1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <trace/events/writeback.h> 25 #include "internal.h" 26 27 /* 28 * Inode locking rules: 29 * 30 * inode->i_lock protects: 31 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 32 * Inode LRU list locks protect: 33 * inode->i_sb->s_inode_lru, inode->i_lru 34 * inode->i_sb->s_inode_list_lock protects: 35 * inode->i_sb->s_inodes, inode->i_sb_list 36 * bdi->wb.list_lock protects: 37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 38 * inode_hash_lock protects: 39 * inode_hashtable, inode->i_hash 40 * 41 * Lock ordering: 42 * 43 * inode->i_sb->s_inode_list_lock 44 * inode->i_lock 45 * Inode LRU list locks 46 * 47 * bdi->wb.list_lock 48 * inode->i_lock 49 * 50 * inode_hash_lock 51 * inode->i_sb->s_inode_list_lock 52 * inode->i_lock 53 * 54 * iunique_lock 55 * inode_hash_lock 56 */ 57 58 static unsigned int i_hash_mask __ro_after_init; 59 static unsigned int i_hash_shift __ro_after_init; 60 static struct hlist_head *inode_hashtable __ro_after_init; 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 62 63 /* 64 * Empty aops. Can be used for the cases where the user does not 65 * define any of the address_space operations. 66 */ 67 const struct address_space_operations empty_aops = { 68 }; 69 EXPORT_SYMBOL(empty_aops); 70 71 static DEFINE_PER_CPU(unsigned long, nr_inodes); 72 static DEFINE_PER_CPU(unsigned long, nr_unused); 73 74 static struct kmem_cache *inode_cachep __ro_after_init; 75 76 static long get_nr_inodes(void) 77 { 78 int i; 79 long sum = 0; 80 for_each_possible_cpu(i) 81 sum += per_cpu(nr_inodes, i); 82 return sum < 0 ? 0 : sum; 83 } 84 85 static inline long get_nr_inodes_unused(void) 86 { 87 int i; 88 long sum = 0; 89 for_each_possible_cpu(i) 90 sum += per_cpu(nr_unused, i); 91 return sum < 0 ? 0 : sum; 92 } 93 94 long get_nr_dirty_inodes(void) 95 { 96 /* not actually dirty inodes, but a wild approximation */ 97 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 98 return nr_dirty > 0 ? nr_dirty : 0; 99 } 100 101 /* 102 * Handle nr_inode sysctl 103 */ 104 #ifdef CONFIG_SYSCTL 105 /* 106 * Statistics gathering.. 107 */ 108 static struct inodes_stat_t inodes_stat; 109 110 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 111 size_t *lenp, loff_t *ppos) 112 { 113 inodes_stat.nr_inodes = get_nr_inodes(); 114 inodes_stat.nr_unused = get_nr_inodes_unused(); 115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 116 } 117 118 static struct ctl_table inodes_sysctls[] = { 119 { 120 .procname = "inode-nr", 121 .data = &inodes_stat, 122 .maxlen = 2*sizeof(long), 123 .mode = 0444, 124 .proc_handler = proc_nr_inodes, 125 }, 126 { 127 .procname = "inode-state", 128 .data = &inodes_stat, 129 .maxlen = 7*sizeof(long), 130 .mode = 0444, 131 .proc_handler = proc_nr_inodes, 132 }, 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 inode->i_state = 0; 166 atomic64_set(&inode->i_sequence, 0); 167 atomic_set(&inode->i_count, 1); 168 inode->i_op = &empty_iops; 169 inode->i_fop = &no_open_fops; 170 inode->i_ino = 0; 171 inode->__i_nlink = 1; 172 inode->i_opflags = 0; 173 if (sb->s_xattr) 174 inode->i_opflags |= IOP_XATTR; 175 i_uid_write(inode, 0); 176 i_gid_write(inode, 0); 177 atomic_set(&inode->i_writecount, 0); 178 inode->i_size = 0; 179 inode->i_write_hint = WRITE_LIFE_NOT_SET; 180 inode->i_blocks = 0; 181 inode->i_bytes = 0; 182 inode->i_generation = 0; 183 inode->i_pipe = NULL; 184 inode->i_cdev = NULL; 185 inode->i_link = NULL; 186 inode->i_dir_seq = 0; 187 inode->i_rdev = 0; 188 inode->dirtied_when = 0; 189 190 #ifdef CONFIG_CGROUP_WRITEBACK 191 inode->i_wb_frn_winner = 0; 192 inode->i_wb_frn_avg_time = 0; 193 inode->i_wb_frn_history = 0; 194 #endif 195 196 spin_lock_init(&inode->i_lock); 197 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 198 199 init_rwsem(&inode->i_rwsem); 200 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 201 202 atomic_set(&inode->i_dio_count, 0); 203 204 mapping->a_ops = &empty_aops; 205 mapping->host = inode; 206 mapping->flags = 0; 207 mapping->wb_err = 0; 208 atomic_set(&mapping->i_mmap_writable, 0); 209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 210 atomic_set(&mapping->nr_thps, 0); 211 #endif 212 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 213 mapping->i_private_data = NULL; 214 mapping->writeback_index = 0; 215 init_rwsem(&mapping->invalidate_lock); 216 lockdep_set_class_and_name(&mapping->invalidate_lock, 217 &sb->s_type->invalidate_lock_key, 218 "mapping.invalidate_lock"); 219 if (sb->s_iflags & SB_I_STABLE_WRITES) 220 mapping_set_stable_writes(mapping); 221 inode->i_private = NULL; 222 inode->i_mapping = mapping; 223 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 224 #ifdef CONFIG_FS_POSIX_ACL 225 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 226 #endif 227 228 #ifdef CONFIG_FSNOTIFY 229 inode->i_fsnotify_mask = 0; 230 #endif 231 inode->i_flctx = NULL; 232 233 if (unlikely(security_inode_alloc(inode))) 234 return -ENOMEM; 235 236 this_cpu_inc(nr_inodes); 237 238 return 0; 239 } 240 EXPORT_SYMBOL(inode_init_always); 241 242 void free_inode_nonrcu(struct inode *inode) 243 { 244 kmem_cache_free(inode_cachep, inode); 245 } 246 EXPORT_SYMBOL(free_inode_nonrcu); 247 248 static void i_callback(struct rcu_head *head) 249 { 250 struct inode *inode = container_of(head, struct inode, i_rcu); 251 if (inode->free_inode) 252 inode->free_inode(inode); 253 else 254 free_inode_nonrcu(inode); 255 } 256 257 static struct inode *alloc_inode(struct super_block *sb) 258 { 259 const struct super_operations *ops = sb->s_op; 260 struct inode *inode; 261 262 if (ops->alloc_inode) 263 inode = ops->alloc_inode(sb); 264 else 265 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 266 267 if (!inode) 268 return NULL; 269 270 if (unlikely(inode_init_always(sb, inode))) { 271 if (ops->destroy_inode) { 272 ops->destroy_inode(inode); 273 if (!ops->free_inode) 274 return NULL; 275 } 276 inode->free_inode = ops->free_inode; 277 i_callback(&inode->i_rcu); 278 return NULL; 279 } 280 281 return inode; 282 } 283 284 void __destroy_inode(struct inode *inode) 285 { 286 BUG_ON(inode_has_buffers(inode)); 287 inode_detach_wb(inode); 288 security_inode_free(inode); 289 fsnotify_inode_delete(inode); 290 locks_free_lock_context(inode); 291 if (!inode->i_nlink) { 292 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 293 atomic_long_dec(&inode->i_sb->s_remove_count); 294 } 295 296 #ifdef CONFIG_FS_POSIX_ACL 297 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 298 posix_acl_release(inode->i_acl); 299 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 300 posix_acl_release(inode->i_default_acl); 301 #endif 302 this_cpu_dec(nr_inodes); 303 } 304 EXPORT_SYMBOL(__destroy_inode); 305 306 static void destroy_inode(struct inode *inode) 307 { 308 const struct super_operations *ops = inode->i_sb->s_op; 309 310 BUG_ON(!list_empty(&inode->i_lru)); 311 __destroy_inode(inode); 312 if (ops->destroy_inode) { 313 ops->destroy_inode(inode); 314 if (!ops->free_inode) 315 return; 316 } 317 inode->free_inode = ops->free_inode; 318 call_rcu(&inode->i_rcu, i_callback); 319 } 320 321 /** 322 * drop_nlink - directly drop an inode's link count 323 * @inode: inode 324 * 325 * This is a low-level filesystem helper to replace any 326 * direct filesystem manipulation of i_nlink. In cases 327 * where we are attempting to track writes to the 328 * filesystem, a decrement to zero means an imminent 329 * write when the file is truncated and actually unlinked 330 * on the filesystem. 331 */ 332 void drop_nlink(struct inode *inode) 333 { 334 WARN_ON(inode->i_nlink == 0); 335 inode->__i_nlink--; 336 if (!inode->i_nlink) 337 atomic_long_inc(&inode->i_sb->s_remove_count); 338 } 339 EXPORT_SYMBOL(drop_nlink); 340 341 /** 342 * clear_nlink - directly zero an inode's link count 343 * @inode: inode 344 * 345 * This is a low-level filesystem helper to replace any 346 * direct filesystem manipulation of i_nlink. See 347 * drop_nlink() for why we care about i_nlink hitting zero. 348 */ 349 void clear_nlink(struct inode *inode) 350 { 351 if (inode->i_nlink) { 352 inode->__i_nlink = 0; 353 atomic_long_inc(&inode->i_sb->s_remove_count); 354 } 355 } 356 EXPORT_SYMBOL(clear_nlink); 357 358 /** 359 * set_nlink - directly set an inode's link count 360 * @inode: inode 361 * @nlink: new nlink (should be non-zero) 362 * 363 * This is a low-level filesystem helper to replace any 364 * direct filesystem manipulation of i_nlink. 365 */ 366 void set_nlink(struct inode *inode, unsigned int nlink) 367 { 368 if (!nlink) { 369 clear_nlink(inode); 370 } else { 371 /* Yes, some filesystems do change nlink from zero to one */ 372 if (inode->i_nlink == 0) 373 atomic_long_dec(&inode->i_sb->s_remove_count); 374 375 inode->__i_nlink = nlink; 376 } 377 } 378 EXPORT_SYMBOL(set_nlink); 379 380 /** 381 * inc_nlink - directly increment an inode's link count 382 * @inode: inode 383 * 384 * This is a low-level filesystem helper to replace any 385 * direct filesystem manipulation of i_nlink. Currently, 386 * it is only here for parity with dec_nlink(). 387 */ 388 void inc_nlink(struct inode *inode) 389 { 390 if (unlikely(inode->i_nlink == 0)) { 391 WARN_ON(!(inode->i_state & I_LINKABLE)); 392 atomic_long_dec(&inode->i_sb->s_remove_count); 393 } 394 395 inode->__i_nlink++; 396 } 397 EXPORT_SYMBOL(inc_nlink); 398 399 static void __address_space_init_once(struct address_space *mapping) 400 { 401 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 402 init_rwsem(&mapping->i_mmap_rwsem); 403 INIT_LIST_HEAD(&mapping->i_private_list); 404 spin_lock_init(&mapping->i_private_lock); 405 mapping->i_mmap = RB_ROOT_CACHED; 406 } 407 408 void address_space_init_once(struct address_space *mapping) 409 { 410 memset(mapping, 0, sizeof(*mapping)); 411 __address_space_init_once(mapping); 412 } 413 EXPORT_SYMBOL(address_space_init_once); 414 415 /* 416 * These are initializations that only need to be done 417 * once, because the fields are idempotent across use 418 * of the inode, so let the slab aware of that. 419 */ 420 void inode_init_once(struct inode *inode) 421 { 422 memset(inode, 0, sizeof(*inode)); 423 INIT_HLIST_NODE(&inode->i_hash); 424 INIT_LIST_HEAD(&inode->i_devices); 425 INIT_LIST_HEAD(&inode->i_io_list); 426 INIT_LIST_HEAD(&inode->i_wb_list); 427 INIT_LIST_HEAD(&inode->i_lru); 428 INIT_LIST_HEAD(&inode->i_sb_list); 429 __address_space_init_once(&inode->i_data); 430 i_size_ordered_init(inode); 431 } 432 EXPORT_SYMBOL(inode_init_once); 433 434 static void init_once(void *foo) 435 { 436 struct inode *inode = (struct inode *) foo; 437 438 inode_init_once(inode); 439 } 440 441 /* 442 * inode->i_lock must be held 443 */ 444 void __iget(struct inode *inode) 445 { 446 atomic_inc(&inode->i_count); 447 } 448 449 /* 450 * get additional reference to inode; caller must already hold one. 451 */ 452 void ihold(struct inode *inode) 453 { 454 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 455 } 456 EXPORT_SYMBOL(ihold); 457 458 static void __inode_add_lru(struct inode *inode, bool rotate) 459 { 460 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 461 return; 462 if (atomic_read(&inode->i_count)) 463 return; 464 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 465 return; 466 if (!mapping_shrinkable(&inode->i_data)) 467 return; 468 469 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 470 this_cpu_inc(nr_unused); 471 else if (rotate) 472 inode->i_state |= I_REFERENCED; 473 } 474 475 /* 476 * Add inode to LRU if needed (inode is unused and clean). 477 * 478 * Needs inode->i_lock held. 479 */ 480 void inode_add_lru(struct inode *inode) 481 { 482 __inode_add_lru(inode, false); 483 } 484 485 static void inode_lru_list_del(struct inode *inode) 486 { 487 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 488 this_cpu_dec(nr_unused); 489 } 490 491 /** 492 * inode_sb_list_add - add inode to the superblock list of inodes 493 * @inode: inode to add 494 */ 495 void inode_sb_list_add(struct inode *inode) 496 { 497 spin_lock(&inode->i_sb->s_inode_list_lock); 498 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 499 spin_unlock(&inode->i_sb->s_inode_list_lock); 500 } 501 EXPORT_SYMBOL_GPL(inode_sb_list_add); 502 503 static inline void inode_sb_list_del(struct inode *inode) 504 { 505 if (!list_empty(&inode->i_sb_list)) { 506 spin_lock(&inode->i_sb->s_inode_list_lock); 507 list_del_init(&inode->i_sb_list); 508 spin_unlock(&inode->i_sb->s_inode_list_lock); 509 } 510 } 511 512 static unsigned long hash(struct super_block *sb, unsigned long hashval) 513 { 514 unsigned long tmp; 515 516 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 517 L1_CACHE_BYTES; 518 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 519 return tmp & i_hash_mask; 520 } 521 522 /** 523 * __insert_inode_hash - hash an inode 524 * @inode: unhashed inode 525 * @hashval: unsigned long value used to locate this object in the 526 * inode_hashtable. 527 * 528 * Add an inode to the inode hash for this superblock. 529 */ 530 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 531 { 532 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 533 534 spin_lock(&inode_hash_lock); 535 spin_lock(&inode->i_lock); 536 hlist_add_head_rcu(&inode->i_hash, b); 537 spin_unlock(&inode->i_lock); 538 spin_unlock(&inode_hash_lock); 539 } 540 EXPORT_SYMBOL(__insert_inode_hash); 541 542 /** 543 * __remove_inode_hash - remove an inode from the hash 544 * @inode: inode to unhash 545 * 546 * Remove an inode from the superblock. 547 */ 548 void __remove_inode_hash(struct inode *inode) 549 { 550 spin_lock(&inode_hash_lock); 551 spin_lock(&inode->i_lock); 552 hlist_del_init_rcu(&inode->i_hash); 553 spin_unlock(&inode->i_lock); 554 spin_unlock(&inode_hash_lock); 555 } 556 EXPORT_SYMBOL(__remove_inode_hash); 557 558 void dump_mapping(const struct address_space *mapping) 559 { 560 struct inode *host; 561 const struct address_space_operations *a_ops; 562 struct hlist_node *dentry_first; 563 struct dentry *dentry_ptr; 564 struct dentry dentry; 565 unsigned long ino; 566 567 /* 568 * If mapping is an invalid pointer, we don't want to crash 569 * accessing it, so probe everything depending on it carefully. 570 */ 571 if (get_kernel_nofault(host, &mapping->host) || 572 get_kernel_nofault(a_ops, &mapping->a_ops)) { 573 pr_warn("invalid mapping:%px\n", mapping); 574 return; 575 } 576 577 if (!host) { 578 pr_warn("aops:%ps\n", a_ops); 579 return; 580 } 581 582 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 583 get_kernel_nofault(ino, &host->i_ino)) { 584 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 585 return; 586 } 587 588 if (!dentry_first) { 589 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 590 return; 591 } 592 593 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 594 if (get_kernel_nofault(dentry, dentry_ptr) || 595 !dentry.d_parent || !dentry.d_name.name) { 596 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 597 a_ops, ino, dentry_ptr); 598 return; 599 } 600 601 /* 602 * if dentry is corrupted, the %pd handler may still crash, 603 * but it's unlikely that we reach here with a corrupt mapping 604 */ 605 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 606 } 607 608 void clear_inode(struct inode *inode) 609 { 610 /* 611 * We have to cycle the i_pages lock here because reclaim can be in the 612 * process of removing the last page (in __filemap_remove_folio()) 613 * and we must not free the mapping under it. 614 */ 615 xa_lock_irq(&inode->i_data.i_pages); 616 BUG_ON(inode->i_data.nrpages); 617 /* 618 * Almost always, mapping_empty(&inode->i_data) here; but there are 619 * two known and long-standing ways in which nodes may get left behind 620 * (when deep radix-tree node allocation failed partway; or when THP 621 * collapse_file() failed). Until those two known cases are cleaned up, 622 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 623 * nor even WARN_ON(!mapping_empty). 624 */ 625 xa_unlock_irq(&inode->i_data.i_pages); 626 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 627 BUG_ON(!(inode->i_state & I_FREEING)); 628 BUG_ON(inode->i_state & I_CLEAR); 629 BUG_ON(!list_empty(&inode->i_wb_list)); 630 /* don't need i_lock here, no concurrent mods to i_state */ 631 inode->i_state = I_FREEING | I_CLEAR; 632 } 633 EXPORT_SYMBOL(clear_inode); 634 635 /* 636 * Free the inode passed in, removing it from the lists it is still connected 637 * to. We remove any pages still attached to the inode and wait for any IO that 638 * is still in progress before finally destroying the inode. 639 * 640 * An inode must already be marked I_FREEING so that we avoid the inode being 641 * moved back onto lists if we race with other code that manipulates the lists 642 * (e.g. writeback_single_inode). The caller is responsible for setting this. 643 * 644 * An inode must already be removed from the LRU list before being evicted from 645 * the cache. This should occur atomically with setting the I_FREEING state 646 * flag, so no inodes here should ever be on the LRU when being evicted. 647 */ 648 static void evict(struct inode *inode) 649 { 650 const struct super_operations *op = inode->i_sb->s_op; 651 652 BUG_ON(!(inode->i_state & I_FREEING)); 653 BUG_ON(!list_empty(&inode->i_lru)); 654 655 if (!list_empty(&inode->i_io_list)) 656 inode_io_list_del(inode); 657 658 inode_sb_list_del(inode); 659 660 /* 661 * Wait for flusher thread to be done with the inode so that filesystem 662 * does not start destroying it while writeback is still running. Since 663 * the inode has I_FREEING set, flusher thread won't start new work on 664 * the inode. We just have to wait for running writeback to finish. 665 */ 666 inode_wait_for_writeback(inode); 667 668 if (op->evict_inode) { 669 op->evict_inode(inode); 670 } else { 671 truncate_inode_pages_final(&inode->i_data); 672 clear_inode(inode); 673 } 674 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 675 cd_forget(inode); 676 677 remove_inode_hash(inode); 678 679 spin_lock(&inode->i_lock); 680 wake_up_bit(&inode->i_state, __I_NEW); 681 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 682 spin_unlock(&inode->i_lock); 683 684 destroy_inode(inode); 685 } 686 687 /* 688 * dispose_list - dispose of the contents of a local list 689 * @head: the head of the list to free 690 * 691 * Dispose-list gets a local list with local inodes in it, so it doesn't 692 * need to worry about list corruption and SMP locks. 693 */ 694 static void dispose_list(struct list_head *head) 695 { 696 while (!list_empty(head)) { 697 struct inode *inode; 698 699 inode = list_first_entry(head, struct inode, i_lru); 700 list_del_init(&inode->i_lru); 701 702 evict(inode); 703 cond_resched(); 704 } 705 } 706 707 /** 708 * evict_inodes - evict all evictable inodes for a superblock 709 * @sb: superblock to operate on 710 * 711 * Make sure that no inodes with zero refcount are retained. This is 712 * called by superblock shutdown after having SB_ACTIVE flag removed, 713 * so any inode reaching zero refcount during or after that call will 714 * be immediately evicted. 715 */ 716 void evict_inodes(struct super_block *sb) 717 { 718 struct inode *inode, *next; 719 LIST_HEAD(dispose); 720 721 again: 722 spin_lock(&sb->s_inode_list_lock); 723 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 724 if (atomic_read(&inode->i_count)) 725 continue; 726 727 spin_lock(&inode->i_lock); 728 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 729 spin_unlock(&inode->i_lock); 730 continue; 731 } 732 733 inode->i_state |= I_FREEING; 734 inode_lru_list_del(inode); 735 spin_unlock(&inode->i_lock); 736 list_add(&inode->i_lru, &dispose); 737 738 /* 739 * We can have a ton of inodes to evict at unmount time given 740 * enough memory, check to see if we need to go to sleep for a 741 * bit so we don't livelock. 742 */ 743 if (need_resched()) { 744 spin_unlock(&sb->s_inode_list_lock); 745 cond_resched(); 746 dispose_list(&dispose); 747 goto again; 748 } 749 } 750 spin_unlock(&sb->s_inode_list_lock); 751 752 dispose_list(&dispose); 753 } 754 EXPORT_SYMBOL_GPL(evict_inodes); 755 756 /** 757 * invalidate_inodes - attempt to free all inodes on a superblock 758 * @sb: superblock to operate on 759 * 760 * Attempts to free all inodes (including dirty inodes) for a given superblock. 761 */ 762 void invalidate_inodes(struct super_block *sb) 763 { 764 struct inode *inode, *next; 765 LIST_HEAD(dispose); 766 767 again: 768 spin_lock(&sb->s_inode_list_lock); 769 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 770 spin_lock(&inode->i_lock); 771 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 772 spin_unlock(&inode->i_lock); 773 continue; 774 } 775 if (atomic_read(&inode->i_count)) { 776 spin_unlock(&inode->i_lock); 777 continue; 778 } 779 780 inode->i_state |= I_FREEING; 781 inode_lru_list_del(inode); 782 spin_unlock(&inode->i_lock); 783 list_add(&inode->i_lru, &dispose); 784 if (need_resched()) { 785 spin_unlock(&sb->s_inode_list_lock); 786 cond_resched(); 787 dispose_list(&dispose); 788 goto again; 789 } 790 } 791 spin_unlock(&sb->s_inode_list_lock); 792 793 dispose_list(&dispose); 794 } 795 796 /* 797 * Isolate the inode from the LRU in preparation for freeing it. 798 * 799 * If the inode has the I_REFERENCED flag set, then it means that it has been 800 * used recently - the flag is set in iput_final(). When we encounter such an 801 * inode, clear the flag and move it to the back of the LRU so it gets another 802 * pass through the LRU before it gets reclaimed. This is necessary because of 803 * the fact we are doing lazy LRU updates to minimise lock contention so the 804 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 805 * with this flag set because they are the inodes that are out of order. 806 */ 807 static enum lru_status inode_lru_isolate(struct list_head *item, 808 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 809 { 810 struct list_head *freeable = arg; 811 struct inode *inode = container_of(item, struct inode, i_lru); 812 813 /* 814 * We are inverting the lru lock/inode->i_lock here, so use a 815 * trylock. If we fail to get the lock, just skip it. 816 */ 817 if (!spin_trylock(&inode->i_lock)) 818 return LRU_SKIP; 819 820 /* 821 * Inodes can get referenced, redirtied, or repopulated while 822 * they're already on the LRU, and this can make them 823 * unreclaimable for a while. Remove them lazily here; iput, 824 * sync, or the last page cache deletion will requeue them. 825 */ 826 if (atomic_read(&inode->i_count) || 827 (inode->i_state & ~I_REFERENCED) || 828 !mapping_shrinkable(&inode->i_data)) { 829 list_lru_isolate(lru, &inode->i_lru); 830 spin_unlock(&inode->i_lock); 831 this_cpu_dec(nr_unused); 832 return LRU_REMOVED; 833 } 834 835 /* Recently referenced inodes get one more pass */ 836 if (inode->i_state & I_REFERENCED) { 837 inode->i_state &= ~I_REFERENCED; 838 spin_unlock(&inode->i_lock); 839 return LRU_ROTATE; 840 } 841 842 /* 843 * On highmem systems, mapping_shrinkable() permits dropping 844 * page cache in order to free up struct inodes: lowmem might 845 * be under pressure before the cache inside the highmem zone. 846 */ 847 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 848 __iget(inode); 849 spin_unlock(&inode->i_lock); 850 spin_unlock(lru_lock); 851 if (remove_inode_buffers(inode)) { 852 unsigned long reap; 853 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 854 if (current_is_kswapd()) 855 __count_vm_events(KSWAPD_INODESTEAL, reap); 856 else 857 __count_vm_events(PGINODESTEAL, reap); 858 mm_account_reclaimed_pages(reap); 859 } 860 iput(inode); 861 spin_lock(lru_lock); 862 return LRU_RETRY; 863 } 864 865 WARN_ON(inode->i_state & I_NEW); 866 inode->i_state |= I_FREEING; 867 list_lru_isolate_move(lru, &inode->i_lru, freeable); 868 spin_unlock(&inode->i_lock); 869 870 this_cpu_dec(nr_unused); 871 return LRU_REMOVED; 872 } 873 874 /* 875 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 876 * This is called from the superblock shrinker function with a number of inodes 877 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 878 * then are freed outside inode_lock by dispose_list(). 879 */ 880 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 881 { 882 LIST_HEAD(freeable); 883 long freed; 884 885 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 886 inode_lru_isolate, &freeable); 887 dispose_list(&freeable); 888 return freed; 889 } 890 891 static void __wait_on_freeing_inode(struct inode *inode, bool locked); 892 /* 893 * Called with the inode lock held. 894 */ 895 static struct inode *find_inode(struct super_block *sb, 896 struct hlist_head *head, 897 int (*test)(struct inode *, void *), 898 void *data, bool locked) 899 { 900 struct inode *inode = NULL; 901 902 if (locked) 903 lockdep_assert_held(&inode_hash_lock); 904 else 905 lockdep_assert_not_held(&inode_hash_lock); 906 907 rcu_read_lock(); 908 repeat: 909 hlist_for_each_entry_rcu(inode, head, i_hash) { 910 if (inode->i_sb != sb) 911 continue; 912 if (!test(inode, data)) 913 continue; 914 spin_lock(&inode->i_lock); 915 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 916 __wait_on_freeing_inode(inode, locked); 917 goto repeat; 918 } 919 if (unlikely(inode->i_state & I_CREATING)) { 920 spin_unlock(&inode->i_lock); 921 rcu_read_unlock(); 922 return ERR_PTR(-ESTALE); 923 } 924 __iget(inode); 925 spin_unlock(&inode->i_lock); 926 rcu_read_unlock(); 927 return inode; 928 } 929 rcu_read_unlock(); 930 return NULL; 931 } 932 933 /* 934 * find_inode_fast is the fast path version of find_inode, see the comment at 935 * iget_locked for details. 936 */ 937 static struct inode *find_inode_fast(struct super_block *sb, 938 struct hlist_head *head, unsigned long ino, 939 bool locked) 940 { 941 struct inode *inode = NULL; 942 943 if (locked) 944 lockdep_assert_held(&inode_hash_lock); 945 else 946 lockdep_assert_not_held(&inode_hash_lock); 947 948 rcu_read_lock(); 949 repeat: 950 hlist_for_each_entry_rcu(inode, head, i_hash) { 951 if (inode->i_ino != ino) 952 continue; 953 if (inode->i_sb != sb) 954 continue; 955 spin_lock(&inode->i_lock); 956 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 957 __wait_on_freeing_inode(inode, locked); 958 goto repeat; 959 } 960 if (unlikely(inode->i_state & I_CREATING)) { 961 spin_unlock(&inode->i_lock); 962 rcu_read_unlock(); 963 return ERR_PTR(-ESTALE); 964 } 965 __iget(inode); 966 spin_unlock(&inode->i_lock); 967 rcu_read_unlock(); 968 return inode; 969 } 970 rcu_read_unlock(); 971 return NULL; 972 } 973 974 /* 975 * Each cpu owns a range of LAST_INO_BATCH numbers. 976 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 977 * to renew the exhausted range. 978 * 979 * This does not significantly increase overflow rate because every CPU can 980 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 981 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 982 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 983 * overflow rate by 2x, which does not seem too significant. 984 * 985 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 986 * error if st_ino won't fit in target struct field. Use 32bit counter 987 * here to attempt to avoid that. 988 */ 989 #define LAST_INO_BATCH 1024 990 static DEFINE_PER_CPU(unsigned int, last_ino); 991 992 unsigned int get_next_ino(void) 993 { 994 unsigned int *p = &get_cpu_var(last_ino); 995 unsigned int res = *p; 996 997 #ifdef CONFIG_SMP 998 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 999 static atomic_t shared_last_ino; 1000 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1001 1002 res = next - LAST_INO_BATCH; 1003 } 1004 #endif 1005 1006 res++; 1007 /* get_next_ino should not provide a 0 inode number */ 1008 if (unlikely(!res)) 1009 res++; 1010 *p = res; 1011 put_cpu_var(last_ino); 1012 return res; 1013 } 1014 EXPORT_SYMBOL(get_next_ino); 1015 1016 /** 1017 * new_inode_pseudo - obtain an inode 1018 * @sb: superblock 1019 * 1020 * Allocates a new inode for given superblock. 1021 * Inode wont be chained in superblock s_inodes list 1022 * This means : 1023 * - fs can't be unmount 1024 * - quotas, fsnotify, writeback can't work 1025 */ 1026 struct inode *new_inode_pseudo(struct super_block *sb) 1027 { 1028 return alloc_inode(sb); 1029 } 1030 1031 /** 1032 * new_inode - obtain an inode 1033 * @sb: superblock 1034 * 1035 * Allocates a new inode for given superblock. The default gfp_mask 1036 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1037 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1038 * for the page cache are not reclaimable or migratable, 1039 * mapping_set_gfp_mask() must be called with suitable flags on the 1040 * newly created inode's mapping 1041 * 1042 */ 1043 struct inode *new_inode(struct super_block *sb) 1044 { 1045 struct inode *inode; 1046 1047 inode = new_inode_pseudo(sb); 1048 if (inode) 1049 inode_sb_list_add(inode); 1050 return inode; 1051 } 1052 EXPORT_SYMBOL(new_inode); 1053 1054 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1055 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1056 { 1057 if (S_ISDIR(inode->i_mode)) { 1058 struct file_system_type *type = inode->i_sb->s_type; 1059 1060 /* Set new key only if filesystem hasn't already changed it */ 1061 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1062 /* 1063 * ensure nobody is actually holding i_mutex 1064 */ 1065 // mutex_destroy(&inode->i_mutex); 1066 init_rwsem(&inode->i_rwsem); 1067 lockdep_set_class(&inode->i_rwsem, 1068 &type->i_mutex_dir_key); 1069 } 1070 } 1071 } 1072 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1073 #endif 1074 1075 /** 1076 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1077 * @inode: new inode to unlock 1078 * 1079 * Called when the inode is fully initialised to clear the new state of the 1080 * inode and wake up anyone waiting for the inode to finish initialisation. 1081 */ 1082 void unlock_new_inode(struct inode *inode) 1083 { 1084 lockdep_annotate_inode_mutex_key(inode); 1085 spin_lock(&inode->i_lock); 1086 WARN_ON(!(inode->i_state & I_NEW)); 1087 inode->i_state &= ~I_NEW & ~I_CREATING; 1088 smp_mb(); 1089 wake_up_bit(&inode->i_state, __I_NEW); 1090 spin_unlock(&inode->i_lock); 1091 } 1092 EXPORT_SYMBOL(unlock_new_inode); 1093 1094 void discard_new_inode(struct inode *inode) 1095 { 1096 lockdep_annotate_inode_mutex_key(inode); 1097 spin_lock(&inode->i_lock); 1098 WARN_ON(!(inode->i_state & I_NEW)); 1099 inode->i_state &= ~I_NEW; 1100 smp_mb(); 1101 wake_up_bit(&inode->i_state, __I_NEW); 1102 spin_unlock(&inode->i_lock); 1103 iput(inode); 1104 } 1105 EXPORT_SYMBOL(discard_new_inode); 1106 1107 /** 1108 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1109 * 1110 * Lock any non-NULL argument. Passed objects must not be directories. 1111 * Zero, one or two objects may be locked by this function. 1112 * 1113 * @inode1: first inode to lock 1114 * @inode2: second inode to lock 1115 */ 1116 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1117 { 1118 if (inode1) 1119 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1120 if (inode2) 1121 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1122 if (inode1 > inode2) 1123 swap(inode1, inode2); 1124 if (inode1) 1125 inode_lock(inode1); 1126 if (inode2 && inode2 != inode1) 1127 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1128 } 1129 EXPORT_SYMBOL(lock_two_nondirectories); 1130 1131 /** 1132 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1133 * @inode1: first inode to unlock 1134 * @inode2: second inode to unlock 1135 */ 1136 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1137 { 1138 if (inode1) { 1139 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1140 inode_unlock(inode1); 1141 } 1142 if (inode2 && inode2 != inode1) { 1143 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1144 inode_unlock(inode2); 1145 } 1146 } 1147 EXPORT_SYMBOL(unlock_two_nondirectories); 1148 1149 /** 1150 * inode_insert5 - obtain an inode from a mounted file system 1151 * @inode: pre-allocated inode to use for insert to cache 1152 * @hashval: hash value (usually inode number) to get 1153 * @test: callback used for comparisons between inodes 1154 * @set: callback used to initialize a new struct inode 1155 * @data: opaque data pointer to pass to @test and @set 1156 * 1157 * Search for the inode specified by @hashval and @data in the inode cache, 1158 * and if present it is return it with an increased reference count. This is 1159 * a variant of iget5_locked() for callers that don't want to fail on memory 1160 * allocation of inode. 1161 * 1162 * If the inode is not in cache, insert the pre-allocated inode to cache and 1163 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1164 * to fill it in before unlocking it via unlock_new_inode(). 1165 * 1166 * Note both @test and @set are called with the inode_hash_lock held, so can't 1167 * sleep. 1168 */ 1169 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1170 int (*test)(struct inode *, void *), 1171 int (*set)(struct inode *, void *), void *data) 1172 { 1173 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1174 struct inode *old; 1175 1176 again: 1177 spin_lock(&inode_hash_lock); 1178 old = find_inode(inode->i_sb, head, test, data, true); 1179 if (unlikely(old)) { 1180 /* 1181 * Uhhuh, somebody else created the same inode under us. 1182 * Use the old inode instead of the preallocated one. 1183 */ 1184 spin_unlock(&inode_hash_lock); 1185 if (IS_ERR(old)) 1186 return NULL; 1187 wait_on_inode(old); 1188 if (unlikely(inode_unhashed(old))) { 1189 iput(old); 1190 goto again; 1191 } 1192 return old; 1193 } 1194 1195 if (set && unlikely(set(inode, data))) { 1196 inode = NULL; 1197 goto unlock; 1198 } 1199 1200 /* 1201 * Return the locked inode with I_NEW set, the 1202 * caller is responsible for filling in the contents 1203 */ 1204 spin_lock(&inode->i_lock); 1205 inode->i_state |= I_NEW; 1206 hlist_add_head_rcu(&inode->i_hash, head); 1207 spin_unlock(&inode->i_lock); 1208 1209 /* 1210 * Add inode to the sb list if it's not already. It has I_NEW at this 1211 * point, so it should be safe to test i_sb_list locklessly. 1212 */ 1213 if (list_empty(&inode->i_sb_list)) 1214 inode_sb_list_add(inode); 1215 unlock: 1216 spin_unlock(&inode_hash_lock); 1217 1218 return inode; 1219 } 1220 EXPORT_SYMBOL(inode_insert5); 1221 1222 /** 1223 * iget5_locked - obtain an inode from a mounted file system 1224 * @sb: super block of file system 1225 * @hashval: hash value (usually inode number) to get 1226 * @test: callback used for comparisons between inodes 1227 * @set: callback used to initialize a new struct inode 1228 * @data: opaque data pointer to pass to @test and @set 1229 * 1230 * Search for the inode specified by @hashval and @data in the inode cache, 1231 * and if present it is return it with an increased reference count. This is 1232 * a generalized version of iget_locked() for file systems where the inode 1233 * number is not sufficient for unique identification of an inode. 1234 * 1235 * If the inode is not in cache, allocate a new inode and return it locked, 1236 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1237 * before unlocking it via unlock_new_inode(). 1238 * 1239 * Note both @test and @set are called with the inode_hash_lock held, so can't 1240 * sleep. 1241 */ 1242 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1243 int (*test)(struct inode *, void *), 1244 int (*set)(struct inode *, void *), void *data) 1245 { 1246 struct inode *inode = ilookup5(sb, hashval, test, data); 1247 1248 if (!inode) { 1249 struct inode *new = alloc_inode(sb); 1250 1251 if (new) { 1252 inode = inode_insert5(new, hashval, test, set, data); 1253 if (unlikely(inode != new)) 1254 destroy_inode(new); 1255 } 1256 } 1257 return inode; 1258 } 1259 EXPORT_SYMBOL(iget5_locked); 1260 1261 /** 1262 * iget5_locked_rcu - obtain an inode from a mounted file system 1263 * @sb: super block of file system 1264 * @hashval: hash value (usually inode number) to get 1265 * @test: callback used for comparisons between inodes 1266 * @set: callback used to initialize a new struct inode 1267 * @data: opaque data pointer to pass to @test and @set 1268 * 1269 * This is equivalent to iget5_locked, except the @test callback must 1270 * tolerate the inode not being stable, including being mid-teardown. 1271 */ 1272 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1273 int (*test)(struct inode *, void *), 1274 int (*set)(struct inode *, void *), void *data) 1275 { 1276 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1277 struct inode *inode, *new; 1278 1279 again: 1280 inode = find_inode(sb, head, test, data, false); 1281 if (inode) { 1282 if (IS_ERR(inode)) 1283 return NULL; 1284 wait_on_inode(inode); 1285 if (unlikely(inode_unhashed(inode))) { 1286 iput(inode); 1287 goto again; 1288 } 1289 return inode; 1290 } 1291 1292 new = alloc_inode(sb); 1293 if (new) { 1294 inode = inode_insert5(new, hashval, test, set, data); 1295 if (unlikely(inode != new)) 1296 destroy_inode(new); 1297 } 1298 return inode; 1299 } 1300 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1301 1302 /** 1303 * iget_locked - obtain an inode from a mounted file system 1304 * @sb: super block of file system 1305 * @ino: inode number to get 1306 * 1307 * Search for the inode specified by @ino in the inode cache and if present 1308 * return it with an increased reference count. This is for file systems 1309 * where the inode number is sufficient for unique identification of an inode. 1310 * 1311 * If the inode is not in cache, allocate a new inode and return it locked, 1312 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1313 * before unlocking it via unlock_new_inode(). 1314 */ 1315 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1316 { 1317 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1318 struct inode *inode; 1319 again: 1320 inode = find_inode_fast(sb, head, ino, false); 1321 if (inode) { 1322 if (IS_ERR(inode)) 1323 return NULL; 1324 wait_on_inode(inode); 1325 if (unlikely(inode_unhashed(inode))) { 1326 iput(inode); 1327 goto again; 1328 } 1329 return inode; 1330 } 1331 1332 inode = alloc_inode(sb); 1333 if (inode) { 1334 struct inode *old; 1335 1336 spin_lock(&inode_hash_lock); 1337 /* We released the lock, so.. */ 1338 old = find_inode_fast(sb, head, ino, true); 1339 if (!old) { 1340 inode->i_ino = ino; 1341 spin_lock(&inode->i_lock); 1342 inode->i_state = I_NEW; 1343 hlist_add_head_rcu(&inode->i_hash, head); 1344 spin_unlock(&inode->i_lock); 1345 inode_sb_list_add(inode); 1346 spin_unlock(&inode_hash_lock); 1347 1348 /* Return the locked inode with I_NEW set, the 1349 * caller is responsible for filling in the contents 1350 */ 1351 return inode; 1352 } 1353 1354 /* 1355 * Uhhuh, somebody else created the same inode under 1356 * us. Use the old inode instead of the one we just 1357 * allocated. 1358 */ 1359 spin_unlock(&inode_hash_lock); 1360 destroy_inode(inode); 1361 if (IS_ERR(old)) 1362 return NULL; 1363 inode = old; 1364 wait_on_inode(inode); 1365 if (unlikely(inode_unhashed(inode))) { 1366 iput(inode); 1367 goto again; 1368 } 1369 } 1370 return inode; 1371 } 1372 EXPORT_SYMBOL(iget_locked); 1373 1374 /* 1375 * search the inode cache for a matching inode number. 1376 * If we find one, then the inode number we are trying to 1377 * allocate is not unique and so we should not use it. 1378 * 1379 * Returns 1 if the inode number is unique, 0 if it is not. 1380 */ 1381 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1382 { 1383 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1384 struct inode *inode; 1385 1386 hlist_for_each_entry_rcu(inode, b, i_hash) { 1387 if (inode->i_ino == ino && inode->i_sb == sb) 1388 return 0; 1389 } 1390 return 1; 1391 } 1392 1393 /** 1394 * iunique - get a unique inode number 1395 * @sb: superblock 1396 * @max_reserved: highest reserved inode number 1397 * 1398 * Obtain an inode number that is unique on the system for a given 1399 * superblock. This is used by file systems that have no natural 1400 * permanent inode numbering system. An inode number is returned that 1401 * is higher than the reserved limit but unique. 1402 * 1403 * BUGS: 1404 * With a large number of inodes live on the file system this function 1405 * currently becomes quite slow. 1406 */ 1407 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1408 { 1409 /* 1410 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1411 * error if st_ino won't fit in target struct field. Use 32bit counter 1412 * here to attempt to avoid that. 1413 */ 1414 static DEFINE_SPINLOCK(iunique_lock); 1415 static unsigned int counter; 1416 ino_t res; 1417 1418 rcu_read_lock(); 1419 spin_lock(&iunique_lock); 1420 do { 1421 if (counter <= max_reserved) 1422 counter = max_reserved + 1; 1423 res = counter++; 1424 } while (!test_inode_iunique(sb, res)); 1425 spin_unlock(&iunique_lock); 1426 rcu_read_unlock(); 1427 1428 return res; 1429 } 1430 EXPORT_SYMBOL(iunique); 1431 1432 struct inode *igrab(struct inode *inode) 1433 { 1434 spin_lock(&inode->i_lock); 1435 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1436 __iget(inode); 1437 spin_unlock(&inode->i_lock); 1438 } else { 1439 spin_unlock(&inode->i_lock); 1440 /* 1441 * Handle the case where s_op->clear_inode is not been 1442 * called yet, and somebody is calling igrab 1443 * while the inode is getting freed. 1444 */ 1445 inode = NULL; 1446 } 1447 return inode; 1448 } 1449 EXPORT_SYMBOL(igrab); 1450 1451 /** 1452 * ilookup5_nowait - search for an inode in the inode cache 1453 * @sb: super block of file system to search 1454 * @hashval: hash value (usually inode number) to search for 1455 * @test: callback used for comparisons between inodes 1456 * @data: opaque data pointer to pass to @test 1457 * 1458 * Search for the inode specified by @hashval and @data in the inode cache. 1459 * If the inode is in the cache, the inode is returned with an incremented 1460 * reference count. 1461 * 1462 * Note: I_NEW is not waited upon so you have to be very careful what you do 1463 * with the returned inode. You probably should be using ilookup5() instead. 1464 * 1465 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1466 */ 1467 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1468 int (*test)(struct inode *, void *), void *data) 1469 { 1470 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1471 struct inode *inode; 1472 1473 spin_lock(&inode_hash_lock); 1474 inode = find_inode(sb, head, test, data, true); 1475 spin_unlock(&inode_hash_lock); 1476 1477 return IS_ERR(inode) ? NULL : inode; 1478 } 1479 EXPORT_SYMBOL(ilookup5_nowait); 1480 1481 /** 1482 * ilookup5 - search for an inode in the inode cache 1483 * @sb: super block of file system to search 1484 * @hashval: hash value (usually inode number) to search for 1485 * @test: callback used for comparisons between inodes 1486 * @data: opaque data pointer to pass to @test 1487 * 1488 * Search for the inode specified by @hashval and @data in the inode cache, 1489 * and if the inode is in the cache, return the inode with an incremented 1490 * reference count. Waits on I_NEW before returning the inode. 1491 * returned with an incremented reference count. 1492 * 1493 * This is a generalized version of ilookup() for file systems where the 1494 * inode number is not sufficient for unique identification of an inode. 1495 * 1496 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1497 */ 1498 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1499 int (*test)(struct inode *, void *), void *data) 1500 { 1501 struct inode *inode; 1502 again: 1503 inode = ilookup5_nowait(sb, hashval, test, data); 1504 if (inode) { 1505 wait_on_inode(inode); 1506 if (unlikely(inode_unhashed(inode))) { 1507 iput(inode); 1508 goto again; 1509 } 1510 } 1511 return inode; 1512 } 1513 EXPORT_SYMBOL(ilookup5); 1514 1515 /** 1516 * ilookup - search for an inode in the inode cache 1517 * @sb: super block of file system to search 1518 * @ino: inode number to search for 1519 * 1520 * Search for the inode @ino in the inode cache, and if the inode is in the 1521 * cache, the inode is returned with an incremented reference count. 1522 */ 1523 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1524 { 1525 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1526 struct inode *inode; 1527 again: 1528 spin_lock(&inode_hash_lock); 1529 inode = find_inode_fast(sb, head, ino, true); 1530 spin_unlock(&inode_hash_lock); 1531 1532 if (inode) { 1533 if (IS_ERR(inode)) 1534 return NULL; 1535 wait_on_inode(inode); 1536 if (unlikely(inode_unhashed(inode))) { 1537 iput(inode); 1538 goto again; 1539 } 1540 } 1541 return inode; 1542 } 1543 EXPORT_SYMBOL(ilookup); 1544 1545 /** 1546 * find_inode_nowait - find an inode in the inode cache 1547 * @sb: super block of file system to search 1548 * @hashval: hash value (usually inode number) to search for 1549 * @match: callback used for comparisons between inodes 1550 * @data: opaque data pointer to pass to @match 1551 * 1552 * Search for the inode specified by @hashval and @data in the inode 1553 * cache, where the helper function @match will return 0 if the inode 1554 * does not match, 1 if the inode does match, and -1 if the search 1555 * should be stopped. The @match function must be responsible for 1556 * taking the i_lock spin_lock and checking i_state for an inode being 1557 * freed or being initialized, and incrementing the reference count 1558 * before returning 1. It also must not sleep, since it is called with 1559 * the inode_hash_lock spinlock held. 1560 * 1561 * This is a even more generalized version of ilookup5() when the 1562 * function must never block --- find_inode() can block in 1563 * __wait_on_freeing_inode() --- or when the caller can not increment 1564 * the reference count because the resulting iput() might cause an 1565 * inode eviction. The tradeoff is that the @match funtion must be 1566 * very carefully implemented. 1567 */ 1568 struct inode *find_inode_nowait(struct super_block *sb, 1569 unsigned long hashval, 1570 int (*match)(struct inode *, unsigned long, 1571 void *), 1572 void *data) 1573 { 1574 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1575 struct inode *inode, *ret_inode = NULL; 1576 int mval; 1577 1578 spin_lock(&inode_hash_lock); 1579 hlist_for_each_entry(inode, head, i_hash) { 1580 if (inode->i_sb != sb) 1581 continue; 1582 mval = match(inode, hashval, data); 1583 if (mval == 0) 1584 continue; 1585 if (mval == 1) 1586 ret_inode = inode; 1587 goto out; 1588 } 1589 out: 1590 spin_unlock(&inode_hash_lock); 1591 return ret_inode; 1592 } 1593 EXPORT_SYMBOL(find_inode_nowait); 1594 1595 /** 1596 * find_inode_rcu - find an inode in the inode cache 1597 * @sb: Super block of file system to search 1598 * @hashval: Key to hash 1599 * @test: Function to test match on an inode 1600 * @data: Data for test function 1601 * 1602 * Search for the inode specified by @hashval and @data in the inode cache, 1603 * where the helper function @test will return 0 if the inode does not match 1604 * and 1 if it does. The @test function must be responsible for taking the 1605 * i_lock spin_lock and checking i_state for an inode being freed or being 1606 * initialized. 1607 * 1608 * If successful, this will return the inode for which the @test function 1609 * returned 1 and NULL otherwise. 1610 * 1611 * The @test function is not permitted to take a ref on any inode presented. 1612 * It is also not permitted to sleep. 1613 * 1614 * The caller must hold the RCU read lock. 1615 */ 1616 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1617 int (*test)(struct inode *, void *), void *data) 1618 { 1619 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1620 struct inode *inode; 1621 1622 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1623 "suspicious find_inode_rcu() usage"); 1624 1625 hlist_for_each_entry_rcu(inode, head, i_hash) { 1626 if (inode->i_sb == sb && 1627 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1628 test(inode, data)) 1629 return inode; 1630 } 1631 return NULL; 1632 } 1633 EXPORT_SYMBOL(find_inode_rcu); 1634 1635 /** 1636 * find_inode_by_ino_rcu - Find an inode in the inode cache 1637 * @sb: Super block of file system to search 1638 * @ino: The inode number to match 1639 * 1640 * Search for the inode specified by @hashval and @data in the inode cache, 1641 * where the helper function @test will return 0 if the inode does not match 1642 * and 1 if it does. The @test function must be responsible for taking the 1643 * i_lock spin_lock and checking i_state for an inode being freed or being 1644 * initialized. 1645 * 1646 * If successful, this will return the inode for which the @test function 1647 * returned 1 and NULL otherwise. 1648 * 1649 * The @test function is not permitted to take a ref on any inode presented. 1650 * It is also not permitted to sleep. 1651 * 1652 * The caller must hold the RCU read lock. 1653 */ 1654 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1655 unsigned long ino) 1656 { 1657 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1658 struct inode *inode; 1659 1660 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1661 "suspicious find_inode_by_ino_rcu() usage"); 1662 1663 hlist_for_each_entry_rcu(inode, head, i_hash) { 1664 if (inode->i_ino == ino && 1665 inode->i_sb == sb && 1666 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1667 return inode; 1668 } 1669 return NULL; 1670 } 1671 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1672 1673 int insert_inode_locked(struct inode *inode) 1674 { 1675 struct super_block *sb = inode->i_sb; 1676 ino_t ino = inode->i_ino; 1677 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1678 1679 while (1) { 1680 struct inode *old = NULL; 1681 spin_lock(&inode_hash_lock); 1682 hlist_for_each_entry(old, head, i_hash) { 1683 if (old->i_ino != ino) 1684 continue; 1685 if (old->i_sb != sb) 1686 continue; 1687 spin_lock(&old->i_lock); 1688 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1689 spin_unlock(&old->i_lock); 1690 continue; 1691 } 1692 break; 1693 } 1694 if (likely(!old)) { 1695 spin_lock(&inode->i_lock); 1696 inode->i_state |= I_NEW | I_CREATING; 1697 hlist_add_head_rcu(&inode->i_hash, head); 1698 spin_unlock(&inode->i_lock); 1699 spin_unlock(&inode_hash_lock); 1700 return 0; 1701 } 1702 if (unlikely(old->i_state & I_CREATING)) { 1703 spin_unlock(&old->i_lock); 1704 spin_unlock(&inode_hash_lock); 1705 return -EBUSY; 1706 } 1707 __iget(old); 1708 spin_unlock(&old->i_lock); 1709 spin_unlock(&inode_hash_lock); 1710 wait_on_inode(old); 1711 if (unlikely(!inode_unhashed(old))) { 1712 iput(old); 1713 return -EBUSY; 1714 } 1715 iput(old); 1716 } 1717 } 1718 EXPORT_SYMBOL(insert_inode_locked); 1719 1720 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1721 int (*test)(struct inode *, void *), void *data) 1722 { 1723 struct inode *old; 1724 1725 inode->i_state |= I_CREATING; 1726 old = inode_insert5(inode, hashval, test, NULL, data); 1727 1728 if (old != inode) { 1729 iput(old); 1730 return -EBUSY; 1731 } 1732 return 0; 1733 } 1734 EXPORT_SYMBOL(insert_inode_locked4); 1735 1736 1737 int generic_delete_inode(struct inode *inode) 1738 { 1739 return 1; 1740 } 1741 EXPORT_SYMBOL(generic_delete_inode); 1742 1743 /* 1744 * Called when we're dropping the last reference 1745 * to an inode. 1746 * 1747 * Call the FS "drop_inode()" function, defaulting to 1748 * the legacy UNIX filesystem behaviour. If it tells 1749 * us to evict inode, do so. Otherwise, retain inode 1750 * in cache if fs is alive, sync and evict if fs is 1751 * shutting down. 1752 */ 1753 static void iput_final(struct inode *inode) 1754 { 1755 struct super_block *sb = inode->i_sb; 1756 const struct super_operations *op = inode->i_sb->s_op; 1757 unsigned long state; 1758 int drop; 1759 1760 WARN_ON(inode->i_state & I_NEW); 1761 1762 if (op->drop_inode) 1763 drop = op->drop_inode(inode); 1764 else 1765 drop = generic_drop_inode(inode); 1766 1767 if (!drop && 1768 !(inode->i_state & I_DONTCACHE) && 1769 (sb->s_flags & SB_ACTIVE)) { 1770 __inode_add_lru(inode, true); 1771 spin_unlock(&inode->i_lock); 1772 return; 1773 } 1774 1775 state = inode->i_state; 1776 if (!drop) { 1777 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1778 spin_unlock(&inode->i_lock); 1779 1780 write_inode_now(inode, 1); 1781 1782 spin_lock(&inode->i_lock); 1783 state = inode->i_state; 1784 WARN_ON(state & I_NEW); 1785 state &= ~I_WILL_FREE; 1786 } 1787 1788 WRITE_ONCE(inode->i_state, state | I_FREEING); 1789 if (!list_empty(&inode->i_lru)) 1790 inode_lru_list_del(inode); 1791 spin_unlock(&inode->i_lock); 1792 1793 evict(inode); 1794 } 1795 1796 /** 1797 * iput - put an inode 1798 * @inode: inode to put 1799 * 1800 * Puts an inode, dropping its usage count. If the inode use count hits 1801 * zero, the inode is then freed and may also be destroyed. 1802 * 1803 * Consequently, iput() can sleep. 1804 */ 1805 void iput(struct inode *inode) 1806 { 1807 if (!inode) 1808 return; 1809 BUG_ON(inode->i_state & I_CLEAR); 1810 retry: 1811 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1812 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1813 atomic_inc(&inode->i_count); 1814 spin_unlock(&inode->i_lock); 1815 trace_writeback_lazytime_iput(inode); 1816 mark_inode_dirty_sync(inode); 1817 goto retry; 1818 } 1819 iput_final(inode); 1820 } 1821 } 1822 EXPORT_SYMBOL(iput); 1823 1824 #ifdef CONFIG_BLOCK 1825 /** 1826 * bmap - find a block number in a file 1827 * @inode: inode owning the block number being requested 1828 * @block: pointer containing the block to find 1829 * 1830 * Replaces the value in ``*block`` with the block number on the device holding 1831 * corresponding to the requested block number in the file. 1832 * That is, asked for block 4 of inode 1 the function will replace the 1833 * 4 in ``*block``, with disk block relative to the disk start that holds that 1834 * block of the file. 1835 * 1836 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1837 * hole, returns 0 and ``*block`` is also set to 0. 1838 */ 1839 int bmap(struct inode *inode, sector_t *block) 1840 { 1841 if (!inode->i_mapping->a_ops->bmap) 1842 return -EINVAL; 1843 1844 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1845 return 0; 1846 } 1847 EXPORT_SYMBOL(bmap); 1848 #endif 1849 1850 /* 1851 * With relative atime, only update atime if the previous atime is 1852 * earlier than or equal to either the ctime or mtime, 1853 * or if at least a day has passed since the last atime update. 1854 */ 1855 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1856 struct timespec64 now) 1857 { 1858 struct timespec64 atime, mtime, ctime; 1859 1860 if (!(mnt->mnt_flags & MNT_RELATIME)) 1861 return true; 1862 /* 1863 * Is mtime younger than or equal to atime? If yes, update atime: 1864 */ 1865 atime = inode_get_atime(inode); 1866 mtime = inode_get_mtime(inode); 1867 if (timespec64_compare(&mtime, &atime) >= 0) 1868 return true; 1869 /* 1870 * Is ctime younger than or equal to atime? If yes, update atime: 1871 */ 1872 ctime = inode_get_ctime(inode); 1873 if (timespec64_compare(&ctime, &atime) >= 0) 1874 return true; 1875 1876 /* 1877 * Is the previous atime value older than a day? If yes, 1878 * update atime: 1879 */ 1880 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1881 return true; 1882 /* 1883 * Good, we can skip the atime update: 1884 */ 1885 return false; 1886 } 1887 1888 /** 1889 * inode_update_timestamps - update the timestamps on the inode 1890 * @inode: inode to be updated 1891 * @flags: S_* flags that needed to be updated 1892 * 1893 * The update_time function is called when an inode's timestamps need to be 1894 * updated for a read or write operation. This function handles updating the 1895 * actual timestamps. It's up to the caller to ensure that the inode is marked 1896 * dirty appropriately. 1897 * 1898 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1899 * attempt to update all three of them. S_ATIME updates can be handled 1900 * independently of the rest. 1901 * 1902 * Returns a set of S_* flags indicating which values changed. 1903 */ 1904 int inode_update_timestamps(struct inode *inode, int flags) 1905 { 1906 int updated = 0; 1907 struct timespec64 now; 1908 1909 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1910 struct timespec64 ctime = inode_get_ctime(inode); 1911 struct timespec64 mtime = inode_get_mtime(inode); 1912 1913 now = inode_set_ctime_current(inode); 1914 if (!timespec64_equal(&now, &ctime)) 1915 updated |= S_CTIME; 1916 if (!timespec64_equal(&now, &mtime)) { 1917 inode_set_mtime_to_ts(inode, now); 1918 updated |= S_MTIME; 1919 } 1920 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1921 updated |= S_VERSION; 1922 } else { 1923 now = current_time(inode); 1924 } 1925 1926 if (flags & S_ATIME) { 1927 struct timespec64 atime = inode_get_atime(inode); 1928 1929 if (!timespec64_equal(&now, &atime)) { 1930 inode_set_atime_to_ts(inode, now); 1931 updated |= S_ATIME; 1932 } 1933 } 1934 return updated; 1935 } 1936 EXPORT_SYMBOL(inode_update_timestamps); 1937 1938 /** 1939 * generic_update_time - update the timestamps on the inode 1940 * @inode: inode to be updated 1941 * @flags: S_* flags that needed to be updated 1942 * 1943 * The update_time function is called when an inode's timestamps need to be 1944 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1945 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1946 * updates can be handled done independently of the rest. 1947 * 1948 * Returns a S_* mask indicating which fields were updated. 1949 */ 1950 int generic_update_time(struct inode *inode, int flags) 1951 { 1952 int updated = inode_update_timestamps(inode, flags); 1953 int dirty_flags = 0; 1954 1955 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1956 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1957 if (updated & S_VERSION) 1958 dirty_flags |= I_DIRTY_SYNC; 1959 __mark_inode_dirty(inode, dirty_flags); 1960 return updated; 1961 } 1962 EXPORT_SYMBOL(generic_update_time); 1963 1964 /* 1965 * This does the actual work of updating an inodes time or version. Must have 1966 * had called mnt_want_write() before calling this. 1967 */ 1968 int inode_update_time(struct inode *inode, int flags) 1969 { 1970 if (inode->i_op->update_time) 1971 return inode->i_op->update_time(inode, flags); 1972 generic_update_time(inode, flags); 1973 return 0; 1974 } 1975 EXPORT_SYMBOL(inode_update_time); 1976 1977 /** 1978 * atime_needs_update - update the access time 1979 * @path: the &struct path to update 1980 * @inode: inode to update 1981 * 1982 * Update the accessed time on an inode and mark it for writeback. 1983 * This function automatically handles read only file systems and media, 1984 * as well as the "noatime" flag and inode specific "noatime" markers. 1985 */ 1986 bool atime_needs_update(const struct path *path, struct inode *inode) 1987 { 1988 struct vfsmount *mnt = path->mnt; 1989 struct timespec64 now, atime; 1990 1991 if (inode->i_flags & S_NOATIME) 1992 return false; 1993 1994 /* Atime updates will likely cause i_uid and i_gid to be written 1995 * back improprely if their true value is unknown to the vfs. 1996 */ 1997 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 1998 return false; 1999 2000 if (IS_NOATIME(inode)) 2001 return false; 2002 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2003 return false; 2004 2005 if (mnt->mnt_flags & MNT_NOATIME) 2006 return false; 2007 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2008 return false; 2009 2010 now = current_time(inode); 2011 2012 if (!relatime_need_update(mnt, inode, now)) 2013 return false; 2014 2015 atime = inode_get_atime(inode); 2016 if (timespec64_equal(&atime, &now)) 2017 return false; 2018 2019 return true; 2020 } 2021 2022 void touch_atime(const struct path *path) 2023 { 2024 struct vfsmount *mnt = path->mnt; 2025 struct inode *inode = d_inode(path->dentry); 2026 2027 if (!atime_needs_update(path, inode)) 2028 return; 2029 2030 if (!sb_start_write_trylock(inode->i_sb)) 2031 return; 2032 2033 if (mnt_get_write_access(mnt) != 0) 2034 goto skip_update; 2035 /* 2036 * File systems can error out when updating inodes if they need to 2037 * allocate new space to modify an inode (such is the case for 2038 * Btrfs), but since we touch atime while walking down the path we 2039 * really don't care if we failed to update the atime of the file, 2040 * so just ignore the return value. 2041 * We may also fail on filesystems that have the ability to make parts 2042 * of the fs read only, e.g. subvolumes in Btrfs. 2043 */ 2044 inode_update_time(inode, S_ATIME); 2045 mnt_put_write_access(mnt); 2046 skip_update: 2047 sb_end_write(inode->i_sb); 2048 } 2049 EXPORT_SYMBOL(touch_atime); 2050 2051 /* 2052 * Return mask of changes for notify_change() that need to be done as a 2053 * response to write or truncate. Return 0 if nothing has to be changed. 2054 * Negative value on error (change should be denied). 2055 */ 2056 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2057 struct dentry *dentry) 2058 { 2059 struct inode *inode = d_inode(dentry); 2060 int mask = 0; 2061 int ret; 2062 2063 if (IS_NOSEC(inode)) 2064 return 0; 2065 2066 mask = setattr_should_drop_suidgid(idmap, inode); 2067 ret = security_inode_need_killpriv(dentry); 2068 if (ret < 0) 2069 return ret; 2070 if (ret) 2071 mask |= ATTR_KILL_PRIV; 2072 return mask; 2073 } 2074 2075 static int __remove_privs(struct mnt_idmap *idmap, 2076 struct dentry *dentry, int kill) 2077 { 2078 struct iattr newattrs; 2079 2080 newattrs.ia_valid = ATTR_FORCE | kill; 2081 /* 2082 * Note we call this on write, so notify_change will not 2083 * encounter any conflicting delegations: 2084 */ 2085 return notify_change(idmap, dentry, &newattrs, NULL); 2086 } 2087 2088 int file_remove_privs_flags(struct file *file, unsigned int flags) 2089 { 2090 struct dentry *dentry = file_dentry(file); 2091 struct inode *inode = file_inode(file); 2092 int error = 0; 2093 int kill; 2094 2095 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2096 return 0; 2097 2098 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2099 if (kill < 0) 2100 return kill; 2101 2102 if (kill) { 2103 if (flags & IOCB_NOWAIT) 2104 return -EAGAIN; 2105 2106 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2107 } 2108 2109 if (!error) 2110 inode_has_no_xattr(inode); 2111 return error; 2112 } 2113 EXPORT_SYMBOL_GPL(file_remove_privs_flags); 2114 2115 /** 2116 * file_remove_privs - remove special file privileges (suid, capabilities) 2117 * @file: file to remove privileges from 2118 * 2119 * When file is modified by a write or truncation ensure that special 2120 * file privileges are removed. 2121 * 2122 * Return: 0 on success, negative errno on failure. 2123 */ 2124 int file_remove_privs(struct file *file) 2125 { 2126 return file_remove_privs_flags(file, 0); 2127 } 2128 EXPORT_SYMBOL(file_remove_privs); 2129 2130 static int inode_needs_update_time(struct inode *inode) 2131 { 2132 int sync_it = 0; 2133 struct timespec64 now = current_time(inode); 2134 struct timespec64 ts; 2135 2136 /* First try to exhaust all avenues to not sync */ 2137 if (IS_NOCMTIME(inode)) 2138 return 0; 2139 2140 ts = inode_get_mtime(inode); 2141 if (!timespec64_equal(&ts, &now)) 2142 sync_it = S_MTIME; 2143 2144 ts = inode_get_ctime(inode); 2145 if (!timespec64_equal(&ts, &now)) 2146 sync_it |= S_CTIME; 2147 2148 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2149 sync_it |= S_VERSION; 2150 2151 return sync_it; 2152 } 2153 2154 static int __file_update_time(struct file *file, int sync_mode) 2155 { 2156 int ret = 0; 2157 struct inode *inode = file_inode(file); 2158 2159 /* try to update time settings */ 2160 if (!mnt_get_write_access_file(file)) { 2161 ret = inode_update_time(inode, sync_mode); 2162 mnt_put_write_access_file(file); 2163 } 2164 2165 return ret; 2166 } 2167 2168 /** 2169 * file_update_time - update mtime and ctime time 2170 * @file: file accessed 2171 * 2172 * Update the mtime and ctime members of an inode and mark the inode for 2173 * writeback. Note that this function is meant exclusively for usage in 2174 * the file write path of filesystems, and filesystems may choose to 2175 * explicitly ignore updates via this function with the _NOCMTIME inode 2176 * flag, e.g. for network filesystem where these imestamps are handled 2177 * by the server. This can return an error for file systems who need to 2178 * allocate space in order to update an inode. 2179 * 2180 * Return: 0 on success, negative errno on failure. 2181 */ 2182 int file_update_time(struct file *file) 2183 { 2184 int ret; 2185 struct inode *inode = file_inode(file); 2186 2187 ret = inode_needs_update_time(inode); 2188 if (ret <= 0) 2189 return ret; 2190 2191 return __file_update_time(file, ret); 2192 } 2193 EXPORT_SYMBOL(file_update_time); 2194 2195 /** 2196 * file_modified_flags - handle mandated vfs changes when modifying a file 2197 * @file: file that was modified 2198 * @flags: kiocb flags 2199 * 2200 * When file has been modified ensure that special 2201 * file privileges are removed and time settings are updated. 2202 * 2203 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2204 * time settings will not be updated. It will return -EAGAIN. 2205 * 2206 * Context: Caller must hold the file's inode lock. 2207 * 2208 * Return: 0 on success, negative errno on failure. 2209 */ 2210 static int file_modified_flags(struct file *file, int flags) 2211 { 2212 int ret; 2213 struct inode *inode = file_inode(file); 2214 2215 /* 2216 * Clear the security bits if the process is not being run by root. 2217 * This keeps people from modifying setuid and setgid binaries. 2218 */ 2219 ret = file_remove_privs_flags(file, flags); 2220 if (ret) 2221 return ret; 2222 2223 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2224 return 0; 2225 2226 ret = inode_needs_update_time(inode); 2227 if (ret <= 0) 2228 return ret; 2229 if (flags & IOCB_NOWAIT) 2230 return -EAGAIN; 2231 2232 return __file_update_time(file, ret); 2233 } 2234 2235 /** 2236 * file_modified - handle mandated vfs changes when modifying a file 2237 * @file: file that was modified 2238 * 2239 * When file has been modified ensure that special 2240 * file privileges are removed and time settings are updated. 2241 * 2242 * Context: Caller must hold the file's inode lock. 2243 * 2244 * Return: 0 on success, negative errno on failure. 2245 */ 2246 int file_modified(struct file *file) 2247 { 2248 return file_modified_flags(file, 0); 2249 } 2250 EXPORT_SYMBOL(file_modified); 2251 2252 /** 2253 * kiocb_modified - handle mandated vfs changes when modifying a file 2254 * @iocb: iocb that was modified 2255 * 2256 * When file has been modified ensure that special 2257 * file privileges are removed and time settings are updated. 2258 * 2259 * Context: Caller must hold the file's inode lock. 2260 * 2261 * Return: 0 on success, negative errno on failure. 2262 */ 2263 int kiocb_modified(struct kiocb *iocb) 2264 { 2265 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2266 } 2267 EXPORT_SYMBOL_GPL(kiocb_modified); 2268 2269 int inode_needs_sync(struct inode *inode) 2270 { 2271 if (IS_SYNC(inode)) 2272 return 1; 2273 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2274 return 1; 2275 return 0; 2276 } 2277 EXPORT_SYMBOL(inode_needs_sync); 2278 2279 /* 2280 * If we try to find an inode in the inode hash while it is being 2281 * deleted, we have to wait until the filesystem completes its 2282 * deletion before reporting that it isn't found. This function waits 2283 * until the deletion _might_ have completed. Callers are responsible 2284 * to recheck inode state. 2285 * 2286 * It doesn't matter if I_NEW is not set initially, a call to 2287 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2288 * will DTRT. 2289 */ 2290 static void __wait_on_freeing_inode(struct inode *inode, bool locked) 2291 { 2292 wait_queue_head_t *wq; 2293 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2294 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2295 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2296 spin_unlock(&inode->i_lock); 2297 rcu_read_unlock(); 2298 if (locked) 2299 spin_unlock(&inode_hash_lock); 2300 schedule(); 2301 finish_wait(wq, &wait.wq_entry); 2302 if (locked) 2303 spin_lock(&inode_hash_lock); 2304 rcu_read_lock(); 2305 } 2306 2307 static __initdata unsigned long ihash_entries; 2308 static int __init set_ihash_entries(char *str) 2309 { 2310 if (!str) 2311 return 0; 2312 ihash_entries = simple_strtoul(str, &str, 0); 2313 return 1; 2314 } 2315 __setup("ihash_entries=", set_ihash_entries); 2316 2317 /* 2318 * Initialize the waitqueues and inode hash table. 2319 */ 2320 void __init inode_init_early(void) 2321 { 2322 /* If hashes are distributed across NUMA nodes, defer 2323 * hash allocation until vmalloc space is available. 2324 */ 2325 if (hashdist) 2326 return; 2327 2328 inode_hashtable = 2329 alloc_large_system_hash("Inode-cache", 2330 sizeof(struct hlist_head), 2331 ihash_entries, 2332 14, 2333 HASH_EARLY | HASH_ZERO, 2334 &i_hash_shift, 2335 &i_hash_mask, 2336 0, 2337 0); 2338 } 2339 2340 void __init inode_init(void) 2341 { 2342 /* inode slab cache */ 2343 inode_cachep = kmem_cache_create("inode_cache", 2344 sizeof(struct inode), 2345 0, 2346 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2347 SLAB_ACCOUNT), 2348 init_once); 2349 2350 /* Hash may have been set up in inode_init_early */ 2351 if (!hashdist) 2352 return; 2353 2354 inode_hashtable = 2355 alloc_large_system_hash("Inode-cache", 2356 sizeof(struct hlist_head), 2357 ihash_entries, 2358 14, 2359 HASH_ZERO, 2360 &i_hash_shift, 2361 &i_hash_mask, 2362 0, 2363 0); 2364 } 2365 2366 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2367 { 2368 inode->i_mode = mode; 2369 if (S_ISCHR(mode)) { 2370 inode->i_fop = &def_chr_fops; 2371 inode->i_rdev = rdev; 2372 } else if (S_ISBLK(mode)) { 2373 if (IS_ENABLED(CONFIG_BLOCK)) 2374 inode->i_fop = &def_blk_fops; 2375 inode->i_rdev = rdev; 2376 } else if (S_ISFIFO(mode)) 2377 inode->i_fop = &pipefifo_fops; 2378 else if (S_ISSOCK(mode)) 2379 ; /* leave it no_open_fops */ 2380 else 2381 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2382 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2383 inode->i_ino); 2384 } 2385 EXPORT_SYMBOL(init_special_inode); 2386 2387 /** 2388 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2389 * @idmap: idmap of the mount the inode was created from 2390 * @inode: New inode 2391 * @dir: Directory inode 2392 * @mode: mode of the new inode 2393 * 2394 * If the inode has been created through an idmapped mount the idmap of 2395 * the vfsmount must be passed through @idmap. This function will then take 2396 * care to map the inode according to @idmap before checking permissions 2397 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2398 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2399 */ 2400 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2401 const struct inode *dir, umode_t mode) 2402 { 2403 inode_fsuid_set(inode, idmap); 2404 if (dir && dir->i_mode & S_ISGID) { 2405 inode->i_gid = dir->i_gid; 2406 2407 /* Directories are special, and always inherit S_ISGID */ 2408 if (S_ISDIR(mode)) 2409 mode |= S_ISGID; 2410 } else 2411 inode_fsgid_set(inode, idmap); 2412 inode->i_mode = mode; 2413 } 2414 EXPORT_SYMBOL(inode_init_owner); 2415 2416 /** 2417 * inode_owner_or_capable - check current task permissions to inode 2418 * @idmap: idmap of the mount the inode was found from 2419 * @inode: inode being checked 2420 * 2421 * Return true if current either has CAP_FOWNER in a namespace with the 2422 * inode owner uid mapped, or owns the file. 2423 * 2424 * If the inode has been found through an idmapped mount the idmap of 2425 * the vfsmount must be passed through @idmap. This function will then take 2426 * care to map the inode according to @idmap before checking permissions. 2427 * On non-idmapped mounts or if permission checking is to be performed on the 2428 * raw inode simply pass @nop_mnt_idmap. 2429 */ 2430 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2431 const struct inode *inode) 2432 { 2433 vfsuid_t vfsuid; 2434 struct user_namespace *ns; 2435 2436 vfsuid = i_uid_into_vfsuid(idmap, inode); 2437 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2438 return true; 2439 2440 ns = current_user_ns(); 2441 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2442 return true; 2443 return false; 2444 } 2445 EXPORT_SYMBOL(inode_owner_or_capable); 2446 2447 /* 2448 * Direct i/o helper functions 2449 */ 2450 static void __inode_dio_wait(struct inode *inode) 2451 { 2452 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2453 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2454 2455 do { 2456 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2457 if (atomic_read(&inode->i_dio_count)) 2458 schedule(); 2459 } while (atomic_read(&inode->i_dio_count)); 2460 finish_wait(wq, &q.wq_entry); 2461 } 2462 2463 /** 2464 * inode_dio_wait - wait for outstanding DIO requests to finish 2465 * @inode: inode to wait for 2466 * 2467 * Waits for all pending direct I/O requests to finish so that we can 2468 * proceed with a truncate or equivalent operation. 2469 * 2470 * Must be called under a lock that serializes taking new references 2471 * to i_dio_count, usually by inode->i_mutex. 2472 */ 2473 void inode_dio_wait(struct inode *inode) 2474 { 2475 if (atomic_read(&inode->i_dio_count)) 2476 __inode_dio_wait(inode); 2477 } 2478 EXPORT_SYMBOL(inode_dio_wait); 2479 2480 /* 2481 * inode_set_flags - atomically set some inode flags 2482 * 2483 * Note: the caller should be holding i_mutex, or else be sure that 2484 * they have exclusive access to the inode structure (i.e., while the 2485 * inode is being instantiated). The reason for the cmpxchg() loop 2486 * --- which wouldn't be necessary if all code paths which modify 2487 * i_flags actually followed this rule, is that there is at least one 2488 * code path which doesn't today so we use cmpxchg() out of an abundance 2489 * of caution. 2490 * 2491 * In the long run, i_mutex is overkill, and we should probably look 2492 * at using the i_lock spinlock to protect i_flags, and then make sure 2493 * it is so documented in include/linux/fs.h and that all code follows 2494 * the locking convention!! 2495 */ 2496 void inode_set_flags(struct inode *inode, unsigned int flags, 2497 unsigned int mask) 2498 { 2499 WARN_ON_ONCE(flags & ~mask); 2500 set_mask_bits(&inode->i_flags, mask, flags); 2501 } 2502 EXPORT_SYMBOL(inode_set_flags); 2503 2504 void inode_nohighmem(struct inode *inode) 2505 { 2506 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2507 } 2508 EXPORT_SYMBOL(inode_nohighmem); 2509 2510 /** 2511 * timestamp_truncate - Truncate timespec to a granularity 2512 * @t: Timespec 2513 * @inode: inode being updated 2514 * 2515 * Truncate a timespec to the granularity supported by the fs 2516 * containing the inode. Always rounds down. gran must 2517 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2518 */ 2519 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2520 { 2521 struct super_block *sb = inode->i_sb; 2522 unsigned int gran = sb->s_time_gran; 2523 2524 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2525 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2526 t.tv_nsec = 0; 2527 2528 /* Avoid division in the common cases 1 ns and 1 s. */ 2529 if (gran == 1) 2530 ; /* nothing */ 2531 else if (gran == NSEC_PER_SEC) 2532 t.tv_nsec = 0; 2533 else if (gran > 1 && gran < NSEC_PER_SEC) 2534 t.tv_nsec -= t.tv_nsec % gran; 2535 else 2536 WARN(1, "invalid file time granularity: %u", gran); 2537 return t; 2538 } 2539 EXPORT_SYMBOL(timestamp_truncate); 2540 2541 /** 2542 * current_time - Return FS time 2543 * @inode: inode. 2544 * 2545 * Return the current time truncated to the time granularity supported by 2546 * the fs. 2547 * 2548 * Note that inode and inode->sb cannot be NULL. 2549 * Otherwise, the function warns and returns time without truncation. 2550 */ 2551 struct timespec64 current_time(struct inode *inode) 2552 { 2553 struct timespec64 now; 2554 2555 ktime_get_coarse_real_ts64(&now); 2556 return timestamp_truncate(now, inode); 2557 } 2558 EXPORT_SYMBOL(current_time); 2559 2560 /** 2561 * inode_set_ctime_current - set the ctime to current_time 2562 * @inode: inode 2563 * 2564 * Set the inode->i_ctime to the current value for the inode. Returns 2565 * the current value that was assigned to i_ctime. 2566 */ 2567 struct timespec64 inode_set_ctime_current(struct inode *inode) 2568 { 2569 struct timespec64 now = current_time(inode); 2570 2571 inode_set_ctime_to_ts(inode, now); 2572 return now; 2573 } 2574 EXPORT_SYMBOL(inode_set_ctime_current); 2575 2576 /** 2577 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2578 * @idmap: idmap of the mount @inode was found from 2579 * @inode: inode to check 2580 * @vfsgid: the new/current vfsgid of @inode 2581 * 2582 * Check wether @vfsgid is in the caller's group list or if the caller is 2583 * privileged with CAP_FSETID over @inode. This can be used to determine 2584 * whether the setgid bit can be kept or must be dropped. 2585 * 2586 * Return: true if the caller is sufficiently privileged, false if not. 2587 */ 2588 bool in_group_or_capable(struct mnt_idmap *idmap, 2589 const struct inode *inode, vfsgid_t vfsgid) 2590 { 2591 if (vfsgid_in_group_p(vfsgid)) 2592 return true; 2593 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2594 return true; 2595 return false; 2596 } 2597 EXPORT_SYMBOL(in_group_or_capable); 2598 2599 /** 2600 * mode_strip_sgid - handle the sgid bit for non-directories 2601 * @idmap: idmap of the mount the inode was created from 2602 * @dir: parent directory inode 2603 * @mode: mode of the file to be created in @dir 2604 * 2605 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2606 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2607 * either in the group of the parent directory or they have CAP_FSETID 2608 * in their user namespace and are privileged over the parent directory. 2609 * In all other cases, strip the S_ISGID bit from @mode. 2610 * 2611 * Return: the new mode to use for the file 2612 */ 2613 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2614 const struct inode *dir, umode_t mode) 2615 { 2616 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2617 return mode; 2618 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2619 return mode; 2620 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2621 return mode; 2622 return mode & ~S_ISGID; 2623 } 2624 EXPORT_SYMBOL(mode_strip_sgid); 2625