1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/mount.h> 25 26 /* 27 * This is needed for the following functions: 28 * - inode_has_buffers 29 * - invalidate_inode_buffers 30 * - invalidate_bdev 31 * 32 * FIXME: remove all knowledge of the buffer layer from this file 33 */ 34 #include <linux/buffer_head.h> 35 36 /* 37 * New inode.c implementation. 38 * 39 * This implementation has the basic premise of trying 40 * to be extremely low-overhead and SMP-safe, yet be 41 * simple enough to be "obviously correct". 42 * 43 * Famous last words. 44 */ 45 46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 47 48 /* #define INODE_PARANOIA 1 */ 49 /* #define INODE_DEBUG 1 */ 50 51 /* 52 * Inode lookup is no longer as critical as it used to be: 53 * most of the lookups are going to be through the dcache. 54 */ 55 #define I_HASHBITS i_hash_shift 56 #define I_HASHMASK i_hash_mask 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 61 /* 62 * Each inode can be on two separate lists. One is 63 * the hash list of the inode, used for lookups. The 64 * other linked list is the "type" list: 65 * "in_use" - valid inode, i_count > 0, i_nlink > 0 66 * "dirty" - as "in_use" but also dirty 67 * "unused" - valid inode, i_count = 0 68 * 69 * A "dirty" list is maintained for each super block, 70 * allowing for low-overhead inode sync() operations. 71 */ 72 73 LIST_HEAD(inode_in_use); 74 LIST_HEAD(inode_unused); 75 static struct hlist_head *inode_hashtable __read_mostly; 76 77 /* 78 * A simple spinlock to protect the list manipulations. 79 * 80 * NOTE! You also have to own the lock if you change 81 * the i_state of an inode while it is in use.. 82 */ 83 DEFINE_SPINLOCK(inode_lock); 84 85 /* 86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 87 * icache shrinking path, and the umount path. Without this exclusion, 88 * by the time prune_icache calls iput for the inode whose pages it has 89 * been invalidating, or by the time it calls clear_inode & destroy_inode 90 * from its final dispose_list, the struct super_block they refer to 91 * (for inode->i_sb->s_op) may already have been freed and reused. 92 */ 93 static DEFINE_MUTEX(iprune_mutex); 94 95 /* 96 * Statistics gathering.. 97 */ 98 struct inodes_stat_t inodes_stat; 99 100 static kmem_cache_t * inode_cachep __read_mostly; 101 102 static struct inode *alloc_inode(struct super_block *sb) 103 { 104 static const struct address_space_operations empty_aops; 105 static struct inode_operations empty_iops; 106 static const struct file_operations empty_fops; 107 struct inode *inode; 108 109 if (sb->s_op->alloc_inode) 110 inode = sb->s_op->alloc_inode(sb); 111 else 112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL); 113 114 if (inode) { 115 struct address_space * const mapping = &inode->i_data; 116 117 inode->i_sb = sb; 118 inode->i_blkbits = sb->s_blocksize_bits; 119 inode->i_flags = 0; 120 atomic_set(&inode->i_count, 1); 121 inode->i_op = &empty_iops; 122 inode->i_fop = &empty_fops; 123 inode->i_nlink = 1; 124 atomic_set(&inode->i_writecount, 0); 125 inode->i_size = 0; 126 inode->i_blocks = 0; 127 inode->i_bytes = 0; 128 inode->i_generation = 0; 129 #ifdef CONFIG_QUOTA 130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 131 #endif 132 inode->i_pipe = NULL; 133 inode->i_bdev = NULL; 134 inode->i_cdev = NULL; 135 inode->i_rdev = 0; 136 inode->i_security = NULL; 137 inode->dirtied_when = 0; 138 if (security_inode_alloc(inode)) { 139 if (inode->i_sb->s_op->destroy_inode) 140 inode->i_sb->s_op->destroy_inode(inode); 141 else 142 kmem_cache_free(inode_cachep, (inode)); 143 return NULL; 144 } 145 146 mapping->a_ops = &empty_aops; 147 mapping->host = inode; 148 mapping->flags = 0; 149 mapping_set_gfp_mask(mapping, GFP_HIGHUSER); 150 mapping->assoc_mapping = NULL; 151 mapping->backing_dev_info = &default_backing_dev_info; 152 153 /* 154 * If the block_device provides a backing_dev_info for client 155 * inodes then use that. Otherwise the inode share the bdev's 156 * backing_dev_info. 157 */ 158 if (sb->s_bdev) { 159 struct backing_dev_info *bdi; 160 161 bdi = sb->s_bdev->bd_inode_backing_dev_info; 162 if (!bdi) 163 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 164 mapping->backing_dev_info = bdi; 165 } 166 memset(&inode->u, 0, sizeof(inode->u)); 167 inode->i_mapping = mapping; 168 } 169 return inode; 170 } 171 172 void destroy_inode(struct inode *inode) 173 { 174 BUG_ON(inode_has_buffers(inode)); 175 security_inode_free(inode); 176 if (inode->i_sb->s_op->destroy_inode) 177 inode->i_sb->s_op->destroy_inode(inode); 178 else 179 kmem_cache_free(inode_cachep, (inode)); 180 } 181 182 183 /* 184 * These are initializations that only need to be done 185 * once, because the fields are idempotent across use 186 * of the inode, so let the slab aware of that. 187 */ 188 void inode_init_once(struct inode *inode) 189 { 190 memset(inode, 0, sizeof(*inode)); 191 INIT_HLIST_NODE(&inode->i_hash); 192 INIT_LIST_HEAD(&inode->i_dentry); 193 INIT_LIST_HEAD(&inode->i_devices); 194 mutex_init(&inode->i_mutex); 195 init_rwsem(&inode->i_alloc_sem); 196 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 197 rwlock_init(&inode->i_data.tree_lock); 198 spin_lock_init(&inode->i_data.i_mmap_lock); 199 INIT_LIST_HEAD(&inode->i_data.private_list); 200 spin_lock_init(&inode->i_data.private_lock); 201 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 202 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 203 spin_lock_init(&inode->i_lock); 204 i_size_ordered_init(inode); 205 #ifdef CONFIG_INOTIFY 206 INIT_LIST_HEAD(&inode->inotify_watches); 207 mutex_init(&inode->inotify_mutex); 208 #endif 209 } 210 211 EXPORT_SYMBOL(inode_init_once); 212 213 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 214 { 215 struct inode * inode = (struct inode *) foo; 216 217 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 218 SLAB_CTOR_CONSTRUCTOR) 219 inode_init_once(inode); 220 } 221 222 /* 223 * inode_lock must be held 224 */ 225 void __iget(struct inode * inode) 226 { 227 if (atomic_read(&inode->i_count)) { 228 atomic_inc(&inode->i_count); 229 return; 230 } 231 atomic_inc(&inode->i_count); 232 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 233 list_move(&inode->i_list, &inode_in_use); 234 inodes_stat.nr_unused--; 235 } 236 237 /** 238 * clear_inode - clear an inode 239 * @inode: inode to clear 240 * 241 * This is called by the filesystem to tell us 242 * that the inode is no longer useful. We just 243 * terminate it with extreme prejudice. 244 */ 245 void clear_inode(struct inode *inode) 246 { 247 might_sleep(); 248 invalidate_inode_buffers(inode); 249 250 BUG_ON(inode->i_data.nrpages); 251 BUG_ON(!(inode->i_state & I_FREEING)); 252 BUG_ON(inode->i_state & I_CLEAR); 253 wait_on_inode(inode); 254 DQUOT_DROP(inode); 255 if (inode->i_sb && inode->i_sb->s_op->clear_inode) 256 inode->i_sb->s_op->clear_inode(inode); 257 if (inode->i_bdev) 258 bd_forget(inode); 259 if (inode->i_cdev) 260 cd_forget(inode); 261 inode->i_state = I_CLEAR; 262 } 263 264 EXPORT_SYMBOL(clear_inode); 265 266 /* 267 * dispose_list - dispose of the contents of a local list 268 * @head: the head of the list to free 269 * 270 * Dispose-list gets a local list with local inodes in it, so it doesn't 271 * need to worry about list corruption and SMP locks. 272 */ 273 static void dispose_list(struct list_head *head) 274 { 275 int nr_disposed = 0; 276 277 while (!list_empty(head)) { 278 struct inode *inode; 279 280 inode = list_entry(head->next, struct inode, i_list); 281 list_del(&inode->i_list); 282 283 if (inode->i_data.nrpages) 284 truncate_inode_pages(&inode->i_data, 0); 285 clear_inode(inode); 286 287 spin_lock(&inode_lock); 288 hlist_del_init(&inode->i_hash); 289 list_del_init(&inode->i_sb_list); 290 spin_unlock(&inode_lock); 291 292 wake_up_inode(inode); 293 destroy_inode(inode); 294 nr_disposed++; 295 } 296 spin_lock(&inode_lock); 297 inodes_stat.nr_inodes -= nr_disposed; 298 spin_unlock(&inode_lock); 299 } 300 301 /* 302 * Invalidate all inodes for a device. 303 */ 304 static int invalidate_list(struct list_head *head, struct list_head *dispose) 305 { 306 struct list_head *next; 307 int busy = 0, count = 0; 308 309 next = head->next; 310 for (;;) { 311 struct list_head * tmp = next; 312 struct inode * inode; 313 314 /* 315 * We can reschedule here without worrying about the list's 316 * consistency because the per-sb list of inodes must not 317 * change during umount anymore, and because iprune_mutex keeps 318 * shrink_icache_memory() away. 319 */ 320 cond_resched_lock(&inode_lock); 321 322 next = next->next; 323 if (tmp == head) 324 break; 325 inode = list_entry(tmp, struct inode, i_sb_list); 326 invalidate_inode_buffers(inode); 327 if (!atomic_read(&inode->i_count)) { 328 list_move(&inode->i_list, dispose); 329 inode->i_state |= I_FREEING; 330 count++; 331 continue; 332 } 333 busy = 1; 334 } 335 /* only unused inodes may be cached with i_count zero */ 336 inodes_stat.nr_unused -= count; 337 return busy; 338 } 339 340 /** 341 * invalidate_inodes - discard the inodes on a device 342 * @sb: superblock 343 * 344 * Discard all of the inodes for a given superblock. If the discard 345 * fails because there are busy inodes then a non zero value is returned. 346 * If the discard is successful all the inodes have been discarded. 347 */ 348 int invalidate_inodes(struct super_block * sb) 349 { 350 int busy; 351 LIST_HEAD(throw_away); 352 353 mutex_lock(&iprune_mutex); 354 spin_lock(&inode_lock); 355 inotify_unmount_inodes(&sb->s_inodes); 356 busy = invalidate_list(&sb->s_inodes, &throw_away); 357 spin_unlock(&inode_lock); 358 359 dispose_list(&throw_away); 360 mutex_unlock(&iprune_mutex); 361 362 return busy; 363 } 364 365 EXPORT_SYMBOL(invalidate_inodes); 366 367 int __invalidate_device(struct block_device *bdev) 368 { 369 struct super_block *sb = get_super(bdev); 370 int res = 0; 371 372 if (sb) { 373 /* 374 * no need to lock the super, get_super holds the 375 * read mutex so the filesystem cannot go away 376 * under us (->put_super runs with the write lock 377 * hold). 378 */ 379 shrink_dcache_sb(sb); 380 res = invalidate_inodes(sb); 381 drop_super(sb); 382 } 383 invalidate_bdev(bdev, 0); 384 return res; 385 } 386 EXPORT_SYMBOL(__invalidate_device); 387 388 static int can_unuse(struct inode *inode) 389 { 390 if (inode->i_state) 391 return 0; 392 if (inode_has_buffers(inode)) 393 return 0; 394 if (atomic_read(&inode->i_count)) 395 return 0; 396 if (inode->i_data.nrpages) 397 return 0; 398 return 1; 399 } 400 401 /* 402 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 403 * a temporary list and then are freed outside inode_lock by dispose_list(). 404 * 405 * Any inodes which are pinned purely because of attached pagecache have their 406 * pagecache removed. We expect the final iput() on that inode to add it to 407 * the front of the inode_unused list. So look for it there and if the 408 * inode is still freeable, proceed. The right inode is found 99.9% of the 409 * time in testing on a 4-way. 410 * 411 * If the inode has metadata buffers attached to mapping->private_list then 412 * try to remove them. 413 */ 414 static void prune_icache(int nr_to_scan) 415 { 416 LIST_HEAD(freeable); 417 int nr_pruned = 0; 418 int nr_scanned; 419 unsigned long reap = 0; 420 421 mutex_lock(&iprune_mutex); 422 spin_lock(&inode_lock); 423 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 424 struct inode *inode; 425 426 if (list_empty(&inode_unused)) 427 break; 428 429 inode = list_entry(inode_unused.prev, struct inode, i_list); 430 431 if (inode->i_state || atomic_read(&inode->i_count)) { 432 list_move(&inode->i_list, &inode_unused); 433 continue; 434 } 435 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 436 __iget(inode); 437 spin_unlock(&inode_lock); 438 if (remove_inode_buffers(inode)) 439 reap += invalidate_inode_pages(&inode->i_data); 440 iput(inode); 441 spin_lock(&inode_lock); 442 443 if (inode != list_entry(inode_unused.next, 444 struct inode, i_list)) 445 continue; /* wrong inode or list_empty */ 446 if (!can_unuse(inode)) 447 continue; 448 } 449 list_move(&inode->i_list, &freeable); 450 inode->i_state |= I_FREEING; 451 nr_pruned++; 452 } 453 inodes_stat.nr_unused -= nr_pruned; 454 if (current_is_kswapd()) 455 __count_vm_events(KSWAPD_INODESTEAL, reap); 456 else 457 __count_vm_events(PGINODESTEAL, reap); 458 spin_unlock(&inode_lock); 459 460 dispose_list(&freeable); 461 mutex_unlock(&iprune_mutex); 462 } 463 464 /* 465 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 466 * "unused" means that no dentries are referring to the inodes: the files are 467 * not open and the dcache references to those inodes have already been 468 * reclaimed. 469 * 470 * This function is passed the number of inodes to scan, and it returns the 471 * total number of remaining possibly-reclaimable inodes. 472 */ 473 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 474 { 475 if (nr) { 476 /* 477 * Nasty deadlock avoidance. We may hold various FS locks, 478 * and we don't want to recurse into the FS that called us 479 * in clear_inode() and friends.. 480 */ 481 if (!(gfp_mask & __GFP_FS)) 482 return -1; 483 prune_icache(nr); 484 } 485 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 486 } 487 488 static void __wait_on_freeing_inode(struct inode *inode); 489 /* 490 * Called with the inode lock held. 491 * NOTE: we are not increasing the inode-refcount, you must call __iget() 492 * by hand after calling find_inode now! This simplifies iunique and won't 493 * add any additional branch in the common code. 494 */ 495 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 496 { 497 struct hlist_node *node; 498 struct inode * inode = NULL; 499 500 repeat: 501 hlist_for_each (node, head) { 502 inode = hlist_entry(node, struct inode, i_hash); 503 if (inode->i_sb != sb) 504 continue; 505 if (!test(inode, data)) 506 continue; 507 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 508 __wait_on_freeing_inode(inode); 509 goto repeat; 510 } 511 break; 512 } 513 return node ? inode : NULL; 514 } 515 516 /* 517 * find_inode_fast is the fast path version of find_inode, see the comment at 518 * iget_locked for details. 519 */ 520 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 521 { 522 struct hlist_node *node; 523 struct inode * inode = NULL; 524 525 repeat: 526 hlist_for_each (node, head) { 527 inode = hlist_entry(node, struct inode, i_hash); 528 if (inode->i_ino != ino) 529 continue; 530 if (inode->i_sb != sb) 531 continue; 532 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 533 __wait_on_freeing_inode(inode); 534 goto repeat; 535 } 536 break; 537 } 538 return node ? inode : NULL; 539 } 540 541 /** 542 * new_inode - obtain an inode 543 * @sb: superblock 544 * 545 * Allocates a new inode for given superblock. 546 */ 547 struct inode *new_inode(struct super_block *sb) 548 { 549 static unsigned long last_ino; 550 struct inode * inode; 551 552 spin_lock_prefetch(&inode_lock); 553 554 inode = alloc_inode(sb); 555 if (inode) { 556 spin_lock(&inode_lock); 557 inodes_stat.nr_inodes++; 558 list_add(&inode->i_list, &inode_in_use); 559 list_add(&inode->i_sb_list, &sb->s_inodes); 560 inode->i_ino = ++last_ino; 561 inode->i_state = 0; 562 spin_unlock(&inode_lock); 563 } 564 return inode; 565 } 566 567 EXPORT_SYMBOL(new_inode); 568 569 void unlock_new_inode(struct inode *inode) 570 { 571 /* 572 * This is special! We do not need the spinlock 573 * when clearing I_LOCK, because we're guaranteed 574 * that nobody else tries to do anything about the 575 * state of the inode when it is locked, as we 576 * just created it (so there can be no old holders 577 * that haven't tested I_LOCK). 578 */ 579 inode->i_state &= ~(I_LOCK|I_NEW); 580 wake_up_inode(inode); 581 } 582 583 EXPORT_SYMBOL(unlock_new_inode); 584 585 /* 586 * This is called without the inode lock held.. Be careful. 587 * 588 * We no longer cache the sb_flags in i_flags - see fs.h 589 * -- rmk@arm.uk.linux.org 590 */ 591 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 592 { 593 struct inode * inode; 594 595 inode = alloc_inode(sb); 596 if (inode) { 597 struct inode * old; 598 599 spin_lock(&inode_lock); 600 /* We released the lock, so.. */ 601 old = find_inode(sb, head, test, data); 602 if (!old) { 603 if (set(inode, data)) 604 goto set_failed; 605 606 inodes_stat.nr_inodes++; 607 list_add(&inode->i_list, &inode_in_use); 608 list_add(&inode->i_sb_list, &sb->s_inodes); 609 hlist_add_head(&inode->i_hash, head); 610 inode->i_state = I_LOCK|I_NEW; 611 spin_unlock(&inode_lock); 612 613 /* Return the locked inode with I_NEW set, the 614 * caller is responsible for filling in the contents 615 */ 616 return inode; 617 } 618 619 /* 620 * Uhhuh, somebody else created the same inode under 621 * us. Use the old inode instead of the one we just 622 * allocated. 623 */ 624 __iget(old); 625 spin_unlock(&inode_lock); 626 destroy_inode(inode); 627 inode = old; 628 wait_on_inode(inode); 629 } 630 return inode; 631 632 set_failed: 633 spin_unlock(&inode_lock); 634 destroy_inode(inode); 635 return NULL; 636 } 637 638 /* 639 * get_new_inode_fast is the fast path version of get_new_inode, see the 640 * comment at iget_locked for details. 641 */ 642 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 643 { 644 struct inode * inode; 645 646 inode = alloc_inode(sb); 647 if (inode) { 648 struct inode * old; 649 650 spin_lock(&inode_lock); 651 /* We released the lock, so.. */ 652 old = find_inode_fast(sb, head, ino); 653 if (!old) { 654 inode->i_ino = ino; 655 inodes_stat.nr_inodes++; 656 list_add(&inode->i_list, &inode_in_use); 657 list_add(&inode->i_sb_list, &sb->s_inodes); 658 hlist_add_head(&inode->i_hash, head); 659 inode->i_state = I_LOCK|I_NEW; 660 spin_unlock(&inode_lock); 661 662 /* Return the locked inode with I_NEW set, the 663 * caller is responsible for filling in the contents 664 */ 665 return inode; 666 } 667 668 /* 669 * Uhhuh, somebody else created the same inode under 670 * us. Use the old inode instead of the one we just 671 * allocated. 672 */ 673 __iget(old); 674 spin_unlock(&inode_lock); 675 destroy_inode(inode); 676 inode = old; 677 wait_on_inode(inode); 678 } 679 return inode; 680 } 681 682 static inline unsigned long hash(struct super_block *sb, unsigned long hashval) 683 { 684 unsigned long tmp; 685 686 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 687 L1_CACHE_BYTES; 688 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 689 return tmp & I_HASHMASK; 690 } 691 692 /** 693 * iunique - get a unique inode number 694 * @sb: superblock 695 * @max_reserved: highest reserved inode number 696 * 697 * Obtain an inode number that is unique on the system for a given 698 * superblock. This is used by file systems that have no natural 699 * permanent inode numbering system. An inode number is returned that 700 * is higher than the reserved limit but unique. 701 * 702 * BUGS: 703 * With a large number of inodes live on the file system this function 704 * currently becomes quite slow. 705 */ 706 ino_t iunique(struct super_block *sb, ino_t max_reserved) 707 { 708 static ino_t counter; 709 struct inode *inode; 710 struct hlist_head * head; 711 ino_t res; 712 spin_lock(&inode_lock); 713 retry: 714 if (counter > max_reserved) { 715 head = inode_hashtable + hash(sb,counter); 716 res = counter++; 717 inode = find_inode_fast(sb, head, res); 718 if (!inode) { 719 spin_unlock(&inode_lock); 720 return res; 721 } 722 } else { 723 counter = max_reserved + 1; 724 } 725 goto retry; 726 727 } 728 729 EXPORT_SYMBOL(iunique); 730 731 struct inode *igrab(struct inode *inode) 732 { 733 spin_lock(&inode_lock); 734 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) 735 __iget(inode); 736 else 737 /* 738 * Handle the case where s_op->clear_inode is not been 739 * called yet, and somebody is calling igrab 740 * while the inode is getting freed. 741 */ 742 inode = NULL; 743 spin_unlock(&inode_lock); 744 return inode; 745 } 746 747 EXPORT_SYMBOL(igrab); 748 749 /** 750 * ifind - internal function, you want ilookup5() or iget5(). 751 * @sb: super block of file system to search 752 * @head: the head of the list to search 753 * @test: callback used for comparisons between inodes 754 * @data: opaque data pointer to pass to @test 755 * @wait: if true wait for the inode to be unlocked, if false do not 756 * 757 * ifind() searches for the inode specified by @data in the inode 758 * cache. This is a generalized version of ifind_fast() for file systems where 759 * the inode number is not sufficient for unique identification of an inode. 760 * 761 * If the inode is in the cache, the inode is returned with an incremented 762 * reference count. 763 * 764 * Otherwise NULL is returned. 765 * 766 * Note, @test is called with the inode_lock held, so can't sleep. 767 */ 768 static struct inode *ifind(struct super_block *sb, 769 struct hlist_head *head, int (*test)(struct inode *, void *), 770 void *data, const int wait) 771 { 772 struct inode *inode; 773 774 spin_lock(&inode_lock); 775 inode = find_inode(sb, head, test, data); 776 if (inode) { 777 __iget(inode); 778 spin_unlock(&inode_lock); 779 if (likely(wait)) 780 wait_on_inode(inode); 781 return inode; 782 } 783 spin_unlock(&inode_lock); 784 return NULL; 785 } 786 787 /** 788 * ifind_fast - internal function, you want ilookup() or iget(). 789 * @sb: super block of file system to search 790 * @head: head of the list to search 791 * @ino: inode number to search for 792 * 793 * ifind_fast() searches for the inode @ino in the inode cache. This is for 794 * file systems where the inode number is sufficient for unique identification 795 * of an inode. 796 * 797 * If the inode is in the cache, the inode is returned with an incremented 798 * reference count. 799 * 800 * Otherwise NULL is returned. 801 */ 802 static struct inode *ifind_fast(struct super_block *sb, 803 struct hlist_head *head, unsigned long ino) 804 { 805 struct inode *inode; 806 807 spin_lock(&inode_lock); 808 inode = find_inode_fast(sb, head, ino); 809 if (inode) { 810 __iget(inode); 811 spin_unlock(&inode_lock); 812 wait_on_inode(inode); 813 return inode; 814 } 815 spin_unlock(&inode_lock); 816 return NULL; 817 } 818 819 /** 820 * ilookup5_nowait - search for an inode in the inode cache 821 * @sb: super block of file system to search 822 * @hashval: hash value (usually inode number) to search for 823 * @test: callback used for comparisons between inodes 824 * @data: opaque data pointer to pass to @test 825 * 826 * ilookup5() uses ifind() to search for the inode specified by @hashval and 827 * @data in the inode cache. This is a generalized version of ilookup() for 828 * file systems where the inode number is not sufficient for unique 829 * identification of an inode. 830 * 831 * If the inode is in the cache, the inode is returned with an incremented 832 * reference count. Note, the inode lock is not waited upon so you have to be 833 * very careful what you do with the returned inode. You probably should be 834 * using ilookup5() instead. 835 * 836 * Otherwise NULL is returned. 837 * 838 * Note, @test is called with the inode_lock held, so can't sleep. 839 */ 840 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 841 int (*test)(struct inode *, void *), void *data) 842 { 843 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 844 845 return ifind(sb, head, test, data, 0); 846 } 847 848 EXPORT_SYMBOL(ilookup5_nowait); 849 850 /** 851 * ilookup5 - search for an inode in the inode cache 852 * @sb: super block of file system to search 853 * @hashval: hash value (usually inode number) to search for 854 * @test: callback used for comparisons between inodes 855 * @data: opaque data pointer to pass to @test 856 * 857 * ilookup5() uses ifind() to search for the inode specified by @hashval and 858 * @data in the inode cache. This is a generalized version of ilookup() for 859 * file systems where the inode number is not sufficient for unique 860 * identification of an inode. 861 * 862 * If the inode is in the cache, the inode lock is waited upon and the inode is 863 * returned with an incremented reference count. 864 * 865 * Otherwise NULL is returned. 866 * 867 * Note, @test is called with the inode_lock held, so can't sleep. 868 */ 869 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 870 int (*test)(struct inode *, void *), void *data) 871 { 872 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 873 874 return ifind(sb, head, test, data, 1); 875 } 876 877 EXPORT_SYMBOL(ilookup5); 878 879 /** 880 * ilookup - search for an inode in the inode cache 881 * @sb: super block of file system to search 882 * @ino: inode number to search for 883 * 884 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 885 * This is for file systems where the inode number is sufficient for unique 886 * identification of an inode. 887 * 888 * If the inode is in the cache, the inode is returned with an incremented 889 * reference count. 890 * 891 * Otherwise NULL is returned. 892 */ 893 struct inode *ilookup(struct super_block *sb, unsigned long ino) 894 { 895 struct hlist_head *head = inode_hashtable + hash(sb, ino); 896 897 return ifind_fast(sb, head, ino); 898 } 899 900 EXPORT_SYMBOL(ilookup); 901 902 /** 903 * iget5_locked - obtain an inode from a mounted file system 904 * @sb: super block of file system 905 * @hashval: hash value (usually inode number) to get 906 * @test: callback used for comparisons between inodes 907 * @set: callback used to initialize a new struct inode 908 * @data: opaque data pointer to pass to @test and @set 909 * 910 * This is iget() without the read_inode() portion of get_new_inode(). 911 * 912 * iget5_locked() uses ifind() to search for the inode specified by @hashval 913 * and @data in the inode cache and if present it is returned with an increased 914 * reference count. This is a generalized version of iget_locked() for file 915 * systems where the inode number is not sufficient for unique identification 916 * of an inode. 917 * 918 * If the inode is not in cache, get_new_inode() is called to allocate a new 919 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 920 * file system gets to fill it in before unlocking it via unlock_new_inode(). 921 * 922 * Note both @test and @set are called with the inode_lock held, so can't sleep. 923 */ 924 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 925 int (*test)(struct inode *, void *), 926 int (*set)(struct inode *, void *), void *data) 927 { 928 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 929 struct inode *inode; 930 931 inode = ifind(sb, head, test, data, 1); 932 if (inode) 933 return inode; 934 /* 935 * get_new_inode() will do the right thing, re-trying the search 936 * in case it had to block at any point. 937 */ 938 return get_new_inode(sb, head, test, set, data); 939 } 940 941 EXPORT_SYMBOL(iget5_locked); 942 943 /** 944 * iget_locked - obtain an inode from a mounted file system 945 * @sb: super block of file system 946 * @ino: inode number to get 947 * 948 * This is iget() without the read_inode() portion of get_new_inode_fast(). 949 * 950 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 951 * the inode cache and if present it is returned with an increased reference 952 * count. This is for file systems where the inode number is sufficient for 953 * unique identification of an inode. 954 * 955 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 956 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 957 * The file system gets to fill it in before unlocking it via 958 * unlock_new_inode(). 959 */ 960 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 961 { 962 struct hlist_head *head = inode_hashtable + hash(sb, ino); 963 struct inode *inode; 964 965 inode = ifind_fast(sb, head, ino); 966 if (inode) 967 return inode; 968 /* 969 * get_new_inode_fast() will do the right thing, re-trying the search 970 * in case it had to block at any point. 971 */ 972 return get_new_inode_fast(sb, head, ino); 973 } 974 975 EXPORT_SYMBOL(iget_locked); 976 977 /** 978 * __insert_inode_hash - hash an inode 979 * @inode: unhashed inode 980 * @hashval: unsigned long value used to locate this object in the 981 * inode_hashtable. 982 * 983 * Add an inode to the inode hash for this superblock. 984 */ 985 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 986 { 987 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 988 spin_lock(&inode_lock); 989 hlist_add_head(&inode->i_hash, head); 990 spin_unlock(&inode_lock); 991 } 992 993 EXPORT_SYMBOL(__insert_inode_hash); 994 995 /** 996 * remove_inode_hash - remove an inode from the hash 997 * @inode: inode to unhash 998 * 999 * Remove an inode from the superblock. 1000 */ 1001 void remove_inode_hash(struct inode *inode) 1002 { 1003 spin_lock(&inode_lock); 1004 hlist_del_init(&inode->i_hash); 1005 spin_unlock(&inode_lock); 1006 } 1007 1008 EXPORT_SYMBOL(remove_inode_hash); 1009 1010 /* 1011 * Tell the filesystem that this inode is no longer of any interest and should 1012 * be completely destroyed. 1013 * 1014 * We leave the inode in the inode hash table until *after* the filesystem's 1015 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1016 * instigate) will always find up-to-date information either in the hash or on 1017 * disk. 1018 * 1019 * I_FREEING is set so that no-one will take a new reference to the inode while 1020 * it is being deleted. 1021 */ 1022 void generic_delete_inode(struct inode *inode) 1023 { 1024 struct super_operations *op = inode->i_sb->s_op; 1025 1026 list_del_init(&inode->i_list); 1027 list_del_init(&inode->i_sb_list); 1028 inode->i_state|=I_FREEING; 1029 inodes_stat.nr_inodes--; 1030 spin_unlock(&inode_lock); 1031 1032 security_inode_delete(inode); 1033 1034 if (op->delete_inode) { 1035 void (*delete)(struct inode *) = op->delete_inode; 1036 if (!is_bad_inode(inode)) 1037 DQUOT_INIT(inode); 1038 /* Filesystems implementing their own 1039 * s_op->delete_inode are required to call 1040 * truncate_inode_pages and clear_inode() 1041 * internally */ 1042 delete(inode); 1043 } else { 1044 truncate_inode_pages(&inode->i_data, 0); 1045 clear_inode(inode); 1046 } 1047 spin_lock(&inode_lock); 1048 hlist_del_init(&inode->i_hash); 1049 spin_unlock(&inode_lock); 1050 wake_up_inode(inode); 1051 BUG_ON(inode->i_state != I_CLEAR); 1052 destroy_inode(inode); 1053 } 1054 1055 EXPORT_SYMBOL(generic_delete_inode); 1056 1057 static void generic_forget_inode(struct inode *inode) 1058 { 1059 struct super_block *sb = inode->i_sb; 1060 1061 if (!hlist_unhashed(&inode->i_hash)) { 1062 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 1063 list_move(&inode->i_list, &inode_unused); 1064 inodes_stat.nr_unused++; 1065 if (!sb || (sb->s_flags & MS_ACTIVE)) { 1066 spin_unlock(&inode_lock); 1067 return; 1068 } 1069 inode->i_state |= I_WILL_FREE; 1070 spin_unlock(&inode_lock); 1071 write_inode_now(inode, 1); 1072 spin_lock(&inode_lock); 1073 inode->i_state &= ~I_WILL_FREE; 1074 inodes_stat.nr_unused--; 1075 hlist_del_init(&inode->i_hash); 1076 } 1077 list_del_init(&inode->i_list); 1078 list_del_init(&inode->i_sb_list); 1079 inode->i_state |= I_FREEING; 1080 inodes_stat.nr_inodes--; 1081 spin_unlock(&inode_lock); 1082 if (inode->i_data.nrpages) 1083 truncate_inode_pages(&inode->i_data, 0); 1084 clear_inode(inode); 1085 wake_up_inode(inode); 1086 destroy_inode(inode); 1087 } 1088 1089 /* 1090 * Normal UNIX filesystem behaviour: delete the 1091 * inode when the usage count drops to zero, and 1092 * i_nlink is zero. 1093 */ 1094 void generic_drop_inode(struct inode *inode) 1095 { 1096 if (!inode->i_nlink) 1097 generic_delete_inode(inode); 1098 else 1099 generic_forget_inode(inode); 1100 } 1101 1102 EXPORT_SYMBOL_GPL(generic_drop_inode); 1103 1104 /* 1105 * Called when we're dropping the last reference 1106 * to an inode. 1107 * 1108 * Call the FS "drop()" function, defaulting to 1109 * the legacy UNIX filesystem behaviour.. 1110 * 1111 * NOTE! NOTE! NOTE! We're called with the inode lock 1112 * held, and the drop function is supposed to release 1113 * the lock! 1114 */ 1115 static inline void iput_final(struct inode *inode) 1116 { 1117 struct super_operations *op = inode->i_sb->s_op; 1118 void (*drop)(struct inode *) = generic_drop_inode; 1119 1120 if (op && op->drop_inode) 1121 drop = op->drop_inode; 1122 drop(inode); 1123 } 1124 1125 /** 1126 * iput - put an inode 1127 * @inode: inode to put 1128 * 1129 * Puts an inode, dropping its usage count. If the inode use count hits 1130 * zero, the inode is then freed and may also be destroyed. 1131 * 1132 * Consequently, iput() can sleep. 1133 */ 1134 void iput(struct inode *inode) 1135 { 1136 if (inode) { 1137 struct super_operations *op = inode->i_sb->s_op; 1138 1139 BUG_ON(inode->i_state == I_CLEAR); 1140 1141 if (op && op->put_inode) 1142 op->put_inode(inode); 1143 1144 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1145 iput_final(inode); 1146 } 1147 } 1148 1149 EXPORT_SYMBOL(iput); 1150 1151 /** 1152 * bmap - find a block number in a file 1153 * @inode: inode of file 1154 * @block: block to find 1155 * 1156 * Returns the block number on the device holding the inode that 1157 * is the disk block number for the block of the file requested. 1158 * That is, asked for block 4 of inode 1 the function will return the 1159 * disk block relative to the disk start that holds that block of the 1160 * file. 1161 */ 1162 sector_t bmap(struct inode * inode, sector_t block) 1163 { 1164 sector_t res = 0; 1165 if (inode->i_mapping->a_ops->bmap) 1166 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1167 return res; 1168 } 1169 1170 EXPORT_SYMBOL(bmap); 1171 1172 /** 1173 * touch_atime - update the access time 1174 * @mnt: mount the inode is accessed on 1175 * @dentry: dentry accessed 1176 * 1177 * Update the accessed time on an inode and mark it for writeback. 1178 * This function automatically handles read only file systems and media, 1179 * as well as the "noatime" flag and inode specific "noatime" markers. 1180 */ 1181 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1182 { 1183 struct inode *inode = dentry->d_inode; 1184 struct timespec now; 1185 1186 if (IS_RDONLY(inode)) 1187 return; 1188 1189 if ((inode->i_flags & S_NOATIME) || 1190 (inode->i_sb->s_flags & MS_NOATIME) || 1191 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 1192 return; 1193 1194 /* 1195 * We may have a NULL vfsmount when coming from NFSD 1196 */ 1197 if (mnt && 1198 ((mnt->mnt_flags & MNT_NOATIME) || 1199 ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))) 1200 return; 1201 1202 now = current_fs_time(inode->i_sb); 1203 if (!timespec_equal(&inode->i_atime, &now)) { 1204 inode->i_atime = now; 1205 mark_inode_dirty_sync(inode); 1206 } 1207 } 1208 1209 EXPORT_SYMBOL(touch_atime); 1210 1211 /** 1212 * file_update_time - update mtime and ctime time 1213 * @file: file accessed 1214 * 1215 * Update the mtime and ctime members of an inode and mark the inode 1216 * for writeback. Note that this function is meant exclusively for 1217 * usage in the file write path of filesystems, and filesystems may 1218 * choose to explicitly ignore update via this function with the 1219 * S_NOCTIME inode flag, e.g. for network filesystem where these 1220 * timestamps are handled by the server. 1221 */ 1222 1223 void file_update_time(struct file *file) 1224 { 1225 struct inode *inode = file->f_dentry->d_inode; 1226 struct timespec now; 1227 int sync_it = 0; 1228 1229 if (IS_NOCMTIME(inode)) 1230 return; 1231 if (IS_RDONLY(inode)) 1232 return; 1233 1234 now = current_fs_time(inode->i_sb); 1235 if (!timespec_equal(&inode->i_mtime, &now)) 1236 sync_it = 1; 1237 inode->i_mtime = now; 1238 1239 if (!timespec_equal(&inode->i_ctime, &now)) 1240 sync_it = 1; 1241 inode->i_ctime = now; 1242 1243 if (sync_it) 1244 mark_inode_dirty_sync(inode); 1245 } 1246 1247 EXPORT_SYMBOL(file_update_time); 1248 1249 int inode_needs_sync(struct inode *inode) 1250 { 1251 if (IS_SYNC(inode)) 1252 return 1; 1253 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1254 return 1; 1255 return 0; 1256 } 1257 1258 EXPORT_SYMBOL(inode_needs_sync); 1259 1260 /* 1261 * Quota functions that want to walk the inode lists.. 1262 */ 1263 #ifdef CONFIG_QUOTA 1264 1265 /* Function back in dquot.c */ 1266 int remove_inode_dquot_ref(struct inode *, int, struct list_head *); 1267 1268 void remove_dquot_ref(struct super_block *sb, int type, 1269 struct list_head *tofree_head) 1270 { 1271 struct inode *inode; 1272 1273 if (!sb->dq_op) 1274 return; /* nothing to do */ 1275 spin_lock(&inode_lock); /* This lock is for inodes code */ 1276 1277 /* 1278 * We don't have to lock against quota code - test IS_QUOTAINIT is 1279 * just for speedup... 1280 */ 1281 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) 1282 if (!IS_NOQUOTA(inode)) 1283 remove_inode_dquot_ref(inode, type, tofree_head); 1284 1285 spin_unlock(&inode_lock); 1286 } 1287 1288 #endif 1289 1290 int inode_wait(void *word) 1291 { 1292 schedule(); 1293 return 0; 1294 } 1295 1296 /* 1297 * If we try to find an inode in the inode hash while it is being 1298 * deleted, we have to wait until the filesystem completes its 1299 * deletion before reporting that it isn't found. This function waits 1300 * until the deletion _might_ have completed. Callers are responsible 1301 * to recheck inode state. 1302 * 1303 * It doesn't matter if I_LOCK is not set initially, a call to 1304 * wake_up_inode() after removing from the hash list will DTRT. 1305 * 1306 * This is called with inode_lock held. 1307 */ 1308 static void __wait_on_freeing_inode(struct inode *inode) 1309 { 1310 wait_queue_head_t *wq; 1311 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1312 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1313 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1314 spin_unlock(&inode_lock); 1315 schedule(); 1316 finish_wait(wq, &wait.wait); 1317 spin_lock(&inode_lock); 1318 } 1319 1320 void wake_up_inode(struct inode *inode) 1321 { 1322 /* 1323 * Prevent speculative execution through spin_unlock(&inode_lock); 1324 */ 1325 smp_mb(); 1326 wake_up_bit(&inode->i_state, __I_LOCK); 1327 } 1328 1329 static __initdata unsigned long ihash_entries; 1330 static int __init set_ihash_entries(char *str) 1331 { 1332 if (!str) 1333 return 0; 1334 ihash_entries = simple_strtoul(str, &str, 0); 1335 return 1; 1336 } 1337 __setup("ihash_entries=", set_ihash_entries); 1338 1339 /* 1340 * Initialize the waitqueues and inode hash table. 1341 */ 1342 void __init inode_init_early(void) 1343 { 1344 int loop; 1345 1346 /* If hashes are distributed across NUMA nodes, defer 1347 * hash allocation until vmalloc space is available. 1348 */ 1349 if (hashdist) 1350 return; 1351 1352 inode_hashtable = 1353 alloc_large_system_hash("Inode-cache", 1354 sizeof(struct hlist_head), 1355 ihash_entries, 1356 14, 1357 HASH_EARLY, 1358 &i_hash_shift, 1359 &i_hash_mask, 1360 0); 1361 1362 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1363 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1364 } 1365 1366 void __init inode_init(unsigned long mempages) 1367 { 1368 int loop; 1369 1370 /* inode slab cache */ 1371 inode_cachep = kmem_cache_create("inode_cache", 1372 sizeof(struct inode), 1373 0, 1374 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1375 SLAB_MEM_SPREAD), 1376 init_once, 1377 NULL); 1378 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory); 1379 1380 /* Hash may have been set up in inode_init_early */ 1381 if (!hashdist) 1382 return; 1383 1384 inode_hashtable = 1385 alloc_large_system_hash("Inode-cache", 1386 sizeof(struct hlist_head), 1387 ihash_entries, 1388 14, 1389 0, 1390 &i_hash_shift, 1391 &i_hash_mask, 1392 0); 1393 1394 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1395 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1396 } 1397 1398 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1399 { 1400 inode->i_mode = mode; 1401 if (S_ISCHR(mode)) { 1402 inode->i_fop = &def_chr_fops; 1403 inode->i_rdev = rdev; 1404 } else if (S_ISBLK(mode)) { 1405 inode->i_fop = &def_blk_fops; 1406 inode->i_rdev = rdev; 1407 } else if (S_ISFIFO(mode)) 1408 inode->i_fop = &def_fifo_fops; 1409 else if (S_ISSOCK(mode)) 1410 inode->i_fop = &bad_sock_fops; 1411 else 1412 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1413 mode); 1414 } 1415 EXPORT_SYMBOL(init_special_inode); 1416