xref: /linux/fs/inode.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget()
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic_set(&inode->i_count, 1);
141 	inode->i_op = &empty_iops;
142 	inode->i_fop = &no_open_fops;
143 	inode->__i_nlink = 1;
144 	inode->i_opflags = 0;
145 	if (sb->s_xattr)
146 		inode->i_opflags |= IOP_XATTR;
147 	i_uid_write(inode, 0);
148 	i_gid_write(inode, 0);
149 	atomic_set(&inode->i_writecount, 0);
150 	inode->i_size = 0;
151 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 	inode->i_blocks = 0;
153 	inode->i_bytes = 0;
154 	inode->i_generation = 0;
155 	inode->i_pipe = NULL;
156 	inode->i_bdev = NULL;
157 	inode->i_cdev = NULL;
158 	inode->i_link = NULL;
159 	inode->i_dir_seq = 0;
160 	inode->i_rdev = 0;
161 	inode->dirtied_when = 0;
162 
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 	inode->i_wb_frn_winner = 0;
165 	inode->i_wb_frn_avg_time = 0;
166 	inode->i_wb_frn_history = 0;
167 #endif
168 
169 	if (security_inode_alloc(inode))
170 		goto out;
171 	spin_lock_init(&inode->i_lock);
172 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173 
174 	init_rwsem(&inode->i_rwsem);
175 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176 
177 	atomic_set(&inode->i_dio_count, 0);
178 
179 	mapping->a_ops = &empty_aops;
180 	mapping->host = inode;
181 	mapping->flags = 0;
182 	mapping->wb_err = 0;
183 	atomic_set(&mapping->i_mmap_writable, 0);
184 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
185 	atomic_set(&mapping->nr_thps, 0);
186 #endif
187 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
188 	mapping->private_data = NULL;
189 	mapping->writeback_index = 0;
190 	inode->i_private = NULL;
191 	inode->i_mapping = mapping;
192 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
193 #ifdef CONFIG_FS_POSIX_ACL
194 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196 
197 #ifdef CONFIG_FSNOTIFY
198 	inode->i_fsnotify_mask = 0;
199 #endif
200 	inode->i_flctx = NULL;
201 	this_cpu_inc(nr_inodes);
202 
203 	return 0;
204 out:
205 	return -ENOMEM;
206 }
207 EXPORT_SYMBOL(inode_init_always);
208 
209 void free_inode_nonrcu(struct inode *inode)
210 {
211 	kmem_cache_free(inode_cachep, inode);
212 }
213 EXPORT_SYMBOL(free_inode_nonrcu);
214 
215 static void i_callback(struct rcu_head *head)
216 {
217 	struct inode *inode = container_of(head, struct inode, i_rcu);
218 	if (inode->free_inode)
219 		inode->free_inode(inode);
220 	else
221 		free_inode_nonrcu(inode);
222 }
223 
224 static struct inode *alloc_inode(struct super_block *sb)
225 {
226 	const struct super_operations *ops = sb->s_op;
227 	struct inode *inode;
228 
229 	if (ops->alloc_inode)
230 		inode = ops->alloc_inode(sb);
231 	else
232 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
233 
234 	if (!inode)
235 		return NULL;
236 
237 	if (unlikely(inode_init_always(sb, inode))) {
238 		if (ops->destroy_inode) {
239 			ops->destroy_inode(inode);
240 			if (!ops->free_inode)
241 				return NULL;
242 		}
243 		inode->free_inode = ops->free_inode;
244 		i_callback(&inode->i_rcu);
245 		return NULL;
246 	}
247 
248 	return inode;
249 }
250 
251 void __destroy_inode(struct inode *inode)
252 {
253 	BUG_ON(inode_has_buffers(inode));
254 	inode_detach_wb(inode);
255 	security_inode_free(inode);
256 	fsnotify_inode_delete(inode);
257 	locks_free_lock_context(inode);
258 	if (!inode->i_nlink) {
259 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
260 		atomic_long_dec(&inode->i_sb->s_remove_count);
261 	}
262 
263 #ifdef CONFIG_FS_POSIX_ACL
264 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
265 		posix_acl_release(inode->i_acl);
266 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
267 		posix_acl_release(inode->i_default_acl);
268 #endif
269 	this_cpu_dec(nr_inodes);
270 }
271 EXPORT_SYMBOL(__destroy_inode);
272 
273 static void destroy_inode(struct inode *inode)
274 {
275 	const struct super_operations *ops = inode->i_sb->s_op;
276 
277 	BUG_ON(!list_empty(&inode->i_lru));
278 	__destroy_inode(inode);
279 	if (ops->destroy_inode) {
280 		ops->destroy_inode(inode);
281 		if (!ops->free_inode)
282 			return;
283 	}
284 	inode->free_inode = ops->free_inode;
285 	call_rcu(&inode->i_rcu, i_callback);
286 }
287 
288 /**
289  * drop_nlink - directly drop an inode's link count
290  * @inode: inode
291  *
292  * This is a low-level filesystem helper to replace any
293  * direct filesystem manipulation of i_nlink.  In cases
294  * where we are attempting to track writes to the
295  * filesystem, a decrement to zero means an imminent
296  * write when the file is truncated and actually unlinked
297  * on the filesystem.
298  */
299 void drop_nlink(struct inode *inode)
300 {
301 	WARN_ON(inode->i_nlink == 0);
302 	inode->__i_nlink--;
303 	if (!inode->i_nlink)
304 		atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306 EXPORT_SYMBOL(drop_nlink);
307 
308 /**
309  * clear_nlink - directly zero an inode's link count
310  * @inode: inode
311  *
312  * This is a low-level filesystem helper to replace any
313  * direct filesystem manipulation of i_nlink.  See
314  * drop_nlink() for why we care about i_nlink hitting zero.
315  */
316 void clear_nlink(struct inode *inode)
317 {
318 	if (inode->i_nlink) {
319 		inode->__i_nlink = 0;
320 		atomic_long_inc(&inode->i_sb->s_remove_count);
321 	}
322 }
323 EXPORT_SYMBOL(clear_nlink);
324 
325 /**
326  * set_nlink - directly set an inode's link count
327  * @inode: inode
328  * @nlink: new nlink (should be non-zero)
329  *
330  * This is a low-level filesystem helper to replace any
331  * direct filesystem manipulation of i_nlink.
332  */
333 void set_nlink(struct inode *inode, unsigned int nlink)
334 {
335 	if (!nlink) {
336 		clear_nlink(inode);
337 	} else {
338 		/* Yes, some filesystems do change nlink from zero to one */
339 		if (inode->i_nlink == 0)
340 			atomic_long_dec(&inode->i_sb->s_remove_count);
341 
342 		inode->__i_nlink = nlink;
343 	}
344 }
345 EXPORT_SYMBOL(set_nlink);
346 
347 /**
348  * inc_nlink - directly increment an inode's link count
349  * @inode: inode
350  *
351  * This is a low-level filesystem helper to replace any
352  * direct filesystem manipulation of i_nlink.  Currently,
353  * it is only here for parity with dec_nlink().
354  */
355 void inc_nlink(struct inode *inode)
356 {
357 	if (unlikely(inode->i_nlink == 0)) {
358 		WARN_ON(!(inode->i_state & I_LINKABLE));
359 		atomic_long_dec(&inode->i_sb->s_remove_count);
360 	}
361 
362 	inode->__i_nlink++;
363 }
364 EXPORT_SYMBOL(inc_nlink);
365 
366 static void __address_space_init_once(struct address_space *mapping)
367 {
368 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
369 	init_rwsem(&mapping->i_mmap_rwsem);
370 	INIT_LIST_HEAD(&mapping->private_list);
371 	spin_lock_init(&mapping->private_lock);
372 	mapping->i_mmap = RB_ROOT_CACHED;
373 }
374 
375 void address_space_init_once(struct address_space *mapping)
376 {
377 	memset(mapping, 0, sizeof(*mapping));
378 	__address_space_init_once(mapping);
379 }
380 EXPORT_SYMBOL(address_space_init_once);
381 
382 /*
383  * These are initializations that only need to be done
384  * once, because the fields are idempotent across use
385  * of the inode, so let the slab aware of that.
386  */
387 void inode_init_once(struct inode *inode)
388 {
389 	memset(inode, 0, sizeof(*inode));
390 	INIT_HLIST_NODE(&inode->i_hash);
391 	INIT_LIST_HEAD(&inode->i_devices);
392 	INIT_LIST_HEAD(&inode->i_io_list);
393 	INIT_LIST_HEAD(&inode->i_wb_list);
394 	INIT_LIST_HEAD(&inode->i_lru);
395 	__address_space_init_once(&inode->i_data);
396 	i_size_ordered_init(inode);
397 }
398 EXPORT_SYMBOL(inode_init_once);
399 
400 static void init_once(void *foo)
401 {
402 	struct inode *inode = (struct inode *) foo;
403 
404 	inode_init_once(inode);
405 }
406 
407 /*
408  * inode->i_lock must be held
409  */
410 void __iget(struct inode *inode)
411 {
412 	atomic_inc(&inode->i_count);
413 }
414 
415 /*
416  * get additional reference to inode; caller must already hold one.
417  */
418 void ihold(struct inode *inode)
419 {
420 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
421 }
422 EXPORT_SYMBOL(ihold);
423 
424 static void inode_lru_list_add(struct inode *inode)
425 {
426 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
427 		this_cpu_inc(nr_unused);
428 	else
429 		inode->i_state |= I_REFERENCED;
430 }
431 
432 /*
433  * Add inode to LRU if needed (inode is unused and clean).
434  *
435  * Needs inode->i_lock held.
436  */
437 void inode_add_lru(struct inode *inode)
438 {
439 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
440 				I_FREEING | I_WILL_FREE)) &&
441 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
442 		inode_lru_list_add(inode);
443 }
444 
445 
446 static void inode_lru_list_del(struct inode *inode)
447 {
448 
449 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
450 		this_cpu_dec(nr_unused);
451 }
452 
453 /**
454  * inode_sb_list_add - add inode to the superblock list of inodes
455  * @inode: inode to add
456  */
457 void inode_sb_list_add(struct inode *inode)
458 {
459 	spin_lock(&inode->i_sb->s_inode_list_lock);
460 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
461 	spin_unlock(&inode->i_sb->s_inode_list_lock);
462 }
463 EXPORT_SYMBOL_GPL(inode_sb_list_add);
464 
465 static inline void inode_sb_list_del(struct inode *inode)
466 {
467 	if (!list_empty(&inode->i_sb_list)) {
468 		spin_lock(&inode->i_sb->s_inode_list_lock);
469 		list_del_init(&inode->i_sb_list);
470 		spin_unlock(&inode->i_sb->s_inode_list_lock);
471 	}
472 }
473 
474 static unsigned long hash(struct super_block *sb, unsigned long hashval)
475 {
476 	unsigned long tmp;
477 
478 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
479 			L1_CACHE_BYTES;
480 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
481 	return tmp & i_hash_mask;
482 }
483 
484 /**
485  *	__insert_inode_hash - hash an inode
486  *	@inode: unhashed inode
487  *	@hashval: unsigned long value used to locate this object in the
488  *		inode_hashtable.
489  *
490  *	Add an inode to the inode hash for this superblock.
491  */
492 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
493 {
494 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
495 
496 	spin_lock(&inode_hash_lock);
497 	spin_lock(&inode->i_lock);
498 	hlist_add_head(&inode->i_hash, b);
499 	spin_unlock(&inode->i_lock);
500 	spin_unlock(&inode_hash_lock);
501 }
502 EXPORT_SYMBOL(__insert_inode_hash);
503 
504 /**
505  *	__remove_inode_hash - remove an inode from the hash
506  *	@inode: inode to unhash
507  *
508  *	Remove an inode from the superblock.
509  */
510 void __remove_inode_hash(struct inode *inode)
511 {
512 	spin_lock(&inode_hash_lock);
513 	spin_lock(&inode->i_lock);
514 	hlist_del_init(&inode->i_hash);
515 	spin_unlock(&inode->i_lock);
516 	spin_unlock(&inode_hash_lock);
517 }
518 EXPORT_SYMBOL(__remove_inode_hash);
519 
520 void clear_inode(struct inode *inode)
521 {
522 	/*
523 	 * We have to cycle the i_pages lock here because reclaim can be in the
524 	 * process of removing the last page (in __delete_from_page_cache())
525 	 * and we must not free the mapping under it.
526 	 */
527 	xa_lock_irq(&inode->i_data.i_pages);
528 	BUG_ON(inode->i_data.nrpages);
529 	BUG_ON(inode->i_data.nrexceptional);
530 	xa_unlock_irq(&inode->i_data.i_pages);
531 	BUG_ON(!list_empty(&inode->i_data.private_list));
532 	BUG_ON(!(inode->i_state & I_FREEING));
533 	BUG_ON(inode->i_state & I_CLEAR);
534 	BUG_ON(!list_empty(&inode->i_wb_list));
535 	/* don't need i_lock here, no concurrent mods to i_state */
536 	inode->i_state = I_FREEING | I_CLEAR;
537 }
538 EXPORT_SYMBOL(clear_inode);
539 
540 /*
541  * Free the inode passed in, removing it from the lists it is still connected
542  * to. We remove any pages still attached to the inode and wait for any IO that
543  * is still in progress before finally destroying the inode.
544  *
545  * An inode must already be marked I_FREEING so that we avoid the inode being
546  * moved back onto lists if we race with other code that manipulates the lists
547  * (e.g. writeback_single_inode). The caller is responsible for setting this.
548  *
549  * An inode must already be removed from the LRU list before being evicted from
550  * the cache. This should occur atomically with setting the I_FREEING state
551  * flag, so no inodes here should ever be on the LRU when being evicted.
552  */
553 static void evict(struct inode *inode)
554 {
555 	const struct super_operations *op = inode->i_sb->s_op;
556 
557 	BUG_ON(!(inode->i_state & I_FREEING));
558 	BUG_ON(!list_empty(&inode->i_lru));
559 
560 	if (!list_empty(&inode->i_io_list))
561 		inode_io_list_del(inode);
562 
563 	inode_sb_list_del(inode);
564 
565 	/*
566 	 * Wait for flusher thread to be done with the inode so that filesystem
567 	 * does not start destroying it while writeback is still running. Since
568 	 * the inode has I_FREEING set, flusher thread won't start new work on
569 	 * the inode.  We just have to wait for running writeback to finish.
570 	 */
571 	inode_wait_for_writeback(inode);
572 
573 	if (op->evict_inode) {
574 		op->evict_inode(inode);
575 	} else {
576 		truncate_inode_pages_final(&inode->i_data);
577 		clear_inode(inode);
578 	}
579 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
580 		bd_forget(inode);
581 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
582 		cd_forget(inode);
583 
584 	remove_inode_hash(inode);
585 
586 	spin_lock(&inode->i_lock);
587 	wake_up_bit(&inode->i_state, __I_NEW);
588 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
589 	spin_unlock(&inode->i_lock);
590 
591 	destroy_inode(inode);
592 }
593 
594 /*
595  * dispose_list - dispose of the contents of a local list
596  * @head: the head of the list to free
597  *
598  * Dispose-list gets a local list with local inodes in it, so it doesn't
599  * need to worry about list corruption and SMP locks.
600  */
601 static void dispose_list(struct list_head *head)
602 {
603 	while (!list_empty(head)) {
604 		struct inode *inode;
605 
606 		inode = list_first_entry(head, struct inode, i_lru);
607 		list_del_init(&inode->i_lru);
608 
609 		evict(inode);
610 		cond_resched();
611 	}
612 }
613 
614 /**
615  * evict_inodes	- evict all evictable inodes for a superblock
616  * @sb:		superblock to operate on
617  *
618  * Make sure that no inodes with zero refcount are retained.  This is
619  * called by superblock shutdown after having SB_ACTIVE flag removed,
620  * so any inode reaching zero refcount during or after that call will
621  * be immediately evicted.
622  */
623 void evict_inodes(struct super_block *sb)
624 {
625 	struct inode *inode, *next;
626 	LIST_HEAD(dispose);
627 
628 again:
629 	spin_lock(&sb->s_inode_list_lock);
630 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
631 		if (atomic_read(&inode->i_count))
632 			continue;
633 
634 		spin_lock(&inode->i_lock);
635 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
636 			spin_unlock(&inode->i_lock);
637 			continue;
638 		}
639 
640 		inode->i_state |= I_FREEING;
641 		inode_lru_list_del(inode);
642 		spin_unlock(&inode->i_lock);
643 		list_add(&inode->i_lru, &dispose);
644 
645 		/*
646 		 * We can have a ton of inodes to evict at unmount time given
647 		 * enough memory, check to see if we need to go to sleep for a
648 		 * bit so we don't livelock.
649 		 */
650 		if (need_resched()) {
651 			spin_unlock(&sb->s_inode_list_lock);
652 			cond_resched();
653 			dispose_list(&dispose);
654 			goto again;
655 		}
656 	}
657 	spin_unlock(&sb->s_inode_list_lock);
658 
659 	dispose_list(&dispose);
660 }
661 EXPORT_SYMBOL_GPL(evict_inodes);
662 
663 /**
664  * invalidate_inodes	- attempt to free all inodes on a superblock
665  * @sb:		superblock to operate on
666  * @kill_dirty: flag to guide handling of dirty inodes
667  *
668  * Attempts to free all inodes for a given superblock.  If there were any
669  * busy inodes return a non-zero value, else zero.
670  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
671  * them as busy.
672  */
673 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
674 {
675 	int busy = 0;
676 	struct inode *inode, *next;
677 	LIST_HEAD(dispose);
678 
679 	spin_lock(&sb->s_inode_list_lock);
680 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
681 		spin_lock(&inode->i_lock);
682 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
683 			spin_unlock(&inode->i_lock);
684 			continue;
685 		}
686 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
687 			spin_unlock(&inode->i_lock);
688 			busy = 1;
689 			continue;
690 		}
691 		if (atomic_read(&inode->i_count)) {
692 			spin_unlock(&inode->i_lock);
693 			busy = 1;
694 			continue;
695 		}
696 
697 		inode->i_state |= I_FREEING;
698 		inode_lru_list_del(inode);
699 		spin_unlock(&inode->i_lock);
700 		list_add(&inode->i_lru, &dispose);
701 	}
702 	spin_unlock(&sb->s_inode_list_lock);
703 
704 	dispose_list(&dispose);
705 
706 	return busy;
707 }
708 
709 /*
710  * Isolate the inode from the LRU in preparation for freeing it.
711  *
712  * Any inodes which are pinned purely because of attached pagecache have their
713  * pagecache removed.  If the inode has metadata buffers attached to
714  * mapping->private_list then try to remove them.
715  *
716  * If the inode has the I_REFERENCED flag set, then it means that it has been
717  * used recently - the flag is set in iput_final(). When we encounter such an
718  * inode, clear the flag and move it to the back of the LRU so it gets another
719  * pass through the LRU before it gets reclaimed. This is necessary because of
720  * the fact we are doing lazy LRU updates to minimise lock contention so the
721  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
722  * with this flag set because they are the inodes that are out of order.
723  */
724 static enum lru_status inode_lru_isolate(struct list_head *item,
725 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
726 {
727 	struct list_head *freeable = arg;
728 	struct inode	*inode = container_of(item, struct inode, i_lru);
729 
730 	/*
731 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
732 	 * If we fail to get the lock, just skip it.
733 	 */
734 	if (!spin_trylock(&inode->i_lock))
735 		return LRU_SKIP;
736 
737 	/*
738 	 * Referenced or dirty inodes are still in use. Give them another pass
739 	 * through the LRU as we canot reclaim them now.
740 	 */
741 	if (atomic_read(&inode->i_count) ||
742 	    (inode->i_state & ~I_REFERENCED)) {
743 		list_lru_isolate(lru, &inode->i_lru);
744 		spin_unlock(&inode->i_lock);
745 		this_cpu_dec(nr_unused);
746 		return LRU_REMOVED;
747 	}
748 
749 	/* recently referenced inodes get one more pass */
750 	if (inode->i_state & I_REFERENCED) {
751 		inode->i_state &= ~I_REFERENCED;
752 		spin_unlock(&inode->i_lock);
753 		return LRU_ROTATE;
754 	}
755 
756 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
757 		__iget(inode);
758 		spin_unlock(&inode->i_lock);
759 		spin_unlock(lru_lock);
760 		if (remove_inode_buffers(inode)) {
761 			unsigned long reap;
762 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
763 			if (current_is_kswapd())
764 				__count_vm_events(KSWAPD_INODESTEAL, reap);
765 			else
766 				__count_vm_events(PGINODESTEAL, reap);
767 			if (current->reclaim_state)
768 				current->reclaim_state->reclaimed_slab += reap;
769 		}
770 		iput(inode);
771 		spin_lock(lru_lock);
772 		return LRU_RETRY;
773 	}
774 
775 	WARN_ON(inode->i_state & I_NEW);
776 	inode->i_state |= I_FREEING;
777 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
778 	spin_unlock(&inode->i_lock);
779 
780 	this_cpu_dec(nr_unused);
781 	return LRU_REMOVED;
782 }
783 
784 /*
785  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
786  * This is called from the superblock shrinker function with a number of inodes
787  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
788  * then are freed outside inode_lock by dispose_list().
789  */
790 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
791 {
792 	LIST_HEAD(freeable);
793 	long freed;
794 
795 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
796 				     inode_lru_isolate, &freeable);
797 	dispose_list(&freeable);
798 	return freed;
799 }
800 
801 static void __wait_on_freeing_inode(struct inode *inode);
802 /*
803  * Called with the inode lock held.
804  */
805 static struct inode *find_inode(struct super_block *sb,
806 				struct hlist_head *head,
807 				int (*test)(struct inode *, void *),
808 				void *data)
809 {
810 	struct inode *inode = NULL;
811 
812 repeat:
813 	hlist_for_each_entry(inode, head, i_hash) {
814 		if (inode->i_sb != sb)
815 			continue;
816 		if (!test(inode, data))
817 			continue;
818 		spin_lock(&inode->i_lock);
819 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
820 			__wait_on_freeing_inode(inode);
821 			goto repeat;
822 		}
823 		if (unlikely(inode->i_state & I_CREATING)) {
824 			spin_unlock(&inode->i_lock);
825 			return ERR_PTR(-ESTALE);
826 		}
827 		__iget(inode);
828 		spin_unlock(&inode->i_lock);
829 		return inode;
830 	}
831 	return NULL;
832 }
833 
834 /*
835  * find_inode_fast is the fast path version of find_inode, see the comment at
836  * iget_locked for details.
837  */
838 static struct inode *find_inode_fast(struct super_block *sb,
839 				struct hlist_head *head, unsigned long ino)
840 {
841 	struct inode *inode = NULL;
842 
843 repeat:
844 	hlist_for_each_entry(inode, head, i_hash) {
845 		if (inode->i_ino != ino)
846 			continue;
847 		if (inode->i_sb != sb)
848 			continue;
849 		spin_lock(&inode->i_lock);
850 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
851 			__wait_on_freeing_inode(inode);
852 			goto repeat;
853 		}
854 		if (unlikely(inode->i_state & I_CREATING)) {
855 			spin_unlock(&inode->i_lock);
856 			return ERR_PTR(-ESTALE);
857 		}
858 		__iget(inode);
859 		spin_unlock(&inode->i_lock);
860 		return inode;
861 	}
862 	return NULL;
863 }
864 
865 /*
866  * Each cpu owns a range of LAST_INO_BATCH numbers.
867  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
868  * to renew the exhausted range.
869  *
870  * This does not significantly increase overflow rate because every CPU can
871  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
872  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
873  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
874  * overflow rate by 2x, which does not seem too significant.
875  *
876  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
877  * error if st_ino won't fit in target struct field. Use 32bit counter
878  * here to attempt to avoid that.
879  */
880 #define LAST_INO_BATCH 1024
881 static DEFINE_PER_CPU(unsigned int, last_ino);
882 
883 unsigned int get_next_ino(void)
884 {
885 	unsigned int *p = &get_cpu_var(last_ino);
886 	unsigned int res = *p;
887 
888 #ifdef CONFIG_SMP
889 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
890 		static atomic_t shared_last_ino;
891 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
892 
893 		res = next - LAST_INO_BATCH;
894 	}
895 #endif
896 
897 	res++;
898 	/* get_next_ino should not provide a 0 inode number */
899 	if (unlikely(!res))
900 		res++;
901 	*p = res;
902 	put_cpu_var(last_ino);
903 	return res;
904 }
905 EXPORT_SYMBOL(get_next_ino);
906 
907 /**
908  *	new_inode_pseudo 	- obtain an inode
909  *	@sb: superblock
910  *
911  *	Allocates a new inode for given superblock.
912  *	Inode wont be chained in superblock s_inodes list
913  *	This means :
914  *	- fs can't be unmount
915  *	- quotas, fsnotify, writeback can't work
916  */
917 struct inode *new_inode_pseudo(struct super_block *sb)
918 {
919 	struct inode *inode = alloc_inode(sb);
920 
921 	if (inode) {
922 		spin_lock(&inode->i_lock);
923 		inode->i_state = 0;
924 		spin_unlock(&inode->i_lock);
925 		INIT_LIST_HEAD(&inode->i_sb_list);
926 	}
927 	return inode;
928 }
929 
930 /**
931  *	new_inode 	- obtain an inode
932  *	@sb: superblock
933  *
934  *	Allocates a new inode for given superblock. The default gfp_mask
935  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
936  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
937  *	for the page cache are not reclaimable or migratable,
938  *	mapping_set_gfp_mask() must be called with suitable flags on the
939  *	newly created inode's mapping
940  *
941  */
942 struct inode *new_inode(struct super_block *sb)
943 {
944 	struct inode *inode;
945 
946 	spin_lock_prefetch(&sb->s_inode_list_lock);
947 
948 	inode = new_inode_pseudo(sb);
949 	if (inode)
950 		inode_sb_list_add(inode);
951 	return inode;
952 }
953 EXPORT_SYMBOL(new_inode);
954 
955 #ifdef CONFIG_DEBUG_LOCK_ALLOC
956 void lockdep_annotate_inode_mutex_key(struct inode *inode)
957 {
958 	if (S_ISDIR(inode->i_mode)) {
959 		struct file_system_type *type = inode->i_sb->s_type;
960 
961 		/* Set new key only if filesystem hasn't already changed it */
962 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
963 			/*
964 			 * ensure nobody is actually holding i_mutex
965 			 */
966 			// mutex_destroy(&inode->i_mutex);
967 			init_rwsem(&inode->i_rwsem);
968 			lockdep_set_class(&inode->i_rwsem,
969 					  &type->i_mutex_dir_key);
970 		}
971 	}
972 }
973 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
974 #endif
975 
976 /**
977  * unlock_new_inode - clear the I_NEW state and wake up any waiters
978  * @inode:	new inode to unlock
979  *
980  * Called when the inode is fully initialised to clear the new state of the
981  * inode and wake up anyone waiting for the inode to finish initialisation.
982  */
983 void unlock_new_inode(struct inode *inode)
984 {
985 	lockdep_annotate_inode_mutex_key(inode);
986 	spin_lock(&inode->i_lock);
987 	WARN_ON(!(inode->i_state & I_NEW));
988 	inode->i_state &= ~I_NEW & ~I_CREATING;
989 	smp_mb();
990 	wake_up_bit(&inode->i_state, __I_NEW);
991 	spin_unlock(&inode->i_lock);
992 }
993 EXPORT_SYMBOL(unlock_new_inode);
994 
995 void discard_new_inode(struct inode *inode)
996 {
997 	lockdep_annotate_inode_mutex_key(inode);
998 	spin_lock(&inode->i_lock);
999 	WARN_ON(!(inode->i_state & I_NEW));
1000 	inode->i_state &= ~I_NEW;
1001 	smp_mb();
1002 	wake_up_bit(&inode->i_state, __I_NEW);
1003 	spin_unlock(&inode->i_lock);
1004 	iput(inode);
1005 }
1006 EXPORT_SYMBOL(discard_new_inode);
1007 
1008 /**
1009  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1010  *
1011  * Lock any non-NULL argument that is not a directory.
1012  * Zero, one or two objects may be locked by this function.
1013  *
1014  * @inode1: first inode to lock
1015  * @inode2: second inode to lock
1016  */
1017 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1018 {
1019 	if (inode1 > inode2)
1020 		swap(inode1, inode2);
1021 
1022 	if (inode1 && !S_ISDIR(inode1->i_mode))
1023 		inode_lock(inode1);
1024 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1025 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1026 }
1027 EXPORT_SYMBOL(lock_two_nondirectories);
1028 
1029 /**
1030  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1031  * @inode1: first inode to unlock
1032  * @inode2: second inode to unlock
1033  */
1034 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1035 {
1036 	if (inode1 && !S_ISDIR(inode1->i_mode))
1037 		inode_unlock(inode1);
1038 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1039 		inode_unlock(inode2);
1040 }
1041 EXPORT_SYMBOL(unlock_two_nondirectories);
1042 
1043 /**
1044  * inode_insert5 - obtain an inode from a mounted file system
1045  * @inode:	pre-allocated inode to use for insert to cache
1046  * @hashval:	hash value (usually inode number) to get
1047  * @test:	callback used for comparisons between inodes
1048  * @set:	callback used to initialize a new struct inode
1049  * @data:	opaque data pointer to pass to @test and @set
1050  *
1051  * Search for the inode specified by @hashval and @data in the inode cache,
1052  * and if present it is return it with an increased reference count. This is
1053  * a variant of iget5_locked() for callers that don't want to fail on memory
1054  * allocation of inode.
1055  *
1056  * If the inode is not in cache, insert the pre-allocated inode to cache and
1057  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1058  * to fill it in before unlocking it via unlock_new_inode().
1059  *
1060  * Note both @test and @set are called with the inode_hash_lock held, so can't
1061  * sleep.
1062  */
1063 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1064 			    int (*test)(struct inode *, void *),
1065 			    int (*set)(struct inode *, void *), void *data)
1066 {
1067 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1068 	struct inode *old;
1069 	bool creating = inode->i_state & I_CREATING;
1070 
1071 again:
1072 	spin_lock(&inode_hash_lock);
1073 	old = find_inode(inode->i_sb, head, test, data);
1074 	if (unlikely(old)) {
1075 		/*
1076 		 * Uhhuh, somebody else created the same inode under us.
1077 		 * Use the old inode instead of the preallocated one.
1078 		 */
1079 		spin_unlock(&inode_hash_lock);
1080 		if (IS_ERR(old))
1081 			return NULL;
1082 		wait_on_inode(old);
1083 		if (unlikely(inode_unhashed(old))) {
1084 			iput(old);
1085 			goto again;
1086 		}
1087 		return old;
1088 	}
1089 
1090 	if (set && unlikely(set(inode, data))) {
1091 		inode = NULL;
1092 		goto unlock;
1093 	}
1094 
1095 	/*
1096 	 * Return the locked inode with I_NEW set, the
1097 	 * caller is responsible for filling in the contents
1098 	 */
1099 	spin_lock(&inode->i_lock);
1100 	inode->i_state |= I_NEW;
1101 	hlist_add_head(&inode->i_hash, head);
1102 	spin_unlock(&inode->i_lock);
1103 	if (!creating)
1104 		inode_sb_list_add(inode);
1105 unlock:
1106 	spin_unlock(&inode_hash_lock);
1107 
1108 	return inode;
1109 }
1110 EXPORT_SYMBOL(inode_insert5);
1111 
1112 /**
1113  * iget5_locked - obtain an inode from a mounted file system
1114  * @sb:		super block of file system
1115  * @hashval:	hash value (usually inode number) to get
1116  * @test:	callback used for comparisons between inodes
1117  * @set:	callback used to initialize a new struct inode
1118  * @data:	opaque data pointer to pass to @test and @set
1119  *
1120  * Search for the inode specified by @hashval and @data in the inode cache,
1121  * and if present it is return it with an increased reference count. This is
1122  * a generalized version of iget_locked() for file systems where the inode
1123  * number is not sufficient for unique identification of an inode.
1124  *
1125  * If the inode is not in cache, allocate a new inode and return it locked,
1126  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1127  * before unlocking it via unlock_new_inode().
1128  *
1129  * Note both @test and @set are called with the inode_hash_lock held, so can't
1130  * sleep.
1131  */
1132 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1133 		int (*test)(struct inode *, void *),
1134 		int (*set)(struct inode *, void *), void *data)
1135 {
1136 	struct inode *inode = ilookup5(sb, hashval, test, data);
1137 
1138 	if (!inode) {
1139 		struct inode *new = alloc_inode(sb);
1140 
1141 		if (new) {
1142 			new->i_state = 0;
1143 			inode = inode_insert5(new, hashval, test, set, data);
1144 			if (unlikely(inode != new))
1145 				destroy_inode(new);
1146 		}
1147 	}
1148 	return inode;
1149 }
1150 EXPORT_SYMBOL(iget5_locked);
1151 
1152 /**
1153  * iget_locked - obtain an inode from a mounted file system
1154  * @sb:		super block of file system
1155  * @ino:	inode number to get
1156  *
1157  * Search for the inode specified by @ino in the inode cache and if present
1158  * return it with an increased reference count. This is for file systems
1159  * where the inode number is sufficient for unique identification of an inode.
1160  *
1161  * If the inode is not in cache, allocate a new inode and return it locked,
1162  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1163  * before unlocking it via unlock_new_inode().
1164  */
1165 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1166 {
1167 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1168 	struct inode *inode;
1169 again:
1170 	spin_lock(&inode_hash_lock);
1171 	inode = find_inode_fast(sb, head, ino);
1172 	spin_unlock(&inode_hash_lock);
1173 	if (inode) {
1174 		if (IS_ERR(inode))
1175 			return NULL;
1176 		wait_on_inode(inode);
1177 		if (unlikely(inode_unhashed(inode))) {
1178 			iput(inode);
1179 			goto again;
1180 		}
1181 		return inode;
1182 	}
1183 
1184 	inode = alloc_inode(sb);
1185 	if (inode) {
1186 		struct inode *old;
1187 
1188 		spin_lock(&inode_hash_lock);
1189 		/* We released the lock, so.. */
1190 		old = find_inode_fast(sb, head, ino);
1191 		if (!old) {
1192 			inode->i_ino = ino;
1193 			spin_lock(&inode->i_lock);
1194 			inode->i_state = I_NEW;
1195 			hlist_add_head(&inode->i_hash, head);
1196 			spin_unlock(&inode->i_lock);
1197 			inode_sb_list_add(inode);
1198 			spin_unlock(&inode_hash_lock);
1199 
1200 			/* Return the locked inode with I_NEW set, the
1201 			 * caller is responsible for filling in the contents
1202 			 */
1203 			return inode;
1204 		}
1205 
1206 		/*
1207 		 * Uhhuh, somebody else created the same inode under
1208 		 * us. Use the old inode instead of the one we just
1209 		 * allocated.
1210 		 */
1211 		spin_unlock(&inode_hash_lock);
1212 		destroy_inode(inode);
1213 		if (IS_ERR(old))
1214 			return NULL;
1215 		inode = old;
1216 		wait_on_inode(inode);
1217 		if (unlikely(inode_unhashed(inode))) {
1218 			iput(inode);
1219 			goto again;
1220 		}
1221 	}
1222 	return inode;
1223 }
1224 EXPORT_SYMBOL(iget_locked);
1225 
1226 /*
1227  * search the inode cache for a matching inode number.
1228  * If we find one, then the inode number we are trying to
1229  * allocate is not unique and so we should not use it.
1230  *
1231  * Returns 1 if the inode number is unique, 0 if it is not.
1232  */
1233 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1234 {
1235 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1236 	struct inode *inode;
1237 
1238 	spin_lock(&inode_hash_lock);
1239 	hlist_for_each_entry(inode, b, i_hash) {
1240 		if (inode->i_ino == ino && inode->i_sb == sb) {
1241 			spin_unlock(&inode_hash_lock);
1242 			return 0;
1243 		}
1244 	}
1245 	spin_unlock(&inode_hash_lock);
1246 
1247 	return 1;
1248 }
1249 
1250 /**
1251  *	iunique - get a unique inode number
1252  *	@sb: superblock
1253  *	@max_reserved: highest reserved inode number
1254  *
1255  *	Obtain an inode number that is unique on the system for a given
1256  *	superblock. This is used by file systems that have no natural
1257  *	permanent inode numbering system. An inode number is returned that
1258  *	is higher than the reserved limit but unique.
1259  *
1260  *	BUGS:
1261  *	With a large number of inodes live on the file system this function
1262  *	currently becomes quite slow.
1263  */
1264 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1265 {
1266 	/*
1267 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1268 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1269 	 * here to attempt to avoid that.
1270 	 */
1271 	static DEFINE_SPINLOCK(iunique_lock);
1272 	static unsigned int counter;
1273 	ino_t res;
1274 
1275 	spin_lock(&iunique_lock);
1276 	do {
1277 		if (counter <= max_reserved)
1278 			counter = max_reserved + 1;
1279 		res = counter++;
1280 	} while (!test_inode_iunique(sb, res));
1281 	spin_unlock(&iunique_lock);
1282 
1283 	return res;
1284 }
1285 EXPORT_SYMBOL(iunique);
1286 
1287 struct inode *igrab(struct inode *inode)
1288 {
1289 	spin_lock(&inode->i_lock);
1290 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1291 		__iget(inode);
1292 		spin_unlock(&inode->i_lock);
1293 	} else {
1294 		spin_unlock(&inode->i_lock);
1295 		/*
1296 		 * Handle the case where s_op->clear_inode is not been
1297 		 * called yet, and somebody is calling igrab
1298 		 * while the inode is getting freed.
1299 		 */
1300 		inode = NULL;
1301 	}
1302 	return inode;
1303 }
1304 EXPORT_SYMBOL(igrab);
1305 
1306 /**
1307  * ilookup5_nowait - search for an inode in the inode cache
1308  * @sb:		super block of file system to search
1309  * @hashval:	hash value (usually inode number) to search for
1310  * @test:	callback used for comparisons between inodes
1311  * @data:	opaque data pointer to pass to @test
1312  *
1313  * Search for the inode specified by @hashval and @data in the inode cache.
1314  * If the inode is in the cache, the inode is returned with an incremented
1315  * reference count.
1316  *
1317  * Note: I_NEW is not waited upon so you have to be very careful what you do
1318  * with the returned inode.  You probably should be using ilookup5() instead.
1319  *
1320  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1321  */
1322 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1323 		int (*test)(struct inode *, void *), void *data)
1324 {
1325 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1326 	struct inode *inode;
1327 
1328 	spin_lock(&inode_hash_lock);
1329 	inode = find_inode(sb, head, test, data);
1330 	spin_unlock(&inode_hash_lock);
1331 
1332 	return IS_ERR(inode) ? NULL : inode;
1333 }
1334 EXPORT_SYMBOL(ilookup5_nowait);
1335 
1336 /**
1337  * ilookup5 - search for an inode in the inode cache
1338  * @sb:		super block of file system to search
1339  * @hashval:	hash value (usually inode number) to search for
1340  * @test:	callback used for comparisons between inodes
1341  * @data:	opaque data pointer to pass to @test
1342  *
1343  * Search for the inode specified by @hashval and @data in the inode cache,
1344  * and if the inode is in the cache, return the inode with an incremented
1345  * reference count.  Waits on I_NEW before returning the inode.
1346  * returned with an incremented reference count.
1347  *
1348  * This is a generalized version of ilookup() for file systems where the
1349  * inode number is not sufficient for unique identification of an inode.
1350  *
1351  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1352  */
1353 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1354 		int (*test)(struct inode *, void *), void *data)
1355 {
1356 	struct inode *inode;
1357 again:
1358 	inode = ilookup5_nowait(sb, hashval, test, data);
1359 	if (inode) {
1360 		wait_on_inode(inode);
1361 		if (unlikely(inode_unhashed(inode))) {
1362 			iput(inode);
1363 			goto again;
1364 		}
1365 	}
1366 	return inode;
1367 }
1368 EXPORT_SYMBOL(ilookup5);
1369 
1370 /**
1371  * ilookup - search for an inode in the inode cache
1372  * @sb:		super block of file system to search
1373  * @ino:	inode number to search for
1374  *
1375  * Search for the inode @ino in the inode cache, and if the inode is in the
1376  * cache, the inode is returned with an incremented reference count.
1377  */
1378 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1379 {
1380 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1381 	struct inode *inode;
1382 again:
1383 	spin_lock(&inode_hash_lock);
1384 	inode = find_inode_fast(sb, head, ino);
1385 	spin_unlock(&inode_hash_lock);
1386 
1387 	if (inode) {
1388 		if (IS_ERR(inode))
1389 			return NULL;
1390 		wait_on_inode(inode);
1391 		if (unlikely(inode_unhashed(inode))) {
1392 			iput(inode);
1393 			goto again;
1394 		}
1395 	}
1396 	return inode;
1397 }
1398 EXPORT_SYMBOL(ilookup);
1399 
1400 /**
1401  * find_inode_nowait - find an inode in the inode cache
1402  * @sb:		super block of file system to search
1403  * @hashval:	hash value (usually inode number) to search for
1404  * @match:	callback used for comparisons between inodes
1405  * @data:	opaque data pointer to pass to @match
1406  *
1407  * Search for the inode specified by @hashval and @data in the inode
1408  * cache, where the helper function @match will return 0 if the inode
1409  * does not match, 1 if the inode does match, and -1 if the search
1410  * should be stopped.  The @match function must be responsible for
1411  * taking the i_lock spin_lock and checking i_state for an inode being
1412  * freed or being initialized, and incrementing the reference count
1413  * before returning 1.  It also must not sleep, since it is called with
1414  * the inode_hash_lock spinlock held.
1415  *
1416  * This is a even more generalized version of ilookup5() when the
1417  * function must never block --- find_inode() can block in
1418  * __wait_on_freeing_inode() --- or when the caller can not increment
1419  * the reference count because the resulting iput() might cause an
1420  * inode eviction.  The tradeoff is that the @match funtion must be
1421  * very carefully implemented.
1422  */
1423 struct inode *find_inode_nowait(struct super_block *sb,
1424 				unsigned long hashval,
1425 				int (*match)(struct inode *, unsigned long,
1426 					     void *),
1427 				void *data)
1428 {
1429 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1430 	struct inode *inode, *ret_inode = NULL;
1431 	int mval;
1432 
1433 	spin_lock(&inode_hash_lock);
1434 	hlist_for_each_entry(inode, head, i_hash) {
1435 		if (inode->i_sb != sb)
1436 			continue;
1437 		mval = match(inode, hashval, data);
1438 		if (mval == 0)
1439 			continue;
1440 		if (mval == 1)
1441 			ret_inode = inode;
1442 		goto out;
1443 	}
1444 out:
1445 	spin_unlock(&inode_hash_lock);
1446 	return ret_inode;
1447 }
1448 EXPORT_SYMBOL(find_inode_nowait);
1449 
1450 int insert_inode_locked(struct inode *inode)
1451 {
1452 	struct super_block *sb = inode->i_sb;
1453 	ino_t ino = inode->i_ino;
1454 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1455 
1456 	while (1) {
1457 		struct inode *old = NULL;
1458 		spin_lock(&inode_hash_lock);
1459 		hlist_for_each_entry(old, head, i_hash) {
1460 			if (old->i_ino != ino)
1461 				continue;
1462 			if (old->i_sb != sb)
1463 				continue;
1464 			spin_lock(&old->i_lock);
1465 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1466 				spin_unlock(&old->i_lock);
1467 				continue;
1468 			}
1469 			break;
1470 		}
1471 		if (likely(!old)) {
1472 			spin_lock(&inode->i_lock);
1473 			inode->i_state |= I_NEW | I_CREATING;
1474 			hlist_add_head(&inode->i_hash, head);
1475 			spin_unlock(&inode->i_lock);
1476 			spin_unlock(&inode_hash_lock);
1477 			return 0;
1478 		}
1479 		if (unlikely(old->i_state & I_CREATING)) {
1480 			spin_unlock(&old->i_lock);
1481 			spin_unlock(&inode_hash_lock);
1482 			return -EBUSY;
1483 		}
1484 		__iget(old);
1485 		spin_unlock(&old->i_lock);
1486 		spin_unlock(&inode_hash_lock);
1487 		wait_on_inode(old);
1488 		if (unlikely(!inode_unhashed(old))) {
1489 			iput(old);
1490 			return -EBUSY;
1491 		}
1492 		iput(old);
1493 	}
1494 }
1495 EXPORT_SYMBOL(insert_inode_locked);
1496 
1497 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1498 		int (*test)(struct inode *, void *), void *data)
1499 {
1500 	struct inode *old;
1501 
1502 	inode->i_state |= I_CREATING;
1503 	old = inode_insert5(inode, hashval, test, NULL, data);
1504 
1505 	if (old != inode) {
1506 		iput(old);
1507 		return -EBUSY;
1508 	}
1509 	return 0;
1510 }
1511 EXPORT_SYMBOL(insert_inode_locked4);
1512 
1513 
1514 int generic_delete_inode(struct inode *inode)
1515 {
1516 	return 1;
1517 }
1518 EXPORT_SYMBOL(generic_delete_inode);
1519 
1520 /*
1521  * Called when we're dropping the last reference
1522  * to an inode.
1523  *
1524  * Call the FS "drop_inode()" function, defaulting to
1525  * the legacy UNIX filesystem behaviour.  If it tells
1526  * us to evict inode, do so.  Otherwise, retain inode
1527  * in cache if fs is alive, sync and evict if fs is
1528  * shutting down.
1529  */
1530 static void iput_final(struct inode *inode)
1531 {
1532 	struct super_block *sb = inode->i_sb;
1533 	const struct super_operations *op = inode->i_sb->s_op;
1534 	int drop;
1535 
1536 	WARN_ON(inode->i_state & I_NEW);
1537 
1538 	if (op->drop_inode)
1539 		drop = op->drop_inode(inode);
1540 	else
1541 		drop = generic_drop_inode(inode);
1542 
1543 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1544 		inode_add_lru(inode);
1545 		spin_unlock(&inode->i_lock);
1546 		return;
1547 	}
1548 
1549 	if (!drop) {
1550 		inode->i_state |= I_WILL_FREE;
1551 		spin_unlock(&inode->i_lock);
1552 		write_inode_now(inode, 1);
1553 		spin_lock(&inode->i_lock);
1554 		WARN_ON(inode->i_state & I_NEW);
1555 		inode->i_state &= ~I_WILL_FREE;
1556 	}
1557 
1558 	inode->i_state |= I_FREEING;
1559 	if (!list_empty(&inode->i_lru))
1560 		inode_lru_list_del(inode);
1561 	spin_unlock(&inode->i_lock);
1562 
1563 	evict(inode);
1564 }
1565 
1566 /**
1567  *	iput	- put an inode
1568  *	@inode: inode to put
1569  *
1570  *	Puts an inode, dropping its usage count. If the inode use count hits
1571  *	zero, the inode is then freed and may also be destroyed.
1572  *
1573  *	Consequently, iput() can sleep.
1574  */
1575 void iput(struct inode *inode)
1576 {
1577 	if (!inode)
1578 		return;
1579 	BUG_ON(inode->i_state & I_CLEAR);
1580 retry:
1581 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1582 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1583 			atomic_inc(&inode->i_count);
1584 			spin_unlock(&inode->i_lock);
1585 			trace_writeback_lazytime_iput(inode);
1586 			mark_inode_dirty_sync(inode);
1587 			goto retry;
1588 		}
1589 		iput_final(inode);
1590 	}
1591 }
1592 EXPORT_SYMBOL(iput);
1593 
1594 /**
1595  *	bmap	- find a block number in a file
1596  *	@inode: inode of file
1597  *	@block: block to find
1598  *
1599  *	Returns the block number on the device holding the inode that
1600  *	is the disk block number for the block of the file requested.
1601  *	That is, asked for block 4 of inode 1 the function will return the
1602  *	disk block relative to the disk start that holds that block of the
1603  *	file.
1604  */
1605 sector_t bmap(struct inode *inode, sector_t block)
1606 {
1607 	sector_t res = 0;
1608 	if (inode->i_mapping->a_ops->bmap)
1609 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1610 	return res;
1611 }
1612 EXPORT_SYMBOL(bmap);
1613 
1614 /*
1615  * With relative atime, only update atime if the previous atime is
1616  * earlier than either the ctime or mtime or if at least a day has
1617  * passed since the last atime update.
1618  */
1619 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1620 			     struct timespec64 now)
1621 {
1622 
1623 	if (!(mnt->mnt_flags & MNT_RELATIME))
1624 		return 1;
1625 	/*
1626 	 * Is mtime younger than atime? If yes, update atime:
1627 	 */
1628 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1629 		return 1;
1630 	/*
1631 	 * Is ctime younger than atime? If yes, update atime:
1632 	 */
1633 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1634 		return 1;
1635 
1636 	/*
1637 	 * Is the previous atime value older than a day? If yes,
1638 	 * update atime:
1639 	 */
1640 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1641 		return 1;
1642 	/*
1643 	 * Good, we can skip the atime update:
1644 	 */
1645 	return 0;
1646 }
1647 
1648 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1649 {
1650 	int iflags = I_DIRTY_TIME;
1651 	bool dirty = false;
1652 
1653 	if (flags & S_ATIME)
1654 		inode->i_atime = *time;
1655 	if (flags & S_VERSION)
1656 		dirty = inode_maybe_inc_iversion(inode, false);
1657 	if (flags & S_CTIME)
1658 		inode->i_ctime = *time;
1659 	if (flags & S_MTIME)
1660 		inode->i_mtime = *time;
1661 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1662 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1663 		dirty = true;
1664 
1665 	if (dirty)
1666 		iflags |= I_DIRTY_SYNC;
1667 	__mark_inode_dirty(inode, iflags);
1668 	return 0;
1669 }
1670 EXPORT_SYMBOL(generic_update_time);
1671 
1672 /*
1673  * This does the actual work of updating an inodes time or version.  Must have
1674  * had called mnt_want_write() before calling this.
1675  */
1676 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1677 {
1678 	int (*update_time)(struct inode *, struct timespec64 *, int);
1679 
1680 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1681 		generic_update_time;
1682 
1683 	return update_time(inode, time, flags);
1684 }
1685 
1686 /**
1687  *	touch_atime	-	update the access time
1688  *	@path: the &struct path to update
1689  *	@inode: inode to update
1690  *
1691  *	Update the accessed time on an inode and mark it for writeback.
1692  *	This function automatically handles read only file systems and media,
1693  *	as well as the "noatime" flag and inode specific "noatime" markers.
1694  */
1695 bool atime_needs_update(const struct path *path, struct inode *inode)
1696 {
1697 	struct vfsmount *mnt = path->mnt;
1698 	struct timespec64 now;
1699 
1700 	if (inode->i_flags & S_NOATIME)
1701 		return false;
1702 
1703 	/* Atime updates will likely cause i_uid and i_gid to be written
1704 	 * back improprely if their true value is unknown to the vfs.
1705 	 */
1706 	if (HAS_UNMAPPED_ID(inode))
1707 		return false;
1708 
1709 	if (IS_NOATIME(inode))
1710 		return false;
1711 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1712 		return false;
1713 
1714 	if (mnt->mnt_flags & MNT_NOATIME)
1715 		return false;
1716 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1717 		return false;
1718 
1719 	now = current_time(inode);
1720 
1721 	if (!relatime_need_update(mnt, inode, now))
1722 		return false;
1723 
1724 	if (timespec64_equal(&inode->i_atime, &now))
1725 		return false;
1726 
1727 	return true;
1728 }
1729 
1730 void touch_atime(const struct path *path)
1731 {
1732 	struct vfsmount *mnt = path->mnt;
1733 	struct inode *inode = d_inode(path->dentry);
1734 	struct timespec64 now;
1735 
1736 	if (!atime_needs_update(path, inode))
1737 		return;
1738 
1739 	if (!sb_start_write_trylock(inode->i_sb))
1740 		return;
1741 
1742 	if (__mnt_want_write(mnt) != 0)
1743 		goto skip_update;
1744 	/*
1745 	 * File systems can error out when updating inodes if they need to
1746 	 * allocate new space to modify an inode (such is the case for
1747 	 * Btrfs), but since we touch atime while walking down the path we
1748 	 * really don't care if we failed to update the atime of the file,
1749 	 * so just ignore the return value.
1750 	 * We may also fail on filesystems that have the ability to make parts
1751 	 * of the fs read only, e.g. subvolumes in Btrfs.
1752 	 */
1753 	now = current_time(inode);
1754 	update_time(inode, &now, S_ATIME);
1755 	__mnt_drop_write(mnt);
1756 skip_update:
1757 	sb_end_write(inode->i_sb);
1758 }
1759 EXPORT_SYMBOL(touch_atime);
1760 
1761 /*
1762  * The logic we want is
1763  *
1764  *	if suid or (sgid and xgrp)
1765  *		remove privs
1766  */
1767 int should_remove_suid(struct dentry *dentry)
1768 {
1769 	umode_t mode = d_inode(dentry)->i_mode;
1770 	int kill = 0;
1771 
1772 	/* suid always must be killed */
1773 	if (unlikely(mode & S_ISUID))
1774 		kill = ATTR_KILL_SUID;
1775 
1776 	/*
1777 	 * sgid without any exec bits is just a mandatory locking mark; leave
1778 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1779 	 */
1780 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1781 		kill |= ATTR_KILL_SGID;
1782 
1783 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1784 		return kill;
1785 
1786 	return 0;
1787 }
1788 EXPORT_SYMBOL(should_remove_suid);
1789 
1790 /*
1791  * Return mask of changes for notify_change() that need to be done as a
1792  * response to write or truncate. Return 0 if nothing has to be changed.
1793  * Negative value on error (change should be denied).
1794  */
1795 int dentry_needs_remove_privs(struct dentry *dentry)
1796 {
1797 	struct inode *inode = d_inode(dentry);
1798 	int mask = 0;
1799 	int ret;
1800 
1801 	if (IS_NOSEC(inode))
1802 		return 0;
1803 
1804 	mask = should_remove_suid(dentry);
1805 	ret = security_inode_need_killpriv(dentry);
1806 	if (ret < 0)
1807 		return ret;
1808 	if (ret)
1809 		mask |= ATTR_KILL_PRIV;
1810 	return mask;
1811 }
1812 
1813 static int __remove_privs(struct dentry *dentry, int kill)
1814 {
1815 	struct iattr newattrs;
1816 
1817 	newattrs.ia_valid = ATTR_FORCE | kill;
1818 	/*
1819 	 * Note we call this on write, so notify_change will not
1820 	 * encounter any conflicting delegations:
1821 	 */
1822 	return notify_change(dentry, &newattrs, NULL);
1823 }
1824 
1825 /*
1826  * Remove special file priviledges (suid, capabilities) when file is written
1827  * to or truncated.
1828  */
1829 int file_remove_privs(struct file *file)
1830 {
1831 	struct dentry *dentry = file_dentry(file);
1832 	struct inode *inode = file_inode(file);
1833 	int kill;
1834 	int error = 0;
1835 
1836 	/*
1837 	 * Fast path for nothing security related.
1838 	 * As well for non-regular files, e.g. blkdev inodes.
1839 	 * For example, blkdev_write_iter() might get here
1840 	 * trying to remove privs which it is not allowed to.
1841 	 */
1842 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1843 		return 0;
1844 
1845 	kill = dentry_needs_remove_privs(dentry);
1846 	if (kill < 0)
1847 		return kill;
1848 	if (kill)
1849 		error = __remove_privs(dentry, kill);
1850 	if (!error)
1851 		inode_has_no_xattr(inode);
1852 
1853 	return error;
1854 }
1855 EXPORT_SYMBOL(file_remove_privs);
1856 
1857 /**
1858  *	file_update_time	-	update mtime and ctime time
1859  *	@file: file accessed
1860  *
1861  *	Update the mtime and ctime members of an inode and mark the inode
1862  *	for writeback.  Note that this function is meant exclusively for
1863  *	usage in the file write path of filesystems, and filesystems may
1864  *	choose to explicitly ignore update via this function with the
1865  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1866  *	timestamps are handled by the server.  This can return an error for
1867  *	file systems who need to allocate space in order to update an inode.
1868  */
1869 
1870 int file_update_time(struct file *file)
1871 {
1872 	struct inode *inode = file_inode(file);
1873 	struct timespec64 now;
1874 	int sync_it = 0;
1875 	int ret;
1876 
1877 	/* First try to exhaust all avenues to not sync */
1878 	if (IS_NOCMTIME(inode))
1879 		return 0;
1880 
1881 	now = current_time(inode);
1882 	if (!timespec64_equal(&inode->i_mtime, &now))
1883 		sync_it = S_MTIME;
1884 
1885 	if (!timespec64_equal(&inode->i_ctime, &now))
1886 		sync_it |= S_CTIME;
1887 
1888 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1889 		sync_it |= S_VERSION;
1890 
1891 	if (!sync_it)
1892 		return 0;
1893 
1894 	/* Finally allowed to write? Takes lock. */
1895 	if (__mnt_want_write_file(file))
1896 		return 0;
1897 
1898 	ret = update_time(inode, &now, sync_it);
1899 	__mnt_drop_write_file(file);
1900 
1901 	return ret;
1902 }
1903 EXPORT_SYMBOL(file_update_time);
1904 
1905 /* Caller must hold the file's inode lock */
1906 int file_modified(struct file *file)
1907 {
1908 	int err;
1909 
1910 	/*
1911 	 * Clear the security bits if the process is not being run by root.
1912 	 * This keeps people from modifying setuid and setgid binaries.
1913 	 */
1914 	err = file_remove_privs(file);
1915 	if (err)
1916 		return err;
1917 
1918 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
1919 		return 0;
1920 
1921 	return file_update_time(file);
1922 }
1923 EXPORT_SYMBOL(file_modified);
1924 
1925 int inode_needs_sync(struct inode *inode)
1926 {
1927 	if (IS_SYNC(inode))
1928 		return 1;
1929 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1930 		return 1;
1931 	return 0;
1932 }
1933 EXPORT_SYMBOL(inode_needs_sync);
1934 
1935 /*
1936  * If we try to find an inode in the inode hash while it is being
1937  * deleted, we have to wait until the filesystem completes its
1938  * deletion before reporting that it isn't found.  This function waits
1939  * until the deletion _might_ have completed.  Callers are responsible
1940  * to recheck inode state.
1941  *
1942  * It doesn't matter if I_NEW is not set initially, a call to
1943  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1944  * will DTRT.
1945  */
1946 static void __wait_on_freeing_inode(struct inode *inode)
1947 {
1948 	wait_queue_head_t *wq;
1949 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1950 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1951 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1952 	spin_unlock(&inode->i_lock);
1953 	spin_unlock(&inode_hash_lock);
1954 	schedule();
1955 	finish_wait(wq, &wait.wq_entry);
1956 	spin_lock(&inode_hash_lock);
1957 }
1958 
1959 static __initdata unsigned long ihash_entries;
1960 static int __init set_ihash_entries(char *str)
1961 {
1962 	if (!str)
1963 		return 0;
1964 	ihash_entries = simple_strtoul(str, &str, 0);
1965 	return 1;
1966 }
1967 __setup("ihash_entries=", set_ihash_entries);
1968 
1969 /*
1970  * Initialize the waitqueues and inode hash table.
1971  */
1972 void __init inode_init_early(void)
1973 {
1974 	/* If hashes are distributed across NUMA nodes, defer
1975 	 * hash allocation until vmalloc space is available.
1976 	 */
1977 	if (hashdist)
1978 		return;
1979 
1980 	inode_hashtable =
1981 		alloc_large_system_hash("Inode-cache",
1982 					sizeof(struct hlist_head),
1983 					ihash_entries,
1984 					14,
1985 					HASH_EARLY | HASH_ZERO,
1986 					&i_hash_shift,
1987 					&i_hash_mask,
1988 					0,
1989 					0);
1990 }
1991 
1992 void __init inode_init(void)
1993 {
1994 	/* inode slab cache */
1995 	inode_cachep = kmem_cache_create("inode_cache",
1996 					 sizeof(struct inode),
1997 					 0,
1998 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1999 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2000 					 init_once);
2001 
2002 	/* Hash may have been set up in inode_init_early */
2003 	if (!hashdist)
2004 		return;
2005 
2006 	inode_hashtable =
2007 		alloc_large_system_hash("Inode-cache",
2008 					sizeof(struct hlist_head),
2009 					ihash_entries,
2010 					14,
2011 					HASH_ZERO,
2012 					&i_hash_shift,
2013 					&i_hash_mask,
2014 					0,
2015 					0);
2016 }
2017 
2018 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2019 {
2020 	inode->i_mode = mode;
2021 	if (S_ISCHR(mode)) {
2022 		inode->i_fop = &def_chr_fops;
2023 		inode->i_rdev = rdev;
2024 	} else if (S_ISBLK(mode)) {
2025 		inode->i_fop = &def_blk_fops;
2026 		inode->i_rdev = rdev;
2027 	} else if (S_ISFIFO(mode))
2028 		inode->i_fop = &pipefifo_fops;
2029 	else if (S_ISSOCK(mode))
2030 		;	/* leave it no_open_fops */
2031 	else
2032 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2033 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2034 				  inode->i_ino);
2035 }
2036 EXPORT_SYMBOL(init_special_inode);
2037 
2038 /**
2039  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2040  * @inode: New inode
2041  * @dir: Directory inode
2042  * @mode: mode of the new inode
2043  */
2044 void inode_init_owner(struct inode *inode, const struct inode *dir,
2045 			umode_t mode)
2046 {
2047 	inode->i_uid = current_fsuid();
2048 	if (dir && dir->i_mode & S_ISGID) {
2049 		inode->i_gid = dir->i_gid;
2050 
2051 		/* Directories are special, and always inherit S_ISGID */
2052 		if (S_ISDIR(mode))
2053 			mode |= S_ISGID;
2054 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2055 			 !in_group_p(inode->i_gid) &&
2056 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2057 			mode &= ~S_ISGID;
2058 	} else
2059 		inode->i_gid = current_fsgid();
2060 	inode->i_mode = mode;
2061 }
2062 EXPORT_SYMBOL(inode_init_owner);
2063 
2064 /**
2065  * inode_owner_or_capable - check current task permissions to inode
2066  * @inode: inode being checked
2067  *
2068  * Return true if current either has CAP_FOWNER in a namespace with the
2069  * inode owner uid mapped, or owns the file.
2070  */
2071 bool inode_owner_or_capable(const struct inode *inode)
2072 {
2073 	struct user_namespace *ns;
2074 
2075 	if (uid_eq(current_fsuid(), inode->i_uid))
2076 		return true;
2077 
2078 	ns = current_user_ns();
2079 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2080 		return true;
2081 	return false;
2082 }
2083 EXPORT_SYMBOL(inode_owner_or_capable);
2084 
2085 /*
2086  * Direct i/o helper functions
2087  */
2088 static void __inode_dio_wait(struct inode *inode)
2089 {
2090 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2091 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2092 
2093 	do {
2094 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2095 		if (atomic_read(&inode->i_dio_count))
2096 			schedule();
2097 	} while (atomic_read(&inode->i_dio_count));
2098 	finish_wait(wq, &q.wq_entry);
2099 }
2100 
2101 /**
2102  * inode_dio_wait - wait for outstanding DIO requests to finish
2103  * @inode: inode to wait for
2104  *
2105  * Waits for all pending direct I/O requests to finish so that we can
2106  * proceed with a truncate or equivalent operation.
2107  *
2108  * Must be called under a lock that serializes taking new references
2109  * to i_dio_count, usually by inode->i_mutex.
2110  */
2111 void inode_dio_wait(struct inode *inode)
2112 {
2113 	if (atomic_read(&inode->i_dio_count))
2114 		__inode_dio_wait(inode);
2115 }
2116 EXPORT_SYMBOL(inode_dio_wait);
2117 
2118 /*
2119  * inode_set_flags - atomically set some inode flags
2120  *
2121  * Note: the caller should be holding i_mutex, or else be sure that
2122  * they have exclusive access to the inode structure (i.e., while the
2123  * inode is being instantiated).  The reason for the cmpxchg() loop
2124  * --- which wouldn't be necessary if all code paths which modify
2125  * i_flags actually followed this rule, is that there is at least one
2126  * code path which doesn't today so we use cmpxchg() out of an abundance
2127  * of caution.
2128  *
2129  * In the long run, i_mutex is overkill, and we should probably look
2130  * at using the i_lock spinlock to protect i_flags, and then make sure
2131  * it is so documented in include/linux/fs.h and that all code follows
2132  * the locking convention!!
2133  */
2134 void inode_set_flags(struct inode *inode, unsigned int flags,
2135 		     unsigned int mask)
2136 {
2137 	WARN_ON_ONCE(flags & ~mask);
2138 	set_mask_bits(&inode->i_flags, mask, flags);
2139 }
2140 EXPORT_SYMBOL(inode_set_flags);
2141 
2142 void inode_nohighmem(struct inode *inode)
2143 {
2144 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2145 }
2146 EXPORT_SYMBOL(inode_nohighmem);
2147 
2148 /**
2149  * timespec64_trunc - Truncate timespec64 to a granularity
2150  * @t: Timespec64
2151  * @gran: Granularity in ns.
2152  *
2153  * Truncate a timespec64 to a granularity. Always rounds down. gran must
2154  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2155  */
2156 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2157 {
2158 	/* Avoid division in the common cases 1 ns and 1 s. */
2159 	if (gran == 1) {
2160 		/* nothing */
2161 	} else if (gran == NSEC_PER_SEC) {
2162 		t.tv_nsec = 0;
2163 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2164 		t.tv_nsec -= t.tv_nsec % gran;
2165 	} else {
2166 		WARN(1, "illegal file time granularity: %u", gran);
2167 	}
2168 	return t;
2169 }
2170 EXPORT_SYMBOL(timespec64_trunc);
2171 
2172 /**
2173  * timestamp_truncate - Truncate timespec to a granularity
2174  * @t: Timespec
2175  * @inode: inode being updated
2176  *
2177  * Truncate a timespec to the granularity supported by the fs
2178  * containing the inode. Always rounds down. gran must
2179  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2180  */
2181 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2182 {
2183 	struct super_block *sb = inode->i_sb;
2184 	unsigned int gran = sb->s_time_gran;
2185 
2186 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2187 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2188 		t.tv_nsec = 0;
2189 
2190 	/* Avoid division in the common cases 1 ns and 1 s. */
2191 	if (gran == 1)
2192 		; /* nothing */
2193 	else if (gran == NSEC_PER_SEC)
2194 		t.tv_nsec = 0;
2195 	else if (gran > 1 && gran < NSEC_PER_SEC)
2196 		t.tv_nsec -= t.tv_nsec % gran;
2197 	else
2198 		WARN(1, "invalid file time granularity: %u", gran);
2199 	return t;
2200 }
2201 EXPORT_SYMBOL(timestamp_truncate);
2202 
2203 /**
2204  * current_time - Return FS time
2205  * @inode: inode.
2206  *
2207  * Return the current time truncated to the time granularity supported by
2208  * the fs.
2209  *
2210  * Note that inode and inode->sb cannot be NULL.
2211  * Otherwise, the function warns and returns time without truncation.
2212  */
2213 struct timespec64 current_time(struct inode *inode)
2214 {
2215 	struct timespec64 now;
2216 
2217 	ktime_get_coarse_real_ts64(&now);
2218 
2219 	if (unlikely(!inode->i_sb)) {
2220 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2221 		return now;
2222 	}
2223 
2224 	return timestamp_truncate(now, inode);
2225 }
2226 EXPORT_SYMBOL(current_time);
2227 
2228 /*
2229  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2230  * configurations.
2231  *
2232  * Note: the caller should be holding i_mutex, or else be sure that they have
2233  * exclusive access to the inode structure.
2234  */
2235 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2236 			     unsigned int flags)
2237 {
2238 	/*
2239 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2240 	 * the relevant capability.
2241 	 *
2242 	 * This test looks nicer. Thanks to Pauline Middelink
2243 	 */
2244 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2245 	    !capable(CAP_LINUX_IMMUTABLE))
2246 		return -EPERM;
2247 
2248 	return 0;
2249 }
2250 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2251 
2252 /*
2253  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2254  * configurations.
2255  *
2256  * Note: the caller should be holding i_mutex, or else be sure that they have
2257  * exclusive access to the inode structure.
2258  */
2259 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2260 			     struct fsxattr *fa)
2261 {
2262 	/*
2263 	 * Can't modify an immutable/append-only file unless we have
2264 	 * appropriate permission.
2265 	 */
2266 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2267 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2268 	    !capable(CAP_LINUX_IMMUTABLE))
2269 		return -EPERM;
2270 
2271 	/*
2272 	 * Project Quota ID state is only allowed to change from within the init
2273 	 * namespace. Enforce that restriction only if we are trying to change
2274 	 * the quota ID state. Everything else is allowed in user namespaces.
2275 	 */
2276 	if (current_user_ns() != &init_user_ns) {
2277 		if (old_fa->fsx_projid != fa->fsx_projid)
2278 			return -EINVAL;
2279 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2280 				FS_XFLAG_PROJINHERIT)
2281 			return -EINVAL;
2282 	}
2283 
2284 	/* Check extent size hints. */
2285 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2286 		return -EINVAL;
2287 
2288 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2289 			!S_ISDIR(inode->i_mode))
2290 		return -EINVAL;
2291 
2292 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2293 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2294 		return -EINVAL;
2295 
2296 	/*
2297 	 * It is only valid to set the DAX flag on regular files and
2298 	 * directories on filesystems.
2299 	 */
2300 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2301 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2302 		return -EINVAL;
2303 
2304 	/* Extent size hints of zero turn off the flags. */
2305 	if (fa->fsx_extsize == 0)
2306 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2307 	if (fa->fsx_cowextsize == 0)
2308 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2309 
2310 	return 0;
2311 }
2312 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2313