1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/mount.h> 25 26 /* 27 * This is needed for the following functions: 28 * - inode_has_buffers 29 * - invalidate_inode_buffers 30 * - invalidate_bdev 31 * 32 * FIXME: remove all knowledge of the buffer layer from this file 33 */ 34 #include <linux/buffer_head.h> 35 36 /* 37 * New inode.c implementation. 38 * 39 * This implementation has the basic premise of trying 40 * to be extremely low-overhead and SMP-safe, yet be 41 * simple enough to be "obviously correct". 42 * 43 * Famous last words. 44 */ 45 46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 47 48 /* #define INODE_PARANOIA 1 */ 49 /* #define INODE_DEBUG 1 */ 50 51 /* 52 * Inode lookup is no longer as critical as it used to be: 53 * most of the lookups are going to be through the dcache. 54 */ 55 #define I_HASHBITS i_hash_shift 56 #define I_HASHMASK i_hash_mask 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 61 /* 62 * Each inode can be on two separate lists. One is 63 * the hash list of the inode, used for lookups. The 64 * other linked list is the "type" list: 65 * "in_use" - valid inode, i_count > 0, i_nlink > 0 66 * "dirty" - as "in_use" but also dirty 67 * "unused" - valid inode, i_count = 0 68 * 69 * A "dirty" list is maintained for each super block, 70 * allowing for low-overhead inode sync() operations. 71 */ 72 73 LIST_HEAD(inode_in_use); 74 LIST_HEAD(inode_unused); 75 static struct hlist_head *inode_hashtable __read_mostly; 76 77 /* 78 * A simple spinlock to protect the list manipulations. 79 * 80 * NOTE! You also have to own the lock if you change 81 * the i_state of an inode while it is in use.. 82 */ 83 DEFINE_SPINLOCK(inode_lock); 84 85 /* 86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 87 * icache shrinking path, and the umount path. Without this exclusion, 88 * by the time prune_icache calls iput for the inode whose pages it has 89 * been invalidating, or by the time it calls clear_inode & destroy_inode 90 * from its final dispose_list, the struct super_block they refer to 91 * (for inode->i_sb->s_op) may already have been freed and reused. 92 */ 93 static DEFINE_MUTEX(iprune_mutex); 94 95 /* 96 * Statistics gathering.. 97 */ 98 struct inodes_stat_t inodes_stat; 99 100 static struct kmem_cache * inode_cachep __read_mostly; 101 102 static void wake_up_inode(struct inode *inode) 103 { 104 /* 105 * Prevent speculative execution through spin_unlock(&inode_lock); 106 */ 107 smp_mb(); 108 wake_up_bit(&inode->i_state, __I_LOCK); 109 } 110 111 static struct inode *alloc_inode(struct super_block *sb) 112 { 113 static const struct address_space_operations empty_aops; 114 static struct inode_operations empty_iops; 115 static const struct file_operations empty_fops; 116 struct inode *inode; 117 118 if (sb->s_op->alloc_inode) 119 inode = sb->s_op->alloc_inode(sb); 120 else 121 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL); 122 123 if (inode) { 124 struct address_space * const mapping = &inode->i_data; 125 126 inode->i_sb = sb; 127 inode->i_blkbits = sb->s_blocksize_bits; 128 inode->i_flags = 0; 129 atomic_set(&inode->i_count, 1); 130 inode->i_op = &empty_iops; 131 inode->i_fop = &empty_fops; 132 inode->i_nlink = 1; 133 atomic_set(&inode->i_writecount, 0); 134 inode->i_size = 0; 135 inode->i_blocks = 0; 136 inode->i_bytes = 0; 137 inode->i_generation = 0; 138 #ifdef CONFIG_QUOTA 139 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 140 #endif 141 inode->i_pipe = NULL; 142 inode->i_bdev = NULL; 143 inode->i_cdev = NULL; 144 inode->i_rdev = 0; 145 inode->dirtied_when = 0; 146 if (security_inode_alloc(inode)) { 147 if (inode->i_sb->s_op->destroy_inode) 148 inode->i_sb->s_op->destroy_inode(inode); 149 else 150 kmem_cache_free(inode_cachep, (inode)); 151 return NULL; 152 } 153 154 spin_lock_init(&inode->i_lock); 155 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 156 157 mutex_init(&inode->i_mutex); 158 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 159 160 init_rwsem(&inode->i_alloc_sem); 161 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 162 163 mapping->a_ops = &empty_aops; 164 mapping->host = inode; 165 mapping->flags = 0; 166 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE); 167 mapping->assoc_mapping = NULL; 168 mapping->backing_dev_info = &default_backing_dev_info; 169 170 /* 171 * If the block_device provides a backing_dev_info for client 172 * inodes then use that. Otherwise the inode share the bdev's 173 * backing_dev_info. 174 */ 175 if (sb->s_bdev) { 176 struct backing_dev_info *bdi; 177 178 bdi = sb->s_bdev->bd_inode_backing_dev_info; 179 if (!bdi) 180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 181 mapping->backing_dev_info = bdi; 182 } 183 inode->i_private = NULL; 184 inode->i_mapping = mapping; 185 } 186 return inode; 187 } 188 189 void destroy_inode(struct inode *inode) 190 { 191 BUG_ON(inode_has_buffers(inode)); 192 security_inode_free(inode); 193 if (inode->i_sb->s_op->destroy_inode) 194 inode->i_sb->s_op->destroy_inode(inode); 195 else 196 kmem_cache_free(inode_cachep, (inode)); 197 } 198 199 200 /* 201 * These are initializations that only need to be done 202 * once, because the fields are idempotent across use 203 * of the inode, so let the slab aware of that. 204 */ 205 void inode_init_once(struct inode *inode) 206 { 207 memset(inode, 0, sizeof(*inode)); 208 INIT_HLIST_NODE(&inode->i_hash); 209 INIT_LIST_HEAD(&inode->i_dentry); 210 INIT_LIST_HEAD(&inode->i_devices); 211 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 212 spin_lock_init(&inode->i_data.tree_lock); 213 spin_lock_init(&inode->i_data.i_mmap_lock); 214 INIT_LIST_HEAD(&inode->i_data.private_list); 215 spin_lock_init(&inode->i_data.private_lock); 216 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 217 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 218 i_size_ordered_init(inode); 219 #ifdef CONFIG_INOTIFY 220 INIT_LIST_HEAD(&inode->inotify_watches); 221 mutex_init(&inode->inotify_mutex); 222 #endif 223 } 224 225 EXPORT_SYMBOL(inode_init_once); 226 227 static void init_once(void *foo) 228 { 229 struct inode * inode = (struct inode *) foo; 230 231 inode_init_once(inode); 232 } 233 234 /* 235 * inode_lock must be held 236 */ 237 void __iget(struct inode * inode) 238 { 239 if (atomic_read(&inode->i_count)) { 240 atomic_inc(&inode->i_count); 241 return; 242 } 243 atomic_inc(&inode->i_count); 244 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 245 list_move(&inode->i_list, &inode_in_use); 246 inodes_stat.nr_unused--; 247 } 248 249 /** 250 * clear_inode - clear an inode 251 * @inode: inode to clear 252 * 253 * This is called by the filesystem to tell us 254 * that the inode is no longer useful. We just 255 * terminate it with extreme prejudice. 256 */ 257 void clear_inode(struct inode *inode) 258 { 259 might_sleep(); 260 invalidate_inode_buffers(inode); 261 262 BUG_ON(inode->i_data.nrpages); 263 BUG_ON(!(inode->i_state & I_FREEING)); 264 BUG_ON(inode->i_state & I_CLEAR); 265 inode_sync_wait(inode); 266 DQUOT_DROP(inode); 267 if (inode->i_sb->s_op->clear_inode) 268 inode->i_sb->s_op->clear_inode(inode); 269 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 270 bd_forget(inode); 271 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 272 cd_forget(inode); 273 inode->i_state = I_CLEAR; 274 } 275 276 EXPORT_SYMBOL(clear_inode); 277 278 /* 279 * dispose_list - dispose of the contents of a local list 280 * @head: the head of the list to free 281 * 282 * Dispose-list gets a local list with local inodes in it, so it doesn't 283 * need to worry about list corruption and SMP locks. 284 */ 285 static void dispose_list(struct list_head *head) 286 { 287 int nr_disposed = 0; 288 289 while (!list_empty(head)) { 290 struct inode *inode; 291 292 inode = list_first_entry(head, struct inode, i_list); 293 list_del(&inode->i_list); 294 295 if (inode->i_data.nrpages) 296 truncate_inode_pages(&inode->i_data, 0); 297 clear_inode(inode); 298 299 spin_lock(&inode_lock); 300 hlist_del_init(&inode->i_hash); 301 list_del_init(&inode->i_sb_list); 302 spin_unlock(&inode_lock); 303 304 wake_up_inode(inode); 305 destroy_inode(inode); 306 nr_disposed++; 307 } 308 spin_lock(&inode_lock); 309 inodes_stat.nr_inodes -= nr_disposed; 310 spin_unlock(&inode_lock); 311 } 312 313 /* 314 * Invalidate all inodes for a device. 315 */ 316 static int invalidate_list(struct list_head *head, struct list_head *dispose) 317 { 318 struct list_head *next; 319 int busy = 0, count = 0; 320 321 next = head->next; 322 for (;;) { 323 struct list_head * tmp = next; 324 struct inode * inode; 325 326 /* 327 * We can reschedule here without worrying about the list's 328 * consistency because the per-sb list of inodes must not 329 * change during umount anymore, and because iprune_mutex keeps 330 * shrink_icache_memory() away. 331 */ 332 cond_resched_lock(&inode_lock); 333 334 next = next->next; 335 if (tmp == head) 336 break; 337 inode = list_entry(tmp, struct inode, i_sb_list); 338 invalidate_inode_buffers(inode); 339 if (!atomic_read(&inode->i_count)) { 340 list_move(&inode->i_list, dispose); 341 inode->i_state |= I_FREEING; 342 count++; 343 continue; 344 } 345 busy = 1; 346 } 347 /* only unused inodes may be cached with i_count zero */ 348 inodes_stat.nr_unused -= count; 349 return busy; 350 } 351 352 /** 353 * invalidate_inodes - discard the inodes on a device 354 * @sb: superblock 355 * 356 * Discard all of the inodes for a given superblock. If the discard 357 * fails because there are busy inodes then a non zero value is returned. 358 * If the discard is successful all the inodes have been discarded. 359 */ 360 int invalidate_inodes(struct super_block * sb) 361 { 362 int busy; 363 LIST_HEAD(throw_away); 364 365 mutex_lock(&iprune_mutex); 366 spin_lock(&inode_lock); 367 inotify_unmount_inodes(&sb->s_inodes); 368 busy = invalidate_list(&sb->s_inodes, &throw_away); 369 spin_unlock(&inode_lock); 370 371 dispose_list(&throw_away); 372 mutex_unlock(&iprune_mutex); 373 374 return busy; 375 } 376 377 EXPORT_SYMBOL(invalidate_inodes); 378 379 static int can_unuse(struct inode *inode) 380 { 381 if (inode->i_state) 382 return 0; 383 if (inode_has_buffers(inode)) 384 return 0; 385 if (atomic_read(&inode->i_count)) 386 return 0; 387 if (inode->i_data.nrpages) 388 return 0; 389 return 1; 390 } 391 392 /* 393 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 394 * a temporary list and then are freed outside inode_lock by dispose_list(). 395 * 396 * Any inodes which are pinned purely because of attached pagecache have their 397 * pagecache removed. We expect the final iput() on that inode to add it to 398 * the front of the inode_unused list. So look for it there and if the 399 * inode is still freeable, proceed. The right inode is found 99.9% of the 400 * time in testing on a 4-way. 401 * 402 * If the inode has metadata buffers attached to mapping->private_list then 403 * try to remove them. 404 */ 405 static void prune_icache(int nr_to_scan) 406 { 407 LIST_HEAD(freeable); 408 int nr_pruned = 0; 409 int nr_scanned; 410 unsigned long reap = 0; 411 412 mutex_lock(&iprune_mutex); 413 spin_lock(&inode_lock); 414 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 415 struct inode *inode; 416 417 if (list_empty(&inode_unused)) 418 break; 419 420 inode = list_entry(inode_unused.prev, struct inode, i_list); 421 422 if (inode->i_state || atomic_read(&inode->i_count)) { 423 list_move(&inode->i_list, &inode_unused); 424 continue; 425 } 426 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 427 __iget(inode); 428 spin_unlock(&inode_lock); 429 if (remove_inode_buffers(inode)) 430 reap += invalidate_mapping_pages(&inode->i_data, 431 0, -1); 432 iput(inode); 433 spin_lock(&inode_lock); 434 435 if (inode != list_entry(inode_unused.next, 436 struct inode, i_list)) 437 continue; /* wrong inode or list_empty */ 438 if (!can_unuse(inode)) 439 continue; 440 } 441 list_move(&inode->i_list, &freeable); 442 inode->i_state |= I_FREEING; 443 nr_pruned++; 444 } 445 inodes_stat.nr_unused -= nr_pruned; 446 if (current_is_kswapd()) 447 __count_vm_events(KSWAPD_INODESTEAL, reap); 448 else 449 __count_vm_events(PGINODESTEAL, reap); 450 spin_unlock(&inode_lock); 451 452 dispose_list(&freeable); 453 mutex_unlock(&iprune_mutex); 454 } 455 456 /* 457 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 458 * "unused" means that no dentries are referring to the inodes: the files are 459 * not open and the dcache references to those inodes have already been 460 * reclaimed. 461 * 462 * This function is passed the number of inodes to scan, and it returns the 463 * total number of remaining possibly-reclaimable inodes. 464 */ 465 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 466 { 467 if (nr) { 468 /* 469 * Nasty deadlock avoidance. We may hold various FS locks, 470 * and we don't want to recurse into the FS that called us 471 * in clear_inode() and friends.. 472 */ 473 if (!(gfp_mask & __GFP_FS)) 474 return -1; 475 prune_icache(nr); 476 } 477 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 478 } 479 480 static struct shrinker icache_shrinker = { 481 .shrink = shrink_icache_memory, 482 .seeks = DEFAULT_SEEKS, 483 }; 484 485 static void __wait_on_freeing_inode(struct inode *inode); 486 /* 487 * Called with the inode lock held. 488 * NOTE: we are not increasing the inode-refcount, you must call __iget() 489 * by hand after calling find_inode now! This simplifies iunique and won't 490 * add any additional branch in the common code. 491 */ 492 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 493 { 494 struct hlist_node *node; 495 struct inode * inode = NULL; 496 497 repeat: 498 hlist_for_each_entry(inode, node, head, i_hash) { 499 if (inode->i_sb != sb) 500 continue; 501 if (!test(inode, data)) 502 continue; 503 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 504 __wait_on_freeing_inode(inode); 505 goto repeat; 506 } 507 break; 508 } 509 return node ? inode : NULL; 510 } 511 512 /* 513 * find_inode_fast is the fast path version of find_inode, see the comment at 514 * iget_locked for details. 515 */ 516 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 517 { 518 struct hlist_node *node; 519 struct inode * inode = NULL; 520 521 repeat: 522 hlist_for_each_entry(inode, node, head, i_hash) { 523 if (inode->i_ino != ino) 524 continue; 525 if (inode->i_sb != sb) 526 continue; 527 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 528 __wait_on_freeing_inode(inode); 529 goto repeat; 530 } 531 break; 532 } 533 return node ? inode : NULL; 534 } 535 536 /** 537 * new_inode - obtain an inode 538 * @sb: superblock 539 * 540 * Allocates a new inode for given superblock. The default gfp_mask 541 * for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE. 542 * If HIGHMEM pages are unsuitable or it is known that pages allocated 543 * for the page cache are not reclaimable or migratable, 544 * mapping_set_gfp_mask() must be called with suitable flags on the 545 * newly created inode's mapping 546 * 547 */ 548 struct inode *new_inode(struct super_block *sb) 549 { 550 /* 551 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 552 * error if st_ino won't fit in target struct field. Use 32bit counter 553 * here to attempt to avoid that. 554 */ 555 static unsigned int last_ino; 556 struct inode * inode; 557 558 spin_lock_prefetch(&inode_lock); 559 560 inode = alloc_inode(sb); 561 if (inode) { 562 spin_lock(&inode_lock); 563 inodes_stat.nr_inodes++; 564 list_add(&inode->i_list, &inode_in_use); 565 list_add(&inode->i_sb_list, &sb->s_inodes); 566 inode->i_ino = ++last_ino; 567 inode->i_state = 0; 568 spin_unlock(&inode_lock); 569 } 570 return inode; 571 } 572 573 EXPORT_SYMBOL(new_inode); 574 575 void unlock_new_inode(struct inode *inode) 576 { 577 #ifdef CONFIG_DEBUG_LOCK_ALLOC 578 if (inode->i_mode & S_IFDIR) { 579 struct file_system_type *type = inode->i_sb->s_type; 580 581 /* 582 * ensure nobody is actually holding i_mutex 583 */ 584 mutex_destroy(&inode->i_mutex); 585 mutex_init(&inode->i_mutex); 586 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 587 } 588 #endif 589 /* 590 * This is special! We do not need the spinlock 591 * when clearing I_LOCK, because we're guaranteed 592 * that nobody else tries to do anything about the 593 * state of the inode when it is locked, as we 594 * just created it (so there can be no old holders 595 * that haven't tested I_LOCK). 596 */ 597 inode->i_state &= ~(I_LOCK|I_NEW); 598 wake_up_inode(inode); 599 } 600 601 EXPORT_SYMBOL(unlock_new_inode); 602 603 /* 604 * This is called without the inode lock held.. Be careful. 605 * 606 * We no longer cache the sb_flags in i_flags - see fs.h 607 * -- rmk@arm.uk.linux.org 608 */ 609 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 610 { 611 struct inode * inode; 612 613 inode = alloc_inode(sb); 614 if (inode) { 615 struct inode * old; 616 617 spin_lock(&inode_lock); 618 /* We released the lock, so.. */ 619 old = find_inode(sb, head, test, data); 620 if (!old) { 621 if (set(inode, data)) 622 goto set_failed; 623 624 inodes_stat.nr_inodes++; 625 list_add(&inode->i_list, &inode_in_use); 626 list_add(&inode->i_sb_list, &sb->s_inodes); 627 hlist_add_head(&inode->i_hash, head); 628 inode->i_state = I_LOCK|I_NEW; 629 spin_unlock(&inode_lock); 630 631 /* Return the locked inode with I_NEW set, the 632 * caller is responsible for filling in the contents 633 */ 634 return inode; 635 } 636 637 /* 638 * Uhhuh, somebody else created the same inode under 639 * us. Use the old inode instead of the one we just 640 * allocated. 641 */ 642 __iget(old); 643 spin_unlock(&inode_lock); 644 destroy_inode(inode); 645 inode = old; 646 wait_on_inode(inode); 647 } 648 return inode; 649 650 set_failed: 651 spin_unlock(&inode_lock); 652 destroy_inode(inode); 653 return NULL; 654 } 655 656 /* 657 * get_new_inode_fast is the fast path version of get_new_inode, see the 658 * comment at iget_locked for details. 659 */ 660 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 661 { 662 struct inode * inode; 663 664 inode = alloc_inode(sb); 665 if (inode) { 666 struct inode * old; 667 668 spin_lock(&inode_lock); 669 /* We released the lock, so.. */ 670 old = find_inode_fast(sb, head, ino); 671 if (!old) { 672 inode->i_ino = ino; 673 inodes_stat.nr_inodes++; 674 list_add(&inode->i_list, &inode_in_use); 675 list_add(&inode->i_sb_list, &sb->s_inodes); 676 hlist_add_head(&inode->i_hash, head); 677 inode->i_state = I_LOCK|I_NEW; 678 spin_unlock(&inode_lock); 679 680 /* Return the locked inode with I_NEW set, the 681 * caller is responsible for filling in the contents 682 */ 683 return inode; 684 } 685 686 /* 687 * Uhhuh, somebody else created the same inode under 688 * us. Use the old inode instead of the one we just 689 * allocated. 690 */ 691 __iget(old); 692 spin_unlock(&inode_lock); 693 destroy_inode(inode); 694 inode = old; 695 wait_on_inode(inode); 696 } 697 return inode; 698 } 699 700 static unsigned long hash(struct super_block *sb, unsigned long hashval) 701 { 702 unsigned long tmp; 703 704 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 705 L1_CACHE_BYTES; 706 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 707 return tmp & I_HASHMASK; 708 } 709 710 /** 711 * iunique - get a unique inode number 712 * @sb: superblock 713 * @max_reserved: highest reserved inode number 714 * 715 * Obtain an inode number that is unique on the system for a given 716 * superblock. This is used by file systems that have no natural 717 * permanent inode numbering system. An inode number is returned that 718 * is higher than the reserved limit but unique. 719 * 720 * BUGS: 721 * With a large number of inodes live on the file system this function 722 * currently becomes quite slow. 723 */ 724 ino_t iunique(struct super_block *sb, ino_t max_reserved) 725 { 726 /* 727 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 728 * error if st_ino won't fit in target struct field. Use 32bit counter 729 * here to attempt to avoid that. 730 */ 731 static unsigned int counter; 732 struct inode *inode; 733 struct hlist_head *head; 734 ino_t res; 735 736 spin_lock(&inode_lock); 737 do { 738 if (counter <= max_reserved) 739 counter = max_reserved + 1; 740 res = counter++; 741 head = inode_hashtable + hash(sb, res); 742 inode = find_inode_fast(sb, head, res); 743 } while (inode != NULL); 744 spin_unlock(&inode_lock); 745 746 return res; 747 } 748 EXPORT_SYMBOL(iunique); 749 750 struct inode *igrab(struct inode *inode) 751 { 752 spin_lock(&inode_lock); 753 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 754 __iget(inode); 755 else 756 /* 757 * Handle the case where s_op->clear_inode is not been 758 * called yet, and somebody is calling igrab 759 * while the inode is getting freed. 760 */ 761 inode = NULL; 762 spin_unlock(&inode_lock); 763 return inode; 764 } 765 766 EXPORT_SYMBOL(igrab); 767 768 /** 769 * ifind - internal function, you want ilookup5() or iget5(). 770 * @sb: super block of file system to search 771 * @head: the head of the list to search 772 * @test: callback used for comparisons between inodes 773 * @data: opaque data pointer to pass to @test 774 * @wait: if true wait for the inode to be unlocked, if false do not 775 * 776 * ifind() searches for the inode specified by @data in the inode 777 * cache. This is a generalized version of ifind_fast() for file systems where 778 * the inode number is not sufficient for unique identification of an inode. 779 * 780 * If the inode is in the cache, the inode is returned with an incremented 781 * reference count. 782 * 783 * Otherwise NULL is returned. 784 * 785 * Note, @test is called with the inode_lock held, so can't sleep. 786 */ 787 static struct inode *ifind(struct super_block *sb, 788 struct hlist_head *head, int (*test)(struct inode *, void *), 789 void *data, const int wait) 790 { 791 struct inode *inode; 792 793 spin_lock(&inode_lock); 794 inode = find_inode(sb, head, test, data); 795 if (inode) { 796 __iget(inode); 797 spin_unlock(&inode_lock); 798 if (likely(wait)) 799 wait_on_inode(inode); 800 return inode; 801 } 802 spin_unlock(&inode_lock); 803 return NULL; 804 } 805 806 /** 807 * ifind_fast - internal function, you want ilookup() or iget(). 808 * @sb: super block of file system to search 809 * @head: head of the list to search 810 * @ino: inode number to search for 811 * 812 * ifind_fast() searches for the inode @ino in the inode cache. This is for 813 * file systems where the inode number is sufficient for unique identification 814 * of an inode. 815 * 816 * If the inode is in the cache, the inode is returned with an incremented 817 * reference count. 818 * 819 * Otherwise NULL is returned. 820 */ 821 static struct inode *ifind_fast(struct super_block *sb, 822 struct hlist_head *head, unsigned long ino) 823 { 824 struct inode *inode; 825 826 spin_lock(&inode_lock); 827 inode = find_inode_fast(sb, head, ino); 828 if (inode) { 829 __iget(inode); 830 spin_unlock(&inode_lock); 831 wait_on_inode(inode); 832 return inode; 833 } 834 spin_unlock(&inode_lock); 835 return NULL; 836 } 837 838 /** 839 * ilookup5_nowait - search for an inode in the inode cache 840 * @sb: super block of file system to search 841 * @hashval: hash value (usually inode number) to search for 842 * @test: callback used for comparisons between inodes 843 * @data: opaque data pointer to pass to @test 844 * 845 * ilookup5() uses ifind() to search for the inode specified by @hashval and 846 * @data in the inode cache. This is a generalized version of ilookup() for 847 * file systems where the inode number is not sufficient for unique 848 * identification of an inode. 849 * 850 * If the inode is in the cache, the inode is returned with an incremented 851 * reference count. Note, the inode lock is not waited upon so you have to be 852 * very careful what you do with the returned inode. You probably should be 853 * using ilookup5() instead. 854 * 855 * Otherwise NULL is returned. 856 * 857 * Note, @test is called with the inode_lock held, so can't sleep. 858 */ 859 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 860 int (*test)(struct inode *, void *), void *data) 861 { 862 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 863 864 return ifind(sb, head, test, data, 0); 865 } 866 867 EXPORT_SYMBOL(ilookup5_nowait); 868 869 /** 870 * ilookup5 - search for an inode in the inode cache 871 * @sb: super block of file system to search 872 * @hashval: hash value (usually inode number) to search for 873 * @test: callback used for comparisons between inodes 874 * @data: opaque data pointer to pass to @test 875 * 876 * ilookup5() uses ifind() to search for the inode specified by @hashval and 877 * @data in the inode cache. This is a generalized version of ilookup() for 878 * file systems where the inode number is not sufficient for unique 879 * identification of an inode. 880 * 881 * If the inode is in the cache, the inode lock is waited upon and the inode is 882 * returned with an incremented reference count. 883 * 884 * Otherwise NULL is returned. 885 * 886 * Note, @test is called with the inode_lock held, so can't sleep. 887 */ 888 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 889 int (*test)(struct inode *, void *), void *data) 890 { 891 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 892 893 return ifind(sb, head, test, data, 1); 894 } 895 896 EXPORT_SYMBOL(ilookup5); 897 898 /** 899 * ilookup - search for an inode in the inode cache 900 * @sb: super block of file system to search 901 * @ino: inode number to search for 902 * 903 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 904 * This is for file systems where the inode number is sufficient for unique 905 * identification of an inode. 906 * 907 * If the inode is in the cache, the inode is returned with an incremented 908 * reference count. 909 * 910 * Otherwise NULL is returned. 911 */ 912 struct inode *ilookup(struct super_block *sb, unsigned long ino) 913 { 914 struct hlist_head *head = inode_hashtable + hash(sb, ino); 915 916 return ifind_fast(sb, head, ino); 917 } 918 919 EXPORT_SYMBOL(ilookup); 920 921 /** 922 * iget5_locked - obtain an inode from a mounted file system 923 * @sb: super block of file system 924 * @hashval: hash value (usually inode number) to get 925 * @test: callback used for comparisons between inodes 926 * @set: callback used to initialize a new struct inode 927 * @data: opaque data pointer to pass to @test and @set 928 * 929 * iget5_locked() uses ifind() to search for the inode specified by @hashval 930 * and @data in the inode cache and if present it is returned with an increased 931 * reference count. This is a generalized version of iget_locked() for file 932 * systems where the inode number is not sufficient for unique identification 933 * of an inode. 934 * 935 * If the inode is not in cache, get_new_inode() is called to allocate a new 936 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 937 * file system gets to fill it in before unlocking it via unlock_new_inode(). 938 * 939 * Note both @test and @set are called with the inode_lock held, so can't sleep. 940 */ 941 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 942 int (*test)(struct inode *, void *), 943 int (*set)(struct inode *, void *), void *data) 944 { 945 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 946 struct inode *inode; 947 948 inode = ifind(sb, head, test, data, 1); 949 if (inode) 950 return inode; 951 /* 952 * get_new_inode() will do the right thing, re-trying the search 953 * in case it had to block at any point. 954 */ 955 return get_new_inode(sb, head, test, set, data); 956 } 957 958 EXPORT_SYMBOL(iget5_locked); 959 960 /** 961 * iget_locked - obtain an inode from a mounted file system 962 * @sb: super block of file system 963 * @ino: inode number to get 964 * 965 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 966 * the inode cache and if present it is returned with an increased reference 967 * count. This is for file systems where the inode number is sufficient for 968 * unique identification of an inode. 969 * 970 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 971 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 972 * The file system gets to fill it in before unlocking it via 973 * unlock_new_inode(). 974 */ 975 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 976 { 977 struct hlist_head *head = inode_hashtable + hash(sb, ino); 978 struct inode *inode; 979 980 inode = ifind_fast(sb, head, ino); 981 if (inode) 982 return inode; 983 /* 984 * get_new_inode_fast() will do the right thing, re-trying the search 985 * in case it had to block at any point. 986 */ 987 return get_new_inode_fast(sb, head, ino); 988 } 989 990 EXPORT_SYMBOL(iget_locked); 991 992 /** 993 * __insert_inode_hash - hash an inode 994 * @inode: unhashed inode 995 * @hashval: unsigned long value used to locate this object in the 996 * inode_hashtable. 997 * 998 * Add an inode to the inode hash for this superblock. 999 */ 1000 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1001 { 1002 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1003 spin_lock(&inode_lock); 1004 hlist_add_head(&inode->i_hash, head); 1005 spin_unlock(&inode_lock); 1006 } 1007 1008 EXPORT_SYMBOL(__insert_inode_hash); 1009 1010 /** 1011 * remove_inode_hash - remove an inode from the hash 1012 * @inode: inode to unhash 1013 * 1014 * Remove an inode from the superblock. 1015 */ 1016 void remove_inode_hash(struct inode *inode) 1017 { 1018 spin_lock(&inode_lock); 1019 hlist_del_init(&inode->i_hash); 1020 spin_unlock(&inode_lock); 1021 } 1022 1023 EXPORT_SYMBOL(remove_inode_hash); 1024 1025 /* 1026 * Tell the filesystem that this inode is no longer of any interest and should 1027 * be completely destroyed. 1028 * 1029 * We leave the inode in the inode hash table until *after* the filesystem's 1030 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1031 * instigate) will always find up-to-date information either in the hash or on 1032 * disk. 1033 * 1034 * I_FREEING is set so that no-one will take a new reference to the inode while 1035 * it is being deleted. 1036 */ 1037 void generic_delete_inode(struct inode *inode) 1038 { 1039 const struct super_operations *op = inode->i_sb->s_op; 1040 1041 list_del_init(&inode->i_list); 1042 list_del_init(&inode->i_sb_list); 1043 inode->i_state |= I_FREEING; 1044 inodes_stat.nr_inodes--; 1045 spin_unlock(&inode_lock); 1046 1047 security_inode_delete(inode); 1048 1049 if (op->delete_inode) { 1050 void (*delete)(struct inode *) = op->delete_inode; 1051 if (!is_bad_inode(inode)) 1052 DQUOT_INIT(inode); 1053 /* Filesystems implementing their own 1054 * s_op->delete_inode are required to call 1055 * truncate_inode_pages and clear_inode() 1056 * internally */ 1057 delete(inode); 1058 } else { 1059 truncate_inode_pages(&inode->i_data, 0); 1060 clear_inode(inode); 1061 } 1062 spin_lock(&inode_lock); 1063 hlist_del_init(&inode->i_hash); 1064 spin_unlock(&inode_lock); 1065 wake_up_inode(inode); 1066 BUG_ON(inode->i_state != I_CLEAR); 1067 destroy_inode(inode); 1068 } 1069 1070 EXPORT_SYMBOL(generic_delete_inode); 1071 1072 static void generic_forget_inode(struct inode *inode) 1073 { 1074 struct super_block *sb = inode->i_sb; 1075 1076 if (!hlist_unhashed(&inode->i_hash)) { 1077 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1078 list_move(&inode->i_list, &inode_unused); 1079 inodes_stat.nr_unused++; 1080 if (sb->s_flags & MS_ACTIVE) { 1081 spin_unlock(&inode_lock); 1082 return; 1083 } 1084 inode->i_state |= I_WILL_FREE; 1085 spin_unlock(&inode_lock); 1086 write_inode_now(inode, 1); 1087 spin_lock(&inode_lock); 1088 inode->i_state &= ~I_WILL_FREE; 1089 inodes_stat.nr_unused--; 1090 hlist_del_init(&inode->i_hash); 1091 } 1092 list_del_init(&inode->i_list); 1093 list_del_init(&inode->i_sb_list); 1094 inode->i_state |= I_FREEING; 1095 inodes_stat.nr_inodes--; 1096 spin_unlock(&inode_lock); 1097 if (inode->i_data.nrpages) 1098 truncate_inode_pages(&inode->i_data, 0); 1099 clear_inode(inode); 1100 wake_up_inode(inode); 1101 destroy_inode(inode); 1102 } 1103 1104 /* 1105 * Normal UNIX filesystem behaviour: delete the 1106 * inode when the usage count drops to zero, and 1107 * i_nlink is zero. 1108 */ 1109 void generic_drop_inode(struct inode *inode) 1110 { 1111 if (!inode->i_nlink) 1112 generic_delete_inode(inode); 1113 else 1114 generic_forget_inode(inode); 1115 } 1116 1117 EXPORT_SYMBOL_GPL(generic_drop_inode); 1118 1119 /* 1120 * Called when we're dropping the last reference 1121 * to an inode. 1122 * 1123 * Call the FS "drop()" function, defaulting to 1124 * the legacy UNIX filesystem behaviour.. 1125 * 1126 * NOTE! NOTE! NOTE! We're called with the inode lock 1127 * held, and the drop function is supposed to release 1128 * the lock! 1129 */ 1130 static inline void iput_final(struct inode *inode) 1131 { 1132 const struct super_operations *op = inode->i_sb->s_op; 1133 void (*drop)(struct inode *) = generic_drop_inode; 1134 1135 if (op && op->drop_inode) 1136 drop = op->drop_inode; 1137 drop(inode); 1138 } 1139 1140 /** 1141 * iput - put an inode 1142 * @inode: inode to put 1143 * 1144 * Puts an inode, dropping its usage count. If the inode use count hits 1145 * zero, the inode is then freed and may also be destroyed. 1146 * 1147 * Consequently, iput() can sleep. 1148 */ 1149 void iput(struct inode *inode) 1150 { 1151 if (inode) { 1152 BUG_ON(inode->i_state == I_CLEAR); 1153 1154 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1155 iput_final(inode); 1156 } 1157 } 1158 1159 EXPORT_SYMBOL(iput); 1160 1161 /** 1162 * bmap - find a block number in a file 1163 * @inode: inode of file 1164 * @block: block to find 1165 * 1166 * Returns the block number on the device holding the inode that 1167 * is the disk block number for the block of the file requested. 1168 * That is, asked for block 4 of inode 1 the function will return the 1169 * disk block relative to the disk start that holds that block of the 1170 * file. 1171 */ 1172 sector_t bmap(struct inode * inode, sector_t block) 1173 { 1174 sector_t res = 0; 1175 if (inode->i_mapping->a_ops->bmap) 1176 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1177 return res; 1178 } 1179 EXPORT_SYMBOL(bmap); 1180 1181 /** 1182 * touch_atime - update the access time 1183 * @mnt: mount the inode is accessed on 1184 * @dentry: dentry accessed 1185 * 1186 * Update the accessed time on an inode and mark it for writeback. 1187 * This function automatically handles read only file systems and media, 1188 * as well as the "noatime" flag and inode specific "noatime" markers. 1189 */ 1190 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1191 { 1192 struct inode *inode = dentry->d_inode; 1193 struct timespec now; 1194 1195 if (mnt_want_write(mnt)) 1196 return; 1197 if (inode->i_flags & S_NOATIME) 1198 goto out; 1199 if (IS_NOATIME(inode)) 1200 goto out; 1201 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1202 goto out; 1203 1204 if (mnt->mnt_flags & MNT_NOATIME) 1205 goto out; 1206 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1207 goto out; 1208 if (mnt->mnt_flags & MNT_RELATIME) { 1209 /* 1210 * With relative atime, only update atime if the previous 1211 * atime is earlier than either the ctime or mtime. 1212 */ 1213 if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 && 1214 timespec_compare(&inode->i_ctime, &inode->i_atime) < 0) 1215 goto out; 1216 } 1217 1218 now = current_fs_time(inode->i_sb); 1219 if (timespec_equal(&inode->i_atime, &now)) 1220 goto out; 1221 1222 inode->i_atime = now; 1223 mark_inode_dirty_sync(inode); 1224 out: 1225 mnt_drop_write(mnt); 1226 } 1227 EXPORT_SYMBOL(touch_atime); 1228 1229 /** 1230 * file_update_time - update mtime and ctime time 1231 * @file: file accessed 1232 * 1233 * Update the mtime and ctime members of an inode and mark the inode 1234 * for writeback. Note that this function is meant exclusively for 1235 * usage in the file write path of filesystems, and filesystems may 1236 * choose to explicitly ignore update via this function with the 1237 * S_NOCTIME inode flag, e.g. for network filesystem where these 1238 * timestamps are handled by the server. 1239 */ 1240 1241 void file_update_time(struct file *file) 1242 { 1243 struct inode *inode = file->f_path.dentry->d_inode; 1244 struct timespec now; 1245 int sync_it = 0; 1246 int err; 1247 1248 if (IS_NOCMTIME(inode)) 1249 return; 1250 1251 err = mnt_want_write(file->f_path.mnt); 1252 if (err) 1253 return; 1254 1255 now = current_fs_time(inode->i_sb); 1256 if (!timespec_equal(&inode->i_mtime, &now)) { 1257 inode->i_mtime = now; 1258 sync_it = 1; 1259 } 1260 1261 if (!timespec_equal(&inode->i_ctime, &now)) { 1262 inode->i_ctime = now; 1263 sync_it = 1; 1264 } 1265 1266 if (IS_I_VERSION(inode)) { 1267 inode_inc_iversion(inode); 1268 sync_it = 1; 1269 } 1270 1271 if (sync_it) 1272 mark_inode_dirty_sync(inode); 1273 mnt_drop_write(file->f_path.mnt); 1274 } 1275 1276 EXPORT_SYMBOL(file_update_time); 1277 1278 int inode_needs_sync(struct inode *inode) 1279 { 1280 if (IS_SYNC(inode)) 1281 return 1; 1282 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1283 return 1; 1284 return 0; 1285 } 1286 1287 EXPORT_SYMBOL(inode_needs_sync); 1288 1289 int inode_wait(void *word) 1290 { 1291 schedule(); 1292 return 0; 1293 } 1294 1295 /* 1296 * If we try to find an inode in the inode hash while it is being 1297 * deleted, we have to wait until the filesystem completes its 1298 * deletion before reporting that it isn't found. This function waits 1299 * until the deletion _might_ have completed. Callers are responsible 1300 * to recheck inode state. 1301 * 1302 * It doesn't matter if I_LOCK is not set initially, a call to 1303 * wake_up_inode() after removing from the hash list will DTRT. 1304 * 1305 * This is called with inode_lock held. 1306 */ 1307 static void __wait_on_freeing_inode(struct inode *inode) 1308 { 1309 wait_queue_head_t *wq; 1310 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1311 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1312 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1313 spin_unlock(&inode_lock); 1314 schedule(); 1315 finish_wait(wq, &wait.wait); 1316 spin_lock(&inode_lock); 1317 } 1318 1319 /* 1320 * We rarely want to lock two inodes that do not have a parent/child 1321 * relationship (such as directory, child inode) simultaneously. The 1322 * vast majority of file systems should be able to get along fine 1323 * without this. Do not use these functions except as a last resort. 1324 */ 1325 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1326 { 1327 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1328 if (inode1) 1329 mutex_lock(&inode1->i_mutex); 1330 else if (inode2) 1331 mutex_lock(&inode2->i_mutex); 1332 return; 1333 } 1334 1335 if (inode1 < inode2) { 1336 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1337 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1338 } else { 1339 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1340 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1341 } 1342 } 1343 EXPORT_SYMBOL(inode_double_lock); 1344 1345 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1346 { 1347 if (inode1) 1348 mutex_unlock(&inode1->i_mutex); 1349 1350 if (inode2 && inode2 != inode1) 1351 mutex_unlock(&inode2->i_mutex); 1352 } 1353 EXPORT_SYMBOL(inode_double_unlock); 1354 1355 static __initdata unsigned long ihash_entries; 1356 static int __init set_ihash_entries(char *str) 1357 { 1358 if (!str) 1359 return 0; 1360 ihash_entries = simple_strtoul(str, &str, 0); 1361 return 1; 1362 } 1363 __setup("ihash_entries=", set_ihash_entries); 1364 1365 /* 1366 * Initialize the waitqueues and inode hash table. 1367 */ 1368 void __init inode_init_early(void) 1369 { 1370 int loop; 1371 1372 /* If hashes are distributed across NUMA nodes, defer 1373 * hash allocation until vmalloc space is available. 1374 */ 1375 if (hashdist) 1376 return; 1377 1378 inode_hashtable = 1379 alloc_large_system_hash("Inode-cache", 1380 sizeof(struct hlist_head), 1381 ihash_entries, 1382 14, 1383 HASH_EARLY, 1384 &i_hash_shift, 1385 &i_hash_mask, 1386 0); 1387 1388 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1389 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1390 } 1391 1392 void __init inode_init(void) 1393 { 1394 int loop; 1395 1396 /* inode slab cache */ 1397 inode_cachep = kmem_cache_create("inode_cache", 1398 sizeof(struct inode), 1399 0, 1400 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1401 SLAB_MEM_SPREAD), 1402 init_once); 1403 register_shrinker(&icache_shrinker); 1404 1405 /* Hash may have been set up in inode_init_early */ 1406 if (!hashdist) 1407 return; 1408 1409 inode_hashtable = 1410 alloc_large_system_hash("Inode-cache", 1411 sizeof(struct hlist_head), 1412 ihash_entries, 1413 14, 1414 0, 1415 &i_hash_shift, 1416 &i_hash_mask, 1417 0); 1418 1419 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1420 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1421 } 1422 1423 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1424 { 1425 inode->i_mode = mode; 1426 if (S_ISCHR(mode)) { 1427 inode->i_fop = &def_chr_fops; 1428 inode->i_rdev = rdev; 1429 } else if (S_ISBLK(mode)) { 1430 inode->i_fop = &def_blk_fops; 1431 inode->i_rdev = rdev; 1432 } else if (S_ISFIFO(mode)) 1433 inode->i_fop = &def_fifo_fops; 1434 else if (S_ISSOCK(mode)) 1435 inode->i_fop = &bad_sock_fops; 1436 else 1437 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1438 mode); 1439 } 1440 EXPORT_SYMBOL(init_special_inode); 1441