1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/backing-dev.h> 10 #include <linux/hash.h> 11 #include <linux/swap.h> 12 #include <linux/security.h> 13 #include <linux/cdev.h> 14 #include <linux/memblock.h> 15 #include <linux/fscrypt.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/prefetch.h> 20 #include <linux/buffer_head.h> /* for inode_has_buffers */ 21 #include <linux/ratelimit.h> 22 #include <linux/list_lru.h> 23 #include <linux/iversion.h> 24 #include <trace/events/writeback.h> 25 #include "internal.h" 26 27 /* 28 * Inode locking rules: 29 * 30 * inode->i_lock protects: 31 * inode->i_state, inode->i_hash, __iget() 32 * Inode LRU list locks protect: 33 * inode->i_sb->s_inode_lru, inode->i_lru 34 * inode->i_sb->s_inode_list_lock protects: 35 * inode->i_sb->s_inodes, inode->i_sb_list 36 * bdi->wb.list_lock protects: 37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 38 * inode_hash_lock protects: 39 * inode_hashtable, inode->i_hash 40 * 41 * Lock ordering: 42 * 43 * inode->i_sb->s_inode_list_lock 44 * inode->i_lock 45 * Inode LRU list locks 46 * 47 * bdi->wb.list_lock 48 * inode->i_lock 49 * 50 * inode_hash_lock 51 * inode->i_sb->s_inode_list_lock 52 * inode->i_lock 53 * 54 * iunique_lock 55 * inode_hash_lock 56 */ 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 static struct hlist_head *inode_hashtable __read_mostly; 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 62 63 /* 64 * Empty aops. Can be used for the cases where the user does not 65 * define any of the address_space operations. 66 */ 67 const struct address_space_operations empty_aops = { 68 }; 69 EXPORT_SYMBOL(empty_aops); 70 71 /* 72 * Statistics gathering.. 73 */ 74 struct inodes_stat_t inodes_stat; 75 76 static DEFINE_PER_CPU(unsigned long, nr_inodes); 77 static DEFINE_PER_CPU(unsigned long, nr_unused); 78 79 static struct kmem_cache *inode_cachep __read_mostly; 80 81 static long get_nr_inodes(void) 82 { 83 int i; 84 long sum = 0; 85 for_each_possible_cpu(i) 86 sum += per_cpu(nr_inodes, i); 87 return sum < 0 ? 0 : sum; 88 } 89 90 static inline long get_nr_inodes_unused(void) 91 { 92 int i; 93 long sum = 0; 94 for_each_possible_cpu(i) 95 sum += per_cpu(nr_unused, i); 96 return sum < 0 ? 0 : sum; 97 } 98 99 long get_nr_dirty_inodes(void) 100 { 101 /* not actually dirty inodes, but a wild approximation */ 102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 103 return nr_dirty > 0 ? nr_dirty : 0; 104 } 105 106 /* 107 * Handle nr_inode sysctl 108 */ 109 #ifdef CONFIG_SYSCTL 110 int proc_nr_inodes(struct ctl_table *table, int write, 111 void *buffer, size_t *lenp, loff_t *ppos) 112 { 113 inodes_stat.nr_inodes = get_nr_inodes(); 114 inodes_stat.nr_unused = get_nr_inodes_unused(); 115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 116 } 117 #endif 118 119 static int no_open(struct inode *inode, struct file *file) 120 { 121 return -ENXIO; 122 } 123 124 /** 125 * inode_init_always - perform inode structure initialisation 126 * @sb: superblock inode belongs to 127 * @inode: inode to initialise 128 * 129 * These are initializations that need to be done on every inode 130 * allocation as the fields are not initialised by slab allocation. 131 */ 132 int inode_init_always(struct super_block *sb, struct inode *inode) 133 { 134 static const struct inode_operations empty_iops; 135 static const struct file_operations no_open_fops = {.open = no_open}; 136 struct address_space *const mapping = &inode->i_data; 137 138 inode->i_sb = sb; 139 inode->i_blkbits = sb->s_blocksize_bits; 140 inode->i_flags = 0; 141 atomic64_set(&inode->i_sequence, 0); 142 atomic_set(&inode->i_count, 1); 143 inode->i_op = &empty_iops; 144 inode->i_fop = &no_open_fops; 145 inode->__i_nlink = 1; 146 inode->i_opflags = 0; 147 if (sb->s_xattr) 148 inode->i_opflags |= IOP_XATTR; 149 i_uid_write(inode, 0); 150 i_gid_write(inode, 0); 151 atomic_set(&inode->i_writecount, 0); 152 inode->i_size = 0; 153 inode->i_write_hint = WRITE_LIFE_NOT_SET; 154 inode->i_blocks = 0; 155 inode->i_bytes = 0; 156 inode->i_generation = 0; 157 inode->i_pipe = NULL; 158 inode->i_bdev = NULL; 159 inode->i_cdev = NULL; 160 inode->i_link = NULL; 161 inode->i_dir_seq = 0; 162 inode->i_rdev = 0; 163 inode->dirtied_when = 0; 164 165 #ifdef CONFIG_CGROUP_WRITEBACK 166 inode->i_wb_frn_winner = 0; 167 inode->i_wb_frn_avg_time = 0; 168 inode->i_wb_frn_history = 0; 169 #endif 170 171 if (security_inode_alloc(inode)) 172 goto out; 173 spin_lock_init(&inode->i_lock); 174 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 175 176 init_rwsem(&inode->i_rwsem); 177 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 178 179 atomic_set(&inode->i_dio_count, 0); 180 181 mapping->a_ops = &empty_aops; 182 mapping->host = inode; 183 mapping->flags = 0; 184 mapping->wb_err = 0; 185 atomic_set(&mapping->i_mmap_writable, 0); 186 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 187 atomic_set(&mapping->nr_thps, 0); 188 #endif 189 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 190 mapping->private_data = NULL; 191 mapping->writeback_index = 0; 192 inode->i_private = NULL; 193 inode->i_mapping = mapping; 194 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 195 #ifdef CONFIG_FS_POSIX_ACL 196 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 197 #endif 198 199 #ifdef CONFIG_FSNOTIFY 200 inode->i_fsnotify_mask = 0; 201 #endif 202 inode->i_flctx = NULL; 203 this_cpu_inc(nr_inodes); 204 205 return 0; 206 out: 207 return -ENOMEM; 208 } 209 EXPORT_SYMBOL(inode_init_always); 210 211 void free_inode_nonrcu(struct inode *inode) 212 { 213 kmem_cache_free(inode_cachep, inode); 214 } 215 EXPORT_SYMBOL(free_inode_nonrcu); 216 217 static void i_callback(struct rcu_head *head) 218 { 219 struct inode *inode = container_of(head, struct inode, i_rcu); 220 if (inode->free_inode) 221 inode->free_inode(inode); 222 else 223 free_inode_nonrcu(inode); 224 } 225 226 static struct inode *alloc_inode(struct super_block *sb) 227 { 228 const struct super_operations *ops = sb->s_op; 229 struct inode *inode; 230 231 if (ops->alloc_inode) 232 inode = ops->alloc_inode(sb); 233 else 234 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 235 236 if (!inode) 237 return NULL; 238 239 if (unlikely(inode_init_always(sb, inode))) { 240 if (ops->destroy_inode) { 241 ops->destroy_inode(inode); 242 if (!ops->free_inode) 243 return NULL; 244 } 245 inode->free_inode = ops->free_inode; 246 i_callback(&inode->i_rcu); 247 return NULL; 248 } 249 250 return inode; 251 } 252 253 void __destroy_inode(struct inode *inode) 254 { 255 BUG_ON(inode_has_buffers(inode)); 256 inode_detach_wb(inode); 257 security_inode_free(inode); 258 fsnotify_inode_delete(inode); 259 locks_free_lock_context(inode); 260 if (!inode->i_nlink) { 261 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 262 atomic_long_dec(&inode->i_sb->s_remove_count); 263 } 264 265 #ifdef CONFIG_FS_POSIX_ACL 266 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 267 posix_acl_release(inode->i_acl); 268 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 269 posix_acl_release(inode->i_default_acl); 270 #endif 271 this_cpu_dec(nr_inodes); 272 } 273 EXPORT_SYMBOL(__destroy_inode); 274 275 static void destroy_inode(struct inode *inode) 276 { 277 const struct super_operations *ops = inode->i_sb->s_op; 278 279 BUG_ON(!list_empty(&inode->i_lru)); 280 __destroy_inode(inode); 281 if (ops->destroy_inode) { 282 ops->destroy_inode(inode); 283 if (!ops->free_inode) 284 return; 285 } 286 inode->free_inode = ops->free_inode; 287 call_rcu(&inode->i_rcu, i_callback); 288 } 289 290 /** 291 * drop_nlink - directly drop an inode's link count 292 * @inode: inode 293 * 294 * This is a low-level filesystem helper to replace any 295 * direct filesystem manipulation of i_nlink. In cases 296 * where we are attempting to track writes to the 297 * filesystem, a decrement to zero means an imminent 298 * write when the file is truncated and actually unlinked 299 * on the filesystem. 300 */ 301 void drop_nlink(struct inode *inode) 302 { 303 WARN_ON(inode->i_nlink == 0); 304 inode->__i_nlink--; 305 if (!inode->i_nlink) 306 atomic_long_inc(&inode->i_sb->s_remove_count); 307 } 308 EXPORT_SYMBOL(drop_nlink); 309 310 /** 311 * clear_nlink - directly zero an inode's link count 312 * @inode: inode 313 * 314 * This is a low-level filesystem helper to replace any 315 * direct filesystem manipulation of i_nlink. See 316 * drop_nlink() for why we care about i_nlink hitting zero. 317 */ 318 void clear_nlink(struct inode *inode) 319 { 320 if (inode->i_nlink) { 321 inode->__i_nlink = 0; 322 atomic_long_inc(&inode->i_sb->s_remove_count); 323 } 324 } 325 EXPORT_SYMBOL(clear_nlink); 326 327 /** 328 * set_nlink - directly set an inode's link count 329 * @inode: inode 330 * @nlink: new nlink (should be non-zero) 331 * 332 * This is a low-level filesystem helper to replace any 333 * direct filesystem manipulation of i_nlink. 334 */ 335 void set_nlink(struct inode *inode, unsigned int nlink) 336 { 337 if (!nlink) { 338 clear_nlink(inode); 339 } else { 340 /* Yes, some filesystems do change nlink from zero to one */ 341 if (inode->i_nlink == 0) 342 atomic_long_dec(&inode->i_sb->s_remove_count); 343 344 inode->__i_nlink = nlink; 345 } 346 } 347 EXPORT_SYMBOL(set_nlink); 348 349 /** 350 * inc_nlink - directly increment an inode's link count 351 * @inode: inode 352 * 353 * This is a low-level filesystem helper to replace any 354 * direct filesystem manipulation of i_nlink. Currently, 355 * it is only here for parity with dec_nlink(). 356 */ 357 void inc_nlink(struct inode *inode) 358 { 359 if (unlikely(inode->i_nlink == 0)) { 360 WARN_ON(!(inode->i_state & I_LINKABLE)); 361 atomic_long_dec(&inode->i_sb->s_remove_count); 362 } 363 364 inode->__i_nlink++; 365 } 366 EXPORT_SYMBOL(inc_nlink); 367 368 static void __address_space_init_once(struct address_space *mapping) 369 { 370 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 371 init_rwsem(&mapping->i_mmap_rwsem); 372 INIT_LIST_HEAD(&mapping->private_list); 373 spin_lock_init(&mapping->private_lock); 374 mapping->i_mmap = RB_ROOT_CACHED; 375 } 376 377 void address_space_init_once(struct address_space *mapping) 378 { 379 memset(mapping, 0, sizeof(*mapping)); 380 __address_space_init_once(mapping); 381 } 382 EXPORT_SYMBOL(address_space_init_once); 383 384 /* 385 * These are initializations that only need to be done 386 * once, because the fields are idempotent across use 387 * of the inode, so let the slab aware of that. 388 */ 389 void inode_init_once(struct inode *inode) 390 { 391 memset(inode, 0, sizeof(*inode)); 392 INIT_HLIST_NODE(&inode->i_hash); 393 INIT_LIST_HEAD(&inode->i_devices); 394 INIT_LIST_HEAD(&inode->i_io_list); 395 INIT_LIST_HEAD(&inode->i_wb_list); 396 INIT_LIST_HEAD(&inode->i_lru); 397 __address_space_init_once(&inode->i_data); 398 i_size_ordered_init(inode); 399 } 400 EXPORT_SYMBOL(inode_init_once); 401 402 static void init_once(void *foo) 403 { 404 struct inode *inode = (struct inode *) foo; 405 406 inode_init_once(inode); 407 } 408 409 /* 410 * inode->i_lock must be held 411 */ 412 void __iget(struct inode *inode) 413 { 414 atomic_inc(&inode->i_count); 415 } 416 417 /* 418 * get additional reference to inode; caller must already hold one. 419 */ 420 void ihold(struct inode *inode) 421 { 422 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 423 } 424 EXPORT_SYMBOL(ihold); 425 426 static void inode_lru_list_add(struct inode *inode) 427 { 428 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 429 this_cpu_inc(nr_unused); 430 else 431 inode->i_state |= I_REFERENCED; 432 } 433 434 /* 435 * Add inode to LRU if needed (inode is unused and clean). 436 * 437 * Needs inode->i_lock held. 438 */ 439 void inode_add_lru(struct inode *inode) 440 { 441 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 442 I_FREEING | I_WILL_FREE)) && 443 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 444 inode_lru_list_add(inode); 445 } 446 447 448 static void inode_lru_list_del(struct inode *inode) 449 { 450 451 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 452 this_cpu_dec(nr_unused); 453 } 454 455 /** 456 * inode_sb_list_add - add inode to the superblock list of inodes 457 * @inode: inode to add 458 */ 459 void inode_sb_list_add(struct inode *inode) 460 { 461 spin_lock(&inode->i_sb->s_inode_list_lock); 462 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 463 spin_unlock(&inode->i_sb->s_inode_list_lock); 464 } 465 EXPORT_SYMBOL_GPL(inode_sb_list_add); 466 467 static inline void inode_sb_list_del(struct inode *inode) 468 { 469 if (!list_empty(&inode->i_sb_list)) { 470 spin_lock(&inode->i_sb->s_inode_list_lock); 471 list_del_init(&inode->i_sb_list); 472 spin_unlock(&inode->i_sb->s_inode_list_lock); 473 } 474 } 475 476 static unsigned long hash(struct super_block *sb, unsigned long hashval) 477 { 478 unsigned long tmp; 479 480 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 481 L1_CACHE_BYTES; 482 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 483 return tmp & i_hash_mask; 484 } 485 486 /** 487 * __insert_inode_hash - hash an inode 488 * @inode: unhashed inode 489 * @hashval: unsigned long value used to locate this object in the 490 * inode_hashtable. 491 * 492 * Add an inode to the inode hash for this superblock. 493 */ 494 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 495 { 496 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 497 498 spin_lock(&inode_hash_lock); 499 spin_lock(&inode->i_lock); 500 hlist_add_head_rcu(&inode->i_hash, b); 501 spin_unlock(&inode->i_lock); 502 spin_unlock(&inode_hash_lock); 503 } 504 EXPORT_SYMBOL(__insert_inode_hash); 505 506 /** 507 * __remove_inode_hash - remove an inode from the hash 508 * @inode: inode to unhash 509 * 510 * Remove an inode from the superblock. 511 */ 512 void __remove_inode_hash(struct inode *inode) 513 { 514 spin_lock(&inode_hash_lock); 515 spin_lock(&inode->i_lock); 516 hlist_del_init_rcu(&inode->i_hash); 517 spin_unlock(&inode->i_lock); 518 spin_unlock(&inode_hash_lock); 519 } 520 EXPORT_SYMBOL(__remove_inode_hash); 521 522 void clear_inode(struct inode *inode) 523 { 524 /* 525 * We have to cycle the i_pages lock here because reclaim can be in the 526 * process of removing the last page (in __delete_from_page_cache()) 527 * and we must not free the mapping under it. 528 */ 529 xa_lock_irq(&inode->i_data.i_pages); 530 BUG_ON(inode->i_data.nrpages); 531 BUG_ON(inode->i_data.nrexceptional); 532 xa_unlock_irq(&inode->i_data.i_pages); 533 BUG_ON(!list_empty(&inode->i_data.private_list)); 534 BUG_ON(!(inode->i_state & I_FREEING)); 535 BUG_ON(inode->i_state & I_CLEAR); 536 BUG_ON(!list_empty(&inode->i_wb_list)); 537 /* don't need i_lock here, no concurrent mods to i_state */ 538 inode->i_state = I_FREEING | I_CLEAR; 539 } 540 EXPORT_SYMBOL(clear_inode); 541 542 /* 543 * Free the inode passed in, removing it from the lists it is still connected 544 * to. We remove any pages still attached to the inode and wait for any IO that 545 * is still in progress before finally destroying the inode. 546 * 547 * An inode must already be marked I_FREEING so that we avoid the inode being 548 * moved back onto lists if we race with other code that manipulates the lists 549 * (e.g. writeback_single_inode). The caller is responsible for setting this. 550 * 551 * An inode must already be removed from the LRU list before being evicted from 552 * the cache. This should occur atomically with setting the I_FREEING state 553 * flag, so no inodes here should ever be on the LRU when being evicted. 554 */ 555 static void evict(struct inode *inode) 556 { 557 const struct super_operations *op = inode->i_sb->s_op; 558 559 BUG_ON(!(inode->i_state & I_FREEING)); 560 BUG_ON(!list_empty(&inode->i_lru)); 561 562 if (!list_empty(&inode->i_io_list)) 563 inode_io_list_del(inode); 564 565 inode_sb_list_del(inode); 566 567 /* 568 * Wait for flusher thread to be done with the inode so that filesystem 569 * does not start destroying it while writeback is still running. Since 570 * the inode has I_FREEING set, flusher thread won't start new work on 571 * the inode. We just have to wait for running writeback to finish. 572 */ 573 inode_wait_for_writeback(inode); 574 575 if (op->evict_inode) { 576 op->evict_inode(inode); 577 } else { 578 truncate_inode_pages_final(&inode->i_data); 579 clear_inode(inode); 580 } 581 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 582 bd_forget(inode); 583 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 584 cd_forget(inode); 585 586 remove_inode_hash(inode); 587 588 spin_lock(&inode->i_lock); 589 wake_up_bit(&inode->i_state, __I_NEW); 590 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 591 spin_unlock(&inode->i_lock); 592 593 destroy_inode(inode); 594 } 595 596 /* 597 * dispose_list - dispose of the contents of a local list 598 * @head: the head of the list to free 599 * 600 * Dispose-list gets a local list with local inodes in it, so it doesn't 601 * need to worry about list corruption and SMP locks. 602 */ 603 static void dispose_list(struct list_head *head) 604 { 605 while (!list_empty(head)) { 606 struct inode *inode; 607 608 inode = list_first_entry(head, struct inode, i_lru); 609 list_del_init(&inode->i_lru); 610 611 evict(inode); 612 cond_resched(); 613 } 614 } 615 616 /** 617 * evict_inodes - evict all evictable inodes for a superblock 618 * @sb: superblock to operate on 619 * 620 * Make sure that no inodes with zero refcount are retained. This is 621 * called by superblock shutdown after having SB_ACTIVE flag removed, 622 * so any inode reaching zero refcount during or after that call will 623 * be immediately evicted. 624 */ 625 void evict_inodes(struct super_block *sb) 626 { 627 struct inode *inode, *next; 628 LIST_HEAD(dispose); 629 630 again: 631 spin_lock(&sb->s_inode_list_lock); 632 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 633 if (atomic_read(&inode->i_count)) 634 continue; 635 636 spin_lock(&inode->i_lock); 637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 638 spin_unlock(&inode->i_lock); 639 continue; 640 } 641 642 inode->i_state |= I_FREEING; 643 inode_lru_list_del(inode); 644 spin_unlock(&inode->i_lock); 645 list_add(&inode->i_lru, &dispose); 646 647 /* 648 * We can have a ton of inodes to evict at unmount time given 649 * enough memory, check to see if we need to go to sleep for a 650 * bit so we don't livelock. 651 */ 652 if (need_resched()) { 653 spin_unlock(&sb->s_inode_list_lock); 654 cond_resched(); 655 dispose_list(&dispose); 656 goto again; 657 } 658 } 659 spin_unlock(&sb->s_inode_list_lock); 660 661 dispose_list(&dispose); 662 } 663 EXPORT_SYMBOL_GPL(evict_inodes); 664 665 /** 666 * invalidate_inodes - attempt to free all inodes on a superblock 667 * @sb: superblock to operate on 668 * @kill_dirty: flag to guide handling of dirty inodes 669 * 670 * Attempts to free all inodes for a given superblock. If there were any 671 * busy inodes return a non-zero value, else zero. 672 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 673 * them as busy. 674 */ 675 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 676 { 677 int busy = 0; 678 struct inode *inode, *next; 679 LIST_HEAD(dispose); 680 681 again: 682 spin_lock(&sb->s_inode_list_lock); 683 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 684 spin_lock(&inode->i_lock); 685 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 686 spin_unlock(&inode->i_lock); 687 continue; 688 } 689 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 690 spin_unlock(&inode->i_lock); 691 busy = 1; 692 continue; 693 } 694 if (atomic_read(&inode->i_count)) { 695 spin_unlock(&inode->i_lock); 696 busy = 1; 697 continue; 698 } 699 700 inode->i_state |= I_FREEING; 701 inode_lru_list_del(inode); 702 spin_unlock(&inode->i_lock); 703 list_add(&inode->i_lru, &dispose); 704 if (need_resched()) { 705 spin_unlock(&sb->s_inode_list_lock); 706 cond_resched(); 707 dispose_list(&dispose); 708 goto again; 709 } 710 } 711 spin_unlock(&sb->s_inode_list_lock); 712 713 dispose_list(&dispose); 714 715 return busy; 716 } 717 718 /* 719 * Isolate the inode from the LRU in preparation for freeing it. 720 * 721 * Any inodes which are pinned purely because of attached pagecache have their 722 * pagecache removed. If the inode has metadata buffers attached to 723 * mapping->private_list then try to remove them. 724 * 725 * If the inode has the I_REFERENCED flag set, then it means that it has been 726 * used recently - the flag is set in iput_final(). When we encounter such an 727 * inode, clear the flag and move it to the back of the LRU so it gets another 728 * pass through the LRU before it gets reclaimed. This is necessary because of 729 * the fact we are doing lazy LRU updates to minimise lock contention so the 730 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 731 * with this flag set because they are the inodes that are out of order. 732 */ 733 static enum lru_status inode_lru_isolate(struct list_head *item, 734 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 735 { 736 struct list_head *freeable = arg; 737 struct inode *inode = container_of(item, struct inode, i_lru); 738 739 /* 740 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 741 * If we fail to get the lock, just skip it. 742 */ 743 if (!spin_trylock(&inode->i_lock)) 744 return LRU_SKIP; 745 746 /* 747 * Referenced or dirty inodes are still in use. Give them another pass 748 * through the LRU as we canot reclaim them now. 749 */ 750 if (atomic_read(&inode->i_count) || 751 (inode->i_state & ~I_REFERENCED)) { 752 list_lru_isolate(lru, &inode->i_lru); 753 spin_unlock(&inode->i_lock); 754 this_cpu_dec(nr_unused); 755 return LRU_REMOVED; 756 } 757 758 /* recently referenced inodes get one more pass */ 759 if (inode->i_state & I_REFERENCED) { 760 inode->i_state &= ~I_REFERENCED; 761 spin_unlock(&inode->i_lock); 762 return LRU_ROTATE; 763 } 764 765 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 766 __iget(inode); 767 spin_unlock(&inode->i_lock); 768 spin_unlock(lru_lock); 769 if (remove_inode_buffers(inode)) { 770 unsigned long reap; 771 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 772 if (current_is_kswapd()) 773 __count_vm_events(KSWAPD_INODESTEAL, reap); 774 else 775 __count_vm_events(PGINODESTEAL, reap); 776 if (current->reclaim_state) 777 current->reclaim_state->reclaimed_slab += reap; 778 } 779 iput(inode); 780 spin_lock(lru_lock); 781 return LRU_RETRY; 782 } 783 784 WARN_ON(inode->i_state & I_NEW); 785 inode->i_state |= I_FREEING; 786 list_lru_isolate_move(lru, &inode->i_lru, freeable); 787 spin_unlock(&inode->i_lock); 788 789 this_cpu_dec(nr_unused); 790 return LRU_REMOVED; 791 } 792 793 /* 794 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 795 * This is called from the superblock shrinker function with a number of inodes 796 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 797 * then are freed outside inode_lock by dispose_list(). 798 */ 799 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 800 { 801 LIST_HEAD(freeable); 802 long freed; 803 804 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 805 inode_lru_isolate, &freeable); 806 dispose_list(&freeable); 807 return freed; 808 } 809 810 static void __wait_on_freeing_inode(struct inode *inode); 811 /* 812 * Called with the inode lock held. 813 */ 814 static struct inode *find_inode(struct super_block *sb, 815 struct hlist_head *head, 816 int (*test)(struct inode *, void *), 817 void *data) 818 { 819 struct inode *inode = NULL; 820 821 repeat: 822 hlist_for_each_entry(inode, head, i_hash) { 823 if (inode->i_sb != sb) 824 continue; 825 if (!test(inode, data)) 826 continue; 827 spin_lock(&inode->i_lock); 828 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 829 __wait_on_freeing_inode(inode); 830 goto repeat; 831 } 832 if (unlikely(inode->i_state & I_CREATING)) { 833 spin_unlock(&inode->i_lock); 834 return ERR_PTR(-ESTALE); 835 } 836 __iget(inode); 837 spin_unlock(&inode->i_lock); 838 return inode; 839 } 840 return NULL; 841 } 842 843 /* 844 * find_inode_fast is the fast path version of find_inode, see the comment at 845 * iget_locked for details. 846 */ 847 static struct inode *find_inode_fast(struct super_block *sb, 848 struct hlist_head *head, unsigned long ino) 849 { 850 struct inode *inode = NULL; 851 852 repeat: 853 hlist_for_each_entry(inode, head, i_hash) { 854 if (inode->i_ino != ino) 855 continue; 856 if (inode->i_sb != sb) 857 continue; 858 spin_lock(&inode->i_lock); 859 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 860 __wait_on_freeing_inode(inode); 861 goto repeat; 862 } 863 if (unlikely(inode->i_state & I_CREATING)) { 864 spin_unlock(&inode->i_lock); 865 return ERR_PTR(-ESTALE); 866 } 867 __iget(inode); 868 spin_unlock(&inode->i_lock); 869 return inode; 870 } 871 return NULL; 872 } 873 874 /* 875 * Each cpu owns a range of LAST_INO_BATCH numbers. 876 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 877 * to renew the exhausted range. 878 * 879 * This does not significantly increase overflow rate because every CPU can 880 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 881 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 882 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 883 * overflow rate by 2x, which does not seem too significant. 884 * 885 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 886 * error if st_ino won't fit in target struct field. Use 32bit counter 887 * here to attempt to avoid that. 888 */ 889 #define LAST_INO_BATCH 1024 890 static DEFINE_PER_CPU(unsigned int, last_ino); 891 892 unsigned int get_next_ino(void) 893 { 894 unsigned int *p = &get_cpu_var(last_ino); 895 unsigned int res = *p; 896 897 #ifdef CONFIG_SMP 898 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 899 static atomic_t shared_last_ino; 900 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 901 902 res = next - LAST_INO_BATCH; 903 } 904 #endif 905 906 res++; 907 /* get_next_ino should not provide a 0 inode number */ 908 if (unlikely(!res)) 909 res++; 910 *p = res; 911 put_cpu_var(last_ino); 912 return res; 913 } 914 EXPORT_SYMBOL(get_next_ino); 915 916 /** 917 * new_inode_pseudo - obtain an inode 918 * @sb: superblock 919 * 920 * Allocates a new inode for given superblock. 921 * Inode wont be chained in superblock s_inodes list 922 * This means : 923 * - fs can't be unmount 924 * - quotas, fsnotify, writeback can't work 925 */ 926 struct inode *new_inode_pseudo(struct super_block *sb) 927 { 928 struct inode *inode = alloc_inode(sb); 929 930 if (inode) { 931 spin_lock(&inode->i_lock); 932 inode->i_state = 0; 933 spin_unlock(&inode->i_lock); 934 INIT_LIST_HEAD(&inode->i_sb_list); 935 } 936 return inode; 937 } 938 939 /** 940 * new_inode - obtain an inode 941 * @sb: superblock 942 * 943 * Allocates a new inode for given superblock. The default gfp_mask 944 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 945 * If HIGHMEM pages are unsuitable or it is known that pages allocated 946 * for the page cache are not reclaimable or migratable, 947 * mapping_set_gfp_mask() must be called with suitable flags on the 948 * newly created inode's mapping 949 * 950 */ 951 struct inode *new_inode(struct super_block *sb) 952 { 953 struct inode *inode; 954 955 spin_lock_prefetch(&sb->s_inode_list_lock); 956 957 inode = new_inode_pseudo(sb); 958 if (inode) 959 inode_sb_list_add(inode); 960 return inode; 961 } 962 EXPORT_SYMBOL(new_inode); 963 964 #ifdef CONFIG_DEBUG_LOCK_ALLOC 965 void lockdep_annotate_inode_mutex_key(struct inode *inode) 966 { 967 if (S_ISDIR(inode->i_mode)) { 968 struct file_system_type *type = inode->i_sb->s_type; 969 970 /* Set new key only if filesystem hasn't already changed it */ 971 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 972 /* 973 * ensure nobody is actually holding i_mutex 974 */ 975 // mutex_destroy(&inode->i_mutex); 976 init_rwsem(&inode->i_rwsem); 977 lockdep_set_class(&inode->i_rwsem, 978 &type->i_mutex_dir_key); 979 } 980 } 981 } 982 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 983 #endif 984 985 /** 986 * unlock_new_inode - clear the I_NEW state and wake up any waiters 987 * @inode: new inode to unlock 988 * 989 * Called when the inode is fully initialised to clear the new state of the 990 * inode and wake up anyone waiting for the inode to finish initialisation. 991 */ 992 void unlock_new_inode(struct inode *inode) 993 { 994 lockdep_annotate_inode_mutex_key(inode); 995 spin_lock(&inode->i_lock); 996 WARN_ON(!(inode->i_state & I_NEW)); 997 inode->i_state &= ~I_NEW & ~I_CREATING; 998 smp_mb(); 999 wake_up_bit(&inode->i_state, __I_NEW); 1000 spin_unlock(&inode->i_lock); 1001 } 1002 EXPORT_SYMBOL(unlock_new_inode); 1003 1004 void discard_new_inode(struct inode *inode) 1005 { 1006 lockdep_annotate_inode_mutex_key(inode); 1007 spin_lock(&inode->i_lock); 1008 WARN_ON(!(inode->i_state & I_NEW)); 1009 inode->i_state &= ~I_NEW; 1010 smp_mb(); 1011 wake_up_bit(&inode->i_state, __I_NEW); 1012 spin_unlock(&inode->i_lock); 1013 iput(inode); 1014 } 1015 EXPORT_SYMBOL(discard_new_inode); 1016 1017 /** 1018 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1019 * 1020 * Lock any non-NULL argument that is not a directory. 1021 * Zero, one or two objects may be locked by this function. 1022 * 1023 * @inode1: first inode to lock 1024 * @inode2: second inode to lock 1025 */ 1026 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1027 { 1028 if (inode1 > inode2) 1029 swap(inode1, inode2); 1030 1031 if (inode1 && !S_ISDIR(inode1->i_mode)) 1032 inode_lock(inode1); 1033 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1034 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1035 } 1036 EXPORT_SYMBOL(lock_two_nondirectories); 1037 1038 /** 1039 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1040 * @inode1: first inode to unlock 1041 * @inode2: second inode to unlock 1042 */ 1043 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1044 { 1045 if (inode1 && !S_ISDIR(inode1->i_mode)) 1046 inode_unlock(inode1); 1047 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1048 inode_unlock(inode2); 1049 } 1050 EXPORT_SYMBOL(unlock_two_nondirectories); 1051 1052 /** 1053 * inode_insert5 - obtain an inode from a mounted file system 1054 * @inode: pre-allocated inode to use for insert to cache 1055 * @hashval: hash value (usually inode number) to get 1056 * @test: callback used for comparisons between inodes 1057 * @set: callback used to initialize a new struct inode 1058 * @data: opaque data pointer to pass to @test and @set 1059 * 1060 * Search for the inode specified by @hashval and @data in the inode cache, 1061 * and if present it is return it with an increased reference count. This is 1062 * a variant of iget5_locked() for callers that don't want to fail on memory 1063 * allocation of inode. 1064 * 1065 * If the inode is not in cache, insert the pre-allocated inode to cache and 1066 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1067 * to fill it in before unlocking it via unlock_new_inode(). 1068 * 1069 * Note both @test and @set are called with the inode_hash_lock held, so can't 1070 * sleep. 1071 */ 1072 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1073 int (*test)(struct inode *, void *), 1074 int (*set)(struct inode *, void *), void *data) 1075 { 1076 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1077 struct inode *old; 1078 bool creating = inode->i_state & I_CREATING; 1079 1080 again: 1081 spin_lock(&inode_hash_lock); 1082 old = find_inode(inode->i_sb, head, test, data); 1083 if (unlikely(old)) { 1084 /* 1085 * Uhhuh, somebody else created the same inode under us. 1086 * Use the old inode instead of the preallocated one. 1087 */ 1088 spin_unlock(&inode_hash_lock); 1089 if (IS_ERR(old)) 1090 return NULL; 1091 wait_on_inode(old); 1092 if (unlikely(inode_unhashed(old))) { 1093 iput(old); 1094 goto again; 1095 } 1096 return old; 1097 } 1098 1099 if (set && unlikely(set(inode, data))) { 1100 inode = NULL; 1101 goto unlock; 1102 } 1103 1104 /* 1105 * Return the locked inode with I_NEW set, the 1106 * caller is responsible for filling in the contents 1107 */ 1108 spin_lock(&inode->i_lock); 1109 inode->i_state |= I_NEW; 1110 hlist_add_head_rcu(&inode->i_hash, head); 1111 spin_unlock(&inode->i_lock); 1112 if (!creating) 1113 inode_sb_list_add(inode); 1114 unlock: 1115 spin_unlock(&inode_hash_lock); 1116 1117 return inode; 1118 } 1119 EXPORT_SYMBOL(inode_insert5); 1120 1121 /** 1122 * iget5_locked - obtain an inode from a mounted file system 1123 * @sb: super block of file system 1124 * @hashval: hash value (usually inode number) to get 1125 * @test: callback used for comparisons between inodes 1126 * @set: callback used to initialize a new struct inode 1127 * @data: opaque data pointer to pass to @test and @set 1128 * 1129 * Search for the inode specified by @hashval and @data in the inode cache, 1130 * and if present it is return it with an increased reference count. This is 1131 * a generalized version of iget_locked() for file systems where the inode 1132 * number is not sufficient for unique identification of an inode. 1133 * 1134 * If the inode is not in cache, allocate a new inode and return it locked, 1135 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1136 * before unlocking it via unlock_new_inode(). 1137 * 1138 * Note both @test and @set are called with the inode_hash_lock held, so can't 1139 * sleep. 1140 */ 1141 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1142 int (*test)(struct inode *, void *), 1143 int (*set)(struct inode *, void *), void *data) 1144 { 1145 struct inode *inode = ilookup5(sb, hashval, test, data); 1146 1147 if (!inode) { 1148 struct inode *new = alloc_inode(sb); 1149 1150 if (new) { 1151 new->i_state = 0; 1152 inode = inode_insert5(new, hashval, test, set, data); 1153 if (unlikely(inode != new)) 1154 destroy_inode(new); 1155 } 1156 } 1157 return inode; 1158 } 1159 EXPORT_SYMBOL(iget5_locked); 1160 1161 /** 1162 * iget_locked - obtain an inode from a mounted file system 1163 * @sb: super block of file system 1164 * @ino: inode number to get 1165 * 1166 * Search for the inode specified by @ino in the inode cache and if present 1167 * return it with an increased reference count. This is for file systems 1168 * where the inode number is sufficient for unique identification of an inode. 1169 * 1170 * If the inode is not in cache, allocate a new inode and return it locked, 1171 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1172 * before unlocking it via unlock_new_inode(). 1173 */ 1174 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1175 { 1176 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1177 struct inode *inode; 1178 again: 1179 spin_lock(&inode_hash_lock); 1180 inode = find_inode_fast(sb, head, ino); 1181 spin_unlock(&inode_hash_lock); 1182 if (inode) { 1183 if (IS_ERR(inode)) 1184 return NULL; 1185 wait_on_inode(inode); 1186 if (unlikely(inode_unhashed(inode))) { 1187 iput(inode); 1188 goto again; 1189 } 1190 return inode; 1191 } 1192 1193 inode = alloc_inode(sb); 1194 if (inode) { 1195 struct inode *old; 1196 1197 spin_lock(&inode_hash_lock); 1198 /* We released the lock, so.. */ 1199 old = find_inode_fast(sb, head, ino); 1200 if (!old) { 1201 inode->i_ino = ino; 1202 spin_lock(&inode->i_lock); 1203 inode->i_state = I_NEW; 1204 hlist_add_head_rcu(&inode->i_hash, head); 1205 spin_unlock(&inode->i_lock); 1206 inode_sb_list_add(inode); 1207 spin_unlock(&inode_hash_lock); 1208 1209 /* Return the locked inode with I_NEW set, the 1210 * caller is responsible for filling in the contents 1211 */ 1212 return inode; 1213 } 1214 1215 /* 1216 * Uhhuh, somebody else created the same inode under 1217 * us. Use the old inode instead of the one we just 1218 * allocated. 1219 */ 1220 spin_unlock(&inode_hash_lock); 1221 destroy_inode(inode); 1222 if (IS_ERR(old)) 1223 return NULL; 1224 inode = old; 1225 wait_on_inode(inode); 1226 if (unlikely(inode_unhashed(inode))) { 1227 iput(inode); 1228 goto again; 1229 } 1230 } 1231 return inode; 1232 } 1233 EXPORT_SYMBOL(iget_locked); 1234 1235 /* 1236 * search the inode cache for a matching inode number. 1237 * If we find one, then the inode number we are trying to 1238 * allocate is not unique and so we should not use it. 1239 * 1240 * Returns 1 if the inode number is unique, 0 if it is not. 1241 */ 1242 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1243 { 1244 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1245 struct inode *inode; 1246 1247 hlist_for_each_entry_rcu(inode, b, i_hash) { 1248 if (inode->i_ino == ino && inode->i_sb == sb) 1249 return 0; 1250 } 1251 return 1; 1252 } 1253 1254 /** 1255 * iunique - get a unique inode number 1256 * @sb: superblock 1257 * @max_reserved: highest reserved inode number 1258 * 1259 * Obtain an inode number that is unique on the system for a given 1260 * superblock. This is used by file systems that have no natural 1261 * permanent inode numbering system. An inode number is returned that 1262 * is higher than the reserved limit but unique. 1263 * 1264 * BUGS: 1265 * With a large number of inodes live on the file system this function 1266 * currently becomes quite slow. 1267 */ 1268 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1269 { 1270 /* 1271 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1272 * error if st_ino won't fit in target struct field. Use 32bit counter 1273 * here to attempt to avoid that. 1274 */ 1275 static DEFINE_SPINLOCK(iunique_lock); 1276 static unsigned int counter; 1277 ino_t res; 1278 1279 rcu_read_lock(); 1280 spin_lock(&iunique_lock); 1281 do { 1282 if (counter <= max_reserved) 1283 counter = max_reserved + 1; 1284 res = counter++; 1285 } while (!test_inode_iunique(sb, res)); 1286 spin_unlock(&iunique_lock); 1287 rcu_read_unlock(); 1288 1289 return res; 1290 } 1291 EXPORT_SYMBOL(iunique); 1292 1293 struct inode *igrab(struct inode *inode) 1294 { 1295 spin_lock(&inode->i_lock); 1296 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1297 __iget(inode); 1298 spin_unlock(&inode->i_lock); 1299 } else { 1300 spin_unlock(&inode->i_lock); 1301 /* 1302 * Handle the case where s_op->clear_inode is not been 1303 * called yet, and somebody is calling igrab 1304 * while the inode is getting freed. 1305 */ 1306 inode = NULL; 1307 } 1308 return inode; 1309 } 1310 EXPORT_SYMBOL(igrab); 1311 1312 /** 1313 * ilookup5_nowait - search for an inode in the inode cache 1314 * @sb: super block of file system to search 1315 * @hashval: hash value (usually inode number) to search for 1316 * @test: callback used for comparisons between inodes 1317 * @data: opaque data pointer to pass to @test 1318 * 1319 * Search for the inode specified by @hashval and @data in the inode cache. 1320 * If the inode is in the cache, the inode is returned with an incremented 1321 * reference count. 1322 * 1323 * Note: I_NEW is not waited upon so you have to be very careful what you do 1324 * with the returned inode. You probably should be using ilookup5() instead. 1325 * 1326 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1327 */ 1328 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1329 int (*test)(struct inode *, void *), void *data) 1330 { 1331 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1332 struct inode *inode; 1333 1334 spin_lock(&inode_hash_lock); 1335 inode = find_inode(sb, head, test, data); 1336 spin_unlock(&inode_hash_lock); 1337 1338 return IS_ERR(inode) ? NULL : inode; 1339 } 1340 EXPORT_SYMBOL(ilookup5_nowait); 1341 1342 /** 1343 * ilookup5 - search for an inode in the inode cache 1344 * @sb: super block of file system to search 1345 * @hashval: hash value (usually inode number) to search for 1346 * @test: callback used for comparisons between inodes 1347 * @data: opaque data pointer to pass to @test 1348 * 1349 * Search for the inode specified by @hashval and @data in the inode cache, 1350 * and if the inode is in the cache, return the inode with an incremented 1351 * reference count. Waits on I_NEW before returning the inode. 1352 * returned with an incremented reference count. 1353 * 1354 * This is a generalized version of ilookup() for file systems where the 1355 * inode number is not sufficient for unique identification of an inode. 1356 * 1357 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1358 */ 1359 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1360 int (*test)(struct inode *, void *), void *data) 1361 { 1362 struct inode *inode; 1363 again: 1364 inode = ilookup5_nowait(sb, hashval, test, data); 1365 if (inode) { 1366 wait_on_inode(inode); 1367 if (unlikely(inode_unhashed(inode))) { 1368 iput(inode); 1369 goto again; 1370 } 1371 } 1372 return inode; 1373 } 1374 EXPORT_SYMBOL(ilookup5); 1375 1376 /** 1377 * ilookup - search for an inode in the inode cache 1378 * @sb: super block of file system to search 1379 * @ino: inode number to search for 1380 * 1381 * Search for the inode @ino in the inode cache, and if the inode is in the 1382 * cache, the inode is returned with an incremented reference count. 1383 */ 1384 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1385 { 1386 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1387 struct inode *inode; 1388 again: 1389 spin_lock(&inode_hash_lock); 1390 inode = find_inode_fast(sb, head, ino); 1391 spin_unlock(&inode_hash_lock); 1392 1393 if (inode) { 1394 if (IS_ERR(inode)) 1395 return NULL; 1396 wait_on_inode(inode); 1397 if (unlikely(inode_unhashed(inode))) { 1398 iput(inode); 1399 goto again; 1400 } 1401 } 1402 return inode; 1403 } 1404 EXPORT_SYMBOL(ilookup); 1405 1406 /** 1407 * find_inode_nowait - find an inode in the inode cache 1408 * @sb: super block of file system to search 1409 * @hashval: hash value (usually inode number) to search for 1410 * @match: callback used for comparisons between inodes 1411 * @data: opaque data pointer to pass to @match 1412 * 1413 * Search for the inode specified by @hashval and @data in the inode 1414 * cache, where the helper function @match will return 0 if the inode 1415 * does not match, 1 if the inode does match, and -1 if the search 1416 * should be stopped. The @match function must be responsible for 1417 * taking the i_lock spin_lock and checking i_state for an inode being 1418 * freed or being initialized, and incrementing the reference count 1419 * before returning 1. It also must not sleep, since it is called with 1420 * the inode_hash_lock spinlock held. 1421 * 1422 * This is a even more generalized version of ilookup5() when the 1423 * function must never block --- find_inode() can block in 1424 * __wait_on_freeing_inode() --- or when the caller can not increment 1425 * the reference count because the resulting iput() might cause an 1426 * inode eviction. The tradeoff is that the @match funtion must be 1427 * very carefully implemented. 1428 */ 1429 struct inode *find_inode_nowait(struct super_block *sb, 1430 unsigned long hashval, 1431 int (*match)(struct inode *, unsigned long, 1432 void *), 1433 void *data) 1434 { 1435 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1436 struct inode *inode, *ret_inode = NULL; 1437 int mval; 1438 1439 spin_lock(&inode_hash_lock); 1440 hlist_for_each_entry(inode, head, i_hash) { 1441 if (inode->i_sb != sb) 1442 continue; 1443 mval = match(inode, hashval, data); 1444 if (mval == 0) 1445 continue; 1446 if (mval == 1) 1447 ret_inode = inode; 1448 goto out; 1449 } 1450 out: 1451 spin_unlock(&inode_hash_lock); 1452 return ret_inode; 1453 } 1454 EXPORT_SYMBOL(find_inode_nowait); 1455 1456 /** 1457 * find_inode_rcu - find an inode in the inode cache 1458 * @sb: Super block of file system to search 1459 * @hashval: Key to hash 1460 * @test: Function to test match on an inode 1461 * @data: Data for test function 1462 * 1463 * Search for the inode specified by @hashval and @data in the inode cache, 1464 * where the helper function @test will return 0 if the inode does not match 1465 * and 1 if it does. The @test function must be responsible for taking the 1466 * i_lock spin_lock and checking i_state for an inode being freed or being 1467 * initialized. 1468 * 1469 * If successful, this will return the inode for which the @test function 1470 * returned 1 and NULL otherwise. 1471 * 1472 * The @test function is not permitted to take a ref on any inode presented. 1473 * It is also not permitted to sleep. 1474 * 1475 * The caller must hold the RCU read lock. 1476 */ 1477 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1478 int (*test)(struct inode *, void *), void *data) 1479 { 1480 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1481 struct inode *inode; 1482 1483 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1484 "suspicious find_inode_rcu() usage"); 1485 1486 hlist_for_each_entry_rcu(inode, head, i_hash) { 1487 if (inode->i_sb == sb && 1488 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1489 test(inode, data)) 1490 return inode; 1491 } 1492 return NULL; 1493 } 1494 EXPORT_SYMBOL(find_inode_rcu); 1495 1496 /** 1497 * find_inode_by_rcu - Find an inode in the inode cache 1498 * @sb: Super block of file system to search 1499 * @ino: The inode number to match 1500 * 1501 * Search for the inode specified by @hashval and @data in the inode cache, 1502 * where the helper function @test will return 0 if the inode does not match 1503 * and 1 if it does. The @test function must be responsible for taking the 1504 * i_lock spin_lock and checking i_state for an inode being freed or being 1505 * initialized. 1506 * 1507 * If successful, this will return the inode for which the @test function 1508 * returned 1 and NULL otherwise. 1509 * 1510 * The @test function is not permitted to take a ref on any inode presented. 1511 * It is also not permitted to sleep. 1512 * 1513 * The caller must hold the RCU read lock. 1514 */ 1515 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1516 unsigned long ino) 1517 { 1518 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1519 struct inode *inode; 1520 1521 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1522 "suspicious find_inode_by_ino_rcu() usage"); 1523 1524 hlist_for_each_entry_rcu(inode, head, i_hash) { 1525 if (inode->i_ino == ino && 1526 inode->i_sb == sb && 1527 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1528 return inode; 1529 } 1530 return NULL; 1531 } 1532 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1533 1534 int insert_inode_locked(struct inode *inode) 1535 { 1536 struct super_block *sb = inode->i_sb; 1537 ino_t ino = inode->i_ino; 1538 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1539 1540 while (1) { 1541 struct inode *old = NULL; 1542 spin_lock(&inode_hash_lock); 1543 hlist_for_each_entry(old, head, i_hash) { 1544 if (old->i_ino != ino) 1545 continue; 1546 if (old->i_sb != sb) 1547 continue; 1548 spin_lock(&old->i_lock); 1549 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1550 spin_unlock(&old->i_lock); 1551 continue; 1552 } 1553 break; 1554 } 1555 if (likely(!old)) { 1556 spin_lock(&inode->i_lock); 1557 inode->i_state |= I_NEW | I_CREATING; 1558 hlist_add_head_rcu(&inode->i_hash, head); 1559 spin_unlock(&inode->i_lock); 1560 spin_unlock(&inode_hash_lock); 1561 return 0; 1562 } 1563 if (unlikely(old->i_state & I_CREATING)) { 1564 spin_unlock(&old->i_lock); 1565 spin_unlock(&inode_hash_lock); 1566 return -EBUSY; 1567 } 1568 __iget(old); 1569 spin_unlock(&old->i_lock); 1570 spin_unlock(&inode_hash_lock); 1571 wait_on_inode(old); 1572 if (unlikely(!inode_unhashed(old))) { 1573 iput(old); 1574 return -EBUSY; 1575 } 1576 iput(old); 1577 } 1578 } 1579 EXPORT_SYMBOL(insert_inode_locked); 1580 1581 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1582 int (*test)(struct inode *, void *), void *data) 1583 { 1584 struct inode *old; 1585 1586 inode->i_state |= I_CREATING; 1587 old = inode_insert5(inode, hashval, test, NULL, data); 1588 1589 if (old != inode) { 1590 iput(old); 1591 return -EBUSY; 1592 } 1593 return 0; 1594 } 1595 EXPORT_SYMBOL(insert_inode_locked4); 1596 1597 1598 int generic_delete_inode(struct inode *inode) 1599 { 1600 return 1; 1601 } 1602 EXPORT_SYMBOL(generic_delete_inode); 1603 1604 /* 1605 * Called when we're dropping the last reference 1606 * to an inode. 1607 * 1608 * Call the FS "drop_inode()" function, defaulting to 1609 * the legacy UNIX filesystem behaviour. If it tells 1610 * us to evict inode, do so. Otherwise, retain inode 1611 * in cache if fs is alive, sync and evict if fs is 1612 * shutting down. 1613 */ 1614 static void iput_final(struct inode *inode) 1615 { 1616 struct super_block *sb = inode->i_sb; 1617 const struct super_operations *op = inode->i_sb->s_op; 1618 unsigned long state; 1619 int drop; 1620 1621 WARN_ON(inode->i_state & I_NEW); 1622 1623 if (op->drop_inode) 1624 drop = op->drop_inode(inode); 1625 else 1626 drop = generic_drop_inode(inode); 1627 1628 if (!drop && (sb->s_flags & SB_ACTIVE)) { 1629 inode_add_lru(inode); 1630 spin_unlock(&inode->i_lock); 1631 return; 1632 } 1633 1634 state = inode->i_state; 1635 if (!drop) { 1636 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1637 spin_unlock(&inode->i_lock); 1638 1639 write_inode_now(inode, 1); 1640 1641 spin_lock(&inode->i_lock); 1642 state = inode->i_state; 1643 WARN_ON(state & I_NEW); 1644 state &= ~I_WILL_FREE; 1645 } 1646 1647 WRITE_ONCE(inode->i_state, state | I_FREEING); 1648 if (!list_empty(&inode->i_lru)) 1649 inode_lru_list_del(inode); 1650 spin_unlock(&inode->i_lock); 1651 1652 evict(inode); 1653 } 1654 1655 /** 1656 * iput - put an inode 1657 * @inode: inode to put 1658 * 1659 * Puts an inode, dropping its usage count. If the inode use count hits 1660 * zero, the inode is then freed and may also be destroyed. 1661 * 1662 * Consequently, iput() can sleep. 1663 */ 1664 void iput(struct inode *inode) 1665 { 1666 if (!inode) 1667 return; 1668 BUG_ON(inode->i_state & I_CLEAR); 1669 retry: 1670 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1671 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1672 atomic_inc(&inode->i_count); 1673 spin_unlock(&inode->i_lock); 1674 trace_writeback_lazytime_iput(inode); 1675 mark_inode_dirty_sync(inode); 1676 goto retry; 1677 } 1678 iput_final(inode); 1679 } 1680 } 1681 EXPORT_SYMBOL(iput); 1682 1683 #ifdef CONFIG_BLOCK 1684 /** 1685 * bmap - find a block number in a file 1686 * @inode: inode owning the block number being requested 1687 * @block: pointer containing the block to find 1688 * 1689 * Replaces the value in ``*block`` with the block number on the device holding 1690 * corresponding to the requested block number in the file. 1691 * That is, asked for block 4 of inode 1 the function will replace the 1692 * 4 in ``*block``, with disk block relative to the disk start that holds that 1693 * block of the file. 1694 * 1695 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1696 * hole, returns 0 and ``*block`` is also set to 0. 1697 */ 1698 int bmap(struct inode *inode, sector_t *block) 1699 { 1700 if (!inode->i_mapping->a_ops->bmap) 1701 return -EINVAL; 1702 1703 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1704 return 0; 1705 } 1706 EXPORT_SYMBOL(bmap); 1707 #endif 1708 1709 /* 1710 * With relative atime, only update atime if the previous atime is 1711 * earlier than either the ctime or mtime or if at least a day has 1712 * passed since the last atime update. 1713 */ 1714 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1715 struct timespec64 now) 1716 { 1717 1718 if (!(mnt->mnt_flags & MNT_RELATIME)) 1719 return 1; 1720 /* 1721 * Is mtime younger than atime? If yes, update atime: 1722 */ 1723 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1724 return 1; 1725 /* 1726 * Is ctime younger than atime? If yes, update atime: 1727 */ 1728 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1729 return 1; 1730 1731 /* 1732 * Is the previous atime value older than a day? If yes, 1733 * update atime: 1734 */ 1735 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1736 return 1; 1737 /* 1738 * Good, we can skip the atime update: 1739 */ 1740 return 0; 1741 } 1742 1743 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1744 { 1745 int iflags = I_DIRTY_TIME; 1746 bool dirty = false; 1747 1748 if (flags & S_ATIME) 1749 inode->i_atime = *time; 1750 if (flags & S_VERSION) 1751 dirty = inode_maybe_inc_iversion(inode, false); 1752 if (flags & S_CTIME) 1753 inode->i_ctime = *time; 1754 if (flags & S_MTIME) 1755 inode->i_mtime = *time; 1756 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && 1757 !(inode->i_sb->s_flags & SB_LAZYTIME)) 1758 dirty = true; 1759 1760 if (dirty) 1761 iflags |= I_DIRTY_SYNC; 1762 __mark_inode_dirty(inode, iflags); 1763 return 0; 1764 } 1765 EXPORT_SYMBOL(generic_update_time); 1766 1767 /* 1768 * This does the actual work of updating an inodes time or version. Must have 1769 * had called mnt_want_write() before calling this. 1770 */ 1771 static int update_time(struct inode *inode, struct timespec64 *time, int flags) 1772 { 1773 if (inode->i_op->update_time) 1774 return inode->i_op->update_time(inode, time, flags); 1775 return generic_update_time(inode, time, flags); 1776 } 1777 1778 /** 1779 * touch_atime - update the access time 1780 * @path: the &struct path to update 1781 * @inode: inode to update 1782 * 1783 * Update the accessed time on an inode and mark it for writeback. 1784 * This function automatically handles read only file systems and media, 1785 * as well as the "noatime" flag and inode specific "noatime" markers. 1786 */ 1787 bool atime_needs_update(const struct path *path, struct inode *inode) 1788 { 1789 struct vfsmount *mnt = path->mnt; 1790 struct timespec64 now; 1791 1792 if (inode->i_flags & S_NOATIME) 1793 return false; 1794 1795 /* Atime updates will likely cause i_uid and i_gid to be written 1796 * back improprely if their true value is unknown to the vfs. 1797 */ 1798 if (HAS_UNMAPPED_ID(inode)) 1799 return false; 1800 1801 if (IS_NOATIME(inode)) 1802 return false; 1803 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1804 return false; 1805 1806 if (mnt->mnt_flags & MNT_NOATIME) 1807 return false; 1808 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1809 return false; 1810 1811 now = current_time(inode); 1812 1813 if (!relatime_need_update(mnt, inode, now)) 1814 return false; 1815 1816 if (timespec64_equal(&inode->i_atime, &now)) 1817 return false; 1818 1819 return true; 1820 } 1821 1822 void touch_atime(const struct path *path) 1823 { 1824 struct vfsmount *mnt = path->mnt; 1825 struct inode *inode = d_inode(path->dentry); 1826 struct timespec64 now; 1827 1828 if (!atime_needs_update(path, inode)) 1829 return; 1830 1831 if (!sb_start_write_trylock(inode->i_sb)) 1832 return; 1833 1834 if (__mnt_want_write(mnt) != 0) 1835 goto skip_update; 1836 /* 1837 * File systems can error out when updating inodes if they need to 1838 * allocate new space to modify an inode (such is the case for 1839 * Btrfs), but since we touch atime while walking down the path we 1840 * really don't care if we failed to update the atime of the file, 1841 * so just ignore the return value. 1842 * We may also fail on filesystems that have the ability to make parts 1843 * of the fs read only, e.g. subvolumes in Btrfs. 1844 */ 1845 now = current_time(inode); 1846 update_time(inode, &now, S_ATIME); 1847 __mnt_drop_write(mnt); 1848 skip_update: 1849 sb_end_write(inode->i_sb); 1850 } 1851 EXPORT_SYMBOL(touch_atime); 1852 1853 /* 1854 * The logic we want is 1855 * 1856 * if suid or (sgid and xgrp) 1857 * remove privs 1858 */ 1859 int should_remove_suid(struct dentry *dentry) 1860 { 1861 umode_t mode = d_inode(dentry)->i_mode; 1862 int kill = 0; 1863 1864 /* suid always must be killed */ 1865 if (unlikely(mode & S_ISUID)) 1866 kill = ATTR_KILL_SUID; 1867 1868 /* 1869 * sgid without any exec bits is just a mandatory locking mark; leave 1870 * it alone. If some exec bits are set, it's a real sgid; kill it. 1871 */ 1872 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1873 kill |= ATTR_KILL_SGID; 1874 1875 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1876 return kill; 1877 1878 return 0; 1879 } 1880 EXPORT_SYMBOL(should_remove_suid); 1881 1882 /* 1883 * Return mask of changes for notify_change() that need to be done as a 1884 * response to write or truncate. Return 0 if nothing has to be changed. 1885 * Negative value on error (change should be denied). 1886 */ 1887 int dentry_needs_remove_privs(struct dentry *dentry) 1888 { 1889 struct inode *inode = d_inode(dentry); 1890 int mask = 0; 1891 int ret; 1892 1893 if (IS_NOSEC(inode)) 1894 return 0; 1895 1896 mask = should_remove_suid(dentry); 1897 ret = security_inode_need_killpriv(dentry); 1898 if (ret < 0) 1899 return ret; 1900 if (ret) 1901 mask |= ATTR_KILL_PRIV; 1902 return mask; 1903 } 1904 1905 static int __remove_privs(struct dentry *dentry, int kill) 1906 { 1907 struct iattr newattrs; 1908 1909 newattrs.ia_valid = ATTR_FORCE | kill; 1910 /* 1911 * Note we call this on write, so notify_change will not 1912 * encounter any conflicting delegations: 1913 */ 1914 return notify_change(dentry, &newattrs, NULL); 1915 } 1916 1917 /* 1918 * Remove special file priviledges (suid, capabilities) when file is written 1919 * to or truncated. 1920 */ 1921 int file_remove_privs(struct file *file) 1922 { 1923 struct dentry *dentry = file_dentry(file); 1924 struct inode *inode = file_inode(file); 1925 int kill; 1926 int error = 0; 1927 1928 /* 1929 * Fast path for nothing security related. 1930 * As well for non-regular files, e.g. blkdev inodes. 1931 * For example, blkdev_write_iter() might get here 1932 * trying to remove privs which it is not allowed to. 1933 */ 1934 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 1935 return 0; 1936 1937 kill = dentry_needs_remove_privs(dentry); 1938 if (kill < 0) 1939 return kill; 1940 if (kill) 1941 error = __remove_privs(dentry, kill); 1942 if (!error) 1943 inode_has_no_xattr(inode); 1944 1945 return error; 1946 } 1947 EXPORT_SYMBOL(file_remove_privs); 1948 1949 /** 1950 * file_update_time - update mtime and ctime time 1951 * @file: file accessed 1952 * 1953 * Update the mtime and ctime members of an inode and mark the inode 1954 * for writeback. Note that this function is meant exclusively for 1955 * usage in the file write path of filesystems, and filesystems may 1956 * choose to explicitly ignore update via this function with the 1957 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1958 * timestamps are handled by the server. This can return an error for 1959 * file systems who need to allocate space in order to update an inode. 1960 */ 1961 1962 int file_update_time(struct file *file) 1963 { 1964 struct inode *inode = file_inode(file); 1965 struct timespec64 now; 1966 int sync_it = 0; 1967 int ret; 1968 1969 /* First try to exhaust all avenues to not sync */ 1970 if (IS_NOCMTIME(inode)) 1971 return 0; 1972 1973 now = current_time(inode); 1974 if (!timespec64_equal(&inode->i_mtime, &now)) 1975 sync_it = S_MTIME; 1976 1977 if (!timespec64_equal(&inode->i_ctime, &now)) 1978 sync_it |= S_CTIME; 1979 1980 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1981 sync_it |= S_VERSION; 1982 1983 if (!sync_it) 1984 return 0; 1985 1986 /* Finally allowed to write? Takes lock. */ 1987 if (__mnt_want_write_file(file)) 1988 return 0; 1989 1990 ret = update_time(inode, &now, sync_it); 1991 __mnt_drop_write_file(file); 1992 1993 return ret; 1994 } 1995 EXPORT_SYMBOL(file_update_time); 1996 1997 /* Caller must hold the file's inode lock */ 1998 int file_modified(struct file *file) 1999 { 2000 int err; 2001 2002 /* 2003 * Clear the security bits if the process is not being run by root. 2004 * This keeps people from modifying setuid and setgid binaries. 2005 */ 2006 err = file_remove_privs(file); 2007 if (err) 2008 return err; 2009 2010 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2011 return 0; 2012 2013 return file_update_time(file); 2014 } 2015 EXPORT_SYMBOL(file_modified); 2016 2017 int inode_needs_sync(struct inode *inode) 2018 { 2019 if (IS_SYNC(inode)) 2020 return 1; 2021 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2022 return 1; 2023 return 0; 2024 } 2025 EXPORT_SYMBOL(inode_needs_sync); 2026 2027 /* 2028 * If we try to find an inode in the inode hash while it is being 2029 * deleted, we have to wait until the filesystem completes its 2030 * deletion before reporting that it isn't found. This function waits 2031 * until the deletion _might_ have completed. Callers are responsible 2032 * to recheck inode state. 2033 * 2034 * It doesn't matter if I_NEW is not set initially, a call to 2035 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2036 * will DTRT. 2037 */ 2038 static void __wait_on_freeing_inode(struct inode *inode) 2039 { 2040 wait_queue_head_t *wq; 2041 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2042 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2043 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2044 spin_unlock(&inode->i_lock); 2045 spin_unlock(&inode_hash_lock); 2046 schedule(); 2047 finish_wait(wq, &wait.wq_entry); 2048 spin_lock(&inode_hash_lock); 2049 } 2050 2051 static __initdata unsigned long ihash_entries; 2052 static int __init set_ihash_entries(char *str) 2053 { 2054 if (!str) 2055 return 0; 2056 ihash_entries = simple_strtoul(str, &str, 0); 2057 return 1; 2058 } 2059 __setup("ihash_entries=", set_ihash_entries); 2060 2061 /* 2062 * Initialize the waitqueues and inode hash table. 2063 */ 2064 void __init inode_init_early(void) 2065 { 2066 /* If hashes are distributed across NUMA nodes, defer 2067 * hash allocation until vmalloc space is available. 2068 */ 2069 if (hashdist) 2070 return; 2071 2072 inode_hashtable = 2073 alloc_large_system_hash("Inode-cache", 2074 sizeof(struct hlist_head), 2075 ihash_entries, 2076 14, 2077 HASH_EARLY | HASH_ZERO, 2078 &i_hash_shift, 2079 &i_hash_mask, 2080 0, 2081 0); 2082 } 2083 2084 void __init inode_init(void) 2085 { 2086 /* inode slab cache */ 2087 inode_cachep = kmem_cache_create("inode_cache", 2088 sizeof(struct inode), 2089 0, 2090 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2091 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2092 init_once); 2093 2094 /* Hash may have been set up in inode_init_early */ 2095 if (!hashdist) 2096 return; 2097 2098 inode_hashtable = 2099 alloc_large_system_hash("Inode-cache", 2100 sizeof(struct hlist_head), 2101 ihash_entries, 2102 14, 2103 HASH_ZERO, 2104 &i_hash_shift, 2105 &i_hash_mask, 2106 0, 2107 0); 2108 } 2109 2110 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2111 { 2112 inode->i_mode = mode; 2113 if (S_ISCHR(mode)) { 2114 inode->i_fop = &def_chr_fops; 2115 inode->i_rdev = rdev; 2116 } else if (S_ISBLK(mode)) { 2117 inode->i_fop = &def_blk_fops; 2118 inode->i_rdev = rdev; 2119 } else if (S_ISFIFO(mode)) 2120 inode->i_fop = &pipefifo_fops; 2121 else if (S_ISSOCK(mode)) 2122 ; /* leave it no_open_fops */ 2123 else 2124 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2125 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2126 inode->i_ino); 2127 } 2128 EXPORT_SYMBOL(init_special_inode); 2129 2130 /** 2131 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2132 * @inode: New inode 2133 * @dir: Directory inode 2134 * @mode: mode of the new inode 2135 */ 2136 void inode_init_owner(struct inode *inode, const struct inode *dir, 2137 umode_t mode) 2138 { 2139 inode->i_uid = current_fsuid(); 2140 if (dir && dir->i_mode & S_ISGID) { 2141 inode->i_gid = dir->i_gid; 2142 2143 /* Directories are special, and always inherit S_ISGID */ 2144 if (S_ISDIR(mode)) 2145 mode |= S_ISGID; 2146 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2147 !in_group_p(inode->i_gid) && 2148 !capable_wrt_inode_uidgid(dir, CAP_FSETID)) 2149 mode &= ~S_ISGID; 2150 } else 2151 inode->i_gid = current_fsgid(); 2152 inode->i_mode = mode; 2153 } 2154 EXPORT_SYMBOL(inode_init_owner); 2155 2156 /** 2157 * inode_owner_or_capable - check current task permissions to inode 2158 * @inode: inode being checked 2159 * 2160 * Return true if current either has CAP_FOWNER in a namespace with the 2161 * inode owner uid mapped, or owns the file. 2162 */ 2163 bool inode_owner_or_capable(const struct inode *inode) 2164 { 2165 struct user_namespace *ns; 2166 2167 if (uid_eq(current_fsuid(), inode->i_uid)) 2168 return true; 2169 2170 ns = current_user_ns(); 2171 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2172 return true; 2173 return false; 2174 } 2175 EXPORT_SYMBOL(inode_owner_or_capable); 2176 2177 /* 2178 * Direct i/o helper functions 2179 */ 2180 static void __inode_dio_wait(struct inode *inode) 2181 { 2182 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2183 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2184 2185 do { 2186 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2187 if (atomic_read(&inode->i_dio_count)) 2188 schedule(); 2189 } while (atomic_read(&inode->i_dio_count)); 2190 finish_wait(wq, &q.wq_entry); 2191 } 2192 2193 /** 2194 * inode_dio_wait - wait for outstanding DIO requests to finish 2195 * @inode: inode to wait for 2196 * 2197 * Waits for all pending direct I/O requests to finish so that we can 2198 * proceed with a truncate or equivalent operation. 2199 * 2200 * Must be called under a lock that serializes taking new references 2201 * to i_dio_count, usually by inode->i_mutex. 2202 */ 2203 void inode_dio_wait(struct inode *inode) 2204 { 2205 if (atomic_read(&inode->i_dio_count)) 2206 __inode_dio_wait(inode); 2207 } 2208 EXPORT_SYMBOL(inode_dio_wait); 2209 2210 /* 2211 * inode_set_flags - atomically set some inode flags 2212 * 2213 * Note: the caller should be holding i_mutex, or else be sure that 2214 * they have exclusive access to the inode structure (i.e., while the 2215 * inode is being instantiated). The reason for the cmpxchg() loop 2216 * --- which wouldn't be necessary if all code paths which modify 2217 * i_flags actually followed this rule, is that there is at least one 2218 * code path which doesn't today so we use cmpxchg() out of an abundance 2219 * of caution. 2220 * 2221 * In the long run, i_mutex is overkill, and we should probably look 2222 * at using the i_lock spinlock to protect i_flags, and then make sure 2223 * it is so documented in include/linux/fs.h and that all code follows 2224 * the locking convention!! 2225 */ 2226 void inode_set_flags(struct inode *inode, unsigned int flags, 2227 unsigned int mask) 2228 { 2229 WARN_ON_ONCE(flags & ~mask); 2230 set_mask_bits(&inode->i_flags, mask, flags); 2231 } 2232 EXPORT_SYMBOL(inode_set_flags); 2233 2234 void inode_nohighmem(struct inode *inode) 2235 { 2236 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2237 } 2238 EXPORT_SYMBOL(inode_nohighmem); 2239 2240 /** 2241 * timestamp_truncate - Truncate timespec to a granularity 2242 * @t: Timespec 2243 * @inode: inode being updated 2244 * 2245 * Truncate a timespec to the granularity supported by the fs 2246 * containing the inode. Always rounds down. gran must 2247 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2248 */ 2249 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2250 { 2251 struct super_block *sb = inode->i_sb; 2252 unsigned int gran = sb->s_time_gran; 2253 2254 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2255 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2256 t.tv_nsec = 0; 2257 2258 /* Avoid division in the common cases 1 ns and 1 s. */ 2259 if (gran == 1) 2260 ; /* nothing */ 2261 else if (gran == NSEC_PER_SEC) 2262 t.tv_nsec = 0; 2263 else if (gran > 1 && gran < NSEC_PER_SEC) 2264 t.tv_nsec -= t.tv_nsec % gran; 2265 else 2266 WARN(1, "invalid file time granularity: %u", gran); 2267 return t; 2268 } 2269 EXPORT_SYMBOL(timestamp_truncate); 2270 2271 /** 2272 * current_time - Return FS time 2273 * @inode: inode. 2274 * 2275 * Return the current time truncated to the time granularity supported by 2276 * the fs. 2277 * 2278 * Note that inode and inode->sb cannot be NULL. 2279 * Otherwise, the function warns and returns time without truncation. 2280 */ 2281 struct timespec64 current_time(struct inode *inode) 2282 { 2283 struct timespec64 now; 2284 2285 ktime_get_coarse_real_ts64(&now); 2286 2287 if (unlikely(!inode->i_sb)) { 2288 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2289 return now; 2290 } 2291 2292 return timestamp_truncate(now, inode); 2293 } 2294 EXPORT_SYMBOL(current_time); 2295 2296 /* 2297 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid 2298 * configurations. 2299 * 2300 * Note: the caller should be holding i_mutex, or else be sure that they have 2301 * exclusive access to the inode structure. 2302 */ 2303 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags, 2304 unsigned int flags) 2305 { 2306 /* 2307 * The IMMUTABLE and APPEND_ONLY flags can only be changed by 2308 * the relevant capability. 2309 * 2310 * This test looks nicer. Thanks to Pauline Middelink 2311 */ 2312 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) && 2313 !capable(CAP_LINUX_IMMUTABLE)) 2314 return -EPERM; 2315 2316 return fscrypt_prepare_setflags(inode, oldflags, flags); 2317 } 2318 EXPORT_SYMBOL(vfs_ioc_setflags_prepare); 2319 2320 /* 2321 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid 2322 * configurations. 2323 * 2324 * Note: the caller should be holding i_mutex, or else be sure that they have 2325 * exclusive access to the inode structure. 2326 */ 2327 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa, 2328 struct fsxattr *fa) 2329 { 2330 /* 2331 * Can't modify an immutable/append-only file unless we have 2332 * appropriate permission. 2333 */ 2334 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) & 2335 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) && 2336 !capable(CAP_LINUX_IMMUTABLE)) 2337 return -EPERM; 2338 2339 /* 2340 * Project Quota ID state is only allowed to change from within the init 2341 * namespace. Enforce that restriction only if we are trying to change 2342 * the quota ID state. Everything else is allowed in user namespaces. 2343 */ 2344 if (current_user_ns() != &init_user_ns) { 2345 if (old_fa->fsx_projid != fa->fsx_projid) 2346 return -EINVAL; 2347 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) & 2348 FS_XFLAG_PROJINHERIT) 2349 return -EINVAL; 2350 } 2351 2352 /* Check extent size hints. */ 2353 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode)) 2354 return -EINVAL; 2355 2356 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) && 2357 !S_ISDIR(inode->i_mode)) 2358 return -EINVAL; 2359 2360 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) && 2361 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) 2362 return -EINVAL; 2363 2364 /* 2365 * It is only valid to set the DAX flag on regular files and 2366 * directories on filesystems. 2367 */ 2368 if ((fa->fsx_xflags & FS_XFLAG_DAX) && 2369 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 2370 return -EINVAL; 2371 2372 /* Extent size hints of zero turn off the flags. */ 2373 if (fa->fsx_extsize == 0) 2374 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT); 2375 if (fa->fsx_cowextsize == 0) 2376 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE; 2377 2378 return 0; 2379 } 2380 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check); 2381