xref: /linux/fs/inode.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mount.h>
27 #include <linux/async.h>
28 #include <linux/posix_acl.h>
29 
30 /*
31  * This is needed for the following functions:
32  *  - inode_has_buffers
33  *  - invalidate_inode_buffers
34  *  - invalidate_bdev
35  *
36  * FIXME: remove all knowledge of the buffer layer from this file
37  */
38 #include <linux/buffer_head.h>
39 
40 /*
41  * New inode.c implementation.
42  *
43  * This implementation has the basic premise of trying
44  * to be extremely low-overhead and SMP-safe, yet be
45  * simple enough to be "obviously correct".
46  *
47  * Famous last words.
48  */
49 
50 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
51 
52 /* #define INODE_PARANOIA 1 */
53 /* #define INODE_DEBUG 1 */
54 
55 /*
56  * Inode lookup is no longer as critical as it used to be:
57  * most of the lookups are going to be through the dcache.
58  */
59 #define I_HASHBITS	i_hash_shift
60 #define I_HASHMASK	i_hash_mask
61 
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 
65 /*
66  * Each inode can be on two separate lists. One is
67  * the hash list of the inode, used for lookups. The
68  * other linked list is the "type" list:
69  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
70  *  "dirty"  - as "in_use" but also dirty
71  *  "unused" - valid inode, i_count = 0
72  *
73  * A "dirty" list is maintained for each super block,
74  * allowing for low-overhead inode sync() operations.
75  */
76 
77 LIST_HEAD(inode_in_use);
78 LIST_HEAD(inode_unused);
79 static struct hlist_head *inode_hashtable __read_mostly;
80 
81 /*
82  * A simple spinlock to protect the list manipulations.
83  *
84  * NOTE! You also have to own the lock if you change
85  * the i_state of an inode while it is in use..
86  */
87 DEFINE_SPINLOCK(inode_lock);
88 
89 /*
90  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
91  * icache shrinking path, and the umount path.  Without this exclusion,
92  * by the time prune_icache calls iput for the inode whose pages it has
93  * been invalidating, or by the time it calls clear_inode & destroy_inode
94  * from its final dispose_list, the struct super_block they refer to
95  * (for inode->i_sb->s_op) may already have been freed and reused.
96  */
97 static DEFINE_MUTEX(iprune_mutex);
98 
99 /*
100  * Statistics gathering..
101  */
102 struct inodes_stat_t inodes_stat;
103 
104 static struct kmem_cache *inode_cachep __read_mostly;
105 
106 static void wake_up_inode(struct inode *inode)
107 {
108 	/*
109 	 * Prevent speculative execution through spin_unlock(&inode_lock);
110 	 */
111 	smp_mb();
112 	wake_up_bit(&inode->i_state, __I_LOCK);
113 }
114 
115 /**
116  * inode_init_always - perform inode structure intialisation
117  * @sb: superblock inode belongs to
118  * @inode: inode to initialise
119  *
120  * These are initializations that need to be done on every inode
121  * allocation as the fields are not initialised by slab allocation.
122  */
123 struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
124 {
125 	static const struct address_space_operations empty_aops;
126 	static struct inode_operations empty_iops;
127 	static const struct file_operations empty_fops;
128 
129 	struct address_space *const mapping = &inode->i_data;
130 
131 	inode->i_sb = sb;
132 	inode->i_blkbits = sb->s_blocksize_bits;
133 	inode->i_flags = 0;
134 	atomic_set(&inode->i_count, 1);
135 	inode->i_op = &empty_iops;
136 	inode->i_fop = &empty_fops;
137 	inode->i_nlink = 1;
138 	inode->i_uid = 0;
139 	inode->i_gid = 0;
140 	atomic_set(&inode->i_writecount, 0);
141 	inode->i_size = 0;
142 	inode->i_blocks = 0;
143 	inode->i_bytes = 0;
144 	inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 	inode->i_pipe = NULL;
149 	inode->i_bdev = NULL;
150 	inode->i_cdev = NULL;
151 	inode->i_rdev = 0;
152 	inode->dirtied_when = 0;
153 
154 	if (security_inode_alloc(inode))
155 		goto out_free_inode;
156 
157 	/* allocate and initialize an i_integrity */
158 	if (ima_inode_alloc(inode))
159 		goto out_free_security;
160 
161 	spin_lock_init(&inode->i_lock);
162 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
163 
164 	mutex_init(&inode->i_mutex);
165 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
166 
167 	init_rwsem(&inode->i_alloc_sem);
168 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
169 
170 	mapping->a_ops = &empty_aops;
171 	mapping->host = inode;
172 	mapping->flags = 0;
173 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
174 	mapping->assoc_mapping = NULL;
175 	mapping->backing_dev_info = &default_backing_dev_info;
176 	mapping->writeback_index = 0;
177 
178 	/*
179 	 * If the block_device provides a backing_dev_info for client
180 	 * inodes then use that.  Otherwise the inode share the bdev's
181 	 * backing_dev_info.
182 	 */
183 	if (sb->s_bdev) {
184 		struct backing_dev_info *bdi;
185 
186 		bdi = sb->s_bdev->bd_inode_backing_dev_info;
187 		if (!bdi)
188 			bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
189 		mapping->backing_dev_info = bdi;
190 	}
191 	inode->i_private = NULL;
192 	inode->i_mapping = mapping;
193 #ifdef CONFIG_FS_POSIX_ACL
194 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196 
197 #ifdef CONFIG_FSNOTIFY
198 	inode->i_fsnotify_mask = 0;
199 #endif
200 
201 	return inode;
202 
203 out_free_security:
204 	security_inode_free(inode);
205 out_free_inode:
206 	if (inode->i_sb->s_op->destroy_inode)
207 		inode->i_sb->s_op->destroy_inode(inode);
208 	else
209 		kmem_cache_free(inode_cachep, (inode));
210 	return NULL;
211 }
212 EXPORT_SYMBOL(inode_init_always);
213 
214 static struct inode *alloc_inode(struct super_block *sb)
215 {
216 	struct inode *inode;
217 
218 	if (sb->s_op->alloc_inode)
219 		inode = sb->s_op->alloc_inode(sb);
220 	else
221 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
222 
223 	if (inode)
224 		return inode_init_always(sb, inode);
225 	return NULL;
226 }
227 
228 void destroy_inode(struct inode *inode)
229 {
230 	BUG_ON(inode_has_buffers(inode));
231 	ima_inode_free(inode);
232 	security_inode_free(inode);
233 	fsnotify_inode_delete(inode);
234 #ifdef CONFIG_FS_POSIX_ACL
235 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
236 		posix_acl_release(inode->i_acl);
237 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
238 		posix_acl_release(inode->i_default_acl);
239 #endif
240 	if (inode->i_sb->s_op->destroy_inode)
241 		inode->i_sb->s_op->destroy_inode(inode);
242 	else
243 		kmem_cache_free(inode_cachep, (inode));
244 }
245 EXPORT_SYMBOL(destroy_inode);
246 
247 
248 /*
249  * These are initializations that only need to be done
250  * once, because the fields are idempotent across use
251  * of the inode, so let the slab aware of that.
252  */
253 void inode_init_once(struct inode *inode)
254 {
255 	memset(inode, 0, sizeof(*inode));
256 	INIT_HLIST_NODE(&inode->i_hash);
257 	INIT_LIST_HEAD(&inode->i_dentry);
258 	INIT_LIST_HEAD(&inode->i_devices);
259 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
260 	spin_lock_init(&inode->i_data.tree_lock);
261 	spin_lock_init(&inode->i_data.i_mmap_lock);
262 	INIT_LIST_HEAD(&inode->i_data.private_list);
263 	spin_lock_init(&inode->i_data.private_lock);
264 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
265 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
266 	i_size_ordered_init(inode);
267 #ifdef CONFIG_INOTIFY
268 	INIT_LIST_HEAD(&inode->inotify_watches);
269 	mutex_init(&inode->inotify_mutex);
270 #endif
271 #ifdef CONFIG_FSNOTIFY
272 	INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
273 #endif
274 }
275 EXPORT_SYMBOL(inode_init_once);
276 
277 static void init_once(void *foo)
278 {
279 	struct inode *inode = (struct inode *) foo;
280 
281 	inode_init_once(inode);
282 }
283 
284 /*
285  * inode_lock must be held
286  */
287 void __iget(struct inode *inode)
288 {
289 	if (atomic_read(&inode->i_count)) {
290 		atomic_inc(&inode->i_count);
291 		return;
292 	}
293 	atomic_inc(&inode->i_count);
294 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
295 		list_move(&inode->i_list, &inode_in_use);
296 	inodes_stat.nr_unused--;
297 }
298 
299 /**
300  * clear_inode - clear an inode
301  * @inode: inode to clear
302  *
303  * This is called by the filesystem to tell us
304  * that the inode is no longer useful. We just
305  * terminate it with extreme prejudice.
306  */
307 void clear_inode(struct inode *inode)
308 {
309 	might_sleep();
310 	invalidate_inode_buffers(inode);
311 
312 	BUG_ON(inode->i_data.nrpages);
313 	BUG_ON(!(inode->i_state & I_FREEING));
314 	BUG_ON(inode->i_state & I_CLEAR);
315 	inode_sync_wait(inode);
316 	vfs_dq_drop(inode);
317 	if (inode->i_sb->s_op->clear_inode)
318 		inode->i_sb->s_op->clear_inode(inode);
319 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
320 		bd_forget(inode);
321 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
322 		cd_forget(inode);
323 	inode->i_state = I_CLEAR;
324 }
325 EXPORT_SYMBOL(clear_inode);
326 
327 /*
328  * dispose_list - dispose of the contents of a local list
329  * @head: the head of the list to free
330  *
331  * Dispose-list gets a local list with local inodes in it, so it doesn't
332  * need to worry about list corruption and SMP locks.
333  */
334 static void dispose_list(struct list_head *head)
335 {
336 	int nr_disposed = 0;
337 
338 	while (!list_empty(head)) {
339 		struct inode *inode;
340 
341 		inode = list_first_entry(head, struct inode, i_list);
342 		list_del(&inode->i_list);
343 
344 		if (inode->i_data.nrpages)
345 			truncate_inode_pages(&inode->i_data, 0);
346 		clear_inode(inode);
347 
348 		spin_lock(&inode_lock);
349 		hlist_del_init(&inode->i_hash);
350 		list_del_init(&inode->i_sb_list);
351 		spin_unlock(&inode_lock);
352 
353 		wake_up_inode(inode);
354 		destroy_inode(inode);
355 		nr_disposed++;
356 	}
357 	spin_lock(&inode_lock);
358 	inodes_stat.nr_inodes -= nr_disposed;
359 	spin_unlock(&inode_lock);
360 }
361 
362 /*
363  * Invalidate all inodes for a device.
364  */
365 static int invalidate_list(struct list_head *head, struct list_head *dispose)
366 {
367 	struct list_head *next;
368 	int busy = 0, count = 0;
369 
370 	next = head->next;
371 	for (;;) {
372 		struct list_head *tmp = next;
373 		struct inode *inode;
374 
375 		/*
376 		 * We can reschedule here without worrying about the list's
377 		 * consistency because the per-sb list of inodes must not
378 		 * change during umount anymore, and because iprune_mutex keeps
379 		 * shrink_icache_memory() away.
380 		 */
381 		cond_resched_lock(&inode_lock);
382 
383 		next = next->next;
384 		if (tmp == head)
385 			break;
386 		inode = list_entry(tmp, struct inode, i_sb_list);
387 		if (inode->i_state & I_NEW)
388 			continue;
389 		invalidate_inode_buffers(inode);
390 		if (!atomic_read(&inode->i_count)) {
391 			list_move(&inode->i_list, dispose);
392 			WARN_ON(inode->i_state & I_NEW);
393 			inode->i_state |= I_FREEING;
394 			count++;
395 			continue;
396 		}
397 		busy = 1;
398 	}
399 	/* only unused inodes may be cached with i_count zero */
400 	inodes_stat.nr_unused -= count;
401 	return busy;
402 }
403 
404 /**
405  *	invalidate_inodes	- discard the inodes on a device
406  *	@sb: superblock
407  *
408  *	Discard all of the inodes for a given superblock. If the discard
409  *	fails because there are busy inodes then a non zero value is returned.
410  *	If the discard is successful all the inodes have been discarded.
411  */
412 int invalidate_inodes(struct super_block *sb)
413 {
414 	int busy;
415 	LIST_HEAD(throw_away);
416 
417 	mutex_lock(&iprune_mutex);
418 	spin_lock(&inode_lock);
419 	inotify_unmount_inodes(&sb->s_inodes);
420 	fsnotify_unmount_inodes(&sb->s_inodes);
421 	busy = invalidate_list(&sb->s_inodes, &throw_away);
422 	spin_unlock(&inode_lock);
423 
424 	dispose_list(&throw_away);
425 	mutex_unlock(&iprune_mutex);
426 
427 	return busy;
428 }
429 EXPORT_SYMBOL(invalidate_inodes);
430 
431 static int can_unuse(struct inode *inode)
432 {
433 	if (inode->i_state)
434 		return 0;
435 	if (inode_has_buffers(inode))
436 		return 0;
437 	if (atomic_read(&inode->i_count))
438 		return 0;
439 	if (inode->i_data.nrpages)
440 		return 0;
441 	return 1;
442 }
443 
444 /*
445  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
446  * a temporary list and then are freed outside inode_lock by dispose_list().
447  *
448  * Any inodes which are pinned purely because of attached pagecache have their
449  * pagecache removed.  We expect the final iput() on that inode to add it to
450  * the front of the inode_unused list.  So look for it there and if the
451  * inode is still freeable, proceed.  The right inode is found 99.9% of the
452  * time in testing on a 4-way.
453  *
454  * If the inode has metadata buffers attached to mapping->private_list then
455  * try to remove them.
456  */
457 static void prune_icache(int nr_to_scan)
458 {
459 	LIST_HEAD(freeable);
460 	int nr_pruned = 0;
461 	int nr_scanned;
462 	unsigned long reap = 0;
463 
464 	mutex_lock(&iprune_mutex);
465 	spin_lock(&inode_lock);
466 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
467 		struct inode *inode;
468 
469 		if (list_empty(&inode_unused))
470 			break;
471 
472 		inode = list_entry(inode_unused.prev, struct inode, i_list);
473 
474 		if (inode->i_state || atomic_read(&inode->i_count)) {
475 			list_move(&inode->i_list, &inode_unused);
476 			continue;
477 		}
478 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
479 			__iget(inode);
480 			spin_unlock(&inode_lock);
481 			if (remove_inode_buffers(inode))
482 				reap += invalidate_mapping_pages(&inode->i_data,
483 								0, -1);
484 			iput(inode);
485 			spin_lock(&inode_lock);
486 
487 			if (inode != list_entry(inode_unused.next,
488 						struct inode, i_list))
489 				continue;	/* wrong inode or list_empty */
490 			if (!can_unuse(inode))
491 				continue;
492 		}
493 		list_move(&inode->i_list, &freeable);
494 		WARN_ON(inode->i_state & I_NEW);
495 		inode->i_state |= I_FREEING;
496 		nr_pruned++;
497 	}
498 	inodes_stat.nr_unused -= nr_pruned;
499 	if (current_is_kswapd())
500 		__count_vm_events(KSWAPD_INODESTEAL, reap);
501 	else
502 		__count_vm_events(PGINODESTEAL, reap);
503 	spin_unlock(&inode_lock);
504 
505 	dispose_list(&freeable);
506 	mutex_unlock(&iprune_mutex);
507 }
508 
509 /*
510  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
511  * "unused" means that no dentries are referring to the inodes: the files are
512  * not open and the dcache references to those inodes have already been
513  * reclaimed.
514  *
515  * This function is passed the number of inodes to scan, and it returns the
516  * total number of remaining possibly-reclaimable inodes.
517  */
518 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
519 {
520 	if (nr) {
521 		/*
522 		 * Nasty deadlock avoidance.  We may hold various FS locks,
523 		 * and we don't want to recurse into the FS that called us
524 		 * in clear_inode() and friends..
525 		 */
526 		if (!(gfp_mask & __GFP_FS))
527 			return -1;
528 		prune_icache(nr);
529 	}
530 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
531 }
532 
533 static struct shrinker icache_shrinker = {
534 	.shrink = shrink_icache_memory,
535 	.seeks = DEFAULT_SEEKS,
536 };
537 
538 static void __wait_on_freeing_inode(struct inode *inode);
539 /*
540  * Called with the inode lock held.
541  * NOTE: we are not increasing the inode-refcount, you must call __iget()
542  * by hand after calling find_inode now! This simplifies iunique and won't
543  * add any additional branch in the common code.
544  */
545 static struct inode *find_inode(struct super_block *sb,
546 				struct hlist_head *head,
547 				int (*test)(struct inode *, void *),
548 				void *data)
549 {
550 	struct hlist_node *node;
551 	struct inode *inode = NULL;
552 
553 repeat:
554 	hlist_for_each_entry(inode, node, head, i_hash) {
555 		if (inode->i_sb != sb)
556 			continue;
557 		if (!test(inode, data))
558 			continue;
559 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
560 			__wait_on_freeing_inode(inode);
561 			goto repeat;
562 		}
563 		break;
564 	}
565 	return node ? inode : NULL;
566 }
567 
568 /*
569  * find_inode_fast is the fast path version of find_inode, see the comment at
570  * iget_locked for details.
571  */
572 static struct inode *find_inode_fast(struct super_block *sb,
573 				struct hlist_head *head, unsigned long ino)
574 {
575 	struct hlist_node *node;
576 	struct inode *inode = NULL;
577 
578 repeat:
579 	hlist_for_each_entry(inode, node, head, i_hash) {
580 		if (inode->i_ino != ino)
581 			continue;
582 		if (inode->i_sb != sb)
583 			continue;
584 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
585 			__wait_on_freeing_inode(inode);
586 			goto repeat;
587 		}
588 		break;
589 	}
590 	return node ? inode : NULL;
591 }
592 
593 static unsigned long hash(struct super_block *sb, unsigned long hashval)
594 {
595 	unsigned long tmp;
596 
597 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
598 			L1_CACHE_BYTES;
599 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
600 	return tmp & I_HASHMASK;
601 }
602 
603 static inline void
604 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
605 			struct inode *inode)
606 {
607 	inodes_stat.nr_inodes++;
608 	list_add(&inode->i_list, &inode_in_use);
609 	list_add(&inode->i_sb_list, &sb->s_inodes);
610 	if (head)
611 		hlist_add_head(&inode->i_hash, head);
612 }
613 
614 /**
615  * inode_add_to_lists - add a new inode to relevant lists
616  * @sb: superblock inode belongs to
617  * @inode: inode to mark in use
618  *
619  * When an inode is allocated it needs to be accounted for, added to the in use
620  * list, the owning superblock and the inode hash. This needs to be done under
621  * the inode_lock, so export a function to do this rather than the inode lock
622  * itself. We calculate the hash list to add to here so it is all internal
623  * which requires the caller to have already set up the inode number in the
624  * inode to add.
625  */
626 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
627 {
628 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
629 
630 	spin_lock(&inode_lock);
631 	__inode_add_to_lists(sb, head, inode);
632 	spin_unlock(&inode_lock);
633 }
634 EXPORT_SYMBOL_GPL(inode_add_to_lists);
635 
636 /**
637  *	new_inode 	- obtain an inode
638  *	@sb: superblock
639  *
640  *	Allocates a new inode for given superblock. The default gfp_mask
641  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
642  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
643  *	for the page cache are not reclaimable or migratable,
644  *	mapping_set_gfp_mask() must be called with suitable flags on the
645  *	newly created inode's mapping
646  *
647  */
648 struct inode *new_inode(struct super_block *sb)
649 {
650 	/*
651 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
652 	 * error if st_ino won't fit in target struct field. Use 32bit counter
653 	 * here to attempt to avoid that.
654 	 */
655 	static unsigned int last_ino;
656 	struct inode *inode;
657 
658 	spin_lock_prefetch(&inode_lock);
659 
660 	inode = alloc_inode(sb);
661 	if (inode) {
662 		spin_lock(&inode_lock);
663 		__inode_add_to_lists(sb, NULL, inode);
664 		inode->i_ino = ++last_ino;
665 		inode->i_state = 0;
666 		spin_unlock(&inode_lock);
667 	}
668 	return inode;
669 }
670 EXPORT_SYMBOL(new_inode);
671 
672 void unlock_new_inode(struct inode *inode)
673 {
674 #ifdef CONFIG_DEBUG_LOCK_ALLOC
675 	if (inode->i_mode & S_IFDIR) {
676 		struct file_system_type *type = inode->i_sb->s_type;
677 
678 		/* Set new key only if filesystem hasn't already changed it */
679 		if (!lockdep_match_class(&inode->i_mutex,
680 		    &type->i_mutex_key)) {
681 			/*
682 			 * ensure nobody is actually holding i_mutex
683 			 */
684 			mutex_destroy(&inode->i_mutex);
685 			mutex_init(&inode->i_mutex);
686 			lockdep_set_class(&inode->i_mutex,
687 					  &type->i_mutex_dir_key);
688 		}
689 	}
690 #endif
691 	/*
692 	 * This is special!  We do not need the spinlock
693 	 * when clearing I_LOCK, because we're guaranteed
694 	 * that nobody else tries to do anything about the
695 	 * state of the inode when it is locked, as we
696 	 * just created it (so there can be no old holders
697 	 * that haven't tested I_LOCK).
698 	 */
699 	WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
700 	inode->i_state &= ~(I_LOCK|I_NEW);
701 	wake_up_inode(inode);
702 }
703 EXPORT_SYMBOL(unlock_new_inode);
704 
705 /*
706  * This is called without the inode lock held.. Be careful.
707  *
708  * We no longer cache the sb_flags in i_flags - see fs.h
709  *	-- rmk@arm.uk.linux.org
710  */
711 static struct inode *get_new_inode(struct super_block *sb,
712 				struct hlist_head *head,
713 				int (*test)(struct inode *, void *),
714 				int (*set)(struct inode *, void *),
715 				void *data)
716 {
717 	struct inode *inode;
718 
719 	inode = alloc_inode(sb);
720 	if (inode) {
721 		struct inode *old;
722 
723 		spin_lock(&inode_lock);
724 		/* We released the lock, so.. */
725 		old = find_inode(sb, head, test, data);
726 		if (!old) {
727 			if (set(inode, data))
728 				goto set_failed;
729 
730 			__inode_add_to_lists(sb, head, inode);
731 			inode->i_state = I_LOCK|I_NEW;
732 			spin_unlock(&inode_lock);
733 
734 			/* Return the locked inode with I_NEW set, the
735 			 * caller is responsible for filling in the contents
736 			 */
737 			return inode;
738 		}
739 
740 		/*
741 		 * Uhhuh, somebody else created the same inode under
742 		 * us. Use the old inode instead of the one we just
743 		 * allocated.
744 		 */
745 		__iget(old);
746 		spin_unlock(&inode_lock);
747 		destroy_inode(inode);
748 		inode = old;
749 		wait_on_inode(inode);
750 	}
751 	return inode;
752 
753 set_failed:
754 	spin_unlock(&inode_lock);
755 	destroy_inode(inode);
756 	return NULL;
757 }
758 
759 /*
760  * get_new_inode_fast is the fast path version of get_new_inode, see the
761  * comment at iget_locked for details.
762  */
763 static struct inode *get_new_inode_fast(struct super_block *sb,
764 				struct hlist_head *head, unsigned long ino)
765 {
766 	struct inode *inode;
767 
768 	inode = alloc_inode(sb);
769 	if (inode) {
770 		struct inode *old;
771 
772 		spin_lock(&inode_lock);
773 		/* We released the lock, so.. */
774 		old = find_inode_fast(sb, head, ino);
775 		if (!old) {
776 			inode->i_ino = ino;
777 			__inode_add_to_lists(sb, head, inode);
778 			inode->i_state = I_LOCK|I_NEW;
779 			spin_unlock(&inode_lock);
780 
781 			/* Return the locked inode with I_NEW set, the
782 			 * caller is responsible for filling in the contents
783 			 */
784 			return inode;
785 		}
786 
787 		/*
788 		 * Uhhuh, somebody else created the same inode under
789 		 * us. Use the old inode instead of the one we just
790 		 * allocated.
791 		 */
792 		__iget(old);
793 		spin_unlock(&inode_lock);
794 		destroy_inode(inode);
795 		inode = old;
796 		wait_on_inode(inode);
797 	}
798 	return inode;
799 }
800 
801 /**
802  *	iunique - get a unique inode number
803  *	@sb: superblock
804  *	@max_reserved: highest reserved inode number
805  *
806  *	Obtain an inode number that is unique on the system for a given
807  *	superblock. This is used by file systems that have no natural
808  *	permanent inode numbering system. An inode number is returned that
809  *	is higher than the reserved limit but unique.
810  *
811  *	BUGS:
812  *	With a large number of inodes live on the file system this function
813  *	currently becomes quite slow.
814  */
815 ino_t iunique(struct super_block *sb, ino_t max_reserved)
816 {
817 	/*
818 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
819 	 * error if st_ino won't fit in target struct field. Use 32bit counter
820 	 * here to attempt to avoid that.
821 	 */
822 	static unsigned int counter;
823 	struct inode *inode;
824 	struct hlist_head *head;
825 	ino_t res;
826 
827 	spin_lock(&inode_lock);
828 	do {
829 		if (counter <= max_reserved)
830 			counter = max_reserved + 1;
831 		res = counter++;
832 		head = inode_hashtable + hash(sb, res);
833 		inode = find_inode_fast(sb, head, res);
834 	} while (inode != NULL);
835 	spin_unlock(&inode_lock);
836 
837 	return res;
838 }
839 EXPORT_SYMBOL(iunique);
840 
841 struct inode *igrab(struct inode *inode)
842 {
843 	spin_lock(&inode_lock);
844 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
845 		__iget(inode);
846 	else
847 		/*
848 		 * Handle the case where s_op->clear_inode is not been
849 		 * called yet, and somebody is calling igrab
850 		 * while the inode is getting freed.
851 		 */
852 		inode = NULL;
853 	spin_unlock(&inode_lock);
854 	return inode;
855 }
856 EXPORT_SYMBOL(igrab);
857 
858 /**
859  * ifind - internal function, you want ilookup5() or iget5().
860  * @sb:		super block of file system to search
861  * @head:       the head of the list to search
862  * @test:	callback used for comparisons between inodes
863  * @data:	opaque data pointer to pass to @test
864  * @wait:	if true wait for the inode to be unlocked, if false do not
865  *
866  * ifind() searches for the inode specified by @data in the inode
867  * cache. This is a generalized version of ifind_fast() for file systems where
868  * the inode number is not sufficient for unique identification of an inode.
869  *
870  * If the inode is in the cache, the inode is returned with an incremented
871  * reference count.
872  *
873  * Otherwise NULL is returned.
874  *
875  * Note, @test is called with the inode_lock held, so can't sleep.
876  */
877 static struct inode *ifind(struct super_block *sb,
878 		struct hlist_head *head, int (*test)(struct inode *, void *),
879 		void *data, const int wait)
880 {
881 	struct inode *inode;
882 
883 	spin_lock(&inode_lock);
884 	inode = find_inode(sb, head, test, data);
885 	if (inode) {
886 		__iget(inode);
887 		spin_unlock(&inode_lock);
888 		if (likely(wait))
889 			wait_on_inode(inode);
890 		return inode;
891 	}
892 	spin_unlock(&inode_lock);
893 	return NULL;
894 }
895 
896 /**
897  * ifind_fast - internal function, you want ilookup() or iget().
898  * @sb:		super block of file system to search
899  * @head:       head of the list to search
900  * @ino:	inode number to search for
901  *
902  * ifind_fast() searches for the inode @ino in the inode cache. This is for
903  * file systems where the inode number is sufficient for unique identification
904  * of an inode.
905  *
906  * If the inode is in the cache, the inode is returned with an incremented
907  * reference count.
908  *
909  * Otherwise NULL is returned.
910  */
911 static struct inode *ifind_fast(struct super_block *sb,
912 		struct hlist_head *head, unsigned long ino)
913 {
914 	struct inode *inode;
915 
916 	spin_lock(&inode_lock);
917 	inode = find_inode_fast(sb, head, ino);
918 	if (inode) {
919 		__iget(inode);
920 		spin_unlock(&inode_lock);
921 		wait_on_inode(inode);
922 		return inode;
923 	}
924 	spin_unlock(&inode_lock);
925 	return NULL;
926 }
927 
928 /**
929  * ilookup5_nowait - search for an inode in the inode cache
930  * @sb:		super block of file system to search
931  * @hashval:	hash value (usually inode number) to search for
932  * @test:	callback used for comparisons between inodes
933  * @data:	opaque data pointer to pass to @test
934  *
935  * ilookup5() uses ifind() to search for the inode specified by @hashval and
936  * @data in the inode cache. This is a generalized version of ilookup() for
937  * file systems where the inode number is not sufficient for unique
938  * identification of an inode.
939  *
940  * If the inode is in the cache, the inode is returned with an incremented
941  * reference count.  Note, the inode lock is not waited upon so you have to be
942  * very careful what you do with the returned inode.  You probably should be
943  * using ilookup5() instead.
944  *
945  * Otherwise NULL is returned.
946  *
947  * Note, @test is called with the inode_lock held, so can't sleep.
948  */
949 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
950 		int (*test)(struct inode *, void *), void *data)
951 {
952 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
953 
954 	return ifind(sb, head, test, data, 0);
955 }
956 EXPORT_SYMBOL(ilookup5_nowait);
957 
958 /**
959  * ilookup5 - search for an inode in the inode cache
960  * @sb:		super block of file system to search
961  * @hashval:	hash value (usually inode number) to search for
962  * @test:	callback used for comparisons between inodes
963  * @data:	opaque data pointer to pass to @test
964  *
965  * ilookup5() uses ifind() to search for the inode specified by @hashval and
966  * @data in the inode cache. This is a generalized version of ilookup() for
967  * file systems where the inode number is not sufficient for unique
968  * identification of an inode.
969  *
970  * If the inode is in the cache, the inode lock is waited upon and the inode is
971  * returned with an incremented reference count.
972  *
973  * Otherwise NULL is returned.
974  *
975  * Note, @test is called with the inode_lock held, so can't sleep.
976  */
977 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
978 		int (*test)(struct inode *, void *), void *data)
979 {
980 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
981 
982 	return ifind(sb, head, test, data, 1);
983 }
984 EXPORT_SYMBOL(ilookup5);
985 
986 /**
987  * ilookup - search for an inode in the inode cache
988  * @sb:		super block of file system to search
989  * @ino:	inode number to search for
990  *
991  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
992  * This is for file systems where the inode number is sufficient for unique
993  * identification of an inode.
994  *
995  * If the inode is in the cache, the inode is returned with an incremented
996  * reference count.
997  *
998  * Otherwise NULL is returned.
999  */
1000 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1001 {
1002 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1003 
1004 	return ifind_fast(sb, head, ino);
1005 }
1006 EXPORT_SYMBOL(ilookup);
1007 
1008 /**
1009  * iget5_locked - obtain an inode from a mounted file system
1010  * @sb:		super block of file system
1011  * @hashval:	hash value (usually inode number) to get
1012  * @test:	callback used for comparisons between inodes
1013  * @set:	callback used to initialize a new struct inode
1014  * @data:	opaque data pointer to pass to @test and @set
1015  *
1016  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1017  * and @data in the inode cache and if present it is returned with an increased
1018  * reference count. This is a generalized version of iget_locked() for file
1019  * systems where the inode number is not sufficient for unique identification
1020  * of an inode.
1021  *
1022  * If the inode is not in cache, get_new_inode() is called to allocate a new
1023  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1024  * file system gets to fill it in before unlocking it via unlock_new_inode().
1025  *
1026  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1027  */
1028 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1029 		int (*test)(struct inode *, void *),
1030 		int (*set)(struct inode *, void *), void *data)
1031 {
1032 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1033 	struct inode *inode;
1034 
1035 	inode = ifind(sb, head, test, data, 1);
1036 	if (inode)
1037 		return inode;
1038 	/*
1039 	 * get_new_inode() will do the right thing, re-trying the search
1040 	 * in case it had to block at any point.
1041 	 */
1042 	return get_new_inode(sb, head, test, set, data);
1043 }
1044 EXPORT_SYMBOL(iget5_locked);
1045 
1046 /**
1047  * iget_locked - obtain an inode from a mounted file system
1048  * @sb:		super block of file system
1049  * @ino:	inode number to get
1050  *
1051  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1052  * the inode cache and if present it is returned with an increased reference
1053  * count. This is for file systems where the inode number is sufficient for
1054  * unique identification of an inode.
1055  *
1056  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1057  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1058  * The file system gets to fill it in before unlocking it via
1059  * unlock_new_inode().
1060  */
1061 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1062 {
1063 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1064 	struct inode *inode;
1065 
1066 	inode = ifind_fast(sb, head, ino);
1067 	if (inode)
1068 		return inode;
1069 	/*
1070 	 * get_new_inode_fast() will do the right thing, re-trying the search
1071 	 * in case it had to block at any point.
1072 	 */
1073 	return get_new_inode_fast(sb, head, ino);
1074 }
1075 EXPORT_SYMBOL(iget_locked);
1076 
1077 int insert_inode_locked(struct inode *inode)
1078 {
1079 	struct super_block *sb = inode->i_sb;
1080 	ino_t ino = inode->i_ino;
1081 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1082 
1083 	inode->i_state |= I_LOCK|I_NEW;
1084 	while (1) {
1085 		struct hlist_node *node;
1086 		struct inode *old = NULL;
1087 		spin_lock(&inode_lock);
1088 		hlist_for_each_entry(old, node, head, i_hash) {
1089 			if (old->i_ino != ino)
1090 				continue;
1091 			if (old->i_sb != sb)
1092 				continue;
1093 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1094 				continue;
1095 			break;
1096 		}
1097 		if (likely(!node)) {
1098 			hlist_add_head(&inode->i_hash, head);
1099 			spin_unlock(&inode_lock);
1100 			return 0;
1101 		}
1102 		__iget(old);
1103 		spin_unlock(&inode_lock);
1104 		wait_on_inode(old);
1105 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1106 			iput(old);
1107 			return -EBUSY;
1108 		}
1109 		iput(old);
1110 	}
1111 }
1112 EXPORT_SYMBOL(insert_inode_locked);
1113 
1114 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1115 		int (*test)(struct inode *, void *), void *data)
1116 {
1117 	struct super_block *sb = inode->i_sb;
1118 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1119 
1120 	inode->i_state |= I_LOCK|I_NEW;
1121 
1122 	while (1) {
1123 		struct hlist_node *node;
1124 		struct inode *old = NULL;
1125 
1126 		spin_lock(&inode_lock);
1127 		hlist_for_each_entry(old, node, head, i_hash) {
1128 			if (old->i_sb != sb)
1129 				continue;
1130 			if (!test(old, data))
1131 				continue;
1132 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1133 				continue;
1134 			break;
1135 		}
1136 		if (likely(!node)) {
1137 			hlist_add_head(&inode->i_hash, head);
1138 			spin_unlock(&inode_lock);
1139 			return 0;
1140 		}
1141 		__iget(old);
1142 		spin_unlock(&inode_lock);
1143 		wait_on_inode(old);
1144 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1145 			iput(old);
1146 			return -EBUSY;
1147 		}
1148 		iput(old);
1149 	}
1150 }
1151 EXPORT_SYMBOL(insert_inode_locked4);
1152 
1153 /**
1154  *	__insert_inode_hash - hash an inode
1155  *	@inode: unhashed inode
1156  *	@hashval: unsigned long value used to locate this object in the
1157  *		inode_hashtable.
1158  *
1159  *	Add an inode to the inode hash for this superblock.
1160  */
1161 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1162 {
1163 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1164 	spin_lock(&inode_lock);
1165 	hlist_add_head(&inode->i_hash, head);
1166 	spin_unlock(&inode_lock);
1167 }
1168 EXPORT_SYMBOL(__insert_inode_hash);
1169 
1170 /**
1171  *	remove_inode_hash - remove an inode from the hash
1172  *	@inode: inode to unhash
1173  *
1174  *	Remove an inode from the superblock.
1175  */
1176 void remove_inode_hash(struct inode *inode)
1177 {
1178 	spin_lock(&inode_lock);
1179 	hlist_del_init(&inode->i_hash);
1180 	spin_unlock(&inode_lock);
1181 }
1182 EXPORT_SYMBOL(remove_inode_hash);
1183 
1184 /*
1185  * Tell the filesystem that this inode is no longer of any interest and should
1186  * be completely destroyed.
1187  *
1188  * We leave the inode in the inode hash table until *after* the filesystem's
1189  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1190  * instigate) will always find up-to-date information either in the hash or on
1191  * disk.
1192  *
1193  * I_FREEING is set so that no-one will take a new reference to the inode while
1194  * it is being deleted.
1195  */
1196 void generic_delete_inode(struct inode *inode)
1197 {
1198 	const struct super_operations *op = inode->i_sb->s_op;
1199 
1200 	list_del_init(&inode->i_list);
1201 	list_del_init(&inode->i_sb_list);
1202 	WARN_ON(inode->i_state & I_NEW);
1203 	inode->i_state |= I_FREEING;
1204 	inodes_stat.nr_inodes--;
1205 	spin_unlock(&inode_lock);
1206 
1207 	security_inode_delete(inode);
1208 
1209 	if (op->delete_inode) {
1210 		void (*delete)(struct inode *) = op->delete_inode;
1211 		if (!is_bad_inode(inode))
1212 			vfs_dq_init(inode);
1213 		/* Filesystems implementing their own
1214 		 * s_op->delete_inode are required to call
1215 		 * truncate_inode_pages and clear_inode()
1216 		 * internally */
1217 		delete(inode);
1218 	} else {
1219 		truncate_inode_pages(&inode->i_data, 0);
1220 		clear_inode(inode);
1221 	}
1222 	spin_lock(&inode_lock);
1223 	hlist_del_init(&inode->i_hash);
1224 	spin_unlock(&inode_lock);
1225 	wake_up_inode(inode);
1226 	BUG_ON(inode->i_state != I_CLEAR);
1227 	destroy_inode(inode);
1228 }
1229 EXPORT_SYMBOL(generic_delete_inode);
1230 
1231 static void generic_forget_inode(struct inode *inode)
1232 {
1233 	struct super_block *sb = inode->i_sb;
1234 
1235 	if (!hlist_unhashed(&inode->i_hash)) {
1236 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1237 			list_move(&inode->i_list, &inode_unused);
1238 		inodes_stat.nr_unused++;
1239 		if (sb->s_flags & MS_ACTIVE) {
1240 			spin_unlock(&inode_lock);
1241 			return;
1242 		}
1243 		WARN_ON(inode->i_state & I_NEW);
1244 		inode->i_state |= I_WILL_FREE;
1245 		spin_unlock(&inode_lock);
1246 		write_inode_now(inode, 1);
1247 		spin_lock(&inode_lock);
1248 		WARN_ON(inode->i_state & I_NEW);
1249 		inode->i_state &= ~I_WILL_FREE;
1250 		inodes_stat.nr_unused--;
1251 		hlist_del_init(&inode->i_hash);
1252 	}
1253 	list_del_init(&inode->i_list);
1254 	list_del_init(&inode->i_sb_list);
1255 	WARN_ON(inode->i_state & I_NEW);
1256 	inode->i_state |= I_FREEING;
1257 	inodes_stat.nr_inodes--;
1258 	spin_unlock(&inode_lock);
1259 	if (inode->i_data.nrpages)
1260 		truncate_inode_pages(&inode->i_data, 0);
1261 	clear_inode(inode);
1262 	wake_up_inode(inode);
1263 	destroy_inode(inode);
1264 }
1265 
1266 /*
1267  * Normal UNIX filesystem behaviour: delete the
1268  * inode when the usage count drops to zero, and
1269  * i_nlink is zero.
1270  */
1271 void generic_drop_inode(struct inode *inode)
1272 {
1273 	if (!inode->i_nlink)
1274 		generic_delete_inode(inode);
1275 	else
1276 		generic_forget_inode(inode);
1277 }
1278 EXPORT_SYMBOL_GPL(generic_drop_inode);
1279 
1280 /*
1281  * Called when we're dropping the last reference
1282  * to an inode.
1283  *
1284  * Call the FS "drop()" function, defaulting to
1285  * the legacy UNIX filesystem behaviour..
1286  *
1287  * NOTE! NOTE! NOTE! We're called with the inode lock
1288  * held, and the drop function is supposed to release
1289  * the lock!
1290  */
1291 static inline void iput_final(struct inode *inode)
1292 {
1293 	const struct super_operations *op = inode->i_sb->s_op;
1294 	void (*drop)(struct inode *) = generic_drop_inode;
1295 
1296 	if (op && op->drop_inode)
1297 		drop = op->drop_inode;
1298 	drop(inode);
1299 }
1300 
1301 /**
1302  *	iput	- put an inode
1303  *	@inode: inode to put
1304  *
1305  *	Puts an inode, dropping its usage count. If the inode use count hits
1306  *	zero, the inode is then freed and may also be destroyed.
1307  *
1308  *	Consequently, iput() can sleep.
1309  */
1310 void iput(struct inode *inode)
1311 {
1312 	if (inode) {
1313 		BUG_ON(inode->i_state == I_CLEAR);
1314 
1315 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1316 			iput_final(inode);
1317 	}
1318 }
1319 EXPORT_SYMBOL(iput);
1320 
1321 /**
1322  *	bmap	- find a block number in a file
1323  *	@inode: inode of file
1324  *	@block: block to find
1325  *
1326  *	Returns the block number on the device holding the inode that
1327  *	is the disk block number for the block of the file requested.
1328  *	That is, asked for block 4 of inode 1 the function will return the
1329  *	disk block relative to the disk start that holds that block of the
1330  *	file.
1331  */
1332 sector_t bmap(struct inode *inode, sector_t block)
1333 {
1334 	sector_t res = 0;
1335 	if (inode->i_mapping->a_ops->bmap)
1336 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1337 	return res;
1338 }
1339 EXPORT_SYMBOL(bmap);
1340 
1341 /*
1342  * With relative atime, only update atime if the previous atime is
1343  * earlier than either the ctime or mtime or if at least a day has
1344  * passed since the last atime update.
1345  */
1346 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1347 			     struct timespec now)
1348 {
1349 
1350 	if (!(mnt->mnt_flags & MNT_RELATIME))
1351 		return 1;
1352 	/*
1353 	 * Is mtime younger than atime? If yes, update atime:
1354 	 */
1355 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1356 		return 1;
1357 	/*
1358 	 * Is ctime younger than atime? If yes, update atime:
1359 	 */
1360 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1361 		return 1;
1362 
1363 	/*
1364 	 * Is the previous atime value older than a day? If yes,
1365 	 * update atime:
1366 	 */
1367 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1368 		return 1;
1369 	/*
1370 	 * Good, we can skip the atime update:
1371 	 */
1372 	return 0;
1373 }
1374 
1375 /**
1376  *	touch_atime	-	update the access time
1377  *	@mnt: mount the inode is accessed on
1378  *	@dentry: dentry accessed
1379  *
1380  *	Update the accessed time on an inode and mark it for writeback.
1381  *	This function automatically handles read only file systems and media,
1382  *	as well as the "noatime" flag and inode specific "noatime" markers.
1383  */
1384 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1385 {
1386 	struct inode *inode = dentry->d_inode;
1387 	struct timespec now;
1388 
1389 	if (mnt_want_write(mnt))
1390 		return;
1391 	if (inode->i_flags & S_NOATIME)
1392 		goto out;
1393 	if (IS_NOATIME(inode))
1394 		goto out;
1395 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1396 		goto out;
1397 
1398 	if (mnt->mnt_flags & MNT_NOATIME)
1399 		goto out;
1400 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1401 		goto out;
1402 
1403 	now = current_fs_time(inode->i_sb);
1404 
1405 	if (!relatime_need_update(mnt, inode, now))
1406 		goto out;
1407 
1408 	if (timespec_equal(&inode->i_atime, &now))
1409 		goto out;
1410 
1411 	inode->i_atime = now;
1412 	mark_inode_dirty_sync(inode);
1413 out:
1414 	mnt_drop_write(mnt);
1415 }
1416 EXPORT_SYMBOL(touch_atime);
1417 
1418 /**
1419  *	file_update_time	-	update mtime and ctime time
1420  *	@file: file accessed
1421  *
1422  *	Update the mtime and ctime members of an inode and mark the inode
1423  *	for writeback.  Note that this function is meant exclusively for
1424  *	usage in the file write path of filesystems, and filesystems may
1425  *	choose to explicitly ignore update via this function with the
1426  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1427  *	timestamps are handled by the server.
1428  */
1429 
1430 void file_update_time(struct file *file)
1431 {
1432 	struct inode *inode = file->f_path.dentry->d_inode;
1433 	struct timespec now;
1434 	int sync_it = 0;
1435 	int err;
1436 
1437 	if (IS_NOCMTIME(inode))
1438 		return;
1439 
1440 	err = mnt_want_write_file(file);
1441 	if (err)
1442 		return;
1443 
1444 	now = current_fs_time(inode->i_sb);
1445 	if (!timespec_equal(&inode->i_mtime, &now)) {
1446 		inode->i_mtime = now;
1447 		sync_it = 1;
1448 	}
1449 
1450 	if (!timespec_equal(&inode->i_ctime, &now)) {
1451 		inode->i_ctime = now;
1452 		sync_it = 1;
1453 	}
1454 
1455 	if (IS_I_VERSION(inode)) {
1456 		inode_inc_iversion(inode);
1457 		sync_it = 1;
1458 	}
1459 
1460 	if (sync_it)
1461 		mark_inode_dirty_sync(inode);
1462 	mnt_drop_write(file->f_path.mnt);
1463 }
1464 EXPORT_SYMBOL(file_update_time);
1465 
1466 int inode_needs_sync(struct inode *inode)
1467 {
1468 	if (IS_SYNC(inode))
1469 		return 1;
1470 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1471 		return 1;
1472 	return 0;
1473 }
1474 EXPORT_SYMBOL(inode_needs_sync);
1475 
1476 int inode_wait(void *word)
1477 {
1478 	schedule();
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL(inode_wait);
1482 
1483 /*
1484  * If we try to find an inode in the inode hash while it is being
1485  * deleted, we have to wait until the filesystem completes its
1486  * deletion before reporting that it isn't found.  This function waits
1487  * until the deletion _might_ have completed.  Callers are responsible
1488  * to recheck inode state.
1489  *
1490  * It doesn't matter if I_LOCK is not set initially, a call to
1491  * wake_up_inode() after removing from the hash list will DTRT.
1492  *
1493  * This is called with inode_lock held.
1494  */
1495 static void __wait_on_freeing_inode(struct inode *inode)
1496 {
1497 	wait_queue_head_t *wq;
1498 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1499 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1500 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1501 	spin_unlock(&inode_lock);
1502 	schedule();
1503 	finish_wait(wq, &wait.wait);
1504 	spin_lock(&inode_lock);
1505 }
1506 
1507 static __initdata unsigned long ihash_entries;
1508 static int __init set_ihash_entries(char *str)
1509 {
1510 	if (!str)
1511 		return 0;
1512 	ihash_entries = simple_strtoul(str, &str, 0);
1513 	return 1;
1514 }
1515 __setup("ihash_entries=", set_ihash_entries);
1516 
1517 /*
1518  * Initialize the waitqueues and inode hash table.
1519  */
1520 void __init inode_init_early(void)
1521 {
1522 	int loop;
1523 
1524 	/* If hashes are distributed across NUMA nodes, defer
1525 	 * hash allocation until vmalloc space is available.
1526 	 */
1527 	if (hashdist)
1528 		return;
1529 
1530 	inode_hashtable =
1531 		alloc_large_system_hash("Inode-cache",
1532 					sizeof(struct hlist_head),
1533 					ihash_entries,
1534 					14,
1535 					HASH_EARLY,
1536 					&i_hash_shift,
1537 					&i_hash_mask,
1538 					0);
1539 
1540 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1541 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1542 }
1543 
1544 void __init inode_init(void)
1545 {
1546 	int loop;
1547 
1548 	/* inode slab cache */
1549 	inode_cachep = kmem_cache_create("inode_cache",
1550 					 sizeof(struct inode),
1551 					 0,
1552 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1553 					 SLAB_MEM_SPREAD),
1554 					 init_once);
1555 	register_shrinker(&icache_shrinker);
1556 
1557 	/* Hash may have been set up in inode_init_early */
1558 	if (!hashdist)
1559 		return;
1560 
1561 	inode_hashtable =
1562 		alloc_large_system_hash("Inode-cache",
1563 					sizeof(struct hlist_head),
1564 					ihash_entries,
1565 					14,
1566 					0,
1567 					&i_hash_shift,
1568 					&i_hash_mask,
1569 					0);
1570 
1571 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1572 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1573 }
1574 
1575 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1576 {
1577 	inode->i_mode = mode;
1578 	if (S_ISCHR(mode)) {
1579 		inode->i_fop = &def_chr_fops;
1580 		inode->i_rdev = rdev;
1581 	} else if (S_ISBLK(mode)) {
1582 		inode->i_fop = &def_blk_fops;
1583 		inode->i_rdev = rdev;
1584 	} else if (S_ISFIFO(mode))
1585 		inode->i_fop = &def_fifo_fops;
1586 	else if (S_ISSOCK(mode))
1587 		inode->i_fop = &bad_sock_fops;
1588 	else
1589 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1590 		       mode);
1591 }
1592 EXPORT_SYMBOL(init_special_inode);
1593