xref: /linux/fs/inode.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mount.h>
27 #include <linux/async.h>
28 #include <linux/posix_acl.h>
29 
30 /*
31  * This is needed for the following functions:
32  *  - inode_has_buffers
33  *  - invalidate_inode_buffers
34  *  - invalidate_bdev
35  *
36  * FIXME: remove all knowledge of the buffer layer from this file
37  */
38 #include <linux/buffer_head.h>
39 
40 /*
41  * New inode.c implementation.
42  *
43  * This implementation has the basic premise of trying
44  * to be extremely low-overhead and SMP-safe, yet be
45  * simple enough to be "obviously correct".
46  *
47  * Famous last words.
48  */
49 
50 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
51 
52 /* #define INODE_PARANOIA 1 */
53 /* #define INODE_DEBUG 1 */
54 
55 /*
56  * Inode lookup is no longer as critical as it used to be:
57  * most of the lookups are going to be through the dcache.
58  */
59 #define I_HASHBITS	i_hash_shift
60 #define I_HASHMASK	i_hash_mask
61 
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 
65 /*
66  * Each inode can be on two separate lists. One is
67  * the hash list of the inode, used for lookups. The
68  * other linked list is the "type" list:
69  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
70  *  "dirty"  - as "in_use" but also dirty
71  *  "unused" - valid inode, i_count = 0
72  *
73  * A "dirty" list is maintained for each super block,
74  * allowing for low-overhead inode sync() operations.
75  */
76 
77 LIST_HEAD(inode_in_use);
78 LIST_HEAD(inode_unused);
79 static struct hlist_head *inode_hashtable __read_mostly;
80 
81 /*
82  * A simple spinlock to protect the list manipulations.
83  *
84  * NOTE! You also have to own the lock if you change
85  * the i_state of an inode while it is in use..
86  */
87 DEFINE_SPINLOCK(inode_lock);
88 
89 /*
90  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
91  * icache shrinking path, and the umount path.  Without this exclusion,
92  * by the time prune_icache calls iput for the inode whose pages it has
93  * been invalidating, or by the time it calls clear_inode & destroy_inode
94  * from its final dispose_list, the struct super_block they refer to
95  * (for inode->i_sb->s_op) may already have been freed and reused.
96  */
97 static DEFINE_MUTEX(iprune_mutex);
98 
99 /*
100  * Statistics gathering..
101  */
102 struct inodes_stat_t inodes_stat;
103 
104 static struct kmem_cache *inode_cachep __read_mostly;
105 
106 static void wake_up_inode(struct inode *inode)
107 {
108 	/*
109 	 * Prevent speculative execution through spin_unlock(&inode_lock);
110 	 */
111 	smp_mb();
112 	wake_up_bit(&inode->i_state, __I_LOCK);
113 }
114 
115 /**
116  * inode_init_always - perform inode structure intialisation
117  * @sb: superblock inode belongs to
118  * @inode: inode to initialise
119  *
120  * These are initializations that need to be done on every inode
121  * allocation as the fields are not initialised by slab allocation.
122  */
123 int inode_init_always(struct super_block *sb, struct inode *inode)
124 {
125 	static const struct address_space_operations empty_aops;
126 	static const struct inode_operations empty_iops;
127 	static const struct file_operations empty_fops;
128 	struct address_space *const mapping = &inode->i_data;
129 
130 	inode->i_sb = sb;
131 	inode->i_blkbits = sb->s_blocksize_bits;
132 	inode->i_flags = 0;
133 	atomic_set(&inode->i_count, 1);
134 	inode->i_op = &empty_iops;
135 	inode->i_fop = &empty_fops;
136 	inode->i_nlink = 1;
137 	inode->i_uid = 0;
138 	inode->i_gid = 0;
139 	atomic_set(&inode->i_writecount, 0);
140 	inode->i_size = 0;
141 	inode->i_blocks = 0;
142 	inode->i_bytes = 0;
143 	inode->i_generation = 0;
144 #ifdef CONFIG_QUOTA
145 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
146 #endif
147 	inode->i_pipe = NULL;
148 	inode->i_bdev = NULL;
149 	inode->i_cdev = NULL;
150 	inode->i_rdev = 0;
151 	inode->dirtied_when = 0;
152 
153 	if (security_inode_alloc(inode))
154 		goto out;
155 
156 	/* allocate and initialize an i_integrity */
157 	if (ima_inode_alloc(inode))
158 		goto out_free_security;
159 
160 	spin_lock_init(&inode->i_lock);
161 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
162 
163 	mutex_init(&inode->i_mutex);
164 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
165 
166 	init_rwsem(&inode->i_alloc_sem);
167 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
168 
169 	mapping->a_ops = &empty_aops;
170 	mapping->host = inode;
171 	mapping->flags = 0;
172 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
173 	mapping->assoc_mapping = NULL;
174 	mapping->backing_dev_info = &default_backing_dev_info;
175 	mapping->writeback_index = 0;
176 
177 	/*
178 	 * If the block_device provides a backing_dev_info for client
179 	 * inodes then use that.  Otherwise the inode share the bdev's
180 	 * backing_dev_info.
181 	 */
182 	if (sb->s_bdev) {
183 		struct backing_dev_info *bdi;
184 
185 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
186 		mapping->backing_dev_info = bdi;
187 	}
188 	inode->i_private = NULL;
189 	inode->i_mapping = mapping;
190 #ifdef CONFIG_FS_POSIX_ACL
191 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
192 #endif
193 
194 #ifdef CONFIG_FSNOTIFY
195 	inode->i_fsnotify_mask = 0;
196 #endif
197 
198 	return 0;
199 
200 out_free_security:
201 	security_inode_free(inode);
202 out:
203 	return -ENOMEM;
204 }
205 EXPORT_SYMBOL(inode_init_always);
206 
207 static struct inode *alloc_inode(struct super_block *sb)
208 {
209 	struct inode *inode;
210 
211 	if (sb->s_op->alloc_inode)
212 		inode = sb->s_op->alloc_inode(sb);
213 	else
214 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
215 
216 	if (!inode)
217 		return NULL;
218 
219 	if (unlikely(inode_init_always(sb, inode))) {
220 		if (inode->i_sb->s_op->destroy_inode)
221 			inode->i_sb->s_op->destroy_inode(inode);
222 		else
223 			kmem_cache_free(inode_cachep, inode);
224 		return NULL;
225 	}
226 
227 	return inode;
228 }
229 
230 void __destroy_inode(struct inode *inode)
231 {
232 	BUG_ON(inode_has_buffers(inode));
233 	ima_inode_free(inode);
234 	security_inode_free(inode);
235 	fsnotify_inode_delete(inode);
236 #ifdef CONFIG_FS_POSIX_ACL
237 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
238 		posix_acl_release(inode->i_acl);
239 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
240 		posix_acl_release(inode->i_default_acl);
241 #endif
242 }
243 EXPORT_SYMBOL(__destroy_inode);
244 
245 void destroy_inode(struct inode *inode)
246 {
247 	__destroy_inode(inode);
248 	if (inode->i_sb->s_op->destroy_inode)
249 		inode->i_sb->s_op->destroy_inode(inode);
250 	else
251 		kmem_cache_free(inode_cachep, (inode));
252 }
253 
254 /*
255  * These are initializations that only need to be done
256  * once, because the fields are idempotent across use
257  * of the inode, so let the slab aware of that.
258  */
259 void inode_init_once(struct inode *inode)
260 {
261 	memset(inode, 0, sizeof(*inode));
262 	INIT_HLIST_NODE(&inode->i_hash);
263 	INIT_LIST_HEAD(&inode->i_dentry);
264 	INIT_LIST_HEAD(&inode->i_devices);
265 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
266 	spin_lock_init(&inode->i_data.tree_lock);
267 	spin_lock_init(&inode->i_data.i_mmap_lock);
268 	INIT_LIST_HEAD(&inode->i_data.private_list);
269 	spin_lock_init(&inode->i_data.private_lock);
270 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
271 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
272 	i_size_ordered_init(inode);
273 #ifdef CONFIG_INOTIFY
274 	INIT_LIST_HEAD(&inode->inotify_watches);
275 	mutex_init(&inode->inotify_mutex);
276 #endif
277 #ifdef CONFIG_FSNOTIFY
278 	INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
279 #endif
280 }
281 EXPORT_SYMBOL(inode_init_once);
282 
283 static void init_once(void *foo)
284 {
285 	struct inode *inode = (struct inode *) foo;
286 
287 	inode_init_once(inode);
288 }
289 
290 /*
291  * inode_lock must be held
292  */
293 void __iget(struct inode *inode)
294 {
295 	if (atomic_read(&inode->i_count)) {
296 		atomic_inc(&inode->i_count);
297 		return;
298 	}
299 	atomic_inc(&inode->i_count);
300 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
301 		list_move(&inode->i_list, &inode_in_use);
302 	inodes_stat.nr_unused--;
303 }
304 
305 /**
306  * clear_inode - clear an inode
307  * @inode: inode to clear
308  *
309  * This is called by the filesystem to tell us
310  * that the inode is no longer useful. We just
311  * terminate it with extreme prejudice.
312  */
313 void clear_inode(struct inode *inode)
314 {
315 	might_sleep();
316 	invalidate_inode_buffers(inode);
317 
318 	BUG_ON(inode->i_data.nrpages);
319 	BUG_ON(!(inode->i_state & I_FREEING));
320 	BUG_ON(inode->i_state & I_CLEAR);
321 	inode_sync_wait(inode);
322 	vfs_dq_drop(inode);
323 	if (inode->i_sb->s_op->clear_inode)
324 		inode->i_sb->s_op->clear_inode(inode);
325 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
326 		bd_forget(inode);
327 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
328 		cd_forget(inode);
329 	inode->i_state = I_CLEAR;
330 }
331 EXPORT_SYMBOL(clear_inode);
332 
333 /*
334  * dispose_list - dispose of the contents of a local list
335  * @head: the head of the list to free
336  *
337  * Dispose-list gets a local list with local inodes in it, so it doesn't
338  * need to worry about list corruption and SMP locks.
339  */
340 static void dispose_list(struct list_head *head)
341 {
342 	int nr_disposed = 0;
343 
344 	while (!list_empty(head)) {
345 		struct inode *inode;
346 
347 		inode = list_first_entry(head, struct inode, i_list);
348 		list_del(&inode->i_list);
349 
350 		if (inode->i_data.nrpages)
351 			truncate_inode_pages(&inode->i_data, 0);
352 		clear_inode(inode);
353 
354 		spin_lock(&inode_lock);
355 		hlist_del_init(&inode->i_hash);
356 		list_del_init(&inode->i_sb_list);
357 		spin_unlock(&inode_lock);
358 
359 		wake_up_inode(inode);
360 		destroy_inode(inode);
361 		nr_disposed++;
362 	}
363 	spin_lock(&inode_lock);
364 	inodes_stat.nr_inodes -= nr_disposed;
365 	spin_unlock(&inode_lock);
366 }
367 
368 /*
369  * Invalidate all inodes for a device.
370  */
371 static int invalidate_list(struct list_head *head, struct list_head *dispose)
372 {
373 	struct list_head *next;
374 	int busy = 0, count = 0;
375 
376 	next = head->next;
377 	for (;;) {
378 		struct list_head *tmp = next;
379 		struct inode *inode;
380 
381 		/*
382 		 * We can reschedule here without worrying about the list's
383 		 * consistency because the per-sb list of inodes must not
384 		 * change during umount anymore, and because iprune_mutex keeps
385 		 * shrink_icache_memory() away.
386 		 */
387 		cond_resched_lock(&inode_lock);
388 
389 		next = next->next;
390 		if (tmp == head)
391 			break;
392 		inode = list_entry(tmp, struct inode, i_sb_list);
393 		if (inode->i_state & I_NEW)
394 			continue;
395 		invalidate_inode_buffers(inode);
396 		if (!atomic_read(&inode->i_count)) {
397 			list_move(&inode->i_list, dispose);
398 			WARN_ON(inode->i_state & I_NEW);
399 			inode->i_state |= I_FREEING;
400 			count++;
401 			continue;
402 		}
403 		busy = 1;
404 	}
405 	/* only unused inodes may be cached with i_count zero */
406 	inodes_stat.nr_unused -= count;
407 	return busy;
408 }
409 
410 /**
411  *	invalidate_inodes	- discard the inodes on a device
412  *	@sb: superblock
413  *
414  *	Discard all of the inodes for a given superblock. If the discard
415  *	fails because there are busy inodes then a non zero value is returned.
416  *	If the discard is successful all the inodes have been discarded.
417  */
418 int invalidate_inodes(struct super_block *sb)
419 {
420 	int busy;
421 	LIST_HEAD(throw_away);
422 
423 	mutex_lock(&iprune_mutex);
424 	spin_lock(&inode_lock);
425 	inotify_unmount_inodes(&sb->s_inodes);
426 	fsnotify_unmount_inodes(&sb->s_inodes);
427 	busy = invalidate_list(&sb->s_inodes, &throw_away);
428 	spin_unlock(&inode_lock);
429 
430 	dispose_list(&throw_away);
431 	mutex_unlock(&iprune_mutex);
432 
433 	return busy;
434 }
435 EXPORT_SYMBOL(invalidate_inodes);
436 
437 static int can_unuse(struct inode *inode)
438 {
439 	if (inode->i_state)
440 		return 0;
441 	if (inode_has_buffers(inode))
442 		return 0;
443 	if (atomic_read(&inode->i_count))
444 		return 0;
445 	if (inode->i_data.nrpages)
446 		return 0;
447 	return 1;
448 }
449 
450 /*
451  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
452  * a temporary list and then are freed outside inode_lock by dispose_list().
453  *
454  * Any inodes which are pinned purely because of attached pagecache have their
455  * pagecache removed.  We expect the final iput() on that inode to add it to
456  * the front of the inode_unused list.  So look for it there and if the
457  * inode is still freeable, proceed.  The right inode is found 99.9% of the
458  * time in testing on a 4-way.
459  *
460  * If the inode has metadata buffers attached to mapping->private_list then
461  * try to remove them.
462  */
463 static void prune_icache(int nr_to_scan)
464 {
465 	LIST_HEAD(freeable);
466 	int nr_pruned = 0;
467 	int nr_scanned;
468 	unsigned long reap = 0;
469 
470 	mutex_lock(&iprune_mutex);
471 	spin_lock(&inode_lock);
472 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
473 		struct inode *inode;
474 
475 		if (list_empty(&inode_unused))
476 			break;
477 
478 		inode = list_entry(inode_unused.prev, struct inode, i_list);
479 
480 		if (inode->i_state || atomic_read(&inode->i_count)) {
481 			list_move(&inode->i_list, &inode_unused);
482 			continue;
483 		}
484 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
485 			__iget(inode);
486 			spin_unlock(&inode_lock);
487 			if (remove_inode_buffers(inode))
488 				reap += invalidate_mapping_pages(&inode->i_data,
489 								0, -1);
490 			iput(inode);
491 			spin_lock(&inode_lock);
492 
493 			if (inode != list_entry(inode_unused.next,
494 						struct inode, i_list))
495 				continue;	/* wrong inode or list_empty */
496 			if (!can_unuse(inode))
497 				continue;
498 		}
499 		list_move(&inode->i_list, &freeable);
500 		WARN_ON(inode->i_state & I_NEW);
501 		inode->i_state |= I_FREEING;
502 		nr_pruned++;
503 	}
504 	inodes_stat.nr_unused -= nr_pruned;
505 	if (current_is_kswapd())
506 		__count_vm_events(KSWAPD_INODESTEAL, reap);
507 	else
508 		__count_vm_events(PGINODESTEAL, reap);
509 	spin_unlock(&inode_lock);
510 
511 	dispose_list(&freeable);
512 	mutex_unlock(&iprune_mutex);
513 }
514 
515 /*
516  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
517  * "unused" means that no dentries are referring to the inodes: the files are
518  * not open and the dcache references to those inodes have already been
519  * reclaimed.
520  *
521  * This function is passed the number of inodes to scan, and it returns the
522  * total number of remaining possibly-reclaimable inodes.
523  */
524 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
525 {
526 	if (nr) {
527 		/*
528 		 * Nasty deadlock avoidance.  We may hold various FS locks,
529 		 * and we don't want to recurse into the FS that called us
530 		 * in clear_inode() and friends..
531 		 */
532 		if (!(gfp_mask & __GFP_FS))
533 			return -1;
534 		prune_icache(nr);
535 	}
536 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
537 }
538 
539 static struct shrinker icache_shrinker = {
540 	.shrink = shrink_icache_memory,
541 	.seeks = DEFAULT_SEEKS,
542 };
543 
544 static void __wait_on_freeing_inode(struct inode *inode);
545 /*
546  * Called with the inode lock held.
547  * NOTE: we are not increasing the inode-refcount, you must call __iget()
548  * by hand after calling find_inode now! This simplifies iunique and won't
549  * add any additional branch in the common code.
550  */
551 static struct inode *find_inode(struct super_block *sb,
552 				struct hlist_head *head,
553 				int (*test)(struct inode *, void *),
554 				void *data)
555 {
556 	struct hlist_node *node;
557 	struct inode *inode = NULL;
558 
559 repeat:
560 	hlist_for_each_entry(inode, node, head, i_hash) {
561 		if (inode->i_sb != sb)
562 			continue;
563 		if (!test(inode, data))
564 			continue;
565 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
566 			__wait_on_freeing_inode(inode);
567 			goto repeat;
568 		}
569 		break;
570 	}
571 	return node ? inode : NULL;
572 }
573 
574 /*
575  * find_inode_fast is the fast path version of find_inode, see the comment at
576  * iget_locked for details.
577  */
578 static struct inode *find_inode_fast(struct super_block *sb,
579 				struct hlist_head *head, unsigned long ino)
580 {
581 	struct hlist_node *node;
582 	struct inode *inode = NULL;
583 
584 repeat:
585 	hlist_for_each_entry(inode, node, head, i_hash) {
586 		if (inode->i_ino != ino)
587 			continue;
588 		if (inode->i_sb != sb)
589 			continue;
590 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
591 			__wait_on_freeing_inode(inode);
592 			goto repeat;
593 		}
594 		break;
595 	}
596 	return node ? inode : NULL;
597 }
598 
599 static unsigned long hash(struct super_block *sb, unsigned long hashval)
600 {
601 	unsigned long tmp;
602 
603 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
604 			L1_CACHE_BYTES;
605 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
606 	return tmp & I_HASHMASK;
607 }
608 
609 static inline void
610 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
611 			struct inode *inode)
612 {
613 	inodes_stat.nr_inodes++;
614 	list_add(&inode->i_list, &inode_in_use);
615 	list_add(&inode->i_sb_list, &sb->s_inodes);
616 	if (head)
617 		hlist_add_head(&inode->i_hash, head);
618 }
619 
620 /**
621  * inode_add_to_lists - add a new inode to relevant lists
622  * @sb: superblock inode belongs to
623  * @inode: inode to mark in use
624  *
625  * When an inode is allocated it needs to be accounted for, added to the in use
626  * list, the owning superblock and the inode hash. This needs to be done under
627  * the inode_lock, so export a function to do this rather than the inode lock
628  * itself. We calculate the hash list to add to here so it is all internal
629  * which requires the caller to have already set up the inode number in the
630  * inode to add.
631  */
632 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
633 {
634 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
635 
636 	spin_lock(&inode_lock);
637 	__inode_add_to_lists(sb, head, inode);
638 	spin_unlock(&inode_lock);
639 }
640 EXPORT_SYMBOL_GPL(inode_add_to_lists);
641 
642 /**
643  *	new_inode 	- obtain an inode
644  *	@sb: superblock
645  *
646  *	Allocates a new inode for given superblock. The default gfp_mask
647  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
648  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
649  *	for the page cache are not reclaimable or migratable,
650  *	mapping_set_gfp_mask() must be called with suitable flags on the
651  *	newly created inode's mapping
652  *
653  */
654 struct inode *new_inode(struct super_block *sb)
655 {
656 	/*
657 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
658 	 * error if st_ino won't fit in target struct field. Use 32bit counter
659 	 * here to attempt to avoid that.
660 	 */
661 	static unsigned int last_ino;
662 	struct inode *inode;
663 
664 	spin_lock_prefetch(&inode_lock);
665 
666 	inode = alloc_inode(sb);
667 	if (inode) {
668 		spin_lock(&inode_lock);
669 		__inode_add_to_lists(sb, NULL, inode);
670 		inode->i_ino = ++last_ino;
671 		inode->i_state = 0;
672 		spin_unlock(&inode_lock);
673 	}
674 	return inode;
675 }
676 EXPORT_SYMBOL(new_inode);
677 
678 void unlock_new_inode(struct inode *inode)
679 {
680 #ifdef CONFIG_DEBUG_LOCK_ALLOC
681 	if (inode->i_mode & S_IFDIR) {
682 		struct file_system_type *type = inode->i_sb->s_type;
683 
684 		/* Set new key only if filesystem hasn't already changed it */
685 		if (!lockdep_match_class(&inode->i_mutex,
686 		    &type->i_mutex_key)) {
687 			/*
688 			 * ensure nobody is actually holding i_mutex
689 			 */
690 			mutex_destroy(&inode->i_mutex);
691 			mutex_init(&inode->i_mutex);
692 			lockdep_set_class(&inode->i_mutex,
693 					  &type->i_mutex_dir_key);
694 		}
695 	}
696 #endif
697 	/*
698 	 * This is special!  We do not need the spinlock when clearing I_LOCK,
699 	 * because we're guaranteed that nobody else tries to do anything about
700 	 * the state of the inode when it is locked, as we just created it (so
701 	 * there can be no old holders that haven't tested I_LOCK).
702 	 * However we must emit the memory barrier so that other CPUs reliably
703 	 * see the clearing of I_LOCK after the other inode initialisation has
704 	 * completed.
705 	 */
706 	smp_mb();
707 	WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
708 	inode->i_state &= ~(I_LOCK|I_NEW);
709 	wake_up_inode(inode);
710 }
711 EXPORT_SYMBOL(unlock_new_inode);
712 
713 /*
714  * This is called without the inode lock held.. Be careful.
715  *
716  * We no longer cache the sb_flags in i_flags - see fs.h
717  *	-- rmk@arm.uk.linux.org
718  */
719 static struct inode *get_new_inode(struct super_block *sb,
720 				struct hlist_head *head,
721 				int (*test)(struct inode *, void *),
722 				int (*set)(struct inode *, void *),
723 				void *data)
724 {
725 	struct inode *inode;
726 
727 	inode = alloc_inode(sb);
728 	if (inode) {
729 		struct inode *old;
730 
731 		spin_lock(&inode_lock);
732 		/* We released the lock, so.. */
733 		old = find_inode(sb, head, test, data);
734 		if (!old) {
735 			if (set(inode, data))
736 				goto set_failed;
737 
738 			__inode_add_to_lists(sb, head, inode);
739 			inode->i_state = I_LOCK|I_NEW;
740 			spin_unlock(&inode_lock);
741 
742 			/* Return the locked inode with I_NEW set, the
743 			 * caller is responsible for filling in the contents
744 			 */
745 			return inode;
746 		}
747 
748 		/*
749 		 * Uhhuh, somebody else created the same inode under
750 		 * us. Use the old inode instead of the one we just
751 		 * allocated.
752 		 */
753 		__iget(old);
754 		spin_unlock(&inode_lock);
755 		destroy_inode(inode);
756 		inode = old;
757 		wait_on_inode(inode);
758 	}
759 	return inode;
760 
761 set_failed:
762 	spin_unlock(&inode_lock);
763 	destroy_inode(inode);
764 	return NULL;
765 }
766 
767 /*
768  * get_new_inode_fast is the fast path version of get_new_inode, see the
769  * comment at iget_locked for details.
770  */
771 static struct inode *get_new_inode_fast(struct super_block *sb,
772 				struct hlist_head *head, unsigned long ino)
773 {
774 	struct inode *inode;
775 
776 	inode = alloc_inode(sb);
777 	if (inode) {
778 		struct inode *old;
779 
780 		spin_lock(&inode_lock);
781 		/* We released the lock, so.. */
782 		old = find_inode_fast(sb, head, ino);
783 		if (!old) {
784 			inode->i_ino = ino;
785 			__inode_add_to_lists(sb, head, inode);
786 			inode->i_state = I_LOCK|I_NEW;
787 			spin_unlock(&inode_lock);
788 
789 			/* Return the locked inode with I_NEW set, the
790 			 * caller is responsible for filling in the contents
791 			 */
792 			return inode;
793 		}
794 
795 		/*
796 		 * Uhhuh, somebody else created the same inode under
797 		 * us. Use the old inode instead of the one we just
798 		 * allocated.
799 		 */
800 		__iget(old);
801 		spin_unlock(&inode_lock);
802 		destroy_inode(inode);
803 		inode = old;
804 		wait_on_inode(inode);
805 	}
806 	return inode;
807 }
808 
809 /**
810  *	iunique - get a unique inode number
811  *	@sb: superblock
812  *	@max_reserved: highest reserved inode number
813  *
814  *	Obtain an inode number that is unique on the system for a given
815  *	superblock. This is used by file systems that have no natural
816  *	permanent inode numbering system. An inode number is returned that
817  *	is higher than the reserved limit but unique.
818  *
819  *	BUGS:
820  *	With a large number of inodes live on the file system this function
821  *	currently becomes quite slow.
822  */
823 ino_t iunique(struct super_block *sb, ino_t max_reserved)
824 {
825 	/*
826 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
827 	 * error if st_ino won't fit in target struct field. Use 32bit counter
828 	 * here to attempt to avoid that.
829 	 */
830 	static unsigned int counter;
831 	struct inode *inode;
832 	struct hlist_head *head;
833 	ino_t res;
834 
835 	spin_lock(&inode_lock);
836 	do {
837 		if (counter <= max_reserved)
838 			counter = max_reserved + 1;
839 		res = counter++;
840 		head = inode_hashtable + hash(sb, res);
841 		inode = find_inode_fast(sb, head, res);
842 	} while (inode != NULL);
843 	spin_unlock(&inode_lock);
844 
845 	return res;
846 }
847 EXPORT_SYMBOL(iunique);
848 
849 struct inode *igrab(struct inode *inode)
850 {
851 	spin_lock(&inode_lock);
852 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
853 		__iget(inode);
854 	else
855 		/*
856 		 * Handle the case where s_op->clear_inode is not been
857 		 * called yet, and somebody is calling igrab
858 		 * while the inode is getting freed.
859 		 */
860 		inode = NULL;
861 	spin_unlock(&inode_lock);
862 	return inode;
863 }
864 EXPORT_SYMBOL(igrab);
865 
866 /**
867  * ifind - internal function, you want ilookup5() or iget5().
868  * @sb:		super block of file system to search
869  * @head:       the head of the list to search
870  * @test:	callback used for comparisons between inodes
871  * @data:	opaque data pointer to pass to @test
872  * @wait:	if true wait for the inode to be unlocked, if false do not
873  *
874  * ifind() searches for the inode specified by @data in the inode
875  * cache. This is a generalized version of ifind_fast() for file systems where
876  * the inode number is not sufficient for unique identification of an inode.
877  *
878  * If the inode is in the cache, the inode is returned with an incremented
879  * reference count.
880  *
881  * Otherwise NULL is returned.
882  *
883  * Note, @test is called with the inode_lock held, so can't sleep.
884  */
885 static struct inode *ifind(struct super_block *sb,
886 		struct hlist_head *head, int (*test)(struct inode *, void *),
887 		void *data, const int wait)
888 {
889 	struct inode *inode;
890 
891 	spin_lock(&inode_lock);
892 	inode = find_inode(sb, head, test, data);
893 	if (inode) {
894 		__iget(inode);
895 		spin_unlock(&inode_lock);
896 		if (likely(wait))
897 			wait_on_inode(inode);
898 		return inode;
899 	}
900 	spin_unlock(&inode_lock);
901 	return NULL;
902 }
903 
904 /**
905  * ifind_fast - internal function, you want ilookup() or iget().
906  * @sb:		super block of file system to search
907  * @head:       head of the list to search
908  * @ino:	inode number to search for
909  *
910  * ifind_fast() searches for the inode @ino in the inode cache. This is for
911  * file systems where the inode number is sufficient for unique identification
912  * of an inode.
913  *
914  * If the inode is in the cache, the inode is returned with an incremented
915  * reference count.
916  *
917  * Otherwise NULL is returned.
918  */
919 static struct inode *ifind_fast(struct super_block *sb,
920 		struct hlist_head *head, unsigned long ino)
921 {
922 	struct inode *inode;
923 
924 	spin_lock(&inode_lock);
925 	inode = find_inode_fast(sb, head, ino);
926 	if (inode) {
927 		__iget(inode);
928 		spin_unlock(&inode_lock);
929 		wait_on_inode(inode);
930 		return inode;
931 	}
932 	spin_unlock(&inode_lock);
933 	return NULL;
934 }
935 
936 /**
937  * ilookup5_nowait - search for an inode in the inode cache
938  * @sb:		super block of file system to search
939  * @hashval:	hash value (usually inode number) to search for
940  * @test:	callback used for comparisons between inodes
941  * @data:	opaque data pointer to pass to @test
942  *
943  * ilookup5() uses ifind() to search for the inode specified by @hashval and
944  * @data in the inode cache. This is a generalized version of ilookup() for
945  * file systems where the inode number is not sufficient for unique
946  * identification of an inode.
947  *
948  * If the inode is in the cache, the inode is returned with an incremented
949  * reference count.  Note, the inode lock is not waited upon so you have to be
950  * very careful what you do with the returned inode.  You probably should be
951  * using ilookup5() instead.
952  *
953  * Otherwise NULL is returned.
954  *
955  * Note, @test is called with the inode_lock held, so can't sleep.
956  */
957 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
958 		int (*test)(struct inode *, void *), void *data)
959 {
960 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
961 
962 	return ifind(sb, head, test, data, 0);
963 }
964 EXPORT_SYMBOL(ilookup5_nowait);
965 
966 /**
967  * ilookup5 - search for an inode in the inode cache
968  * @sb:		super block of file system to search
969  * @hashval:	hash value (usually inode number) to search for
970  * @test:	callback used for comparisons between inodes
971  * @data:	opaque data pointer to pass to @test
972  *
973  * ilookup5() uses ifind() to search for the inode specified by @hashval and
974  * @data in the inode cache. This is a generalized version of ilookup() for
975  * file systems where the inode number is not sufficient for unique
976  * identification of an inode.
977  *
978  * If the inode is in the cache, the inode lock is waited upon and the inode is
979  * returned with an incremented reference count.
980  *
981  * Otherwise NULL is returned.
982  *
983  * Note, @test is called with the inode_lock held, so can't sleep.
984  */
985 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
986 		int (*test)(struct inode *, void *), void *data)
987 {
988 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
989 
990 	return ifind(sb, head, test, data, 1);
991 }
992 EXPORT_SYMBOL(ilookup5);
993 
994 /**
995  * ilookup - search for an inode in the inode cache
996  * @sb:		super block of file system to search
997  * @ino:	inode number to search for
998  *
999  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1000  * This is for file systems where the inode number is sufficient for unique
1001  * identification of an inode.
1002  *
1003  * If the inode is in the cache, the inode is returned with an incremented
1004  * reference count.
1005  *
1006  * Otherwise NULL is returned.
1007  */
1008 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1009 {
1010 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1011 
1012 	return ifind_fast(sb, head, ino);
1013 }
1014 EXPORT_SYMBOL(ilookup);
1015 
1016 /**
1017  * iget5_locked - obtain an inode from a mounted file system
1018  * @sb:		super block of file system
1019  * @hashval:	hash value (usually inode number) to get
1020  * @test:	callback used for comparisons between inodes
1021  * @set:	callback used to initialize a new struct inode
1022  * @data:	opaque data pointer to pass to @test and @set
1023  *
1024  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1025  * and @data in the inode cache and if present it is returned with an increased
1026  * reference count. This is a generalized version of iget_locked() for file
1027  * systems where the inode number is not sufficient for unique identification
1028  * of an inode.
1029  *
1030  * If the inode is not in cache, get_new_inode() is called to allocate a new
1031  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1032  * file system gets to fill it in before unlocking it via unlock_new_inode().
1033  *
1034  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1035  */
1036 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1037 		int (*test)(struct inode *, void *),
1038 		int (*set)(struct inode *, void *), void *data)
1039 {
1040 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1041 	struct inode *inode;
1042 
1043 	inode = ifind(sb, head, test, data, 1);
1044 	if (inode)
1045 		return inode;
1046 	/*
1047 	 * get_new_inode() will do the right thing, re-trying the search
1048 	 * in case it had to block at any point.
1049 	 */
1050 	return get_new_inode(sb, head, test, set, data);
1051 }
1052 EXPORT_SYMBOL(iget5_locked);
1053 
1054 /**
1055  * iget_locked - obtain an inode from a mounted file system
1056  * @sb:		super block of file system
1057  * @ino:	inode number to get
1058  *
1059  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1060  * the inode cache and if present it is returned with an increased reference
1061  * count. This is for file systems where the inode number is sufficient for
1062  * unique identification of an inode.
1063  *
1064  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1065  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1066  * The file system gets to fill it in before unlocking it via
1067  * unlock_new_inode().
1068  */
1069 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1070 {
1071 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1072 	struct inode *inode;
1073 
1074 	inode = ifind_fast(sb, head, ino);
1075 	if (inode)
1076 		return inode;
1077 	/*
1078 	 * get_new_inode_fast() will do the right thing, re-trying the search
1079 	 * in case it had to block at any point.
1080 	 */
1081 	return get_new_inode_fast(sb, head, ino);
1082 }
1083 EXPORT_SYMBOL(iget_locked);
1084 
1085 int insert_inode_locked(struct inode *inode)
1086 {
1087 	struct super_block *sb = inode->i_sb;
1088 	ino_t ino = inode->i_ino;
1089 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1090 
1091 	inode->i_state |= I_LOCK|I_NEW;
1092 	while (1) {
1093 		struct hlist_node *node;
1094 		struct inode *old = NULL;
1095 		spin_lock(&inode_lock);
1096 		hlist_for_each_entry(old, node, head, i_hash) {
1097 			if (old->i_ino != ino)
1098 				continue;
1099 			if (old->i_sb != sb)
1100 				continue;
1101 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1102 				continue;
1103 			break;
1104 		}
1105 		if (likely(!node)) {
1106 			hlist_add_head(&inode->i_hash, head);
1107 			spin_unlock(&inode_lock);
1108 			return 0;
1109 		}
1110 		__iget(old);
1111 		spin_unlock(&inode_lock);
1112 		wait_on_inode(old);
1113 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1114 			iput(old);
1115 			return -EBUSY;
1116 		}
1117 		iput(old);
1118 	}
1119 }
1120 EXPORT_SYMBOL(insert_inode_locked);
1121 
1122 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1123 		int (*test)(struct inode *, void *), void *data)
1124 {
1125 	struct super_block *sb = inode->i_sb;
1126 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1127 
1128 	inode->i_state |= I_LOCK|I_NEW;
1129 
1130 	while (1) {
1131 		struct hlist_node *node;
1132 		struct inode *old = NULL;
1133 
1134 		spin_lock(&inode_lock);
1135 		hlist_for_each_entry(old, node, head, i_hash) {
1136 			if (old->i_sb != sb)
1137 				continue;
1138 			if (!test(old, data))
1139 				continue;
1140 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1141 				continue;
1142 			break;
1143 		}
1144 		if (likely(!node)) {
1145 			hlist_add_head(&inode->i_hash, head);
1146 			spin_unlock(&inode_lock);
1147 			return 0;
1148 		}
1149 		__iget(old);
1150 		spin_unlock(&inode_lock);
1151 		wait_on_inode(old);
1152 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1153 			iput(old);
1154 			return -EBUSY;
1155 		}
1156 		iput(old);
1157 	}
1158 }
1159 EXPORT_SYMBOL(insert_inode_locked4);
1160 
1161 /**
1162  *	__insert_inode_hash - hash an inode
1163  *	@inode: unhashed inode
1164  *	@hashval: unsigned long value used to locate this object in the
1165  *		inode_hashtable.
1166  *
1167  *	Add an inode to the inode hash for this superblock.
1168  */
1169 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1170 {
1171 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1172 	spin_lock(&inode_lock);
1173 	hlist_add_head(&inode->i_hash, head);
1174 	spin_unlock(&inode_lock);
1175 }
1176 EXPORT_SYMBOL(__insert_inode_hash);
1177 
1178 /**
1179  *	remove_inode_hash - remove an inode from the hash
1180  *	@inode: inode to unhash
1181  *
1182  *	Remove an inode from the superblock.
1183  */
1184 void remove_inode_hash(struct inode *inode)
1185 {
1186 	spin_lock(&inode_lock);
1187 	hlist_del_init(&inode->i_hash);
1188 	spin_unlock(&inode_lock);
1189 }
1190 EXPORT_SYMBOL(remove_inode_hash);
1191 
1192 /*
1193  * Tell the filesystem that this inode is no longer of any interest and should
1194  * be completely destroyed.
1195  *
1196  * We leave the inode in the inode hash table until *after* the filesystem's
1197  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1198  * instigate) will always find up-to-date information either in the hash or on
1199  * disk.
1200  *
1201  * I_FREEING is set so that no-one will take a new reference to the inode while
1202  * it is being deleted.
1203  */
1204 void generic_delete_inode(struct inode *inode)
1205 {
1206 	const struct super_operations *op = inode->i_sb->s_op;
1207 
1208 	list_del_init(&inode->i_list);
1209 	list_del_init(&inode->i_sb_list);
1210 	WARN_ON(inode->i_state & I_NEW);
1211 	inode->i_state |= I_FREEING;
1212 	inodes_stat.nr_inodes--;
1213 	spin_unlock(&inode_lock);
1214 
1215 	security_inode_delete(inode);
1216 
1217 	if (op->delete_inode) {
1218 		void (*delete)(struct inode *) = op->delete_inode;
1219 		if (!is_bad_inode(inode))
1220 			vfs_dq_init(inode);
1221 		/* Filesystems implementing their own
1222 		 * s_op->delete_inode are required to call
1223 		 * truncate_inode_pages and clear_inode()
1224 		 * internally */
1225 		delete(inode);
1226 	} else {
1227 		truncate_inode_pages(&inode->i_data, 0);
1228 		clear_inode(inode);
1229 	}
1230 	spin_lock(&inode_lock);
1231 	hlist_del_init(&inode->i_hash);
1232 	spin_unlock(&inode_lock);
1233 	wake_up_inode(inode);
1234 	BUG_ON(inode->i_state != I_CLEAR);
1235 	destroy_inode(inode);
1236 }
1237 EXPORT_SYMBOL(generic_delete_inode);
1238 
1239 static void generic_forget_inode(struct inode *inode)
1240 {
1241 	struct super_block *sb = inode->i_sb;
1242 
1243 	if (!hlist_unhashed(&inode->i_hash)) {
1244 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1245 			list_move(&inode->i_list, &inode_unused);
1246 		inodes_stat.nr_unused++;
1247 		if (sb->s_flags & MS_ACTIVE) {
1248 			spin_unlock(&inode_lock);
1249 			return;
1250 		}
1251 		WARN_ON(inode->i_state & I_NEW);
1252 		inode->i_state |= I_WILL_FREE;
1253 		spin_unlock(&inode_lock);
1254 		write_inode_now(inode, 1);
1255 		spin_lock(&inode_lock);
1256 		WARN_ON(inode->i_state & I_NEW);
1257 		inode->i_state &= ~I_WILL_FREE;
1258 		inodes_stat.nr_unused--;
1259 		hlist_del_init(&inode->i_hash);
1260 	}
1261 	list_del_init(&inode->i_list);
1262 	list_del_init(&inode->i_sb_list);
1263 	WARN_ON(inode->i_state & I_NEW);
1264 	inode->i_state |= I_FREEING;
1265 	inodes_stat.nr_inodes--;
1266 	spin_unlock(&inode_lock);
1267 	if (inode->i_data.nrpages)
1268 		truncate_inode_pages(&inode->i_data, 0);
1269 	clear_inode(inode);
1270 	wake_up_inode(inode);
1271 	destroy_inode(inode);
1272 }
1273 
1274 /*
1275  * Normal UNIX filesystem behaviour: delete the
1276  * inode when the usage count drops to zero, and
1277  * i_nlink is zero.
1278  */
1279 void generic_drop_inode(struct inode *inode)
1280 {
1281 	if (!inode->i_nlink)
1282 		generic_delete_inode(inode);
1283 	else
1284 		generic_forget_inode(inode);
1285 }
1286 EXPORT_SYMBOL_GPL(generic_drop_inode);
1287 
1288 /*
1289  * Called when we're dropping the last reference
1290  * to an inode.
1291  *
1292  * Call the FS "drop()" function, defaulting to
1293  * the legacy UNIX filesystem behaviour..
1294  *
1295  * NOTE! NOTE! NOTE! We're called with the inode lock
1296  * held, and the drop function is supposed to release
1297  * the lock!
1298  */
1299 static inline void iput_final(struct inode *inode)
1300 {
1301 	const struct super_operations *op = inode->i_sb->s_op;
1302 	void (*drop)(struct inode *) = generic_drop_inode;
1303 
1304 	if (op && op->drop_inode)
1305 		drop = op->drop_inode;
1306 	drop(inode);
1307 }
1308 
1309 /**
1310  *	iput	- put an inode
1311  *	@inode: inode to put
1312  *
1313  *	Puts an inode, dropping its usage count. If the inode use count hits
1314  *	zero, the inode is then freed and may also be destroyed.
1315  *
1316  *	Consequently, iput() can sleep.
1317  */
1318 void iput(struct inode *inode)
1319 {
1320 	if (inode) {
1321 		BUG_ON(inode->i_state == I_CLEAR);
1322 
1323 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1324 			iput_final(inode);
1325 	}
1326 }
1327 EXPORT_SYMBOL(iput);
1328 
1329 /**
1330  *	bmap	- find a block number in a file
1331  *	@inode: inode of file
1332  *	@block: block to find
1333  *
1334  *	Returns the block number on the device holding the inode that
1335  *	is the disk block number for the block of the file requested.
1336  *	That is, asked for block 4 of inode 1 the function will return the
1337  *	disk block relative to the disk start that holds that block of the
1338  *	file.
1339  */
1340 sector_t bmap(struct inode *inode, sector_t block)
1341 {
1342 	sector_t res = 0;
1343 	if (inode->i_mapping->a_ops->bmap)
1344 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1345 	return res;
1346 }
1347 EXPORT_SYMBOL(bmap);
1348 
1349 /*
1350  * With relative atime, only update atime if the previous atime is
1351  * earlier than either the ctime or mtime or if at least a day has
1352  * passed since the last atime update.
1353  */
1354 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1355 			     struct timespec now)
1356 {
1357 
1358 	if (!(mnt->mnt_flags & MNT_RELATIME))
1359 		return 1;
1360 	/*
1361 	 * Is mtime younger than atime? If yes, update atime:
1362 	 */
1363 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1364 		return 1;
1365 	/*
1366 	 * Is ctime younger than atime? If yes, update atime:
1367 	 */
1368 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1369 		return 1;
1370 
1371 	/*
1372 	 * Is the previous atime value older than a day? If yes,
1373 	 * update atime:
1374 	 */
1375 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1376 		return 1;
1377 	/*
1378 	 * Good, we can skip the atime update:
1379 	 */
1380 	return 0;
1381 }
1382 
1383 /**
1384  *	touch_atime	-	update the access time
1385  *	@mnt: mount the inode is accessed on
1386  *	@dentry: dentry accessed
1387  *
1388  *	Update the accessed time on an inode and mark it for writeback.
1389  *	This function automatically handles read only file systems and media,
1390  *	as well as the "noatime" flag and inode specific "noatime" markers.
1391  */
1392 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1393 {
1394 	struct inode *inode = dentry->d_inode;
1395 	struct timespec now;
1396 
1397 	if (mnt_want_write(mnt))
1398 		return;
1399 	if (inode->i_flags & S_NOATIME)
1400 		goto out;
1401 	if (IS_NOATIME(inode))
1402 		goto out;
1403 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1404 		goto out;
1405 
1406 	if (mnt->mnt_flags & MNT_NOATIME)
1407 		goto out;
1408 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1409 		goto out;
1410 
1411 	now = current_fs_time(inode->i_sb);
1412 
1413 	if (!relatime_need_update(mnt, inode, now))
1414 		goto out;
1415 
1416 	if (timespec_equal(&inode->i_atime, &now))
1417 		goto out;
1418 
1419 	inode->i_atime = now;
1420 	mark_inode_dirty_sync(inode);
1421 out:
1422 	mnt_drop_write(mnt);
1423 }
1424 EXPORT_SYMBOL(touch_atime);
1425 
1426 /**
1427  *	file_update_time	-	update mtime and ctime time
1428  *	@file: file accessed
1429  *
1430  *	Update the mtime and ctime members of an inode and mark the inode
1431  *	for writeback.  Note that this function is meant exclusively for
1432  *	usage in the file write path of filesystems, and filesystems may
1433  *	choose to explicitly ignore update via this function with the
1434  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1435  *	timestamps are handled by the server.
1436  */
1437 
1438 void file_update_time(struct file *file)
1439 {
1440 	struct inode *inode = file->f_path.dentry->d_inode;
1441 	struct timespec now;
1442 	int sync_it = 0;
1443 	int err;
1444 
1445 	if (IS_NOCMTIME(inode))
1446 		return;
1447 
1448 	err = mnt_want_write_file(file);
1449 	if (err)
1450 		return;
1451 
1452 	now = current_fs_time(inode->i_sb);
1453 	if (!timespec_equal(&inode->i_mtime, &now)) {
1454 		inode->i_mtime = now;
1455 		sync_it = 1;
1456 	}
1457 
1458 	if (!timespec_equal(&inode->i_ctime, &now)) {
1459 		inode->i_ctime = now;
1460 		sync_it = 1;
1461 	}
1462 
1463 	if (IS_I_VERSION(inode)) {
1464 		inode_inc_iversion(inode);
1465 		sync_it = 1;
1466 	}
1467 
1468 	if (sync_it)
1469 		mark_inode_dirty_sync(inode);
1470 	mnt_drop_write(file->f_path.mnt);
1471 }
1472 EXPORT_SYMBOL(file_update_time);
1473 
1474 int inode_needs_sync(struct inode *inode)
1475 {
1476 	if (IS_SYNC(inode))
1477 		return 1;
1478 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1479 		return 1;
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL(inode_needs_sync);
1483 
1484 int inode_wait(void *word)
1485 {
1486 	schedule();
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(inode_wait);
1490 
1491 /*
1492  * If we try to find an inode in the inode hash while it is being
1493  * deleted, we have to wait until the filesystem completes its
1494  * deletion before reporting that it isn't found.  This function waits
1495  * until the deletion _might_ have completed.  Callers are responsible
1496  * to recheck inode state.
1497  *
1498  * It doesn't matter if I_LOCK is not set initially, a call to
1499  * wake_up_inode() after removing from the hash list will DTRT.
1500  *
1501  * This is called with inode_lock held.
1502  */
1503 static void __wait_on_freeing_inode(struct inode *inode)
1504 {
1505 	wait_queue_head_t *wq;
1506 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1507 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1508 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1509 	spin_unlock(&inode_lock);
1510 	schedule();
1511 	finish_wait(wq, &wait.wait);
1512 	spin_lock(&inode_lock);
1513 }
1514 
1515 static __initdata unsigned long ihash_entries;
1516 static int __init set_ihash_entries(char *str)
1517 {
1518 	if (!str)
1519 		return 0;
1520 	ihash_entries = simple_strtoul(str, &str, 0);
1521 	return 1;
1522 }
1523 __setup("ihash_entries=", set_ihash_entries);
1524 
1525 /*
1526  * Initialize the waitqueues and inode hash table.
1527  */
1528 void __init inode_init_early(void)
1529 {
1530 	int loop;
1531 
1532 	/* If hashes are distributed across NUMA nodes, defer
1533 	 * hash allocation until vmalloc space is available.
1534 	 */
1535 	if (hashdist)
1536 		return;
1537 
1538 	inode_hashtable =
1539 		alloc_large_system_hash("Inode-cache",
1540 					sizeof(struct hlist_head),
1541 					ihash_entries,
1542 					14,
1543 					HASH_EARLY,
1544 					&i_hash_shift,
1545 					&i_hash_mask,
1546 					0);
1547 
1548 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1549 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1550 }
1551 
1552 void __init inode_init(void)
1553 {
1554 	int loop;
1555 
1556 	/* inode slab cache */
1557 	inode_cachep = kmem_cache_create("inode_cache",
1558 					 sizeof(struct inode),
1559 					 0,
1560 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1561 					 SLAB_MEM_SPREAD),
1562 					 init_once);
1563 	register_shrinker(&icache_shrinker);
1564 
1565 	/* Hash may have been set up in inode_init_early */
1566 	if (!hashdist)
1567 		return;
1568 
1569 	inode_hashtable =
1570 		alloc_large_system_hash("Inode-cache",
1571 					sizeof(struct hlist_head),
1572 					ihash_entries,
1573 					14,
1574 					0,
1575 					&i_hash_shift,
1576 					&i_hash_mask,
1577 					0);
1578 
1579 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1580 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1581 }
1582 
1583 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1584 {
1585 	inode->i_mode = mode;
1586 	if (S_ISCHR(mode)) {
1587 		inode->i_fop = &def_chr_fops;
1588 		inode->i_rdev = rdev;
1589 	} else if (S_ISBLK(mode)) {
1590 		inode->i_fop = &def_blk_fops;
1591 		inode->i_rdev = rdev;
1592 	} else if (S_ISFIFO(mode))
1593 		inode->i_fop = &def_fifo_fops;
1594 	else if (S_ISSOCK(mode))
1595 		inode->i_fop = &bad_sock_fops;
1596 	else
1597 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1598 		       mode);
1599 }
1600 EXPORT_SYMBOL(init_special_inode);
1601