xref: /linux/fs/inode.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static kmem_cache_t * inode_cachep __read_mostly;
101 
102 static struct inode *alloc_inode(struct super_block *sb)
103 {
104 	static const struct address_space_operations empty_aops;
105 	static struct inode_operations empty_iops;
106 	static const struct file_operations empty_fops;
107 	struct inode *inode;
108 
109 	if (sb->s_op->alloc_inode)
110 		inode = sb->s_op->alloc_inode(sb);
111 	else
112 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
113 
114 	if (inode) {
115 		struct address_space * const mapping = &inode->i_data;
116 
117 		inode->i_sb = sb;
118 		inode->i_blkbits = sb->s_blocksize_bits;
119 		inode->i_flags = 0;
120 		atomic_set(&inode->i_count, 1);
121 		inode->i_op = &empty_iops;
122 		inode->i_fop = &empty_fops;
123 		inode->i_nlink = 1;
124 		atomic_set(&inode->i_writecount, 0);
125 		inode->i_size = 0;
126 		inode->i_blocks = 0;
127 		inode->i_bytes = 0;
128 		inode->i_generation = 0;
129 #ifdef CONFIG_QUOTA
130 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
131 #endif
132 		inode->i_pipe = NULL;
133 		inode->i_bdev = NULL;
134 		inode->i_cdev = NULL;
135 		inode->i_rdev = 0;
136 		inode->i_security = NULL;
137 		inode->dirtied_when = 0;
138 		if (security_inode_alloc(inode)) {
139 			if (inode->i_sb->s_op->destroy_inode)
140 				inode->i_sb->s_op->destroy_inode(inode);
141 			else
142 				kmem_cache_free(inode_cachep, (inode));
143 			return NULL;
144 		}
145 
146 		mapping->a_ops = &empty_aops;
147  		mapping->host = inode;
148 		mapping->flags = 0;
149 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
150 		mapping->assoc_mapping = NULL;
151 		mapping->backing_dev_info = &default_backing_dev_info;
152 
153 		/*
154 		 * If the block_device provides a backing_dev_info for client
155 		 * inodes then use that.  Otherwise the inode share the bdev's
156 		 * backing_dev_info.
157 		 */
158 		if (sb->s_bdev) {
159 			struct backing_dev_info *bdi;
160 
161 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
162 			if (!bdi)
163 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
164 			mapping->backing_dev_info = bdi;
165 		}
166 		memset(&inode->u, 0, sizeof(inode->u));
167 		inode->i_mapping = mapping;
168 	}
169 	return inode;
170 }
171 
172 void destroy_inode(struct inode *inode)
173 {
174 	BUG_ON(inode_has_buffers(inode));
175 	security_inode_free(inode);
176 	if (inode->i_sb->s_op->destroy_inode)
177 		inode->i_sb->s_op->destroy_inode(inode);
178 	else
179 		kmem_cache_free(inode_cachep, (inode));
180 }
181 
182 
183 /*
184  * These are initializations that only need to be done
185  * once, because the fields are idempotent across use
186  * of the inode, so let the slab aware of that.
187  */
188 void inode_init_once(struct inode *inode)
189 {
190 	memset(inode, 0, sizeof(*inode));
191 	INIT_HLIST_NODE(&inode->i_hash);
192 	INIT_LIST_HEAD(&inode->i_dentry);
193 	INIT_LIST_HEAD(&inode->i_devices);
194 	mutex_init(&inode->i_mutex);
195 	init_rwsem(&inode->i_alloc_sem);
196 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
197 	rwlock_init(&inode->i_data.tree_lock);
198 	spin_lock_init(&inode->i_data.i_mmap_lock);
199 	INIT_LIST_HEAD(&inode->i_data.private_list);
200 	spin_lock_init(&inode->i_data.private_lock);
201 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
202 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
203 	spin_lock_init(&inode->i_lock);
204 	i_size_ordered_init(inode);
205 #ifdef CONFIG_INOTIFY
206 	INIT_LIST_HEAD(&inode->inotify_watches);
207 	mutex_init(&inode->inotify_mutex);
208 #endif
209 }
210 
211 EXPORT_SYMBOL(inode_init_once);
212 
213 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
214 {
215 	struct inode * inode = (struct inode *) foo;
216 
217 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
218 	    SLAB_CTOR_CONSTRUCTOR)
219 		inode_init_once(inode);
220 }
221 
222 /*
223  * inode_lock must be held
224  */
225 void __iget(struct inode * inode)
226 {
227 	if (atomic_read(&inode->i_count)) {
228 		atomic_inc(&inode->i_count);
229 		return;
230 	}
231 	atomic_inc(&inode->i_count);
232 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
233 		list_move(&inode->i_list, &inode_in_use);
234 	inodes_stat.nr_unused--;
235 }
236 
237 /**
238  * clear_inode - clear an inode
239  * @inode: inode to clear
240  *
241  * This is called by the filesystem to tell us
242  * that the inode is no longer useful. We just
243  * terminate it with extreme prejudice.
244  */
245 void clear_inode(struct inode *inode)
246 {
247 	might_sleep();
248 	invalidate_inode_buffers(inode);
249 
250 	BUG_ON(inode->i_data.nrpages);
251 	BUG_ON(!(inode->i_state & I_FREEING));
252 	BUG_ON(inode->i_state & I_CLEAR);
253 	wait_on_inode(inode);
254 	DQUOT_DROP(inode);
255 	if (inode->i_sb && inode->i_sb->s_op->clear_inode)
256 		inode->i_sb->s_op->clear_inode(inode);
257 	if (inode->i_bdev)
258 		bd_forget(inode);
259 	if (inode->i_cdev)
260 		cd_forget(inode);
261 	inode->i_state = I_CLEAR;
262 }
263 
264 EXPORT_SYMBOL(clear_inode);
265 
266 /*
267  * dispose_list - dispose of the contents of a local list
268  * @head: the head of the list to free
269  *
270  * Dispose-list gets a local list with local inodes in it, so it doesn't
271  * need to worry about list corruption and SMP locks.
272  */
273 static void dispose_list(struct list_head *head)
274 {
275 	int nr_disposed = 0;
276 
277 	while (!list_empty(head)) {
278 		struct inode *inode;
279 
280 		inode = list_entry(head->next, struct inode, i_list);
281 		list_del(&inode->i_list);
282 
283 		if (inode->i_data.nrpages)
284 			truncate_inode_pages(&inode->i_data, 0);
285 		clear_inode(inode);
286 
287 		spin_lock(&inode_lock);
288 		hlist_del_init(&inode->i_hash);
289 		list_del_init(&inode->i_sb_list);
290 		spin_unlock(&inode_lock);
291 
292 		wake_up_inode(inode);
293 		destroy_inode(inode);
294 		nr_disposed++;
295 	}
296 	spin_lock(&inode_lock);
297 	inodes_stat.nr_inodes -= nr_disposed;
298 	spin_unlock(&inode_lock);
299 }
300 
301 /*
302  * Invalidate all inodes for a device.
303  */
304 static int invalidate_list(struct list_head *head, struct list_head *dispose)
305 {
306 	struct list_head *next;
307 	int busy = 0, count = 0;
308 
309 	next = head->next;
310 	for (;;) {
311 		struct list_head * tmp = next;
312 		struct inode * inode;
313 
314 		/*
315 		 * We can reschedule here without worrying about the list's
316 		 * consistency because the per-sb list of inodes must not
317 		 * change during umount anymore, and because iprune_mutex keeps
318 		 * shrink_icache_memory() away.
319 		 */
320 		cond_resched_lock(&inode_lock);
321 
322 		next = next->next;
323 		if (tmp == head)
324 			break;
325 		inode = list_entry(tmp, struct inode, i_sb_list);
326 		invalidate_inode_buffers(inode);
327 		if (!atomic_read(&inode->i_count)) {
328 			list_move(&inode->i_list, dispose);
329 			inode->i_state |= I_FREEING;
330 			count++;
331 			continue;
332 		}
333 		busy = 1;
334 	}
335 	/* only unused inodes may be cached with i_count zero */
336 	inodes_stat.nr_unused -= count;
337 	return busy;
338 }
339 
340 /**
341  *	invalidate_inodes	- discard the inodes on a device
342  *	@sb: superblock
343  *
344  *	Discard all of the inodes for a given superblock. If the discard
345  *	fails because there are busy inodes then a non zero value is returned.
346  *	If the discard is successful all the inodes have been discarded.
347  */
348 int invalidate_inodes(struct super_block * sb)
349 {
350 	int busy;
351 	LIST_HEAD(throw_away);
352 
353 	mutex_lock(&iprune_mutex);
354 	spin_lock(&inode_lock);
355 	inotify_unmount_inodes(&sb->s_inodes);
356 	busy = invalidate_list(&sb->s_inodes, &throw_away);
357 	spin_unlock(&inode_lock);
358 
359 	dispose_list(&throw_away);
360 	mutex_unlock(&iprune_mutex);
361 
362 	return busy;
363 }
364 
365 EXPORT_SYMBOL(invalidate_inodes);
366 
367 int __invalidate_device(struct block_device *bdev)
368 {
369 	struct super_block *sb = get_super(bdev);
370 	int res = 0;
371 
372 	if (sb) {
373 		/*
374 		 * no need to lock the super, get_super holds the
375 		 * read mutex so the filesystem cannot go away
376 		 * under us (->put_super runs with the write lock
377 		 * hold).
378 		 */
379 		shrink_dcache_sb(sb);
380 		res = invalidate_inodes(sb);
381 		drop_super(sb);
382 	}
383 	invalidate_bdev(bdev, 0);
384 	return res;
385 }
386 EXPORT_SYMBOL(__invalidate_device);
387 
388 static int can_unuse(struct inode *inode)
389 {
390 	if (inode->i_state)
391 		return 0;
392 	if (inode_has_buffers(inode))
393 		return 0;
394 	if (atomic_read(&inode->i_count))
395 		return 0;
396 	if (inode->i_data.nrpages)
397 		return 0;
398 	return 1;
399 }
400 
401 /*
402  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
403  * a temporary list and then are freed outside inode_lock by dispose_list().
404  *
405  * Any inodes which are pinned purely because of attached pagecache have their
406  * pagecache removed.  We expect the final iput() on that inode to add it to
407  * the front of the inode_unused list.  So look for it there and if the
408  * inode is still freeable, proceed.  The right inode is found 99.9% of the
409  * time in testing on a 4-way.
410  *
411  * If the inode has metadata buffers attached to mapping->private_list then
412  * try to remove them.
413  */
414 static void prune_icache(int nr_to_scan)
415 {
416 	LIST_HEAD(freeable);
417 	int nr_pruned = 0;
418 	int nr_scanned;
419 	unsigned long reap = 0;
420 
421 	mutex_lock(&iprune_mutex);
422 	spin_lock(&inode_lock);
423 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
424 		struct inode *inode;
425 
426 		if (list_empty(&inode_unused))
427 			break;
428 
429 		inode = list_entry(inode_unused.prev, struct inode, i_list);
430 
431 		if (inode->i_state || atomic_read(&inode->i_count)) {
432 			list_move(&inode->i_list, &inode_unused);
433 			continue;
434 		}
435 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
436 			__iget(inode);
437 			spin_unlock(&inode_lock);
438 			if (remove_inode_buffers(inode))
439 				reap += invalidate_inode_pages(&inode->i_data);
440 			iput(inode);
441 			spin_lock(&inode_lock);
442 
443 			if (inode != list_entry(inode_unused.next,
444 						struct inode, i_list))
445 				continue;	/* wrong inode or list_empty */
446 			if (!can_unuse(inode))
447 				continue;
448 		}
449 		list_move(&inode->i_list, &freeable);
450 		inode->i_state |= I_FREEING;
451 		nr_pruned++;
452 	}
453 	inodes_stat.nr_unused -= nr_pruned;
454 	if (current_is_kswapd())
455 		__count_vm_events(KSWAPD_INODESTEAL, reap);
456 	else
457 		__count_vm_events(PGINODESTEAL, reap);
458 	spin_unlock(&inode_lock);
459 
460 	dispose_list(&freeable);
461 	mutex_unlock(&iprune_mutex);
462 }
463 
464 /*
465  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
466  * "unused" means that no dentries are referring to the inodes: the files are
467  * not open and the dcache references to those inodes have already been
468  * reclaimed.
469  *
470  * This function is passed the number of inodes to scan, and it returns the
471  * total number of remaining possibly-reclaimable inodes.
472  */
473 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
474 {
475 	if (nr) {
476 		/*
477 		 * Nasty deadlock avoidance.  We may hold various FS locks,
478 		 * and we don't want to recurse into the FS that called us
479 		 * in clear_inode() and friends..
480 	 	 */
481 		if (!(gfp_mask & __GFP_FS))
482 			return -1;
483 		prune_icache(nr);
484 	}
485 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
486 }
487 
488 static void __wait_on_freeing_inode(struct inode *inode);
489 /*
490  * Called with the inode lock held.
491  * NOTE: we are not increasing the inode-refcount, you must call __iget()
492  * by hand after calling find_inode now! This simplifies iunique and won't
493  * add any additional branch in the common code.
494  */
495 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
496 {
497 	struct hlist_node *node;
498 	struct inode * inode = NULL;
499 
500 repeat:
501 	hlist_for_each (node, head) {
502 		inode = hlist_entry(node, struct inode, i_hash);
503 		if (inode->i_sb != sb)
504 			continue;
505 		if (!test(inode, data))
506 			continue;
507 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
508 			__wait_on_freeing_inode(inode);
509 			goto repeat;
510 		}
511 		break;
512 	}
513 	return node ? inode : NULL;
514 }
515 
516 /*
517  * find_inode_fast is the fast path version of find_inode, see the comment at
518  * iget_locked for details.
519  */
520 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
521 {
522 	struct hlist_node *node;
523 	struct inode * inode = NULL;
524 
525 repeat:
526 	hlist_for_each (node, head) {
527 		inode = hlist_entry(node, struct inode, i_hash);
528 		if (inode->i_ino != ino)
529 			continue;
530 		if (inode->i_sb != sb)
531 			continue;
532 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
533 			__wait_on_freeing_inode(inode);
534 			goto repeat;
535 		}
536 		break;
537 	}
538 	return node ? inode : NULL;
539 }
540 
541 /**
542  *	new_inode 	- obtain an inode
543  *	@sb: superblock
544  *
545  *	Allocates a new inode for given superblock.
546  */
547 struct inode *new_inode(struct super_block *sb)
548 {
549 	static unsigned long last_ino;
550 	struct inode * inode;
551 
552 	spin_lock_prefetch(&inode_lock);
553 
554 	inode = alloc_inode(sb);
555 	if (inode) {
556 		spin_lock(&inode_lock);
557 		inodes_stat.nr_inodes++;
558 		list_add(&inode->i_list, &inode_in_use);
559 		list_add(&inode->i_sb_list, &sb->s_inodes);
560 		inode->i_ino = ++last_ino;
561 		inode->i_state = 0;
562 		spin_unlock(&inode_lock);
563 	}
564 	return inode;
565 }
566 
567 EXPORT_SYMBOL(new_inode);
568 
569 void unlock_new_inode(struct inode *inode)
570 {
571 	/*
572 	 * This is special!  We do not need the spinlock
573 	 * when clearing I_LOCK, because we're guaranteed
574 	 * that nobody else tries to do anything about the
575 	 * state of the inode when it is locked, as we
576 	 * just created it (so there can be no old holders
577 	 * that haven't tested I_LOCK).
578 	 */
579 	inode->i_state &= ~(I_LOCK|I_NEW);
580 	wake_up_inode(inode);
581 }
582 
583 EXPORT_SYMBOL(unlock_new_inode);
584 
585 /*
586  * This is called without the inode lock held.. Be careful.
587  *
588  * We no longer cache the sb_flags in i_flags - see fs.h
589  *	-- rmk@arm.uk.linux.org
590  */
591 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
592 {
593 	struct inode * inode;
594 
595 	inode = alloc_inode(sb);
596 	if (inode) {
597 		struct inode * old;
598 
599 		spin_lock(&inode_lock);
600 		/* We released the lock, so.. */
601 		old = find_inode(sb, head, test, data);
602 		if (!old) {
603 			if (set(inode, data))
604 				goto set_failed;
605 
606 			inodes_stat.nr_inodes++;
607 			list_add(&inode->i_list, &inode_in_use);
608 			list_add(&inode->i_sb_list, &sb->s_inodes);
609 			hlist_add_head(&inode->i_hash, head);
610 			inode->i_state = I_LOCK|I_NEW;
611 			spin_unlock(&inode_lock);
612 
613 			/* Return the locked inode with I_NEW set, the
614 			 * caller is responsible for filling in the contents
615 			 */
616 			return inode;
617 		}
618 
619 		/*
620 		 * Uhhuh, somebody else created the same inode under
621 		 * us. Use the old inode instead of the one we just
622 		 * allocated.
623 		 */
624 		__iget(old);
625 		spin_unlock(&inode_lock);
626 		destroy_inode(inode);
627 		inode = old;
628 		wait_on_inode(inode);
629 	}
630 	return inode;
631 
632 set_failed:
633 	spin_unlock(&inode_lock);
634 	destroy_inode(inode);
635 	return NULL;
636 }
637 
638 /*
639  * get_new_inode_fast is the fast path version of get_new_inode, see the
640  * comment at iget_locked for details.
641  */
642 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
643 {
644 	struct inode * inode;
645 
646 	inode = alloc_inode(sb);
647 	if (inode) {
648 		struct inode * old;
649 
650 		spin_lock(&inode_lock);
651 		/* We released the lock, so.. */
652 		old = find_inode_fast(sb, head, ino);
653 		if (!old) {
654 			inode->i_ino = ino;
655 			inodes_stat.nr_inodes++;
656 			list_add(&inode->i_list, &inode_in_use);
657 			list_add(&inode->i_sb_list, &sb->s_inodes);
658 			hlist_add_head(&inode->i_hash, head);
659 			inode->i_state = I_LOCK|I_NEW;
660 			spin_unlock(&inode_lock);
661 
662 			/* Return the locked inode with I_NEW set, the
663 			 * caller is responsible for filling in the contents
664 			 */
665 			return inode;
666 		}
667 
668 		/*
669 		 * Uhhuh, somebody else created the same inode under
670 		 * us. Use the old inode instead of the one we just
671 		 * allocated.
672 		 */
673 		__iget(old);
674 		spin_unlock(&inode_lock);
675 		destroy_inode(inode);
676 		inode = old;
677 		wait_on_inode(inode);
678 	}
679 	return inode;
680 }
681 
682 static inline unsigned long hash(struct super_block *sb, unsigned long hashval)
683 {
684 	unsigned long tmp;
685 
686 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
687 			L1_CACHE_BYTES;
688 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
689 	return tmp & I_HASHMASK;
690 }
691 
692 /**
693  *	iunique - get a unique inode number
694  *	@sb: superblock
695  *	@max_reserved: highest reserved inode number
696  *
697  *	Obtain an inode number that is unique on the system for a given
698  *	superblock. This is used by file systems that have no natural
699  *	permanent inode numbering system. An inode number is returned that
700  *	is higher than the reserved limit but unique.
701  *
702  *	BUGS:
703  *	With a large number of inodes live on the file system this function
704  *	currently becomes quite slow.
705  */
706 ino_t iunique(struct super_block *sb, ino_t max_reserved)
707 {
708 	static ino_t counter;
709 	struct inode *inode;
710 	struct hlist_head * head;
711 	ino_t res;
712 	spin_lock(&inode_lock);
713 retry:
714 	if (counter > max_reserved) {
715 		head = inode_hashtable + hash(sb,counter);
716 		res = counter++;
717 		inode = find_inode_fast(sb, head, res);
718 		if (!inode) {
719 			spin_unlock(&inode_lock);
720 			return res;
721 		}
722 	} else {
723 		counter = max_reserved + 1;
724 	}
725 	goto retry;
726 
727 }
728 
729 EXPORT_SYMBOL(iunique);
730 
731 struct inode *igrab(struct inode *inode)
732 {
733 	spin_lock(&inode_lock);
734 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
735 		__iget(inode);
736 	else
737 		/*
738 		 * Handle the case where s_op->clear_inode is not been
739 		 * called yet, and somebody is calling igrab
740 		 * while the inode is getting freed.
741 		 */
742 		inode = NULL;
743 	spin_unlock(&inode_lock);
744 	return inode;
745 }
746 
747 EXPORT_SYMBOL(igrab);
748 
749 /**
750  * ifind - internal function, you want ilookup5() or iget5().
751  * @sb:		super block of file system to search
752  * @head:       the head of the list to search
753  * @test:	callback used for comparisons between inodes
754  * @data:	opaque data pointer to pass to @test
755  * @wait:	if true wait for the inode to be unlocked, if false do not
756  *
757  * ifind() searches for the inode specified by @data in the inode
758  * cache. This is a generalized version of ifind_fast() for file systems where
759  * the inode number is not sufficient for unique identification of an inode.
760  *
761  * If the inode is in the cache, the inode is returned with an incremented
762  * reference count.
763  *
764  * Otherwise NULL is returned.
765  *
766  * Note, @test is called with the inode_lock held, so can't sleep.
767  */
768 static struct inode *ifind(struct super_block *sb,
769 		struct hlist_head *head, int (*test)(struct inode *, void *),
770 		void *data, const int wait)
771 {
772 	struct inode *inode;
773 
774 	spin_lock(&inode_lock);
775 	inode = find_inode(sb, head, test, data);
776 	if (inode) {
777 		__iget(inode);
778 		spin_unlock(&inode_lock);
779 		if (likely(wait))
780 			wait_on_inode(inode);
781 		return inode;
782 	}
783 	spin_unlock(&inode_lock);
784 	return NULL;
785 }
786 
787 /**
788  * ifind_fast - internal function, you want ilookup() or iget().
789  * @sb:		super block of file system to search
790  * @head:       head of the list to search
791  * @ino:	inode number to search for
792  *
793  * ifind_fast() searches for the inode @ino in the inode cache. This is for
794  * file systems where the inode number is sufficient for unique identification
795  * of an inode.
796  *
797  * If the inode is in the cache, the inode is returned with an incremented
798  * reference count.
799  *
800  * Otherwise NULL is returned.
801  */
802 static struct inode *ifind_fast(struct super_block *sb,
803 		struct hlist_head *head, unsigned long ino)
804 {
805 	struct inode *inode;
806 
807 	spin_lock(&inode_lock);
808 	inode = find_inode_fast(sb, head, ino);
809 	if (inode) {
810 		__iget(inode);
811 		spin_unlock(&inode_lock);
812 		wait_on_inode(inode);
813 		return inode;
814 	}
815 	spin_unlock(&inode_lock);
816 	return NULL;
817 }
818 
819 /**
820  * ilookup5_nowait - search for an inode in the inode cache
821  * @sb:		super block of file system to search
822  * @hashval:	hash value (usually inode number) to search for
823  * @test:	callback used for comparisons between inodes
824  * @data:	opaque data pointer to pass to @test
825  *
826  * ilookup5() uses ifind() to search for the inode specified by @hashval and
827  * @data in the inode cache. This is a generalized version of ilookup() for
828  * file systems where the inode number is not sufficient for unique
829  * identification of an inode.
830  *
831  * If the inode is in the cache, the inode is returned with an incremented
832  * reference count.  Note, the inode lock is not waited upon so you have to be
833  * very careful what you do with the returned inode.  You probably should be
834  * using ilookup5() instead.
835  *
836  * Otherwise NULL is returned.
837  *
838  * Note, @test is called with the inode_lock held, so can't sleep.
839  */
840 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
841 		int (*test)(struct inode *, void *), void *data)
842 {
843 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
844 
845 	return ifind(sb, head, test, data, 0);
846 }
847 
848 EXPORT_SYMBOL(ilookup5_nowait);
849 
850 /**
851  * ilookup5 - search for an inode in the inode cache
852  * @sb:		super block of file system to search
853  * @hashval:	hash value (usually inode number) to search for
854  * @test:	callback used for comparisons between inodes
855  * @data:	opaque data pointer to pass to @test
856  *
857  * ilookup5() uses ifind() to search for the inode specified by @hashval and
858  * @data in the inode cache. This is a generalized version of ilookup() for
859  * file systems where the inode number is not sufficient for unique
860  * identification of an inode.
861  *
862  * If the inode is in the cache, the inode lock is waited upon and the inode is
863  * returned with an incremented reference count.
864  *
865  * Otherwise NULL is returned.
866  *
867  * Note, @test is called with the inode_lock held, so can't sleep.
868  */
869 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
870 		int (*test)(struct inode *, void *), void *data)
871 {
872 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
873 
874 	return ifind(sb, head, test, data, 1);
875 }
876 
877 EXPORT_SYMBOL(ilookup5);
878 
879 /**
880  * ilookup - search for an inode in the inode cache
881  * @sb:		super block of file system to search
882  * @ino:	inode number to search for
883  *
884  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
885  * This is for file systems where the inode number is sufficient for unique
886  * identification of an inode.
887  *
888  * If the inode is in the cache, the inode is returned with an incremented
889  * reference count.
890  *
891  * Otherwise NULL is returned.
892  */
893 struct inode *ilookup(struct super_block *sb, unsigned long ino)
894 {
895 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
896 
897 	return ifind_fast(sb, head, ino);
898 }
899 
900 EXPORT_SYMBOL(ilookup);
901 
902 /**
903  * iget5_locked - obtain an inode from a mounted file system
904  * @sb:		super block of file system
905  * @hashval:	hash value (usually inode number) to get
906  * @test:	callback used for comparisons between inodes
907  * @set:	callback used to initialize a new struct inode
908  * @data:	opaque data pointer to pass to @test and @set
909  *
910  * This is iget() without the read_inode() portion of get_new_inode().
911  *
912  * iget5_locked() uses ifind() to search for the inode specified by @hashval
913  * and @data in the inode cache and if present it is returned with an increased
914  * reference count. This is a generalized version of iget_locked() for file
915  * systems where the inode number is not sufficient for unique identification
916  * of an inode.
917  *
918  * If the inode is not in cache, get_new_inode() is called to allocate a new
919  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
920  * file system gets to fill it in before unlocking it via unlock_new_inode().
921  *
922  * Note both @test and @set are called with the inode_lock held, so can't sleep.
923  */
924 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
925 		int (*test)(struct inode *, void *),
926 		int (*set)(struct inode *, void *), void *data)
927 {
928 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
929 	struct inode *inode;
930 
931 	inode = ifind(sb, head, test, data, 1);
932 	if (inode)
933 		return inode;
934 	/*
935 	 * get_new_inode() will do the right thing, re-trying the search
936 	 * in case it had to block at any point.
937 	 */
938 	return get_new_inode(sb, head, test, set, data);
939 }
940 
941 EXPORT_SYMBOL(iget5_locked);
942 
943 /**
944  * iget_locked - obtain an inode from a mounted file system
945  * @sb:		super block of file system
946  * @ino:	inode number to get
947  *
948  * This is iget() without the read_inode() portion of get_new_inode_fast().
949  *
950  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
951  * the inode cache and if present it is returned with an increased reference
952  * count. This is for file systems where the inode number is sufficient for
953  * unique identification of an inode.
954  *
955  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
956  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
957  * The file system gets to fill it in before unlocking it via
958  * unlock_new_inode().
959  */
960 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
961 {
962 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
963 	struct inode *inode;
964 
965 	inode = ifind_fast(sb, head, ino);
966 	if (inode)
967 		return inode;
968 	/*
969 	 * get_new_inode_fast() will do the right thing, re-trying the search
970 	 * in case it had to block at any point.
971 	 */
972 	return get_new_inode_fast(sb, head, ino);
973 }
974 
975 EXPORT_SYMBOL(iget_locked);
976 
977 /**
978  *	__insert_inode_hash - hash an inode
979  *	@inode: unhashed inode
980  *	@hashval: unsigned long value used to locate this object in the
981  *		inode_hashtable.
982  *
983  *	Add an inode to the inode hash for this superblock.
984  */
985 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
986 {
987 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
988 	spin_lock(&inode_lock);
989 	hlist_add_head(&inode->i_hash, head);
990 	spin_unlock(&inode_lock);
991 }
992 
993 EXPORT_SYMBOL(__insert_inode_hash);
994 
995 /**
996  *	remove_inode_hash - remove an inode from the hash
997  *	@inode: inode to unhash
998  *
999  *	Remove an inode from the superblock.
1000  */
1001 void remove_inode_hash(struct inode *inode)
1002 {
1003 	spin_lock(&inode_lock);
1004 	hlist_del_init(&inode->i_hash);
1005 	spin_unlock(&inode_lock);
1006 }
1007 
1008 EXPORT_SYMBOL(remove_inode_hash);
1009 
1010 /*
1011  * Tell the filesystem that this inode is no longer of any interest and should
1012  * be completely destroyed.
1013  *
1014  * We leave the inode in the inode hash table until *after* the filesystem's
1015  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1016  * instigate) will always find up-to-date information either in the hash or on
1017  * disk.
1018  *
1019  * I_FREEING is set so that no-one will take a new reference to the inode while
1020  * it is being deleted.
1021  */
1022 void generic_delete_inode(struct inode *inode)
1023 {
1024 	struct super_operations *op = inode->i_sb->s_op;
1025 
1026 	list_del_init(&inode->i_list);
1027 	list_del_init(&inode->i_sb_list);
1028 	inode->i_state|=I_FREEING;
1029 	inodes_stat.nr_inodes--;
1030 	spin_unlock(&inode_lock);
1031 
1032 	security_inode_delete(inode);
1033 
1034 	if (op->delete_inode) {
1035 		void (*delete)(struct inode *) = op->delete_inode;
1036 		if (!is_bad_inode(inode))
1037 			DQUOT_INIT(inode);
1038 		/* Filesystems implementing their own
1039 		 * s_op->delete_inode are required to call
1040 		 * truncate_inode_pages and clear_inode()
1041 		 * internally */
1042 		delete(inode);
1043 	} else {
1044 		truncate_inode_pages(&inode->i_data, 0);
1045 		clear_inode(inode);
1046 	}
1047 	spin_lock(&inode_lock);
1048 	hlist_del_init(&inode->i_hash);
1049 	spin_unlock(&inode_lock);
1050 	wake_up_inode(inode);
1051 	BUG_ON(inode->i_state != I_CLEAR);
1052 	destroy_inode(inode);
1053 }
1054 
1055 EXPORT_SYMBOL(generic_delete_inode);
1056 
1057 static void generic_forget_inode(struct inode *inode)
1058 {
1059 	struct super_block *sb = inode->i_sb;
1060 
1061 	if (!hlist_unhashed(&inode->i_hash)) {
1062 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1063 			list_move(&inode->i_list, &inode_unused);
1064 		inodes_stat.nr_unused++;
1065 		if (!sb || (sb->s_flags & MS_ACTIVE)) {
1066 			spin_unlock(&inode_lock);
1067 			return;
1068 		}
1069 		inode->i_state |= I_WILL_FREE;
1070 		spin_unlock(&inode_lock);
1071 		write_inode_now(inode, 1);
1072 		spin_lock(&inode_lock);
1073 		inode->i_state &= ~I_WILL_FREE;
1074 		inodes_stat.nr_unused--;
1075 		hlist_del_init(&inode->i_hash);
1076 	}
1077 	list_del_init(&inode->i_list);
1078 	list_del_init(&inode->i_sb_list);
1079 	inode->i_state |= I_FREEING;
1080 	inodes_stat.nr_inodes--;
1081 	spin_unlock(&inode_lock);
1082 	if (inode->i_data.nrpages)
1083 		truncate_inode_pages(&inode->i_data, 0);
1084 	clear_inode(inode);
1085 	wake_up_inode(inode);
1086 	destroy_inode(inode);
1087 }
1088 
1089 /*
1090  * Normal UNIX filesystem behaviour: delete the
1091  * inode when the usage count drops to zero, and
1092  * i_nlink is zero.
1093  */
1094 void generic_drop_inode(struct inode *inode)
1095 {
1096 	if (!inode->i_nlink)
1097 		generic_delete_inode(inode);
1098 	else
1099 		generic_forget_inode(inode);
1100 }
1101 
1102 EXPORT_SYMBOL_GPL(generic_drop_inode);
1103 
1104 /*
1105  * Called when we're dropping the last reference
1106  * to an inode.
1107  *
1108  * Call the FS "drop()" function, defaulting to
1109  * the legacy UNIX filesystem behaviour..
1110  *
1111  * NOTE! NOTE! NOTE! We're called with the inode lock
1112  * held, and the drop function is supposed to release
1113  * the lock!
1114  */
1115 static inline void iput_final(struct inode *inode)
1116 {
1117 	struct super_operations *op = inode->i_sb->s_op;
1118 	void (*drop)(struct inode *) = generic_drop_inode;
1119 
1120 	if (op && op->drop_inode)
1121 		drop = op->drop_inode;
1122 	drop(inode);
1123 }
1124 
1125 /**
1126  *	iput	- put an inode
1127  *	@inode: inode to put
1128  *
1129  *	Puts an inode, dropping its usage count. If the inode use count hits
1130  *	zero, the inode is then freed and may also be destroyed.
1131  *
1132  *	Consequently, iput() can sleep.
1133  */
1134 void iput(struct inode *inode)
1135 {
1136 	if (inode) {
1137 		struct super_operations *op = inode->i_sb->s_op;
1138 
1139 		BUG_ON(inode->i_state == I_CLEAR);
1140 
1141 		if (op && op->put_inode)
1142 			op->put_inode(inode);
1143 
1144 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1145 			iput_final(inode);
1146 	}
1147 }
1148 
1149 EXPORT_SYMBOL(iput);
1150 
1151 /**
1152  *	bmap	- find a block number in a file
1153  *	@inode: inode of file
1154  *	@block: block to find
1155  *
1156  *	Returns the block number on the device holding the inode that
1157  *	is the disk block number for the block of the file requested.
1158  *	That is, asked for block 4 of inode 1 the function will return the
1159  *	disk block relative to the disk start that holds that block of the
1160  *	file.
1161  */
1162 sector_t bmap(struct inode * inode, sector_t block)
1163 {
1164 	sector_t res = 0;
1165 	if (inode->i_mapping->a_ops->bmap)
1166 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1167 	return res;
1168 }
1169 
1170 EXPORT_SYMBOL(bmap);
1171 
1172 /**
1173  *	touch_atime	-	update the access time
1174  *	@mnt: mount the inode is accessed on
1175  *	@dentry: dentry accessed
1176  *
1177  *	Update the accessed time on an inode and mark it for writeback.
1178  *	This function automatically handles read only file systems and media,
1179  *	as well as the "noatime" flag and inode specific "noatime" markers.
1180  */
1181 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1182 {
1183 	struct inode *inode = dentry->d_inode;
1184 	struct timespec now;
1185 
1186 	if (IS_RDONLY(inode))
1187 		return;
1188 
1189 	if ((inode->i_flags & S_NOATIME) ||
1190 	    (inode->i_sb->s_flags & MS_NOATIME) ||
1191 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
1192 		return;
1193 
1194 	/*
1195 	 * We may have a NULL vfsmount when coming from NFSD
1196 	 */
1197 	if (mnt &&
1198 	    ((mnt->mnt_flags & MNT_NOATIME) ||
1199 	     ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))))
1200 		return;
1201 
1202 	now = current_fs_time(inode->i_sb);
1203 	if (!timespec_equal(&inode->i_atime, &now)) {
1204 		inode->i_atime = now;
1205 		mark_inode_dirty_sync(inode);
1206 	}
1207 }
1208 
1209 EXPORT_SYMBOL(touch_atime);
1210 
1211 /**
1212  *	file_update_time	-	update mtime and ctime time
1213  *	@file: file accessed
1214  *
1215  *	Update the mtime and ctime members of an inode and mark the inode
1216  *	for writeback.  Note that this function is meant exclusively for
1217  *	usage in the file write path of filesystems, and filesystems may
1218  *	choose to explicitly ignore update via this function with the
1219  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1220  *	timestamps are handled by the server.
1221  */
1222 
1223 void file_update_time(struct file *file)
1224 {
1225 	struct inode *inode = file->f_dentry->d_inode;
1226 	struct timespec now;
1227 	int sync_it = 0;
1228 
1229 	if (IS_NOCMTIME(inode))
1230 		return;
1231 	if (IS_RDONLY(inode))
1232 		return;
1233 
1234 	now = current_fs_time(inode->i_sb);
1235 	if (!timespec_equal(&inode->i_mtime, &now))
1236 		sync_it = 1;
1237 	inode->i_mtime = now;
1238 
1239 	if (!timespec_equal(&inode->i_ctime, &now))
1240 		sync_it = 1;
1241 	inode->i_ctime = now;
1242 
1243 	if (sync_it)
1244 		mark_inode_dirty_sync(inode);
1245 }
1246 
1247 EXPORT_SYMBOL(file_update_time);
1248 
1249 int inode_needs_sync(struct inode *inode)
1250 {
1251 	if (IS_SYNC(inode))
1252 		return 1;
1253 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1254 		return 1;
1255 	return 0;
1256 }
1257 
1258 EXPORT_SYMBOL(inode_needs_sync);
1259 
1260 /*
1261  *	Quota functions that want to walk the inode lists..
1262  */
1263 #ifdef CONFIG_QUOTA
1264 
1265 /* Function back in dquot.c */
1266 int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1267 
1268 void remove_dquot_ref(struct super_block *sb, int type,
1269 			struct list_head *tofree_head)
1270 {
1271 	struct inode *inode;
1272 
1273 	if (!sb->dq_op)
1274 		return;	/* nothing to do */
1275 	spin_lock(&inode_lock);	/* This lock is for inodes code */
1276 
1277 	/*
1278 	 * We don't have to lock against quota code - test IS_QUOTAINIT is
1279 	 * just for speedup...
1280 	 */
1281 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1282 		if (!IS_NOQUOTA(inode))
1283 			remove_inode_dquot_ref(inode, type, tofree_head);
1284 
1285 	spin_unlock(&inode_lock);
1286 }
1287 
1288 #endif
1289 
1290 int inode_wait(void *word)
1291 {
1292 	schedule();
1293 	return 0;
1294 }
1295 
1296 /*
1297  * If we try to find an inode in the inode hash while it is being
1298  * deleted, we have to wait until the filesystem completes its
1299  * deletion before reporting that it isn't found.  This function waits
1300  * until the deletion _might_ have completed.  Callers are responsible
1301  * to recheck inode state.
1302  *
1303  * It doesn't matter if I_LOCK is not set initially, a call to
1304  * wake_up_inode() after removing from the hash list will DTRT.
1305  *
1306  * This is called with inode_lock held.
1307  */
1308 static void __wait_on_freeing_inode(struct inode *inode)
1309 {
1310 	wait_queue_head_t *wq;
1311 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1312 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1313 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1314 	spin_unlock(&inode_lock);
1315 	schedule();
1316 	finish_wait(wq, &wait.wait);
1317 	spin_lock(&inode_lock);
1318 }
1319 
1320 void wake_up_inode(struct inode *inode)
1321 {
1322 	/*
1323 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1324 	 */
1325 	smp_mb();
1326 	wake_up_bit(&inode->i_state, __I_LOCK);
1327 }
1328 
1329 static __initdata unsigned long ihash_entries;
1330 static int __init set_ihash_entries(char *str)
1331 {
1332 	if (!str)
1333 		return 0;
1334 	ihash_entries = simple_strtoul(str, &str, 0);
1335 	return 1;
1336 }
1337 __setup("ihash_entries=", set_ihash_entries);
1338 
1339 /*
1340  * Initialize the waitqueues and inode hash table.
1341  */
1342 void __init inode_init_early(void)
1343 {
1344 	int loop;
1345 
1346 	/* If hashes are distributed across NUMA nodes, defer
1347 	 * hash allocation until vmalloc space is available.
1348 	 */
1349 	if (hashdist)
1350 		return;
1351 
1352 	inode_hashtable =
1353 		alloc_large_system_hash("Inode-cache",
1354 					sizeof(struct hlist_head),
1355 					ihash_entries,
1356 					14,
1357 					HASH_EARLY,
1358 					&i_hash_shift,
1359 					&i_hash_mask,
1360 					0);
1361 
1362 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1363 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1364 }
1365 
1366 void __init inode_init(unsigned long mempages)
1367 {
1368 	int loop;
1369 
1370 	/* inode slab cache */
1371 	inode_cachep = kmem_cache_create("inode_cache",
1372 					 sizeof(struct inode),
1373 					 0,
1374 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1375 					 SLAB_MEM_SPREAD),
1376 					 init_once,
1377 					 NULL);
1378 	set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1379 
1380 	/* Hash may have been set up in inode_init_early */
1381 	if (!hashdist)
1382 		return;
1383 
1384 	inode_hashtable =
1385 		alloc_large_system_hash("Inode-cache",
1386 					sizeof(struct hlist_head),
1387 					ihash_entries,
1388 					14,
1389 					0,
1390 					&i_hash_shift,
1391 					&i_hash_mask,
1392 					0);
1393 
1394 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1395 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1396 }
1397 
1398 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1399 {
1400 	inode->i_mode = mode;
1401 	if (S_ISCHR(mode)) {
1402 		inode->i_fop = &def_chr_fops;
1403 		inode->i_rdev = rdev;
1404 	} else if (S_ISBLK(mode)) {
1405 		inode->i_fop = &def_blk_fops;
1406 		inode->i_rdev = rdev;
1407 	} else if (S_ISFIFO(mode))
1408 		inode->i_fop = &def_fifo_fops;
1409 	else if (S_ISSOCK(mode))
1410 		inode->i_fop = &bad_sock_fops;
1411 	else
1412 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1413 		       mode);
1414 }
1415 EXPORT_SYMBOL(init_special_inode);
1416