xref: /linux/fs/inode.c (revision 1795cf48b322b4d19230a40dbe7181acedd34a94)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static struct kmem_cache * inode_cachep __read_mostly;
101 
102 static void wake_up_inode(struct inode *inode)
103 {
104 	/*
105 	 * Prevent speculative execution through spin_unlock(&inode_lock);
106 	 */
107 	smp_mb();
108 	wake_up_bit(&inode->i_state, __I_LOCK);
109 }
110 
111 static struct inode *alloc_inode(struct super_block *sb)
112 {
113 	static const struct address_space_operations empty_aops;
114 	static struct inode_operations empty_iops;
115 	static const struct file_operations empty_fops;
116 	struct inode *inode;
117 
118 	if (sb->s_op->alloc_inode)
119 		inode = sb->s_op->alloc_inode(sb);
120 	else
121 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
122 
123 	if (inode) {
124 		struct address_space * const mapping = &inode->i_data;
125 
126 		inode->i_sb = sb;
127 		inode->i_blkbits = sb->s_blocksize_bits;
128 		inode->i_flags = 0;
129 		atomic_set(&inode->i_count, 1);
130 		inode->i_op = &empty_iops;
131 		inode->i_fop = &empty_fops;
132 		inode->i_nlink = 1;
133 		atomic_set(&inode->i_writecount, 0);
134 		inode->i_size = 0;
135 		inode->i_blocks = 0;
136 		inode->i_bytes = 0;
137 		inode->i_generation = 0;
138 #ifdef CONFIG_QUOTA
139 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
140 #endif
141 		inode->i_pipe = NULL;
142 		inode->i_bdev = NULL;
143 		inode->i_cdev = NULL;
144 		inode->i_rdev = 0;
145 		inode->dirtied_when = 0;
146 		if (security_inode_alloc(inode)) {
147 			if (inode->i_sb->s_op->destroy_inode)
148 				inode->i_sb->s_op->destroy_inode(inode);
149 			else
150 				kmem_cache_free(inode_cachep, (inode));
151 			return NULL;
152 		}
153 
154 		spin_lock_init(&inode->i_lock);
155 		lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
156 
157 		mutex_init(&inode->i_mutex);
158 		lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
159 
160 		init_rwsem(&inode->i_alloc_sem);
161 		lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
162 
163 		mapping->a_ops = &empty_aops;
164  		mapping->host = inode;
165 		mapping->flags = 0;
166 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE);
167 		mapping->assoc_mapping = NULL;
168 		mapping->backing_dev_info = &default_backing_dev_info;
169 
170 		/*
171 		 * If the block_device provides a backing_dev_info for client
172 		 * inodes then use that.  Otherwise the inode share the bdev's
173 		 * backing_dev_info.
174 		 */
175 		if (sb->s_bdev) {
176 			struct backing_dev_info *bdi;
177 
178 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
179 			if (!bdi)
180 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 			mapping->backing_dev_info = bdi;
182 		}
183 		inode->i_private = NULL;
184 		inode->i_mapping = mapping;
185 	}
186 	return inode;
187 }
188 
189 void destroy_inode(struct inode *inode)
190 {
191 	BUG_ON(inode_has_buffers(inode));
192 	security_inode_free(inode);
193 	if (inode->i_sb->s_op->destroy_inode)
194 		inode->i_sb->s_op->destroy_inode(inode);
195 	else
196 		kmem_cache_free(inode_cachep, (inode));
197 }
198 
199 
200 /*
201  * These are initializations that only need to be done
202  * once, because the fields are idempotent across use
203  * of the inode, so let the slab aware of that.
204  */
205 void inode_init_once(struct inode *inode)
206 {
207 	memset(inode, 0, sizeof(*inode));
208 	INIT_HLIST_NODE(&inode->i_hash);
209 	INIT_LIST_HEAD(&inode->i_dentry);
210 	INIT_LIST_HEAD(&inode->i_devices);
211 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
212 	spin_lock_init(&inode->i_data.tree_lock);
213 	spin_lock_init(&inode->i_data.i_mmap_lock);
214 	INIT_LIST_HEAD(&inode->i_data.private_list);
215 	spin_lock_init(&inode->i_data.private_lock);
216 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
217 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
218 	i_size_ordered_init(inode);
219 #ifdef CONFIG_INOTIFY
220 	INIT_LIST_HEAD(&inode->inotify_watches);
221 	mutex_init(&inode->inotify_mutex);
222 #endif
223 }
224 
225 EXPORT_SYMBOL(inode_init_once);
226 
227 static void init_once(void *foo)
228 {
229 	struct inode * inode = (struct inode *) foo;
230 
231 	inode_init_once(inode);
232 }
233 
234 /*
235  * inode_lock must be held
236  */
237 void __iget(struct inode * inode)
238 {
239 	if (atomic_read(&inode->i_count)) {
240 		atomic_inc(&inode->i_count);
241 		return;
242 	}
243 	atomic_inc(&inode->i_count);
244 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
245 		list_move(&inode->i_list, &inode_in_use);
246 	inodes_stat.nr_unused--;
247 }
248 
249 /**
250  * clear_inode - clear an inode
251  * @inode: inode to clear
252  *
253  * This is called by the filesystem to tell us
254  * that the inode is no longer useful. We just
255  * terminate it with extreme prejudice.
256  */
257 void clear_inode(struct inode *inode)
258 {
259 	might_sleep();
260 	invalidate_inode_buffers(inode);
261 
262 	BUG_ON(inode->i_data.nrpages);
263 	BUG_ON(!(inode->i_state & I_FREEING));
264 	BUG_ON(inode->i_state & I_CLEAR);
265 	inode_sync_wait(inode);
266 	DQUOT_DROP(inode);
267 	if (inode->i_sb->s_op->clear_inode)
268 		inode->i_sb->s_op->clear_inode(inode);
269 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
270 		bd_forget(inode);
271 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
272 		cd_forget(inode);
273 	inode->i_state = I_CLEAR;
274 }
275 
276 EXPORT_SYMBOL(clear_inode);
277 
278 /*
279  * dispose_list - dispose of the contents of a local list
280  * @head: the head of the list to free
281  *
282  * Dispose-list gets a local list with local inodes in it, so it doesn't
283  * need to worry about list corruption and SMP locks.
284  */
285 static void dispose_list(struct list_head *head)
286 {
287 	int nr_disposed = 0;
288 
289 	while (!list_empty(head)) {
290 		struct inode *inode;
291 
292 		inode = list_first_entry(head, struct inode, i_list);
293 		list_del(&inode->i_list);
294 
295 		if (inode->i_data.nrpages)
296 			truncate_inode_pages(&inode->i_data, 0);
297 		clear_inode(inode);
298 
299 		spin_lock(&inode_lock);
300 		hlist_del_init(&inode->i_hash);
301 		list_del_init(&inode->i_sb_list);
302 		spin_unlock(&inode_lock);
303 
304 		wake_up_inode(inode);
305 		destroy_inode(inode);
306 		nr_disposed++;
307 	}
308 	spin_lock(&inode_lock);
309 	inodes_stat.nr_inodes -= nr_disposed;
310 	spin_unlock(&inode_lock);
311 }
312 
313 /*
314  * Invalidate all inodes for a device.
315  */
316 static int invalidate_list(struct list_head *head, struct list_head *dispose)
317 {
318 	struct list_head *next;
319 	int busy = 0, count = 0;
320 
321 	next = head->next;
322 	for (;;) {
323 		struct list_head * tmp = next;
324 		struct inode * inode;
325 
326 		/*
327 		 * We can reschedule here without worrying about the list's
328 		 * consistency because the per-sb list of inodes must not
329 		 * change during umount anymore, and because iprune_mutex keeps
330 		 * shrink_icache_memory() away.
331 		 */
332 		cond_resched_lock(&inode_lock);
333 
334 		next = next->next;
335 		if (tmp == head)
336 			break;
337 		inode = list_entry(tmp, struct inode, i_sb_list);
338 		invalidate_inode_buffers(inode);
339 		if (!atomic_read(&inode->i_count)) {
340 			list_move(&inode->i_list, dispose);
341 			inode->i_state |= I_FREEING;
342 			count++;
343 			continue;
344 		}
345 		busy = 1;
346 	}
347 	/* only unused inodes may be cached with i_count zero */
348 	inodes_stat.nr_unused -= count;
349 	return busy;
350 }
351 
352 /**
353  *	invalidate_inodes	- discard the inodes on a device
354  *	@sb: superblock
355  *
356  *	Discard all of the inodes for a given superblock. If the discard
357  *	fails because there are busy inodes then a non zero value is returned.
358  *	If the discard is successful all the inodes have been discarded.
359  */
360 int invalidate_inodes(struct super_block * sb)
361 {
362 	int busy;
363 	LIST_HEAD(throw_away);
364 
365 	mutex_lock(&iprune_mutex);
366 	spin_lock(&inode_lock);
367 	inotify_unmount_inodes(&sb->s_inodes);
368 	busy = invalidate_list(&sb->s_inodes, &throw_away);
369 	spin_unlock(&inode_lock);
370 
371 	dispose_list(&throw_away);
372 	mutex_unlock(&iprune_mutex);
373 
374 	return busy;
375 }
376 
377 EXPORT_SYMBOL(invalidate_inodes);
378 
379 static int can_unuse(struct inode *inode)
380 {
381 	if (inode->i_state)
382 		return 0;
383 	if (inode_has_buffers(inode))
384 		return 0;
385 	if (atomic_read(&inode->i_count))
386 		return 0;
387 	if (inode->i_data.nrpages)
388 		return 0;
389 	return 1;
390 }
391 
392 /*
393  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
394  * a temporary list and then are freed outside inode_lock by dispose_list().
395  *
396  * Any inodes which are pinned purely because of attached pagecache have their
397  * pagecache removed.  We expect the final iput() on that inode to add it to
398  * the front of the inode_unused list.  So look for it there and if the
399  * inode is still freeable, proceed.  The right inode is found 99.9% of the
400  * time in testing on a 4-way.
401  *
402  * If the inode has metadata buffers attached to mapping->private_list then
403  * try to remove them.
404  */
405 static void prune_icache(int nr_to_scan)
406 {
407 	LIST_HEAD(freeable);
408 	int nr_pruned = 0;
409 	int nr_scanned;
410 	unsigned long reap = 0;
411 
412 	mutex_lock(&iprune_mutex);
413 	spin_lock(&inode_lock);
414 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
415 		struct inode *inode;
416 
417 		if (list_empty(&inode_unused))
418 			break;
419 
420 		inode = list_entry(inode_unused.prev, struct inode, i_list);
421 
422 		if (inode->i_state || atomic_read(&inode->i_count)) {
423 			list_move(&inode->i_list, &inode_unused);
424 			continue;
425 		}
426 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
427 			__iget(inode);
428 			spin_unlock(&inode_lock);
429 			if (remove_inode_buffers(inode))
430 				reap += invalidate_mapping_pages(&inode->i_data,
431 								0, -1);
432 			iput(inode);
433 			spin_lock(&inode_lock);
434 
435 			if (inode != list_entry(inode_unused.next,
436 						struct inode, i_list))
437 				continue;	/* wrong inode or list_empty */
438 			if (!can_unuse(inode))
439 				continue;
440 		}
441 		list_move(&inode->i_list, &freeable);
442 		inode->i_state |= I_FREEING;
443 		nr_pruned++;
444 	}
445 	inodes_stat.nr_unused -= nr_pruned;
446 	if (current_is_kswapd())
447 		__count_vm_events(KSWAPD_INODESTEAL, reap);
448 	else
449 		__count_vm_events(PGINODESTEAL, reap);
450 	spin_unlock(&inode_lock);
451 
452 	dispose_list(&freeable);
453 	mutex_unlock(&iprune_mutex);
454 }
455 
456 /*
457  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
458  * "unused" means that no dentries are referring to the inodes: the files are
459  * not open and the dcache references to those inodes have already been
460  * reclaimed.
461  *
462  * This function is passed the number of inodes to scan, and it returns the
463  * total number of remaining possibly-reclaimable inodes.
464  */
465 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
466 {
467 	if (nr) {
468 		/*
469 		 * Nasty deadlock avoidance.  We may hold various FS locks,
470 		 * and we don't want to recurse into the FS that called us
471 		 * in clear_inode() and friends..
472 	 	 */
473 		if (!(gfp_mask & __GFP_FS))
474 			return -1;
475 		prune_icache(nr);
476 	}
477 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
478 }
479 
480 static struct shrinker icache_shrinker = {
481 	.shrink = shrink_icache_memory,
482 	.seeks = DEFAULT_SEEKS,
483 };
484 
485 static void __wait_on_freeing_inode(struct inode *inode);
486 /*
487  * Called with the inode lock held.
488  * NOTE: we are not increasing the inode-refcount, you must call __iget()
489  * by hand after calling find_inode now! This simplifies iunique and won't
490  * add any additional branch in the common code.
491  */
492 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
493 {
494 	struct hlist_node *node;
495 	struct inode * inode = NULL;
496 
497 repeat:
498 	hlist_for_each_entry(inode, node, head, i_hash) {
499 		if (inode->i_sb != sb)
500 			continue;
501 		if (!test(inode, data))
502 			continue;
503 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
504 			__wait_on_freeing_inode(inode);
505 			goto repeat;
506 		}
507 		break;
508 	}
509 	return node ? inode : NULL;
510 }
511 
512 /*
513  * find_inode_fast is the fast path version of find_inode, see the comment at
514  * iget_locked for details.
515  */
516 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
517 {
518 	struct hlist_node *node;
519 	struct inode * inode = NULL;
520 
521 repeat:
522 	hlist_for_each_entry(inode, node, head, i_hash) {
523 		if (inode->i_ino != ino)
524 			continue;
525 		if (inode->i_sb != sb)
526 			continue;
527 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
528 			__wait_on_freeing_inode(inode);
529 			goto repeat;
530 		}
531 		break;
532 	}
533 	return node ? inode : NULL;
534 }
535 
536 /**
537  *	new_inode 	- obtain an inode
538  *	@sb: superblock
539  *
540  *	Allocates a new inode for given superblock. The default gfp_mask
541  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE.
542  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
543  *	for the page cache are not reclaimable or migratable,
544  *	mapping_set_gfp_mask() must be called with suitable flags on the
545  *	newly created inode's mapping
546  *
547  */
548 struct inode *new_inode(struct super_block *sb)
549 {
550 	/*
551 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
552 	 * error if st_ino won't fit in target struct field. Use 32bit counter
553 	 * here to attempt to avoid that.
554 	 */
555 	static unsigned int last_ino;
556 	struct inode * inode;
557 
558 	spin_lock_prefetch(&inode_lock);
559 
560 	inode = alloc_inode(sb);
561 	if (inode) {
562 		spin_lock(&inode_lock);
563 		inodes_stat.nr_inodes++;
564 		list_add(&inode->i_list, &inode_in_use);
565 		list_add(&inode->i_sb_list, &sb->s_inodes);
566 		inode->i_ino = ++last_ino;
567 		inode->i_state = 0;
568 		spin_unlock(&inode_lock);
569 	}
570 	return inode;
571 }
572 
573 EXPORT_SYMBOL(new_inode);
574 
575 void unlock_new_inode(struct inode *inode)
576 {
577 #ifdef CONFIG_DEBUG_LOCK_ALLOC
578 	if (inode->i_mode & S_IFDIR) {
579 		struct file_system_type *type = inode->i_sb->s_type;
580 
581 		/*
582 		 * ensure nobody is actually holding i_mutex
583 		 */
584 		mutex_destroy(&inode->i_mutex);
585 		mutex_init(&inode->i_mutex);
586 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
587 	}
588 #endif
589 	/*
590 	 * This is special!  We do not need the spinlock
591 	 * when clearing I_LOCK, because we're guaranteed
592 	 * that nobody else tries to do anything about the
593 	 * state of the inode when it is locked, as we
594 	 * just created it (so there can be no old holders
595 	 * that haven't tested I_LOCK).
596 	 */
597 	inode->i_state &= ~(I_LOCK|I_NEW);
598 	wake_up_inode(inode);
599 }
600 
601 EXPORT_SYMBOL(unlock_new_inode);
602 
603 /*
604  * This is called without the inode lock held.. Be careful.
605  *
606  * We no longer cache the sb_flags in i_flags - see fs.h
607  *	-- rmk@arm.uk.linux.org
608  */
609 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
610 {
611 	struct inode * inode;
612 
613 	inode = alloc_inode(sb);
614 	if (inode) {
615 		struct inode * old;
616 
617 		spin_lock(&inode_lock);
618 		/* We released the lock, so.. */
619 		old = find_inode(sb, head, test, data);
620 		if (!old) {
621 			if (set(inode, data))
622 				goto set_failed;
623 
624 			inodes_stat.nr_inodes++;
625 			list_add(&inode->i_list, &inode_in_use);
626 			list_add(&inode->i_sb_list, &sb->s_inodes);
627 			hlist_add_head(&inode->i_hash, head);
628 			inode->i_state = I_LOCK|I_NEW;
629 			spin_unlock(&inode_lock);
630 
631 			/* Return the locked inode with I_NEW set, the
632 			 * caller is responsible for filling in the contents
633 			 */
634 			return inode;
635 		}
636 
637 		/*
638 		 * Uhhuh, somebody else created the same inode under
639 		 * us. Use the old inode instead of the one we just
640 		 * allocated.
641 		 */
642 		__iget(old);
643 		spin_unlock(&inode_lock);
644 		destroy_inode(inode);
645 		inode = old;
646 		wait_on_inode(inode);
647 	}
648 	return inode;
649 
650 set_failed:
651 	spin_unlock(&inode_lock);
652 	destroy_inode(inode);
653 	return NULL;
654 }
655 
656 /*
657  * get_new_inode_fast is the fast path version of get_new_inode, see the
658  * comment at iget_locked for details.
659  */
660 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
661 {
662 	struct inode * inode;
663 
664 	inode = alloc_inode(sb);
665 	if (inode) {
666 		struct inode * old;
667 
668 		spin_lock(&inode_lock);
669 		/* We released the lock, so.. */
670 		old = find_inode_fast(sb, head, ino);
671 		if (!old) {
672 			inode->i_ino = ino;
673 			inodes_stat.nr_inodes++;
674 			list_add(&inode->i_list, &inode_in_use);
675 			list_add(&inode->i_sb_list, &sb->s_inodes);
676 			hlist_add_head(&inode->i_hash, head);
677 			inode->i_state = I_LOCK|I_NEW;
678 			spin_unlock(&inode_lock);
679 
680 			/* Return the locked inode with I_NEW set, the
681 			 * caller is responsible for filling in the contents
682 			 */
683 			return inode;
684 		}
685 
686 		/*
687 		 * Uhhuh, somebody else created the same inode under
688 		 * us. Use the old inode instead of the one we just
689 		 * allocated.
690 		 */
691 		__iget(old);
692 		spin_unlock(&inode_lock);
693 		destroy_inode(inode);
694 		inode = old;
695 		wait_on_inode(inode);
696 	}
697 	return inode;
698 }
699 
700 static unsigned long hash(struct super_block *sb, unsigned long hashval)
701 {
702 	unsigned long tmp;
703 
704 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
705 			L1_CACHE_BYTES;
706 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
707 	return tmp & I_HASHMASK;
708 }
709 
710 /**
711  *	iunique - get a unique inode number
712  *	@sb: superblock
713  *	@max_reserved: highest reserved inode number
714  *
715  *	Obtain an inode number that is unique on the system for a given
716  *	superblock. This is used by file systems that have no natural
717  *	permanent inode numbering system. An inode number is returned that
718  *	is higher than the reserved limit but unique.
719  *
720  *	BUGS:
721  *	With a large number of inodes live on the file system this function
722  *	currently becomes quite slow.
723  */
724 ino_t iunique(struct super_block *sb, ino_t max_reserved)
725 {
726 	/*
727 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
728 	 * error if st_ino won't fit in target struct field. Use 32bit counter
729 	 * here to attempt to avoid that.
730 	 */
731 	static unsigned int counter;
732 	struct inode *inode;
733 	struct hlist_head *head;
734 	ino_t res;
735 
736 	spin_lock(&inode_lock);
737 	do {
738 		if (counter <= max_reserved)
739 			counter = max_reserved + 1;
740 		res = counter++;
741 		head = inode_hashtable + hash(sb, res);
742 		inode = find_inode_fast(sb, head, res);
743 	} while (inode != NULL);
744 	spin_unlock(&inode_lock);
745 
746 	return res;
747 }
748 EXPORT_SYMBOL(iunique);
749 
750 struct inode *igrab(struct inode *inode)
751 {
752 	spin_lock(&inode_lock);
753 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
754 		__iget(inode);
755 	else
756 		/*
757 		 * Handle the case where s_op->clear_inode is not been
758 		 * called yet, and somebody is calling igrab
759 		 * while the inode is getting freed.
760 		 */
761 		inode = NULL;
762 	spin_unlock(&inode_lock);
763 	return inode;
764 }
765 
766 EXPORT_SYMBOL(igrab);
767 
768 /**
769  * ifind - internal function, you want ilookup5() or iget5().
770  * @sb:		super block of file system to search
771  * @head:       the head of the list to search
772  * @test:	callback used for comparisons between inodes
773  * @data:	opaque data pointer to pass to @test
774  * @wait:	if true wait for the inode to be unlocked, if false do not
775  *
776  * ifind() searches for the inode specified by @data in the inode
777  * cache. This is a generalized version of ifind_fast() for file systems where
778  * the inode number is not sufficient for unique identification of an inode.
779  *
780  * If the inode is in the cache, the inode is returned with an incremented
781  * reference count.
782  *
783  * Otherwise NULL is returned.
784  *
785  * Note, @test is called with the inode_lock held, so can't sleep.
786  */
787 static struct inode *ifind(struct super_block *sb,
788 		struct hlist_head *head, int (*test)(struct inode *, void *),
789 		void *data, const int wait)
790 {
791 	struct inode *inode;
792 
793 	spin_lock(&inode_lock);
794 	inode = find_inode(sb, head, test, data);
795 	if (inode) {
796 		__iget(inode);
797 		spin_unlock(&inode_lock);
798 		if (likely(wait))
799 			wait_on_inode(inode);
800 		return inode;
801 	}
802 	spin_unlock(&inode_lock);
803 	return NULL;
804 }
805 
806 /**
807  * ifind_fast - internal function, you want ilookup() or iget().
808  * @sb:		super block of file system to search
809  * @head:       head of the list to search
810  * @ino:	inode number to search for
811  *
812  * ifind_fast() searches for the inode @ino in the inode cache. This is for
813  * file systems where the inode number is sufficient for unique identification
814  * of an inode.
815  *
816  * If the inode is in the cache, the inode is returned with an incremented
817  * reference count.
818  *
819  * Otherwise NULL is returned.
820  */
821 static struct inode *ifind_fast(struct super_block *sb,
822 		struct hlist_head *head, unsigned long ino)
823 {
824 	struct inode *inode;
825 
826 	spin_lock(&inode_lock);
827 	inode = find_inode_fast(sb, head, ino);
828 	if (inode) {
829 		__iget(inode);
830 		spin_unlock(&inode_lock);
831 		wait_on_inode(inode);
832 		return inode;
833 	}
834 	spin_unlock(&inode_lock);
835 	return NULL;
836 }
837 
838 /**
839  * ilookup5_nowait - search for an inode in the inode cache
840  * @sb:		super block of file system to search
841  * @hashval:	hash value (usually inode number) to search for
842  * @test:	callback used for comparisons between inodes
843  * @data:	opaque data pointer to pass to @test
844  *
845  * ilookup5() uses ifind() to search for the inode specified by @hashval and
846  * @data in the inode cache. This is a generalized version of ilookup() for
847  * file systems where the inode number is not sufficient for unique
848  * identification of an inode.
849  *
850  * If the inode is in the cache, the inode is returned with an incremented
851  * reference count.  Note, the inode lock is not waited upon so you have to be
852  * very careful what you do with the returned inode.  You probably should be
853  * using ilookup5() instead.
854  *
855  * Otherwise NULL is returned.
856  *
857  * Note, @test is called with the inode_lock held, so can't sleep.
858  */
859 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
860 		int (*test)(struct inode *, void *), void *data)
861 {
862 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
863 
864 	return ifind(sb, head, test, data, 0);
865 }
866 
867 EXPORT_SYMBOL(ilookup5_nowait);
868 
869 /**
870  * ilookup5 - search for an inode in the inode cache
871  * @sb:		super block of file system to search
872  * @hashval:	hash value (usually inode number) to search for
873  * @test:	callback used for comparisons between inodes
874  * @data:	opaque data pointer to pass to @test
875  *
876  * ilookup5() uses ifind() to search for the inode specified by @hashval and
877  * @data in the inode cache. This is a generalized version of ilookup() for
878  * file systems where the inode number is not sufficient for unique
879  * identification of an inode.
880  *
881  * If the inode is in the cache, the inode lock is waited upon and the inode is
882  * returned with an incremented reference count.
883  *
884  * Otherwise NULL is returned.
885  *
886  * Note, @test is called with the inode_lock held, so can't sleep.
887  */
888 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
889 		int (*test)(struct inode *, void *), void *data)
890 {
891 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
892 
893 	return ifind(sb, head, test, data, 1);
894 }
895 
896 EXPORT_SYMBOL(ilookup5);
897 
898 /**
899  * ilookup - search for an inode in the inode cache
900  * @sb:		super block of file system to search
901  * @ino:	inode number to search for
902  *
903  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
904  * This is for file systems where the inode number is sufficient for unique
905  * identification of an inode.
906  *
907  * If the inode is in the cache, the inode is returned with an incremented
908  * reference count.
909  *
910  * Otherwise NULL is returned.
911  */
912 struct inode *ilookup(struct super_block *sb, unsigned long ino)
913 {
914 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
915 
916 	return ifind_fast(sb, head, ino);
917 }
918 
919 EXPORT_SYMBOL(ilookup);
920 
921 /**
922  * iget5_locked - obtain an inode from a mounted file system
923  * @sb:		super block of file system
924  * @hashval:	hash value (usually inode number) to get
925  * @test:	callback used for comparisons between inodes
926  * @set:	callback used to initialize a new struct inode
927  * @data:	opaque data pointer to pass to @test and @set
928  *
929  * iget5_locked() uses ifind() to search for the inode specified by @hashval
930  * and @data in the inode cache and if present it is returned with an increased
931  * reference count. This is a generalized version of iget_locked() for file
932  * systems where the inode number is not sufficient for unique identification
933  * of an inode.
934  *
935  * If the inode is not in cache, get_new_inode() is called to allocate a new
936  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
937  * file system gets to fill it in before unlocking it via unlock_new_inode().
938  *
939  * Note both @test and @set are called with the inode_lock held, so can't sleep.
940  */
941 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
942 		int (*test)(struct inode *, void *),
943 		int (*set)(struct inode *, void *), void *data)
944 {
945 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
946 	struct inode *inode;
947 
948 	inode = ifind(sb, head, test, data, 1);
949 	if (inode)
950 		return inode;
951 	/*
952 	 * get_new_inode() will do the right thing, re-trying the search
953 	 * in case it had to block at any point.
954 	 */
955 	return get_new_inode(sb, head, test, set, data);
956 }
957 
958 EXPORT_SYMBOL(iget5_locked);
959 
960 /**
961  * iget_locked - obtain an inode from a mounted file system
962  * @sb:		super block of file system
963  * @ino:	inode number to get
964  *
965  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
966  * the inode cache and if present it is returned with an increased reference
967  * count. This is for file systems where the inode number is sufficient for
968  * unique identification of an inode.
969  *
970  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
971  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
972  * The file system gets to fill it in before unlocking it via
973  * unlock_new_inode().
974  */
975 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
976 {
977 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
978 	struct inode *inode;
979 
980 	inode = ifind_fast(sb, head, ino);
981 	if (inode)
982 		return inode;
983 	/*
984 	 * get_new_inode_fast() will do the right thing, re-trying the search
985 	 * in case it had to block at any point.
986 	 */
987 	return get_new_inode_fast(sb, head, ino);
988 }
989 
990 EXPORT_SYMBOL(iget_locked);
991 
992 /**
993  *	__insert_inode_hash - hash an inode
994  *	@inode: unhashed inode
995  *	@hashval: unsigned long value used to locate this object in the
996  *		inode_hashtable.
997  *
998  *	Add an inode to the inode hash for this superblock.
999  */
1000 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1001 {
1002 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1003 	spin_lock(&inode_lock);
1004 	hlist_add_head(&inode->i_hash, head);
1005 	spin_unlock(&inode_lock);
1006 }
1007 
1008 EXPORT_SYMBOL(__insert_inode_hash);
1009 
1010 /**
1011  *	remove_inode_hash - remove an inode from the hash
1012  *	@inode: inode to unhash
1013  *
1014  *	Remove an inode from the superblock.
1015  */
1016 void remove_inode_hash(struct inode *inode)
1017 {
1018 	spin_lock(&inode_lock);
1019 	hlist_del_init(&inode->i_hash);
1020 	spin_unlock(&inode_lock);
1021 }
1022 
1023 EXPORT_SYMBOL(remove_inode_hash);
1024 
1025 /*
1026  * Tell the filesystem that this inode is no longer of any interest and should
1027  * be completely destroyed.
1028  *
1029  * We leave the inode in the inode hash table until *after* the filesystem's
1030  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1031  * instigate) will always find up-to-date information either in the hash or on
1032  * disk.
1033  *
1034  * I_FREEING is set so that no-one will take a new reference to the inode while
1035  * it is being deleted.
1036  */
1037 void generic_delete_inode(struct inode *inode)
1038 {
1039 	const struct super_operations *op = inode->i_sb->s_op;
1040 
1041 	list_del_init(&inode->i_list);
1042 	list_del_init(&inode->i_sb_list);
1043 	inode->i_state |= I_FREEING;
1044 	inodes_stat.nr_inodes--;
1045 	spin_unlock(&inode_lock);
1046 
1047 	security_inode_delete(inode);
1048 
1049 	if (op->delete_inode) {
1050 		void (*delete)(struct inode *) = op->delete_inode;
1051 		if (!is_bad_inode(inode))
1052 			DQUOT_INIT(inode);
1053 		/* Filesystems implementing their own
1054 		 * s_op->delete_inode are required to call
1055 		 * truncate_inode_pages and clear_inode()
1056 		 * internally */
1057 		delete(inode);
1058 	} else {
1059 		truncate_inode_pages(&inode->i_data, 0);
1060 		clear_inode(inode);
1061 	}
1062 	spin_lock(&inode_lock);
1063 	hlist_del_init(&inode->i_hash);
1064 	spin_unlock(&inode_lock);
1065 	wake_up_inode(inode);
1066 	BUG_ON(inode->i_state != I_CLEAR);
1067 	destroy_inode(inode);
1068 }
1069 
1070 EXPORT_SYMBOL(generic_delete_inode);
1071 
1072 static void generic_forget_inode(struct inode *inode)
1073 {
1074 	struct super_block *sb = inode->i_sb;
1075 
1076 	if (!hlist_unhashed(&inode->i_hash)) {
1077 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1078 			list_move(&inode->i_list, &inode_unused);
1079 		inodes_stat.nr_unused++;
1080 		if (sb->s_flags & MS_ACTIVE) {
1081 			spin_unlock(&inode_lock);
1082 			return;
1083 		}
1084 		inode->i_state |= I_WILL_FREE;
1085 		spin_unlock(&inode_lock);
1086 		write_inode_now(inode, 1);
1087 		spin_lock(&inode_lock);
1088 		inode->i_state &= ~I_WILL_FREE;
1089 		inodes_stat.nr_unused--;
1090 		hlist_del_init(&inode->i_hash);
1091 	}
1092 	list_del_init(&inode->i_list);
1093 	list_del_init(&inode->i_sb_list);
1094 	inode->i_state |= I_FREEING;
1095 	inodes_stat.nr_inodes--;
1096 	spin_unlock(&inode_lock);
1097 	if (inode->i_data.nrpages)
1098 		truncate_inode_pages(&inode->i_data, 0);
1099 	clear_inode(inode);
1100 	wake_up_inode(inode);
1101 	destroy_inode(inode);
1102 }
1103 
1104 /*
1105  * Normal UNIX filesystem behaviour: delete the
1106  * inode when the usage count drops to zero, and
1107  * i_nlink is zero.
1108  */
1109 void generic_drop_inode(struct inode *inode)
1110 {
1111 	if (!inode->i_nlink)
1112 		generic_delete_inode(inode);
1113 	else
1114 		generic_forget_inode(inode);
1115 }
1116 
1117 EXPORT_SYMBOL_GPL(generic_drop_inode);
1118 
1119 /*
1120  * Called when we're dropping the last reference
1121  * to an inode.
1122  *
1123  * Call the FS "drop()" function, defaulting to
1124  * the legacy UNIX filesystem behaviour..
1125  *
1126  * NOTE! NOTE! NOTE! We're called with the inode lock
1127  * held, and the drop function is supposed to release
1128  * the lock!
1129  */
1130 static inline void iput_final(struct inode *inode)
1131 {
1132 	const struct super_operations *op = inode->i_sb->s_op;
1133 	void (*drop)(struct inode *) = generic_drop_inode;
1134 
1135 	if (op && op->drop_inode)
1136 		drop = op->drop_inode;
1137 	drop(inode);
1138 }
1139 
1140 /**
1141  *	iput	- put an inode
1142  *	@inode: inode to put
1143  *
1144  *	Puts an inode, dropping its usage count. If the inode use count hits
1145  *	zero, the inode is then freed and may also be destroyed.
1146  *
1147  *	Consequently, iput() can sleep.
1148  */
1149 void iput(struct inode *inode)
1150 {
1151 	if (inode) {
1152 		BUG_ON(inode->i_state == I_CLEAR);
1153 
1154 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1155 			iput_final(inode);
1156 	}
1157 }
1158 
1159 EXPORT_SYMBOL(iput);
1160 
1161 /**
1162  *	bmap	- find a block number in a file
1163  *	@inode: inode of file
1164  *	@block: block to find
1165  *
1166  *	Returns the block number on the device holding the inode that
1167  *	is the disk block number for the block of the file requested.
1168  *	That is, asked for block 4 of inode 1 the function will return the
1169  *	disk block relative to the disk start that holds that block of the
1170  *	file.
1171  */
1172 sector_t bmap(struct inode * inode, sector_t block)
1173 {
1174 	sector_t res = 0;
1175 	if (inode->i_mapping->a_ops->bmap)
1176 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1177 	return res;
1178 }
1179 EXPORT_SYMBOL(bmap);
1180 
1181 /**
1182  *	touch_atime	-	update the access time
1183  *	@mnt: mount the inode is accessed on
1184  *	@dentry: dentry accessed
1185  *
1186  *	Update the accessed time on an inode and mark it for writeback.
1187  *	This function automatically handles read only file systems and media,
1188  *	as well as the "noatime" flag and inode specific "noatime" markers.
1189  */
1190 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1191 {
1192 	struct inode *inode = dentry->d_inode;
1193 	struct timespec now;
1194 
1195 	if (mnt_want_write(mnt))
1196 		return;
1197 	if (inode->i_flags & S_NOATIME)
1198 		goto out;
1199 	if (IS_NOATIME(inode))
1200 		goto out;
1201 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1202 		goto out;
1203 
1204 	if (mnt->mnt_flags & MNT_NOATIME)
1205 		goto out;
1206 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1207 		goto out;
1208 	if (mnt->mnt_flags & MNT_RELATIME) {
1209 		/*
1210 		 * With relative atime, only update atime if the previous
1211 		 * atime is earlier than either the ctime or mtime.
1212 		 */
1213 		if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 &&
1214 		    timespec_compare(&inode->i_ctime, &inode->i_atime) < 0)
1215 			goto out;
1216 	}
1217 
1218 	now = current_fs_time(inode->i_sb);
1219 	if (timespec_equal(&inode->i_atime, &now))
1220 		goto out;
1221 
1222 	inode->i_atime = now;
1223 	mark_inode_dirty_sync(inode);
1224 out:
1225 	mnt_drop_write(mnt);
1226 }
1227 EXPORT_SYMBOL(touch_atime);
1228 
1229 /**
1230  *	file_update_time	-	update mtime and ctime time
1231  *	@file: file accessed
1232  *
1233  *	Update the mtime and ctime members of an inode and mark the inode
1234  *	for writeback.  Note that this function is meant exclusively for
1235  *	usage in the file write path of filesystems, and filesystems may
1236  *	choose to explicitly ignore update via this function with the
1237  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1238  *	timestamps are handled by the server.
1239  */
1240 
1241 void file_update_time(struct file *file)
1242 {
1243 	struct inode *inode = file->f_path.dentry->d_inode;
1244 	struct timespec now;
1245 	int sync_it = 0;
1246 	int err;
1247 
1248 	if (IS_NOCMTIME(inode))
1249 		return;
1250 
1251 	err = mnt_want_write(file->f_path.mnt);
1252 	if (err)
1253 		return;
1254 
1255 	now = current_fs_time(inode->i_sb);
1256 	if (!timespec_equal(&inode->i_mtime, &now)) {
1257 		inode->i_mtime = now;
1258 		sync_it = 1;
1259 	}
1260 
1261 	if (!timespec_equal(&inode->i_ctime, &now)) {
1262 		inode->i_ctime = now;
1263 		sync_it = 1;
1264 	}
1265 
1266 	if (IS_I_VERSION(inode)) {
1267 		inode_inc_iversion(inode);
1268 		sync_it = 1;
1269 	}
1270 
1271 	if (sync_it)
1272 		mark_inode_dirty_sync(inode);
1273 	mnt_drop_write(file->f_path.mnt);
1274 }
1275 
1276 EXPORT_SYMBOL(file_update_time);
1277 
1278 int inode_needs_sync(struct inode *inode)
1279 {
1280 	if (IS_SYNC(inode))
1281 		return 1;
1282 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1283 		return 1;
1284 	return 0;
1285 }
1286 
1287 EXPORT_SYMBOL(inode_needs_sync);
1288 
1289 int inode_wait(void *word)
1290 {
1291 	schedule();
1292 	return 0;
1293 }
1294 
1295 /*
1296  * If we try to find an inode in the inode hash while it is being
1297  * deleted, we have to wait until the filesystem completes its
1298  * deletion before reporting that it isn't found.  This function waits
1299  * until the deletion _might_ have completed.  Callers are responsible
1300  * to recheck inode state.
1301  *
1302  * It doesn't matter if I_LOCK is not set initially, a call to
1303  * wake_up_inode() after removing from the hash list will DTRT.
1304  *
1305  * This is called with inode_lock held.
1306  */
1307 static void __wait_on_freeing_inode(struct inode *inode)
1308 {
1309 	wait_queue_head_t *wq;
1310 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1311 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1312 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1313 	spin_unlock(&inode_lock);
1314 	schedule();
1315 	finish_wait(wq, &wait.wait);
1316 	spin_lock(&inode_lock);
1317 }
1318 
1319 /*
1320  * We rarely want to lock two inodes that do not have a parent/child
1321  * relationship (such as directory, child inode) simultaneously. The
1322  * vast majority of file systems should be able to get along fine
1323  * without this. Do not use these functions except as a last resort.
1324  */
1325 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1326 {
1327 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1328 		if (inode1)
1329 			mutex_lock(&inode1->i_mutex);
1330 		else if (inode2)
1331 			mutex_lock(&inode2->i_mutex);
1332 		return;
1333 	}
1334 
1335 	if (inode1 < inode2) {
1336 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1337 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1338 	} else {
1339 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1340 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1341 	}
1342 }
1343 EXPORT_SYMBOL(inode_double_lock);
1344 
1345 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1346 {
1347 	if (inode1)
1348 		mutex_unlock(&inode1->i_mutex);
1349 
1350 	if (inode2 && inode2 != inode1)
1351 		mutex_unlock(&inode2->i_mutex);
1352 }
1353 EXPORT_SYMBOL(inode_double_unlock);
1354 
1355 static __initdata unsigned long ihash_entries;
1356 static int __init set_ihash_entries(char *str)
1357 {
1358 	if (!str)
1359 		return 0;
1360 	ihash_entries = simple_strtoul(str, &str, 0);
1361 	return 1;
1362 }
1363 __setup("ihash_entries=", set_ihash_entries);
1364 
1365 /*
1366  * Initialize the waitqueues and inode hash table.
1367  */
1368 void __init inode_init_early(void)
1369 {
1370 	int loop;
1371 
1372 	/* If hashes are distributed across NUMA nodes, defer
1373 	 * hash allocation until vmalloc space is available.
1374 	 */
1375 	if (hashdist)
1376 		return;
1377 
1378 	inode_hashtable =
1379 		alloc_large_system_hash("Inode-cache",
1380 					sizeof(struct hlist_head),
1381 					ihash_entries,
1382 					14,
1383 					HASH_EARLY,
1384 					&i_hash_shift,
1385 					&i_hash_mask,
1386 					0);
1387 
1388 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1389 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1390 }
1391 
1392 void __init inode_init(void)
1393 {
1394 	int loop;
1395 
1396 	/* inode slab cache */
1397 	inode_cachep = kmem_cache_create("inode_cache",
1398 					 sizeof(struct inode),
1399 					 0,
1400 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1401 					 SLAB_MEM_SPREAD),
1402 					 init_once);
1403 	register_shrinker(&icache_shrinker);
1404 
1405 	/* Hash may have been set up in inode_init_early */
1406 	if (!hashdist)
1407 		return;
1408 
1409 	inode_hashtable =
1410 		alloc_large_system_hash("Inode-cache",
1411 					sizeof(struct hlist_head),
1412 					ihash_entries,
1413 					14,
1414 					0,
1415 					&i_hash_shift,
1416 					&i_hash_mask,
1417 					0);
1418 
1419 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1420 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1421 }
1422 
1423 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1424 {
1425 	inode->i_mode = mode;
1426 	if (S_ISCHR(mode)) {
1427 		inode->i_fop = &def_chr_fops;
1428 		inode->i_rdev = rdev;
1429 	} else if (S_ISBLK(mode)) {
1430 		inode->i_fop = &def_blk_fops;
1431 		inode->i_rdev = rdev;
1432 	} else if (S_ISFIFO(mode))
1433 		inode->i_fop = &def_fifo_fops;
1434 	else if (S_ISSOCK(mode))
1435 		inode->i_fop = &bad_sock_fops;
1436 	else
1437 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1438 		       mode);
1439 }
1440 EXPORT_SYMBOL(init_special_inode);
1441