1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/ima.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mount.h> 27 #include <linux/async.h> 28 #include <linux/posix_acl.h> 29 30 /* 31 * This is needed for the following functions: 32 * - inode_has_buffers 33 * - invalidate_inode_buffers 34 * - invalidate_bdev 35 * 36 * FIXME: remove all knowledge of the buffer layer from this file 37 */ 38 #include <linux/buffer_head.h> 39 40 /* 41 * New inode.c implementation. 42 * 43 * This implementation has the basic premise of trying 44 * to be extremely low-overhead and SMP-safe, yet be 45 * simple enough to be "obviously correct". 46 * 47 * Famous last words. 48 */ 49 50 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 51 52 /* #define INODE_PARANOIA 1 */ 53 /* #define INODE_DEBUG 1 */ 54 55 /* 56 * Inode lookup is no longer as critical as it used to be: 57 * most of the lookups are going to be through the dcache. 58 */ 59 #define I_HASHBITS i_hash_shift 60 #define I_HASHMASK i_hash_mask 61 62 static unsigned int i_hash_mask __read_mostly; 63 static unsigned int i_hash_shift __read_mostly; 64 65 /* 66 * Each inode can be on two separate lists. One is 67 * the hash list of the inode, used for lookups. The 68 * other linked list is the "type" list: 69 * "in_use" - valid inode, i_count > 0, i_nlink > 0 70 * "dirty" - as "in_use" but also dirty 71 * "unused" - valid inode, i_count = 0 72 * 73 * A "dirty" list is maintained for each super block, 74 * allowing for low-overhead inode sync() operations. 75 */ 76 77 LIST_HEAD(inode_in_use); 78 LIST_HEAD(inode_unused); 79 static struct hlist_head *inode_hashtable __read_mostly; 80 81 /* 82 * A simple spinlock to protect the list manipulations. 83 * 84 * NOTE! You also have to own the lock if you change 85 * the i_state of an inode while it is in use.. 86 */ 87 DEFINE_SPINLOCK(inode_lock); 88 89 /* 90 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 91 * icache shrinking path, and the umount path. Without this exclusion, 92 * by the time prune_icache calls iput for the inode whose pages it has 93 * been invalidating, or by the time it calls clear_inode & destroy_inode 94 * from its final dispose_list, the struct super_block they refer to 95 * (for inode->i_sb->s_op) may already have been freed and reused. 96 */ 97 static DEFINE_MUTEX(iprune_mutex); 98 99 /* 100 * Statistics gathering.. 101 */ 102 struct inodes_stat_t inodes_stat; 103 104 static struct kmem_cache *inode_cachep __read_mostly; 105 106 static void wake_up_inode(struct inode *inode) 107 { 108 /* 109 * Prevent speculative execution through spin_unlock(&inode_lock); 110 */ 111 smp_mb(); 112 wake_up_bit(&inode->i_state, __I_LOCK); 113 } 114 115 /** 116 * inode_init_always - perform inode structure intialisation 117 * @sb: superblock inode belongs to 118 * @inode: inode to initialise 119 * 120 * These are initializations that need to be done on every inode 121 * allocation as the fields are not initialised by slab allocation. 122 */ 123 struct inode *inode_init_always(struct super_block *sb, struct inode *inode) 124 { 125 static const struct address_space_operations empty_aops; 126 static struct inode_operations empty_iops; 127 static const struct file_operations empty_fops; 128 129 struct address_space *const mapping = &inode->i_data; 130 131 inode->i_sb = sb; 132 inode->i_blkbits = sb->s_blocksize_bits; 133 inode->i_flags = 0; 134 atomic_set(&inode->i_count, 1); 135 inode->i_op = &empty_iops; 136 inode->i_fop = &empty_fops; 137 inode->i_nlink = 1; 138 inode->i_uid = 0; 139 inode->i_gid = 0; 140 atomic_set(&inode->i_writecount, 0); 141 inode->i_size = 0; 142 inode->i_blocks = 0; 143 inode->i_bytes = 0; 144 inode->i_generation = 0; 145 #ifdef CONFIG_QUOTA 146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 147 #endif 148 inode->i_pipe = NULL; 149 inode->i_bdev = NULL; 150 inode->i_cdev = NULL; 151 inode->i_rdev = 0; 152 inode->dirtied_when = 0; 153 154 if (security_inode_alloc(inode)) 155 goto out_free_inode; 156 157 /* allocate and initialize an i_integrity */ 158 if (ima_inode_alloc(inode)) 159 goto out_free_security; 160 161 spin_lock_init(&inode->i_lock); 162 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 163 164 mutex_init(&inode->i_mutex); 165 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 166 167 init_rwsem(&inode->i_alloc_sem); 168 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 169 170 mapping->a_ops = &empty_aops; 171 mapping->host = inode; 172 mapping->flags = 0; 173 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 174 mapping->assoc_mapping = NULL; 175 mapping->backing_dev_info = &default_backing_dev_info; 176 mapping->writeback_index = 0; 177 178 /* 179 * If the block_device provides a backing_dev_info for client 180 * inodes then use that. Otherwise the inode share the bdev's 181 * backing_dev_info. 182 */ 183 if (sb->s_bdev) { 184 struct backing_dev_info *bdi; 185 186 bdi = sb->s_bdev->bd_inode_backing_dev_info; 187 if (!bdi) 188 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 189 mapping->backing_dev_info = bdi; 190 } 191 inode->i_private = NULL; 192 inode->i_mapping = mapping; 193 #ifdef CONFIG_FS_POSIX_ACL 194 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 195 #endif 196 197 #ifdef CONFIG_FSNOTIFY 198 inode->i_fsnotify_mask = 0; 199 #endif 200 201 return inode; 202 203 out_free_security: 204 security_inode_free(inode); 205 out_free_inode: 206 if (inode->i_sb->s_op->destroy_inode) 207 inode->i_sb->s_op->destroy_inode(inode); 208 else 209 kmem_cache_free(inode_cachep, (inode)); 210 return NULL; 211 } 212 EXPORT_SYMBOL(inode_init_always); 213 214 static struct inode *alloc_inode(struct super_block *sb) 215 { 216 struct inode *inode; 217 218 if (sb->s_op->alloc_inode) 219 inode = sb->s_op->alloc_inode(sb); 220 else 221 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 222 223 if (inode) 224 return inode_init_always(sb, inode); 225 return NULL; 226 } 227 228 void destroy_inode(struct inode *inode) 229 { 230 BUG_ON(inode_has_buffers(inode)); 231 ima_inode_free(inode); 232 security_inode_free(inode); 233 fsnotify_inode_delete(inode); 234 #ifdef CONFIG_FS_POSIX_ACL 235 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 236 posix_acl_release(inode->i_acl); 237 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 238 posix_acl_release(inode->i_default_acl); 239 #endif 240 if (inode->i_sb->s_op->destroy_inode) 241 inode->i_sb->s_op->destroy_inode(inode); 242 else 243 kmem_cache_free(inode_cachep, (inode)); 244 } 245 EXPORT_SYMBOL(destroy_inode); 246 247 248 /* 249 * These are initializations that only need to be done 250 * once, because the fields are idempotent across use 251 * of the inode, so let the slab aware of that. 252 */ 253 void inode_init_once(struct inode *inode) 254 { 255 memset(inode, 0, sizeof(*inode)); 256 INIT_HLIST_NODE(&inode->i_hash); 257 INIT_LIST_HEAD(&inode->i_dentry); 258 INIT_LIST_HEAD(&inode->i_devices); 259 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 260 spin_lock_init(&inode->i_data.tree_lock); 261 spin_lock_init(&inode->i_data.i_mmap_lock); 262 INIT_LIST_HEAD(&inode->i_data.private_list); 263 spin_lock_init(&inode->i_data.private_lock); 264 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 265 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 266 i_size_ordered_init(inode); 267 #ifdef CONFIG_INOTIFY 268 INIT_LIST_HEAD(&inode->inotify_watches); 269 mutex_init(&inode->inotify_mutex); 270 #endif 271 #ifdef CONFIG_FSNOTIFY 272 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries); 273 #endif 274 } 275 EXPORT_SYMBOL(inode_init_once); 276 277 static void init_once(void *foo) 278 { 279 struct inode *inode = (struct inode *) foo; 280 281 inode_init_once(inode); 282 } 283 284 /* 285 * inode_lock must be held 286 */ 287 void __iget(struct inode *inode) 288 { 289 if (atomic_read(&inode->i_count)) { 290 atomic_inc(&inode->i_count); 291 return; 292 } 293 atomic_inc(&inode->i_count); 294 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 295 list_move(&inode->i_list, &inode_in_use); 296 inodes_stat.nr_unused--; 297 } 298 299 /** 300 * clear_inode - clear an inode 301 * @inode: inode to clear 302 * 303 * This is called by the filesystem to tell us 304 * that the inode is no longer useful. We just 305 * terminate it with extreme prejudice. 306 */ 307 void clear_inode(struct inode *inode) 308 { 309 might_sleep(); 310 invalidate_inode_buffers(inode); 311 312 BUG_ON(inode->i_data.nrpages); 313 BUG_ON(!(inode->i_state & I_FREEING)); 314 BUG_ON(inode->i_state & I_CLEAR); 315 inode_sync_wait(inode); 316 vfs_dq_drop(inode); 317 if (inode->i_sb->s_op->clear_inode) 318 inode->i_sb->s_op->clear_inode(inode); 319 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 320 bd_forget(inode); 321 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 322 cd_forget(inode); 323 inode->i_state = I_CLEAR; 324 } 325 EXPORT_SYMBOL(clear_inode); 326 327 /* 328 * dispose_list - dispose of the contents of a local list 329 * @head: the head of the list to free 330 * 331 * Dispose-list gets a local list with local inodes in it, so it doesn't 332 * need to worry about list corruption and SMP locks. 333 */ 334 static void dispose_list(struct list_head *head) 335 { 336 int nr_disposed = 0; 337 338 while (!list_empty(head)) { 339 struct inode *inode; 340 341 inode = list_first_entry(head, struct inode, i_list); 342 list_del(&inode->i_list); 343 344 if (inode->i_data.nrpages) 345 truncate_inode_pages(&inode->i_data, 0); 346 clear_inode(inode); 347 348 spin_lock(&inode_lock); 349 hlist_del_init(&inode->i_hash); 350 list_del_init(&inode->i_sb_list); 351 spin_unlock(&inode_lock); 352 353 wake_up_inode(inode); 354 destroy_inode(inode); 355 nr_disposed++; 356 } 357 spin_lock(&inode_lock); 358 inodes_stat.nr_inodes -= nr_disposed; 359 spin_unlock(&inode_lock); 360 } 361 362 /* 363 * Invalidate all inodes for a device. 364 */ 365 static int invalidate_list(struct list_head *head, struct list_head *dispose) 366 { 367 struct list_head *next; 368 int busy = 0, count = 0; 369 370 next = head->next; 371 for (;;) { 372 struct list_head *tmp = next; 373 struct inode *inode; 374 375 /* 376 * We can reschedule here without worrying about the list's 377 * consistency because the per-sb list of inodes must not 378 * change during umount anymore, and because iprune_mutex keeps 379 * shrink_icache_memory() away. 380 */ 381 cond_resched_lock(&inode_lock); 382 383 next = next->next; 384 if (tmp == head) 385 break; 386 inode = list_entry(tmp, struct inode, i_sb_list); 387 if (inode->i_state & I_NEW) 388 continue; 389 invalidate_inode_buffers(inode); 390 if (!atomic_read(&inode->i_count)) { 391 list_move(&inode->i_list, dispose); 392 WARN_ON(inode->i_state & I_NEW); 393 inode->i_state |= I_FREEING; 394 count++; 395 continue; 396 } 397 busy = 1; 398 } 399 /* only unused inodes may be cached with i_count zero */ 400 inodes_stat.nr_unused -= count; 401 return busy; 402 } 403 404 /** 405 * invalidate_inodes - discard the inodes on a device 406 * @sb: superblock 407 * 408 * Discard all of the inodes for a given superblock. If the discard 409 * fails because there are busy inodes then a non zero value is returned. 410 * If the discard is successful all the inodes have been discarded. 411 */ 412 int invalidate_inodes(struct super_block *sb) 413 { 414 int busy; 415 LIST_HEAD(throw_away); 416 417 mutex_lock(&iprune_mutex); 418 spin_lock(&inode_lock); 419 inotify_unmount_inodes(&sb->s_inodes); 420 fsnotify_unmount_inodes(&sb->s_inodes); 421 busy = invalidate_list(&sb->s_inodes, &throw_away); 422 spin_unlock(&inode_lock); 423 424 dispose_list(&throw_away); 425 mutex_unlock(&iprune_mutex); 426 427 return busy; 428 } 429 EXPORT_SYMBOL(invalidate_inodes); 430 431 static int can_unuse(struct inode *inode) 432 { 433 if (inode->i_state) 434 return 0; 435 if (inode_has_buffers(inode)) 436 return 0; 437 if (atomic_read(&inode->i_count)) 438 return 0; 439 if (inode->i_data.nrpages) 440 return 0; 441 return 1; 442 } 443 444 /* 445 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 446 * a temporary list and then are freed outside inode_lock by dispose_list(). 447 * 448 * Any inodes which are pinned purely because of attached pagecache have their 449 * pagecache removed. We expect the final iput() on that inode to add it to 450 * the front of the inode_unused list. So look for it there and if the 451 * inode is still freeable, proceed. The right inode is found 99.9% of the 452 * time in testing on a 4-way. 453 * 454 * If the inode has metadata buffers attached to mapping->private_list then 455 * try to remove them. 456 */ 457 static void prune_icache(int nr_to_scan) 458 { 459 LIST_HEAD(freeable); 460 int nr_pruned = 0; 461 int nr_scanned; 462 unsigned long reap = 0; 463 464 mutex_lock(&iprune_mutex); 465 spin_lock(&inode_lock); 466 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 467 struct inode *inode; 468 469 if (list_empty(&inode_unused)) 470 break; 471 472 inode = list_entry(inode_unused.prev, struct inode, i_list); 473 474 if (inode->i_state || atomic_read(&inode->i_count)) { 475 list_move(&inode->i_list, &inode_unused); 476 continue; 477 } 478 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 479 __iget(inode); 480 spin_unlock(&inode_lock); 481 if (remove_inode_buffers(inode)) 482 reap += invalidate_mapping_pages(&inode->i_data, 483 0, -1); 484 iput(inode); 485 spin_lock(&inode_lock); 486 487 if (inode != list_entry(inode_unused.next, 488 struct inode, i_list)) 489 continue; /* wrong inode or list_empty */ 490 if (!can_unuse(inode)) 491 continue; 492 } 493 list_move(&inode->i_list, &freeable); 494 WARN_ON(inode->i_state & I_NEW); 495 inode->i_state |= I_FREEING; 496 nr_pruned++; 497 } 498 inodes_stat.nr_unused -= nr_pruned; 499 if (current_is_kswapd()) 500 __count_vm_events(KSWAPD_INODESTEAL, reap); 501 else 502 __count_vm_events(PGINODESTEAL, reap); 503 spin_unlock(&inode_lock); 504 505 dispose_list(&freeable); 506 mutex_unlock(&iprune_mutex); 507 } 508 509 /* 510 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 511 * "unused" means that no dentries are referring to the inodes: the files are 512 * not open and the dcache references to those inodes have already been 513 * reclaimed. 514 * 515 * This function is passed the number of inodes to scan, and it returns the 516 * total number of remaining possibly-reclaimable inodes. 517 */ 518 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 519 { 520 if (nr) { 521 /* 522 * Nasty deadlock avoidance. We may hold various FS locks, 523 * and we don't want to recurse into the FS that called us 524 * in clear_inode() and friends.. 525 */ 526 if (!(gfp_mask & __GFP_FS)) 527 return -1; 528 prune_icache(nr); 529 } 530 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 531 } 532 533 static struct shrinker icache_shrinker = { 534 .shrink = shrink_icache_memory, 535 .seeks = DEFAULT_SEEKS, 536 }; 537 538 static void __wait_on_freeing_inode(struct inode *inode); 539 /* 540 * Called with the inode lock held. 541 * NOTE: we are not increasing the inode-refcount, you must call __iget() 542 * by hand after calling find_inode now! This simplifies iunique and won't 543 * add any additional branch in the common code. 544 */ 545 static struct inode *find_inode(struct super_block *sb, 546 struct hlist_head *head, 547 int (*test)(struct inode *, void *), 548 void *data) 549 { 550 struct hlist_node *node; 551 struct inode *inode = NULL; 552 553 repeat: 554 hlist_for_each_entry(inode, node, head, i_hash) { 555 if (inode->i_sb != sb) 556 continue; 557 if (!test(inode, data)) 558 continue; 559 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 560 __wait_on_freeing_inode(inode); 561 goto repeat; 562 } 563 break; 564 } 565 return node ? inode : NULL; 566 } 567 568 /* 569 * find_inode_fast is the fast path version of find_inode, see the comment at 570 * iget_locked for details. 571 */ 572 static struct inode *find_inode_fast(struct super_block *sb, 573 struct hlist_head *head, unsigned long ino) 574 { 575 struct hlist_node *node; 576 struct inode *inode = NULL; 577 578 repeat: 579 hlist_for_each_entry(inode, node, head, i_hash) { 580 if (inode->i_ino != ino) 581 continue; 582 if (inode->i_sb != sb) 583 continue; 584 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 585 __wait_on_freeing_inode(inode); 586 goto repeat; 587 } 588 break; 589 } 590 return node ? inode : NULL; 591 } 592 593 static unsigned long hash(struct super_block *sb, unsigned long hashval) 594 { 595 unsigned long tmp; 596 597 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 598 L1_CACHE_BYTES; 599 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 600 return tmp & I_HASHMASK; 601 } 602 603 static inline void 604 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 605 struct inode *inode) 606 { 607 inodes_stat.nr_inodes++; 608 list_add(&inode->i_list, &inode_in_use); 609 list_add(&inode->i_sb_list, &sb->s_inodes); 610 if (head) 611 hlist_add_head(&inode->i_hash, head); 612 } 613 614 /** 615 * inode_add_to_lists - add a new inode to relevant lists 616 * @sb: superblock inode belongs to 617 * @inode: inode to mark in use 618 * 619 * When an inode is allocated it needs to be accounted for, added to the in use 620 * list, the owning superblock and the inode hash. This needs to be done under 621 * the inode_lock, so export a function to do this rather than the inode lock 622 * itself. We calculate the hash list to add to here so it is all internal 623 * which requires the caller to have already set up the inode number in the 624 * inode to add. 625 */ 626 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 627 { 628 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 629 630 spin_lock(&inode_lock); 631 __inode_add_to_lists(sb, head, inode); 632 spin_unlock(&inode_lock); 633 } 634 EXPORT_SYMBOL_GPL(inode_add_to_lists); 635 636 /** 637 * new_inode - obtain an inode 638 * @sb: superblock 639 * 640 * Allocates a new inode for given superblock. The default gfp_mask 641 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 642 * If HIGHMEM pages are unsuitable or it is known that pages allocated 643 * for the page cache are not reclaimable or migratable, 644 * mapping_set_gfp_mask() must be called with suitable flags on the 645 * newly created inode's mapping 646 * 647 */ 648 struct inode *new_inode(struct super_block *sb) 649 { 650 /* 651 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 652 * error if st_ino won't fit in target struct field. Use 32bit counter 653 * here to attempt to avoid that. 654 */ 655 static unsigned int last_ino; 656 struct inode *inode; 657 658 spin_lock_prefetch(&inode_lock); 659 660 inode = alloc_inode(sb); 661 if (inode) { 662 spin_lock(&inode_lock); 663 __inode_add_to_lists(sb, NULL, inode); 664 inode->i_ino = ++last_ino; 665 inode->i_state = 0; 666 spin_unlock(&inode_lock); 667 } 668 return inode; 669 } 670 EXPORT_SYMBOL(new_inode); 671 672 void unlock_new_inode(struct inode *inode) 673 { 674 #ifdef CONFIG_DEBUG_LOCK_ALLOC 675 if (inode->i_mode & S_IFDIR) { 676 struct file_system_type *type = inode->i_sb->s_type; 677 678 /* Set new key only if filesystem hasn't already changed it */ 679 if (!lockdep_match_class(&inode->i_mutex, 680 &type->i_mutex_key)) { 681 /* 682 * ensure nobody is actually holding i_mutex 683 */ 684 mutex_destroy(&inode->i_mutex); 685 mutex_init(&inode->i_mutex); 686 lockdep_set_class(&inode->i_mutex, 687 &type->i_mutex_dir_key); 688 } 689 } 690 #endif 691 /* 692 * This is special! We do not need the spinlock 693 * when clearing I_LOCK, because we're guaranteed 694 * that nobody else tries to do anything about the 695 * state of the inode when it is locked, as we 696 * just created it (so there can be no old holders 697 * that haven't tested I_LOCK). 698 */ 699 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW)); 700 inode->i_state &= ~(I_LOCK|I_NEW); 701 wake_up_inode(inode); 702 } 703 EXPORT_SYMBOL(unlock_new_inode); 704 705 /* 706 * This is called without the inode lock held.. Be careful. 707 * 708 * We no longer cache the sb_flags in i_flags - see fs.h 709 * -- rmk@arm.uk.linux.org 710 */ 711 static struct inode *get_new_inode(struct super_block *sb, 712 struct hlist_head *head, 713 int (*test)(struct inode *, void *), 714 int (*set)(struct inode *, void *), 715 void *data) 716 { 717 struct inode *inode; 718 719 inode = alloc_inode(sb); 720 if (inode) { 721 struct inode *old; 722 723 spin_lock(&inode_lock); 724 /* We released the lock, so.. */ 725 old = find_inode(sb, head, test, data); 726 if (!old) { 727 if (set(inode, data)) 728 goto set_failed; 729 730 __inode_add_to_lists(sb, head, inode); 731 inode->i_state = I_LOCK|I_NEW; 732 spin_unlock(&inode_lock); 733 734 /* Return the locked inode with I_NEW set, the 735 * caller is responsible for filling in the contents 736 */ 737 return inode; 738 } 739 740 /* 741 * Uhhuh, somebody else created the same inode under 742 * us. Use the old inode instead of the one we just 743 * allocated. 744 */ 745 __iget(old); 746 spin_unlock(&inode_lock); 747 destroy_inode(inode); 748 inode = old; 749 wait_on_inode(inode); 750 } 751 return inode; 752 753 set_failed: 754 spin_unlock(&inode_lock); 755 destroy_inode(inode); 756 return NULL; 757 } 758 759 /* 760 * get_new_inode_fast is the fast path version of get_new_inode, see the 761 * comment at iget_locked for details. 762 */ 763 static struct inode *get_new_inode_fast(struct super_block *sb, 764 struct hlist_head *head, unsigned long ino) 765 { 766 struct inode *inode; 767 768 inode = alloc_inode(sb); 769 if (inode) { 770 struct inode *old; 771 772 spin_lock(&inode_lock); 773 /* We released the lock, so.. */ 774 old = find_inode_fast(sb, head, ino); 775 if (!old) { 776 inode->i_ino = ino; 777 __inode_add_to_lists(sb, head, inode); 778 inode->i_state = I_LOCK|I_NEW; 779 spin_unlock(&inode_lock); 780 781 /* Return the locked inode with I_NEW set, the 782 * caller is responsible for filling in the contents 783 */ 784 return inode; 785 } 786 787 /* 788 * Uhhuh, somebody else created the same inode under 789 * us. Use the old inode instead of the one we just 790 * allocated. 791 */ 792 __iget(old); 793 spin_unlock(&inode_lock); 794 destroy_inode(inode); 795 inode = old; 796 wait_on_inode(inode); 797 } 798 return inode; 799 } 800 801 /** 802 * iunique - get a unique inode number 803 * @sb: superblock 804 * @max_reserved: highest reserved inode number 805 * 806 * Obtain an inode number that is unique on the system for a given 807 * superblock. This is used by file systems that have no natural 808 * permanent inode numbering system. An inode number is returned that 809 * is higher than the reserved limit but unique. 810 * 811 * BUGS: 812 * With a large number of inodes live on the file system this function 813 * currently becomes quite slow. 814 */ 815 ino_t iunique(struct super_block *sb, ino_t max_reserved) 816 { 817 /* 818 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 819 * error if st_ino won't fit in target struct field. Use 32bit counter 820 * here to attempt to avoid that. 821 */ 822 static unsigned int counter; 823 struct inode *inode; 824 struct hlist_head *head; 825 ino_t res; 826 827 spin_lock(&inode_lock); 828 do { 829 if (counter <= max_reserved) 830 counter = max_reserved + 1; 831 res = counter++; 832 head = inode_hashtable + hash(sb, res); 833 inode = find_inode_fast(sb, head, res); 834 } while (inode != NULL); 835 spin_unlock(&inode_lock); 836 837 return res; 838 } 839 EXPORT_SYMBOL(iunique); 840 841 struct inode *igrab(struct inode *inode) 842 { 843 spin_lock(&inode_lock); 844 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 845 __iget(inode); 846 else 847 /* 848 * Handle the case where s_op->clear_inode is not been 849 * called yet, and somebody is calling igrab 850 * while the inode is getting freed. 851 */ 852 inode = NULL; 853 spin_unlock(&inode_lock); 854 return inode; 855 } 856 EXPORT_SYMBOL(igrab); 857 858 /** 859 * ifind - internal function, you want ilookup5() or iget5(). 860 * @sb: super block of file system to search 861 * @head: the head of the list to search 862 * @test: callback used for comparisons between inodes 863 * @data: opaque data pointer to pass to @test 864 * @wait: if true wait for the inode to be unlocked, if false do not 865 * 866 * ifind() searches for the inode specified by @data in the inode 867 * cache. This is a generalized version of ifind_fast() for file systems where 868 * the inode number is not sufficient for unique identification of an inode. 869 * 870 * If the inode is in the cache, the inode is returned with an incremented 871 * reference count. 872 * 873 * Otherwise NULL is returned. 874 * 875 * Note, @test is called with the inode_lock held, so can't sleep. 876 */ 877 static struct inode *ifind(struct super_block *sb, 878 struct hlist_head *head, int (*test)(struct inode *, void *), 879 void *data, const int wait) 880 { 881 struct inode *inode; 882 883 spin_lock(&inode_lock); 884 inode = find_inode(sb, head, test, data); 885 if (inode) { 886 __iget(inode); 887 spin_unlock(&inode_lock); 888 if (likely(wait)) 889 wait_on_inode(inode); 890 return inode; 891 } 892 spin_unlock(&inode_lock); 893 return NULL; 894 } 895 896 /** 897 * ifind_fast - internal function, you want ilookup() or iget(). 898 * @sb: super block of file system to search 899 * @head: head of the list to search 900 * @ino: inode number to search for 901 * 902 * ifind_fast() searches for the inode @ino in the inode cache. This is for 903 * file systems where the inode number is sufficient for unique identification 904 * of an inode. 905 * 906 * If the inode is in the cache, the inode is returned with an incremented 907 * reference count. 908 * 909 * Otherwise NULL is returned. 910 */ 911 static struct inode *ifind_fast(struct super_block *sb, 912 struct hlist_head *head, unsigned long ino) 913 { 914 struct inode *inode; 915 916 spin_lock(&inode_lock); 917 inode = find_inode_fast(sb, head, ino); 918 if (inode) { 919 __iget(inode); 920 spin_unlock(&inode_lock); 921 wait_on_inode(inode); 922 return inode; 923 } 924 spin_unlock(&inode_lock); 925 return NULL; 926 } 927 928 /** 929 * ilookup5_nowait - search for an inode in the inode cache 930 * @sb: super block of file system to search 931 * @hashval: hash value (usually inode number) to search for 932 * @test: callback used for comparisons between inodes 933 * @data: opaque data pointer to pass to @test 934 * 935 * ilookup5() uses ifind() to search for the inode specified by @hashval and 936 * @data in the inode cache. This is a generalized version of ilookup() for 937 * file systems where the inode number is not sufficient for unique 938 * identification of an inode. 939 * 940 * If the inode is in the cache, the inode is returned with an incremented 941 * reference count. Note, the inode lock is not waited upon so you have to be 942 * very careful what you do with the returned inode. You probably should be 943 * using ilookup5() instead. 944 * 945 * Otherwise NULL is returned. 946 * 947 * Note, @test is called with the inode_lock held, so can't sleep. 948 */ 949 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 950 int (*test)(struct inode *, void *), void *data) 951 { 952 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 953 954 return ifind(sb, head, test, data, 0); 955 } 956 EXPORT_SYMBOL(ilookup5_nowait); 957 958 /** 959 * ilookup5 - search for an inode in the inode cache 960 * @sb: super block of file system to search 961 * @hashval: hash value (usually inode number) to search for 962 * @test: callback used for comparisons between inodes 963 * @data: opaque data pointer to pass to @test 964 * 965 * ilookup5() uses ifind() to search for the inode specified by @hashval and 966 * @data in the inode cache. This is a generalized version of ilookup() for 967 * file systems where the inode number is not sufficient for unique 968 * identification of an inode. 969 * 970 * If the inode is in the cache, the inode lock is waited upon and the inode is 971 * returned with an incremented reference count. 972 * 973 * Otherwise NULL is returned. 974 * 975 * Note, @test is called with the inode_lock held, so can't sleep. 976 */ 977 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 978 int (*test)(struct inode *, void *), void *data) 979 { 980 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 981 982 return ifind(sb, head, test, data, 1); 983 } 984 EXPORT_SYMBOL(ilookup5); 985 986 /** 987 * ilookup - search for an inode in the inode cache 988 * @sb: super block of file system to search 989 * @ino: inode number to search for 990 * 991 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 992 * This is for file systems where the inode number is sufficient for unique 993 * identification of an inode. 994 * 995 * If the inode is in the cache, the inode is returned with an incremented 996 * reference count. 997 * 998 * Otherwise NULL is returned. 999 */ 1000 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1001 { 1002 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1003 1004 return ifind_fast(sb, head, ino); 1005 } 1006 EXPORT_SYMBOL(ilookup); 1007 1008 /** 1009 * iget5_locked - obtain an inode from a mounted file system 1010 * @sb: super block of file system 1011 * @hashval: hash value (usually inode number) to get 1012 * @test: callback used for comparisons between inodes 1013 * @set: callback used to initialize a new struct inode 1014 * @data: opaque data pointer to pass to @test and @set 1015 * 1016 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1017 * and @data in the inode cache and if present it is returned with an increased 1018 * reference count. This is a generalized version of iget_locked() for file 1019 * systems where the inode number is not sufficient for unique identification 1020 * of an inode. 1021 * 1022 * If the inode is not in cache, get_new_inode() is called to allocate a new 1023 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1024 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1025 * 1026 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1027 */ 1028 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1029 int (*test)(struct inode *, void *), 1030 int (*set)(struct inode *, void *), void *data) 1031 { 1032 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1033 struct inode *inode; 1034 1035 inode = ifind(sb, head, test, data, 1); 1036 if (inode) 1037 return inode; 1038 /* 1039 * get_new_inode() will do the right thing, re-trying the search 1040 * in case it had to block at any point. 1041 */ 1042 return get_new_inode(sb, head, test, set, data); 1043 } 1044 EXPORT_SYMBOL(iget5_locked); 1045 1046 /** 1047 * iget_locked - obtain an inode from a mounted file system 1048 * @sb: super block of file system 1049 * @ino: inode number to get 1050 * 1051 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1052 * the inode cache and if present it is returned with an increased reference 1053 * count. This is for file systems where the inode number is sufficient for 1054 * unique identification of an inode. 1055 * 1056 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1057 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1058 * The file system gets to fill it in before unlocking it via 1059 * unlock_new_inode(). 1060 */ 1061 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1062 { 1063 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1064 struct inode *inode; 1065 1066 inode = ifind_fast(sb, head, ino); 1067 if (inode) 1068 return inode; 1069 /* 1070 * get_new_inode_fast() will do the right thing, re-trying the search 1071 * in case it had to block at any point. 1072 */ 1073 return get_new_inode_fast(sb, head, ino); 1074 } 1075 EXPORT_SYMBOL(iget_locked); 1076 1077 int insert_inode_locked(struct inode *inode) 1078 { 1079 struct super_block *sb = inode->i_sb; 1080 ino_t ino = inode->i_ino; 1081 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1082 1083 inode->i_state |= I_LOCK|I_NEW; 1084 while (1) { 1085 struct hlist_node *node; 1086 struct inode *old = NULL; 1087 spin_lock(&inode_lock); 1088 hlist_for_each_entry(old, node, head, i_hash) { 1089 if (old->i_ino != ino) 1090 continue; 1091 if (old->i_sb != sb) 1092 continue; 1093 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1094 continue; 1095 break; 1096 } 1097 if (likely(!node)) { 1098 hlist_add_head(&inode->i_hash, head); 1099 spin_unlock(&inode_lock); 1100 return 0; 1101 } 1102 __iget(old); 1103 spin_unlock(&inode_lock); 1104 wait_on_inode(old); 1105 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1106 iput(old); 1107 return -EBUSY; 1108 } 1109 iput(old); 1110 } 1111 } 1112 EXPORT_SYMBOL(insert_inode_locked); 1113 1114 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1115 int (*test)(struct inode *, void *), void *data) 1116 { 1117 struct super_block *sb = inode->i_sb; 1118 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1119 1120 inode->i_state |= I_LOCK|I_NEW; 1121 1122 while (1) { 1123 struct hlist_node *node; 1124 struct inode *old = NULL; 1125 1126 spin_lock(&inode_lock); 1127 hlist_for_each_entry(old, node, head, i_hash) { 1128 if (old->i_sb != sb) 1129 continue; 1130 if (!test(old, data)) 1131 continue; 1132 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1133 continue; 1134 break; 1135 } 1136 if (likely(!node)) { 1137 hlist_add_head(&inode->i_hash, head); 1138 spin_unlock(&inode_lock); 1139 return 0; 1140 } 1141 __iget(old); 1142 spin_unlock(&inode_lock); 1143 wait_on_inode(old); 1144 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1145 iput(old); 1146 return -EBUSY; 1147 } 1148 iput(old); 1149 } 1150 } 1151 EXPORT_SYMBOL(insert_inode_locked4); 1152 1153 /** 1154 * __insert_inode_hash - hash an inode 1155 * @inode: unhashed inode 1156 * @hashval: unsigned long value used to locate this object in the 1157 * inode_hashtable. 1158 * 1159 * Add an inode to the inode hash for this superblock. 1160 */ 1161 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1162 { 1163 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1164 spin_lock(&inode_lock); 1165 hlist_add_head(&inode->i_hash, head); 1166 spin_unlock(&inode_lock); 1167 } 1168 EXPORT_SYMBOL(__insert_inode_hash); 1169 1170 /** 1171 * remove_inode_hash - remove an inode from the hash 1172 * @inode: inode to unhash 1173 * 1174 * Remove an inode from the superblock. 1175 */ 1176 void remove_inode_hash(struct inode *inode) 1177 { 1178 spin_lock(&inode_lock); 1179 hlist_del_init(&inode->i_hash); 1180 spin_unlock(&inode_lock); 1181 } 1182 EXPORT_SYMBOL(remove_inode_hash); 1183 1184 /* 1185 * Tell the filesystem that this inode is no longer of any interest and should 1186 * be completely destroyed. 1187 * 1188 * We leave the inode in the inode hash table until *after* the filesystem's 1189 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1190 * instigate) will always find up-to-date information either in the hash or on 1191 * disk. 1192 * 1193 * I_FREEING is set so that no-one will take a new reference to the inode while 1194 * it is being deleted. 1195 */ 1196 void generic_delete_inode(struct inode *inode) 1197 { 1198 const struct super_operations *op = inode->i_sb->s_op; 1199 1200 list_del_init(&inode->i_list); 1201 list_del_init(&inode->i_sb_list); 1202 WARN_ON(inode->i_state & I_NEW); 1203 inode->i_state |= I_FREEING; 1204 inodes_stat.nr_inodes--; 1205 spin_unlock(&inode_lock); 1206 1207 security_inode_delete(inode); 1208 1209 if (op->delete_inode) { 1210 void (*delete)(struct inode *) = op->delete_inode; 1211 if (!is_bad_inode(inode)) 1212 vfs_dq_init(inode); 1213 /* Filesystems implementing their own 1214 * s_op->delete_inode are required to call 1215 * truncate_inode_pages and clear_inode() 1216 * internally */ 1217 delete(inode); 1218 } else { 1219 truncate_inode_pages(&inode->i_data, 0); 1220 clear_inode(inode); 1221 } 1222 spin_lock(&inode_lock); 1223 hlist_del_init(&inode->i_hash); 1224 spin_unlock(&inode_lock); 1225 wake_up_inode(inode); 1226 BUG_ON(inode->i_state != I_CLEAR); 1227 destroy_inode(inode); 1228 } 1229 EXPORT_SYMBOL(generic_delete_inode); 1230 1231 static void generic_forget_inode(struct inode *inode) 1232 { 1233 struct super_block *sb = inode->i_sb; 1234 1235 if (!hlist_unhashed(&inode->i_hash)) { 1236 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1237 list_move(&inode->i_list, &inode_unused); 1238 inodes_stat.nr_unused++; 1239 if (sb->s_flags & MS_ACTIVE) { 1240 spin_unlock(&inode_lock); 1241 return; 1242 } 1243 WARN_ON(inode->i_state & I_NEW); 1244 inode->i_state |= I_WILL_FREE; 1245 spin_unlock(&inode_lock); 1246 write_inode_now(inode, 1); 1247 spin_lock(&inode_lock); 1248 WARN_ON(inode->i_state & I_NEW); 1249 inode->i_state &= ~I_WILL_FREE; 1250 inodes_stat.nr_unused--; 1251 hlist_del_init(&inode->i_hash); 1252 } 1253 list_del_init(&inode->i_list); 1254 list_del_init(&inode->i_sb_list); 1255 WARN_ON(inode->i_state & I_NEW); 1256 inode->i_state |= I_FREEING; 1257 inodes_stat.nr_inodes--; 1258 spin_unlock(&inode_lock); 1259 if (inode->i_data.nrpages) 1260 truncate_inode_pages(&inode->i_data, 0); 1261 clear_inode(inode); 1262 wake_up_inode(inode); 1263 destroy_inode(inode); 1264 } 1265 1266 /* 1267 * Normal UNIX filesystem behaviour: delete the 1268 * inode when the usage count drops to zero, and 1269 * i_nlink is zero. 1270 */ 1271 void generic_drop_inode(struct inode *inode) 1272 { 1273 if (!inode->i_nlink) 1274 generic_delete_inode(inode); 1275 else 1276 generic_forget_inode(inode); 1277 } 1278 EXPORT_SYMBOL_GPL(generic_drop_inode); 1279 1280 /* 1281 * Called when we're dropping the last reference 1282 * to an inode. 1283 * 1284 * Call the FS "drop()" function, defaulting to 1285 * the legacy UNIX filesystem behaviour.. 1286 * 1287 * NOTE! NOTE! NOTE! We're called with the inode lock 1288 * held, and the drop function is supposed to release 1289 * the lock! 1290 */ 1291 static inline void iput_final(struct inode *inode) 1292 { 1293 const struct super_operations *op = inode->i_sb->s_op; 1294 void (*drop)(struct inode *) = generic_drop_inode; 1295 1296 if (op && op->drop_inode) 1297 drop = op->drop_inode; 1298 drop(inode); 1299 } 1300 1301 /** 1302 * iput - put an inode 1303 * @inode: inode to put 1304 * 1305 * Puts an inode, dropping its usage count. If the inode use count hits 1306 * zero, the inode is then freed and may also be destroyed. 1307 * 1308 * Consequently, iput() can sleep. 1309 */ 1310 void iput(struct inode *inode) 1311 { 1312 if (inode) { 1313 BUG_ON(inode->i_state == I_CLEAR); 1314 1315 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1316 iput_final(inode); 1317 } 1318 } 1319 EXPORT_SYMBOL(iput); 1320 1321 /** 1322 * bmap - find a block number in a file 1323 * @inode: inode of file 1324 * @block: block to find 1325 * 1326 * Returns the block number on the device holding the inode that 1327 * is the disk block number for the block of the file requested. 1328 * That is, asked for block 4 of inode 1 the function will return the 1329 * disk block relative to the disk start that holds that block of the 1330 * file. 1331 */ 1332 sector_t bmap(struct inode *inode, sector_t block) 1333 { 1334 sector_t res = 0; 1335 if (inode->i_mapping->a_ops->bmap) 1336 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1337 return res; 1338 } 1339 EXPORT_SYMBOL(bmap); 1340 1341 /* 1342 * With relative atime, only update atime if the previous atime is 1343 * earlier than either the ctime or mtime or if at least a day has 1344 * passed since the last atime update. 1345 */ 1346 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1347 struct timespec now) 1348 { 1349 1350 if (!(mnt->mnt_flags & MNT_RELATIME)) 1351 return 1; 1352 /* 1353 * Is mtime younger than atime? If yes, update atime: 1354 */ 1355 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1356 return 1; 1357 /* 1358 * Is ctime younger than atime? If yes, update atime: 1359 */ 1360 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1361 return 1; 1362 1363 /* 1364 * Is the previous atime value older than a day? If yes, 1365 * update atime: 1366 */ 1367 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1368 return 1; 1369 /* 1370 * Good, we can skip the atime update: 1371 */ 1372 return 0; 1373 } 1374 1375 /** 1376 * touch_atime - update the access time 1377 * @mnt: mount the inode is accessed on 1378 * @dentry: dentry accessed 1379 * 1380 * Update the accessed time on an inode and mark it for writeback. 1381 * This function automatically handles read only file systems and media, 1382 * as well as the "noatime" flag and inode specific "noatime" markers. 1383 */ 1384 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1385 { 1386 struct inode *inode = dentry->d_inode; 1387 struct timespec now; 1388 1389 if (mnt_want_write(mnt)) 1390 return; 1391 if (inode->i_flags & S_NOATIME) 1392 goto out; 1393 if (IS_NOATIME(inode)) 1394 goto out; 1395 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1396 goto out; 1397 1398 if (mnt->mnt_flags & MNT_NOATIME) 1399 goto out; 1400 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1401 goto out; 1402 1403 now = current_fs_time(inode->i_sb); 1404 1405 if (!relatime_need_update(mnt, inode, now)) 1406 goto out; 1407 1408 if (timespec_equal(&inode->i_atime, &now)) 1409 goto out; 1410 1411 inode->i_atime = now; 1412 mark_inode_dirty_sync(inode); 1413 out: 1414 mnt_drop_write(mnt); 1415 } 1416 EXPORT_SYMBOL(touch_atime); 1417 1418 /** 1419 * file_update_time - update mtime and ctime time 1420 * @file: file accessed 1421 * 1422 * Update the mtime and ctime members of an inode and mark the inode 1423 * for writeback. Note that this function is meant exclusively for 1424 * usage in the file write path of filesystems, and filesystems may 1425 * choose to explicitly ignore update via this function with the 1426 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1427 * timestamps are handled by the server. 1428 */ 1429 1430 void file_update_time(struct file *file) 1431 { 1432 struct inode *inode = file->f_path.dentry->d_inode; 1433 struct timespec now; 1434 int sync_it = 0; 1435 int err; 1436 1437 if (IS_NOCMTIME(inode)) 1438 return; 1439 1440 err = mnt_want_write_file(file); 1441 if (err) 1442 return; 1443 1444 now = current_fs_time(inode->i_sb); 1445 if (!timespec_equal(&inode->i_mtime, &now)) { 1446 inode->i_mtime = now; 1447 sync_it = 1; 1448 } 1449 1450 if (!timespec_equal(&inode->i_ctime, &now)) { 1451 inode->i_ctime = now; 1452 sync_it = 1; 1453 } 1454 1455 if (IS_I_VERSION(inode)) { 1456 inode_inc_iversion(inode); 1457 sync_it = 1; 1458 } 1459 1460 if (sync_it) 1461 mark_inode_dirty_sync(inode); 1462 mnt_drop_write(file->f_path.mnt); 1463 } 1464 EXPORT_SYMBOL(file_update_time); 1465 1466 int inode_needs_sync(struct inode *inode) 1467 { 1468 if (IS_SYNC(inode)) 1469 return 1; 1470 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1471 return 1; 1472 return 0; 1473 } 1474 EXPORT_SYMBOL(inode_needs_sync); 1475 1476 int inode_wait(void *word) 1477 { 1478 schedule(); 1479 return 0; 1480 } 1481 EXPORT_SYMBOL(inode_wait); 1482 1483 /* 1484 * If we try to find an inode in the inode hash while it is being 1485 * deleted, we have to wait until the filesystem completes its 1486 * deletion before reporting that it isn't found. This function waits 1487 * until the deletion _might_ have completed. Callers are responsible 1488 * to recheck inode state. 1489 * 1490 * It doesn't matter if I_LOCK is not set initially, a call to 1491 * wake_up_inode() after removing from the hash list will DTRT. 1492 * 1493 * This is called with inode_lock held. 1494 */ 1495 static void __wait_on_freeing_inode(struct inode *inode) 1496 { 1497 wait_queue_head_t *wq; 1498 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1499 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1500 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1501 spin_unlock(&inode_lock); 1502 schedule(); 1503 finish_wait(wq, &wait.wait); 1504 spin_lock(&inode_lock); 1505 } 1506 1507 static __initdata unsigned long ihash_entries; 1508 static int __init set_ihash_entries(char *str) 1509 { 1510 if (!str) 1511 return 0; 1512 ihash_entries = simple_strtoul(str, &str, 0); 1513 return 1; 1514 } 1515 __setup("ihash_entries=", set_ihash_entries); 1516 1517 /* 1518 * Initialize the waitqueues and inode hash table. 1519 */ 1520 void __init inode_init_early(void) 1521 { 1522 int loop; 1523 1524 /* If hashes are distributed across NUMA nodes, defer 1525 * hash allocation until vmalloc space is available. 1526 */ 1527 if (hashdist) 1528 return; 1529 1530 inode_hashtable = 1531 alloc_large_system_hash("Inode-cache", 1532 sizeof(struct hlist_head), 1533 ihash_entries, 1534 14, 1535 HASH_EARLY, 1536 &i_hash_shift, 1537 &i_hash_mask, 1538 0); 1539 1540 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1541 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1542 } 1543 1544 void __init inode_init(void) 1545 { 1546 int loop; 1547 1548 /* inode slab cache */ 1549 inode_cachep = kmem_cache_create("inode_cache", 1550 sizeof(struct inode), 1551 0, 1552 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1553 SLAB_MEM_SPREAD), 1554 init_once); 1555 register_shrinker(&icache_shrinker); 1556 1557 /* Hash may have been set up in inode_init_early */ 1558 if (!hashdist) 1559 return; 1560 1561 inode_hashtable = 1562 alloc_large_system_hash("Inode-cache", 1563 sizeof(struct hlist_head), 1564 ihash_entries, 1565 14, 1566 0, 1567 &i_hash_shift, 1568 &i_hash_mask, 1569 0); 1570 1571 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1572 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1573 } 1574 1575 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1576 { 1577 inode->i_mode = mode; 1578 if (S_ISCHR(mode)) { 1579 inode->i_fop = &def_chr_fops; 1580 inode->i_rdev = rdev; 1581 } else if (S_ISBLK(mode)) { 1582 inode->i_fop = &def_blk_fops; 1583 inode->i_rdev = rdev; 1584 } else if (S_ISFIFO(mode)) 1585 inode->i_fop = &def_fifo_fops; 1586 else if (S_ISSOCK(mode)) 1587 inode->i_fop = &bad_sock_fops; 1588 else 1589 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1590 mode); 1591 } 1592 EXPORT_SYMBOL(init_special_inode); 1593