserved) 718 { 719 /* 720 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 721 * error if st_ino won't fit in target struct field. Use 32bit counter 722 * here to attempt to avoid that. 723 */ 724 static unsigned int counter; 725 struct inode *inode; 726 struct hlist_head *head; 727 ino_t res; 728 729 spin_lock(&inode_lock); 730 do { 731 if (counter <= max_reserved) 732 counter = max_reserved + 1; 733 res = counter++; 734 head = inode_hashtable + hash(sb, res); 735 inode = find_inode_fast(sb, head, res); 736 } while (inode != NULL); 737 spin_unlock(&inode_lock); 738 739 return res; 740 } 741 EXPORT_SYMBOL(iunique); 742 743 struct inode *igrab(struct inode *inode) 744 { 745 spin_lock(&inode_lock); 746 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 747 __iget(inode); 748 else 749 /* 750 * Handle the case where s_op->clear_inode is not been 751 * called yet, and somebody is calling igrab 752 * while the inode is getting freed. 753 */ 754 inode = NULL; 755 spin_unlock(&inode_lock); 756 return inode; 757 } 758 759 EXPORT_SYMBOL(igrab); 760 761 /** 762 * ifind - internal function, you want ilookup5() or iget5(). 763 * @sb: super block of file system to search 764 * @head: the head of the list to search 765 * @test: callback used for comparisons between inodes 766 * @data: opaque data pointer to pass to @test 767 * @wait: if true wait for the inode to be unlocked, if false do not 768 * 769 * ifind() searches for the inode specified by @data in the inode 770 * cache. This is a generalized version of ifind_fast() for file systems where 771 * the inode number is not sufficient for unique identification of an inode. 772 * 773 * If the inode is in the cache, the inode is returned with an incremented 774 * reference count. 775 * 776 * Otherwise NULL is returned. 777 * 778 * Note, @test is called with the inode_lock held, so can't sleep. 779 */ 780 static struct inode *ifind(struct super_block *sb, 781 struct hlist_head *head, int (*test)(struct inode *, void *), 782 void *data, const int wait) 783 { 784 struct inode *inode; 785 786 spin_lock(&inode_lock); 787 inode = find_inode(sb, head, test, data); 788 if (inode) { 789 __iget(inode); 790 spin_unlock(&inode_lock); 791 if (likely(wait)) 792 wait_on_inode(inode); 793 return inode; 794 } 795 spin_unlock(&inode_lock); 796 return NULL; 797 } 798 799 /** 800 * ifind_fast - internal function, you want ilookup() or iget(). 801 * @sb: super block of file system to search 802 * @head: head of the list to search 803 * @ino: inode number to search for 804 * 805 * ifind_fast() searches for the inode @ino in the inode cache. This is for 806 * file systems where the inode number is sufficient for unique identification 807 * of an inode. 808 * 809 * If the inode is in the cache, the inode is returned with an incremented 810 * reference count. 811 * 812 * Otherwise NULL is returned. 813 */ 814 static struct inode *ifind_fast(struct super_block *sb, 815 struct hlist_head *head, unsigned long ino) 816 { 817 struct inode *inode; 818 819 spin_lock(&inode_lock); 820 inode = find_inode_fast(sb, head, ino); 821 if (inode) { 822 __iget(inode); 823 spin_unlock(&inode_lock); 824 wait_on_inode(inode); 825 return inode; 826 } 827 spin_unlock(&inode_lock); 828 return NULL; 829 } 830 831 /** 832 * ilookup5_nowait - search for an inode in the inode cache 833 * @sb: super block of file system to search 834 * @hashval: hash value (usually inode number) to search for 835 * @test: callback used for comparisons between inodes 836 * @data: opaque data pointer to pass to @test 837 * 838 * ilookup5() uses ifind() to search for the inode specified by @hashval and 839 * @data in the inode cache. This is a generalized version of ilookup() for 840 * file systems where the inode number is not sufficient for unique 841 * identification of an inode. 842 * 843 * If the inode is in the cache, the inode is returned with an incremented 844 * reference count. Note, the inode lock is not waited upon so you have to be 845 * very careful what you do with the returned inode. You probably should be 846 * using ilookup5() instead. 847 * 848 * Otherwise NULL is returned. 849 * 850 * Note, @test is called with the inode_lock held, so can't sleep. 851 */ 852 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 853 int (*test)(struct inode *, void *), void *data) 854 { 855 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 856 857 return ifind(sb, head, test, data, 0); 858 } 859 860 EXPORT_SYMBOL(ilookup5_nowait); 861 862 /** 863 * ilookup5 - search for an inode in the inode cache 864 * @sb: super block of file system to search 865 * @hashval: hash value (usually inode number) to search for 866 * @test: callback used for comparisons between inodes 867 * @data: opaque data pointer to pass to @test 868 * 869 * ilookup5() uses ifind() to search for the inode specified by @hashval and 870 * @data in the inode cache. This is a generalized version of ilookup() for 871 * file systems where the inode number is not sufficient for unique 872 * identification of an inode. 873 * 874 * If the inode is in the cache, the inode lock is waited upon and the inode is 875 * returned with an incremented reference count. 876 * 877 * Otherwise NULL is returned. 878 * 879 * Note, @test is called with the inode_lock held, so can't sleep. 880 */ 881 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 882 int (*test)(struct inode *, void *), void *data) 883 { 884 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 885 886 return ifind(sb, head, test, data, 1); 887 } 888 889 EXPORT_SYMBOL(ilookup5); 890 891 /** 892 * ilookup - search for an inode in the inode cache 893 * @sb: super block of file system to search 894 * @ino: inode number to search for 895 * 896 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 897 * This is for file systems where the inode number is sufficient for unique 898 * identification of an inode. 899 * 900 * If the inode is in the cache, the inode is returned with an incremented 901 * reference count. 902 * 903 * Otherwise NULL is returned. 904 */ 905 struct inode *ilookup(struct super_block *sb, unsigned long ino) 906 { 907 struct hlist_head *head = inode_hashtable + hash(sb, ino); 908 909 return ifind_fast(sb, head, ino); 910 } 911 912 EXPORT_SYMBOL(ilookup); 913 914 /** 915 * iget5_locked - obtain an inode from a mounted file system 916 * @sb: super block of file system 917 * @hashval: hash value (usually inode number) to get 918 * @test: callback used for comparisons between inodes 919 * @set: callback used to initialize a new struct inode 920 * @data: opaque data pointer to pass to @test and @set 921 * 922 * This is iget() without the read_inode() portion of get_new_inode(). 923 * 924 * iget5_locked() uses ifind() to search for the inode specified by @hashval 925 * and @data in the inode cache and if present it is returned with an increased 926 * reference count. This is a generalized version of iget_locked() for file 927 * systems where the inode number is not sufficient for unique identification 928 * of an inode. 929 * 930 * If the inode is not in cache, get_new_inode() is called to allocate a new 931 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 932 * file system gets to fill it in before unlocking it via unlock_new_inode(). 933 * 934 * Note both @test and @set are called with the inode_lock held, so can't sleep. 935 */ 936 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 937 int (*test)(struct inode *, void *), 938 int (*set)(struct inode *, void *), void *data) 939 { 940 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 941 struct inode *inode; 942 943 inode = ifind(sb, head, test, data, 1); 944 if (inode) 945 return inode; 946 /* 947 * get_new_inode() will do the right thing, re-trying the search 948 * in case it had to block at any point. 949 */ 950 return get_new_inode(sb, head, test, set, data); 951 } 952 953 EXPORT_SYMBOL(iget5_locked); 954 955 /** 956 * iget_locked - obtain an inode from a mounted file system 957 * @sb: super block of file system 958 * @ino: inode number to get 959 * 960 * This is iget() without the read_inode() portion of get_new_inode_fast(). 961 * 962 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 963 * the inode cache and if present it is returned with an increased reference 964 * count. This is for file systems where the inode number is sufficient for 965 * unique identification of an inode. 966 * 967 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 968 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 969 * The file system gets to fill it in before unlocking it via 970 * unlock_new_inode(). 971 */ 972 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 973 { 974 struct hlist_head *head = inode_hashtable + hash(sb, ino); 975 struct inode *inode; 976 977 inode = ifind_fast(sb, head, ino); 978 if (inode) 979 return inode; 980 /* 981 * get_new_inode_fast() will do the right thing, re-trying the search 982 * in case it had to block at any point. 983 */ 984 return get_new_inode_fast(sb, head, ino); 985 } 986 987 EXPORT_SYMBOL(iget_locked); 988 989 /** 990 * __insert_inode_hash - hash an inode 991 * @inode: unhashed inode 992 * @hashval: unsigned long value used to locate this object in the 993 * inode_hashtable. 994 * 995 * Add an inode to the inode hash for this superblock. 996 */ 997 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 998 { 999 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1000 spin_lock(&inode_lock); 1001 hlist_add_head(&inode->i_hash, head); 1002 spin_unlock(&inode_lock); 1003 } 1004 1005 EXPORT_SYMBOL(__insert_inode_hash); 1006 1007 /** 1008 * remove_inode_hash - remove an inode from the hash 1009 * @inode: inode to unhash 1010 * 1011 * Remove an inode from the superblock. 1012 */ 1013 void remove_inode_hash(struct inode *inode) 1014 { 1015 spin_lock(&inode_lock); 1016 hlist_del_init(&inode->i_hash); 1017 spin_unlock(&inode_lock); 1018 } 1019 1020 EXPORT_SYMBOL(remove_inode_hash); 1021 1022 /* 1023 * Tell the filesystem that this inode is no longer of any interest and should 1024 * be completely destroyed. 1025 * 1026 * We leave the inode in the inode hash table until *after* the filesystem's 1027 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1028 * instigate) will always find up-to-date information either in the hash or on 1029 * disk. 1030 * 1031 * I_FREEING is set so that no-one will take a new reference to the inode while 1032 * it is being deleted. 1033 */ 1034 void generic_delete_inode(struct inode *inode) 1035 { 1036 const struct super_operations *op = inode->i_sb->s_op; 1037 1038 list_del_init(&inode->i_list); 1039 list_del_init(&inode->i_sb_list); 1040 inode->i_state |= I_FREEING; 1041 inodes_stat.nr_inodes--; 1042 spin_unlock(&inode_lock); 1043 1044 security_inode_delete(inode); 1045 1046 if (op->delete_inode) { 1047 void (*delete)(struct inode *) = op->delete_inode; 1048 if (!is_bad_inode(inode)) 1049 DQUOT_INIT(inode); 1050 /* Filesystems implementing their own 1051 * s_op->delete_inode are required to call 1052 * truncate_inode_pages and clear_inode() 1053 * internally */ 1054 delete(inode); 1055 } else { 1056 truncate_inode_pages(&inode->i_data, 0); 1057 clear_inode(inode); 1058 } 1059 spin_lock(&inode_lock); 1060 hlist_del_init(&inode->i_hash); 1061 spin_unlock(&inode_lock); 1062 wake_up_inode(inode); 1063 BUG_ON(inode->i_state != I_CLEAR); 1064 destroy_inode(inode); 1065 } 1066 1067 EXPORT_SYMBOL(generic_delete_inode); 1068 1069 static void generic_forget_inode(struct inode *inode) 1070 { 1071 struct super_block *sb = inode->i_sb; 1072 1073 if (!hlist_unhashed(&inode->i_hash)) { 1074 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 1075 list_move(&inode->i_list, &inode_unused); 1076 inodes_stat.nr_unused++; 1077 if (sb->s_flags & MS_ACTIVE) { 1078 spin_unlock(&inode_lock); 1079 return; 1080 } 1081 inode->i_state |= I_WILL_FREE; 1082 spin_unlock(&inode_lock); 1083 write_inode_now(inode, 1); 1084 spin_lock(&inode_lock); 1085 inode->i_state &= ~I_WILL_FREE; 1086 inodes_stat.nr_unused--; 1087 hlist_del_init(&inode->i_hash); 1088 } 1089 list_del_init(&inode->i_list); 1090 list_del_init(&inode->i_sb_list); 1091 inode->i_state |= I_FREEING; 1092 inodes_stat.nr_inodes--; 1093 spin_unlock(&inode_lock); 1094 if (inode->i_data.nrpages) 1095 truncate_inode_pages(&inode->i_data, 0); 1096 clear_inode(inode); 1097 wake_up_inode(inode); 1098 destroy_inode(inode); 1099 } 1100 1101 /* 1102 * Normal UNIX filesystem behaviour: delete the 1103 * inode when the usage count drops to zero, and 1104 * i_nlink is zero. 1105 */ 1106 void generic_drop_inode(struct inode *inode) 1107 { 1108 if (!inode->i_nlink) 1109 generic_delete_inode(inode); 1110 else 1111 generic_forget_inode(inode); 1112 } 1113 1114 EXPORT_SYMBOL_GPL(generic_drop_inode); 1115 1116 /* 1117 * Called when we're dropping the last reference 1118 * to an inode. 1119 * 1120 * Call the FS "drop()" function, defaulting to 1121 * the legacy UNIX filesystem behaviour.. 1122 * 1123 * NOTE! NOTE! NOTE! We're called with the inode lock 1124 * held, and the drop function is supposed to release 1125 * the lock! 1126 */ 1127 static inline void iput_final(struct inode *inode) 1128 { 1129 const struct super_operations *op = inode->i_sb->s_op; 1130 void (*drop)(struct inode *) = generic_drop_inode; 1131 1132 if (op && op->drop_inode) 1133 drop = op->drop_inode; 1134 drop(inode); 1135 } 1136 1137 /** 1138 * iput - put an inode 1139 * @inode: inode to put 1140 * 1141 * Puts an inode, dropping its usage count. If the inode use count hits 1142 * zero, the inode is then freed and may also be destroyed. 1143 * 1144 * Consequently, iput() can sleep. 1145 */ 1146 void iput(struct inode *inode) 1147 { 1148 if (inode) { 1149 const struct super_operations *op = inode->i_sb->s_op; 1150 1151 BUG_ON(inode->i_state == I_CLEAR); 1152 1153 if (op && op->put_inode) 1154 op->put_inode(inode); 1155 1156 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1157 iput_final(inode); 1158 } 1159 } 1160 1161 EXPORT_SYMBOL(iput); 1162 1163 /** 1164 * bmap - find a block number in a file 1165 * @inode: inode of file 1166 * @block: block to find 1167 * 1168 * Returns the block number on the device holding the inode that 1169 * is the disk block number for the block of the file requested. 1170 * That is, asked for block 4 of inode 1 the function will return the 1171 * disk block relative to the disk start that holds that block of the 1172 * file. 1173 */ 1174 sector_t bmap(struct inode * inode, sector_t block) 1175 { 1176 sector_t res = 0; 1177 if (inode->i_mapping->a_ops->bmap) 1178 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1179 return res; 1180 } 1181 EXPORT_SYMBOL(bmap); 1182 1183 /** 1184 * touch_atime - update the access time 1185 * @mnt: mount the inode is accessed on 1186 * @dentry: dentry accessed 1187 * 1188 * Update the accessed time on an inode and mark it for writeback. 1189 * This function automatically handles read only file systems and media, 1190 * as well as the "noatime" flag and inode specific "noatime" markers. 1191 */ 1192 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1193 { 1194 struct inode *inode = dentry->d_inode; 1195 struct timespec now; 1196 1197 if (inode->i_flags & S_NOATIME) 1198 return; 1199 if (IS_NOATIME(inode)) 1200 return; 1201 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1202 return; 1203 1204 /* 1205 * We may have a NULL vfsmount when coming from NFSD 1206 */ 1207 if (mnt) { 1208 if (mnt->mnt_flags & MNT_NOATIME) 1209 return; 1210 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1211 return; 1212 1213 if (mnt->mnt_flags & MNT_RELATIME) { 1214 /* 1215 * With relative atime, only update atime if the 1216 * previous atime is earlier than either the ctime or 1217 * mtime. 1218 */ 1219 if (timespec_compare(&inode->i_mtime, 1220 &inode->i_atime) < 0 && 1221 timespec_compare(&inode->i_ctime, 1222 &inode->i_atime) < 0) 1223 return; 1224 } 1225 } 1226 1227 now = current_fs_time(inode->i_sb); 1228 if (timespec_equal(&inode->i_atime, &now)) 1229 return; 1230 1231 inode->i_atime = now; 1232 mark_inode_dirty_sync(inode); 1233 } 1234 EXPORT_SYMBOL(touch_atime); 1235 1236 /** 1237 * file_update_time - update mtime and ctime time 1238 * @file: file accessed 1239 * 1240 * Update the mtime and ctime members of an inode and mark the inode 1241 * for writeback. Note that this function is meant exclusively for 1242 * usage in the file write path of filesystems, and filesystems may 1243 * choose to explicitly ignore update via this function with the 1244 * S_NOCTIME inode flag, e.g. for network filesystem where these 1245 * timestamps are handled by the server. 1246 */ 1247 1248 void file_update_time(struct file *file) 1249 { 1250 struct inode *inode = file->f_path.dentry->d_inode; 1251 struct timespec now; 1252 int sync_it = 0; 1253 1254 if (IS_NOCMTIME(inode)) 1255 return; 1256 if (IS_RDONLY(inode)) 1257 return; 1258 1259 now = current_fs_time(inode->i_sb); 1260 if (!timespec_equal(&inode->i_mtime, &now)) { 1261 inode->i_mtime = now; 1262 sync_it = 1; 1263 } 1264 1265 if (!timespec_equal(&inode->i_ctime, &now)) { 1266 inode->i_ctime = now; 1267 sync_it = 1; 1268 } 1269 1270 if (sync_it) 1271 mark_inode_dirty_sync(inode); 1272 } 1273 1274 EXPORT_SYMBOL(file_update_time); 1275 1276 int inode_needs_sync(struct inode *inode) 1277 { 1278 if (IS_SYNC(inode)) 1279 return 1; 1280 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1281 return 1; 1282 return 0; 1283 } 1284 1285 EXPORT_SYMBOL(inode_needs_sync); 1286 1287 int inode_wait(void *word) 1288 { 1289 schedule(); 1290 return 0; 1291 } 1292 1293 /* 1294 * If we try to find an inode in the inode hash while it is being 1295 * deleted, we have to wait until the filesystem completes its 1296 * deletion before reporting that it isn't found. This function waits 1297 * until the deletion _might_ have completed. Callers are responsible 1298 * to recheck inode state. 1299 * 1300 * It doesn't matter if I_LOCK is not set initially, a call to 1301 * wake_up_inode() after removing from the hash list will DTRT. 1302 * 1303 * This is called with inode_lock held. 1304 */ 1305 static void __wait_on_freeing_inode(struct inode *inode) 1306 { 1307 wait_queue_head_t *wq; 1308 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1309 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1310 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1311 spin_unlock(&inode_lock); 1312 schedule(); 1313 finish_wait(wq, &wait.wait); 1314 spin_lock(&inode_lock); 1315 } 1316 1317 void wake_up_inode(struct inode *inode) 1318 { 1319 /* 1320 * Prevent speculative execution through spin_unlock(&inode_lock); 1321 */ 1322 smp_mb(); 1323 wake_up_bit(&inode->i_state, __I_LOCK); 1324 } 1325 1326 /* 1327 * We rarely want to lock two inodes that do not have a parent/child 1328 * relationship (such as directory, child inode) simultaneously. The 1329 * vast majority of file systems should be able to get along fine 1330 * without this. Do not use these functions except as a last resort. 1331 */ 1332 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1333 { 1334 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1335 if (inode1) 1336 mutex_lock(&inode1->i_mutex); 1337 else if (inode2) 1338 mutex_lock(&inode2->i_mutex); 1339 return; 1340 } 1341 1342 if (inode1 < inode2) { 1343 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1344 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1345 } else { 1346 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1347 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1348 } 1349 } 1350 EXPORT_SYMBOL(inode_double_lock); 1351 1352 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1353 { 1354 if (inode1) 1355 mutex_unlock(&inode1->i_mutex); 1356 1357 if (inode2 && inode2 != inode1) 1358 mutex_unlock(&inode2->i_mutex); 1359 } 1360 EXPORT_SYMBOL(inode_double_unlock); 1361 1362 static __initdata unsigned long ihash_entries; 1363 static int __init set_ihash_entries(char *str) 1364 { 1365 if (!str) 1366 return 0; 1367 ihash_entries = simple_strtoul(str, &str, 0); 1368 return 1; 1369 } 1370 __setup("ihash_entries=", set_ihash_entries); 1371 1372 /* 1373 * Initialize the waitqueues and inode hash table. 1374 */ 1375 void __init inode_init_early(void) 1376 { 1377 int loop; 1378 1379 /* If hashes are distributed across NUMA nodes, defer 1380 * hash allocation until vmalloc space is available. 1381 */ 1382 if (hashdist) 1383 return; 1384 1385 inode_hashtable = 1386 alloc_large_system_hash("Inode-cache", 1387 sizeof(struct hlist_head), 1388 ihash_entries, 1389 14, 1390 HASH_EARLY, 1391 &i_hash_shift, 1392 &i_hash_mask, 1393 0); 1394 1395 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1396 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1397 } 1398 1399 void __init inode_init(unsigned long mempages) 1400 { 1401 int loop; 1402 1403 /* inode slab cache */ 1404 inode_cachep = kmem_cache_create("inode_cache", 1405 sizeof(struct inode), 1406 0, 1407 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1408 SLAB_MEM_SPREAD), 1409 init_once); 1410 register_shrinker(&icache_shrinker); 1411 1412 /* Hash may have been set up in inode_init_early */ 1413 if (!hashdist) 1414 return; 1415 1416 inode_hashtable = 1417 alloc_large_system_hash("Inode-cache", 1418 sizeof(struct hlist_head), 1419 ihash_entries, 1420 14, 1421 0, 1422 &i_hash_shift, 1423 &i_hash_mask, 1424 0); 1425 1426 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1427 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1428 } 1429 1430 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1431 { 1432 inode->i_mode = mode; 1433 if (S_ISCHR(mode)) { 1434 inode->i_fop = &def_chr_fops; 1435 inode->i_rdev = rdev; 1436 } else if (S_ISBLK(mode)) { 1437 inode->i_fop = &def_blk_fops; 1438 inode->i_rdev = rdev; 1439 } else if (S_ISFIFO(mode)) 1440 inode->i_fop = &def_fifo_fops; 1441 else if (S_ISSOCK(mode)) 1442 inode->i_fop = &bad_sock_fops; 1443 else 1444 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1445 mode); 1446 } 1447 EXPORT_SYMBOL(init_special_inode); 1448