1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __ro_after_init; 58 static unsigned int i_hash_shift __ro_after_init; 59 static struct hlist_head *inode_hashtable __ro_after_init; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __ro_after_init; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 }; 133 134 static int __init init_fs_inode_sysctls(void) 135 { 136 register_sysctl_init("fs", inodes_sysctls); 137 return 0; 138 } 139 early_initcall(init_fs_inode_sysctls); 140 #endif 141 142 static int no_open(struct inode *inode, struct file *file) 143 { 144 return -ENXIO; 145 } 146 147 /** 148 * inode_init_always - perform inode structure initialisation 149 * @sb: superblock inode belongs to 150 * @inode: inode to initialise 151 * 152 * These are initializations that need to be done on every inode 153 * allocation as the fields are not initialised by slab allocation. 154 */ 155 int inode_init_always(struct super_block *sb, struct inode *inode) 156 { 157 static const struct inode_operations empty_iops; 158 static const struct file_operations no_open_fops = {.open = no_open}; 159 struct address_space *const mapping = &inode->i_data; 160 161 inode->i_sb = sb; 162 inode->i_blkbits = sb->s_blocksize_bits; 163 inode->i_flags = 0; 164 atomic64_set(&inode->i_sequence, 0); 165 atomic_set(&inode->i_count, 1); 166 inode->i_op = &empty_iops; 167 inode->i_fop = &no_open_fops; 168 inode->i_ino = 0; 169 inode->__i_nlink = 1; 170 inode->i_opflags = 0; 171 if (sb->s_xattr) 172 inode->i_opflags |= IOP_XATTR; 173 i_uid_write(inode, 0); 174 i_gid_write(inode, 0); 175 atomic_set(&inode->i_writecount, 0); 176 inode->i_size = 0; 177 inode->i_write_hint = WRITE_LIFE_NOT_SET; 178 inode->i_blocks = 0; 179 inode->i_bytes = 0; 180 inode->i_generation = 0; 181 inode->i_pipe = NULL; 182 inode->i_cdev = NULL; 183 inode->i_link = NULL; 184 inode->i_dir_seq = 0; 185 inode->i_rdev = 0; 186 inode->dirtied_when = 0; 187 188 #ifdef CONFIG_CGROUP_WRITEBACK 189 inode->i_wb_frn_winner = 0; 190 inode->i_wb_frn_avg_time = 0; 191 inode->i_wb_frn_history = 0; 192 #endif 193 194 spin_lock_init(&inode->i_lock); 195 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 196 197 init_rwsem(&inode->i_rwsem); 198 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 199 200 atomic_set(&inode->i_dio_count, 0); 201 202 mapping->a_ops = &empty_aops; 203 mapping->host = inode; 204 mapping->flags = 0; 205 mapping->wb_err = 0; 206 atomic_set(&mapping->i_mmap_writable, 0); 207 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 208 atomic_set(&mapping->nr_thps, 0); 209 #endif 210 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 211 mapping->i_private_data = NULL; 212 mapping->writeback_index = 0; 213 init_rwsem(&mapping->invalidate_lock); 214 lockdep_set_class_and_name(&mapping->invalidate_lock, 215 &sb->s_type->invalidate_lock_key, 216 "mapping.invalidate_lock"); 217 if (sb->s_iflags & SB_I_STABLE_WRITES) 218 mapping_set_stable_writes(mapping); 219 inode->i_private = NULL; 220 inode->i_mapping = mapping; 221 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 222 #ifdef CONFIG_FS_POSIX_ACL 223 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 224 #endif 225 226 #ifdef CONFIG_FSNOTIFY 227 inode->i_fsnotify_mask = 0; 228 #endif 229 inode->i_flctx = NULL; 230 231 if (unlikely(security_inode_alloc(inode))) 232 return -ENOMEM; 233 this_cpu_inc(nr_inodes); 234 235 return 0; 236 } 237 EXPORT_SYMBOL(inode_init_always); 238 239 void free_inode_nonrcu(struct inode *inode) 240 { 241 kmem_cache_free(inode_cachep, inode); 242 } 243 EXPORT_SYMBOL(free_inode_nonrcu); 244 245 static void i_callback(struct rcu_head *head) 246 { 247 struct inode *inode = container_of(head, struct inode, i_rcu); 248 if (inode->free_inode) 249 inode->free_inode(inode); 250 else 251 free_inode_nonrcu(inode); 252 } 253 254 static struct inode *alloc_inode(struct super_block *sb) 255 { 256 const struct super_operations *ops = sb->s_op; 257 struct inode *inode; 258 259 if (ops->alloc_inode) 260 inode = ops->alloc_inode(sb); 261 else 262 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 263 264 if (!inode) 265 return NULL; 266 267 if (unlikely(inode_init_always(sb, inode))) { 268 if (ops->destroy_inode) { 269 ops->destroy_inode(inode); 270 if (!ops->free_inode) 271 return NULL; 272 } 273 inode->free_inode = ops->free_inode; 274 i_callback(&inode->i_rcu); 275 return NULL; 276 } 277 278 return inode; 279 } 280 281 void __destroy_inode(struct inode *inode) 282 { 283 BUG_ON(inode_has_buffers(inode)); 284 inode_detach_wb(inode); 285 security_inode_free(inode); 286 fsnotify_inode_delete(inode); 287 locks_free_lock_context(inode); 288 if (!inode->i_nlink) { 289 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 290 atomic_long_dec(&inode->i_sb->s_remove_count); 291 } 292 293 #ifdef CONFIG_FS_POSIX_ACL 294 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 295 posix_acl_release(inode->i_acl); 296 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 297 posix_acl_release(inode->i_default_acl); 298 #endif 299 this_cpu_dec(nr_inodes); 300 } 301 EXPORT_SYMBOL(__destroy_inode); 302 303 static void destroy_inode(struct inode *inode) 304 { 305 const struct super_operations *ops = inode->i_sb->s_op; 306 307 BUG_ON(!list_empty(&inode->i_lru)); 308 __destroy_inode(inode); 309 if (ops->destroy_inode) { 310 ops->destroy_inode(inode); 311 if (!ops->free_inode) 312 return; 313 } 314 inode->free_inode = ops->free_inode; 315 call_rcu(&inode->i_rcu, i_callback); 316 } 317 318 /** 319 * drop_nlink - directly drop an inode's link count 320 * @inode: inode 321 * 322 * This is a low-level filesystem helper to replace any 323 * direct filesystem manipulation of i_nlink. In cases 324 * where we are attempting to track writes to the 325 * filesystem, a decrement to zero means an imminent 326 * write when the file is truncated and actually unlinked 327 * on the filesystem. 328 */ 329 void drop_nlink(struct inode *inode) 330 { 331 WARN_ON(inode->i_nlink == 0); 332 inode->__i_nlink--; 333 if (!inode->i_nlink) 334 atomic_long_inc(&inode->i_sb->s_remove_count); 335 } 336 EXPORT_SYMBOL(drop_nlink); 337 338 /** 339 * clear_nlink - directly zero an inode's link count 340 * @inode: inode 341 * 342 * This is a low-level filesystem helper to replace any 343 * direct filesystem manipulation of i_nlink. See 344 * drop_nlink() for why we care about i_nlink hitting zero. 345 */ 346 void clear_nlink(struct inode *inode) 347 { 348 if (inode->i_nlink) { 349 inode->__i_nlink = 0; 350 atomic_long_inc(&inode->i_sb->s_remove_count); 351 } 352 } 353 EXPORT_SYMBOL(clear_nlink); 354 355 /** 356 * set_nlink - directly set an inode's link count 357 * @inode: inode 358 * @nlink: new nlink (should be non-zero) 359 * 360 * This is a low-level filesystem helper to replace any 361 * direct filesystem manipulation of i_nlink. 362 */ 363 void set_nlink(struct inode *inode, unsigned int nlink) 364 { 365 if (!nlink) { 366 clear_nlink(inode); 367 } else { 368 /* Yes, some filesystems do change nlink from zero to one */ 369 if (inode->i_nlink == 0) 370 atomic_long_dec(&inode->i_sb->s_remove_count); 371 372 inode->__i_nlink = nlink; 373 } 374 } 375 EXPORT_SYMBOL(set_nlink); 376 377 /** 378 * inc_nlink - directly increment an inode's link count 379 * @inode: inode 380 * 381 * This is a low-level filesystem helper to replace any 382 * direct filesystem manipulation of i_nlink. Currently, 383 * it is only here for parity with dec_nlink(). 384 */ 385 void inc_nlink(struct inode *inode) 386 { 387 if (unlikely(inode->i_nlink == 0)) { 388 WARN_ON(!(inode->i_state & I_LINKABLE)); 389 atomic_long_dec(&inode->i_sb->s_remove_count); 390 } 391 392 inode->__i_nlink++; 393 } 394 EXPORT_SYMBOL(inc_nlink); 395 396 static void __address_space_init_once(struct address_space *mapping) 397 { 398 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 399 init_rwsem(&mapping->i_mmap_rwsem); 400 INIT_LIST_HEAD(&mapping->i_private_list); 401 spin_lock_init(&mapping->i_private_lock); 402 mapping->i_mmap = RB_ROOT_CACHED; 403 } 404 405 void address_space_init_once(struct address_space *mapping) 406 { 407 memset(mapping, 0, sizeof(*mapping)); 408 __address_space_init_once(mapping); 409 } 410 EXPORT_SYMBOL(address_space_init_once); 411 412 /* 413 * These are initializations that only need to be done 414 * once, because the fields are idempotent across use 415 * of the inode, so let the slab aware of that. 416 */ 417 void inode_init_once(struct inode *inode) 418 { 419 memset(inode, 0, sizeof(*inode)); 420 INIT_HLIST_NODE(&inode->i_hash); 421 INIT_LIST_HEAD(&inode->i_devices); 422 INIT_LIST_HEAD(&inode->i_io_list); 423 INIT_LIST_HEAD(&inode->i_wb_list); 424 INIT_LIST_HEAD(&inode->i_lru); 425 INIT_LIST_HEAD(&inode->i_sb_list); 426 __address_space_init_once(&inode->i_data); 427 i_size_ordered_init(inode); 428 } 429 EXPORT_SYMBOL(inode_init_once); 430 431 static void init_once(void *foo) 432 { 433 struct inode *inode = (struct inode *) foo; 434 435 inode_init_once(inode); 436 } 437 438 /* 439 * inode->i_lock must be held 440 */ 441 void __iget(struct inode *inode) 442 { 443 atomic_inc(&inode->i_count); 444 } 445 446 /* 447 * get additional reference to inode; caller must already hold one. 448 */ 449 void ihold(struct inode *inode) 450 { 451 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 452 } 453 EXPORT_SYMBOL(ihold); 454 455 static void __inode_add_lru(struct inode *inode, bool rotate) 456 { 457 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 458 return; 459 if (atomic_read(&inode->i_count)) 460 return; 461 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 462 return; 463 if (!mapping_shrinkable(&inode->i_data)) 464 return; 465 466 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 467 this_cpu_inc(nr_unused); 468 else if (rotate) 469 inode->i_state |= I_REFERENCED; 470 } 471 472 /* 473 * Add inode to LRU if needed (inode is unused and clean). 474 * 475 * Needs inode->i_lock held. 476 */ 477 void inode_add_lru(struct inode *inode) 478 { 479 __inode_add_lru(inode, false); 480 } 481 482 static void inode_lru_list_del(struct inode *inode) 483 { 484 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 485 this_cpu_dec(nr_unused); 486 } 487 488 /** 489 * inode_sb_list_add - add inode to the superblock list of inodes 490 * @inode: inode to add 491 */ 492 void inode_sb_list_add(struct inode *inode) 493 { 494 spin_lock(&inode->i_sb->s_inode_list_lock); 495 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 496 spin_unlock(&inode->i_sb->s_inode_list_lock); 497 } 498 EXPORT_SYMBOL_GPL(inode_sb_list_add); 499 500 static inline void inode_sb_list_del(struct inode *inode) 501 { 502 if (!list_empty(&inode->i_sb_list)) { 503 spin_lock(&inode->i_sb->s_inode_list_lock); 504 list_del_init(&inode->i_sb_list); 505 spin_unlock(&inode->i_sb->s_inode_list_lock); 506 } 507 } 508 509 static unsigned long hash(struct super_block *sb, unsigned long hashval) 510 { 511 unsigned long tmp; 512 513 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 514 L1_CACHE_BYTES; 515 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 516 return tmp & i_hash_mask; 517 } 518 519 /** 520 * __insert_inode_hash - hash an inode 521 * @inode: unhashed inode 522 * @hashval: unsigned long value used to locate this object in the 523 * inode_hashtable. 524 * 525 * Add an inode to the inode hash for this superblock. 526 */ 527 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 528 { 529 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 530 531 spin_lock(&inode_hash_lock); 532 spin_lock(&inode->i_lock); 533 hlist_add_head_rcu(&inode->i_hash, b); 534 spin_unlock(&inode->i_lock); 535 spin_unlock(&inode_hash_lock); 536 } 537 EXPORT_SYMBOL(__insert_inode_hash); 538 539 /** 540 * __remove_inode_hash - remove an inode from the hash 541 * @inode: inode to unhash 542 * 543 * Remove an inode from the superblock. 544 */ 545 void __remove_inode_hash(struct inode *inode) 546 { 547 spin_lock(&inode_hash_lock); 548 spin_lock(&inode->i_lock); 549 hlist_del_init_rcu(&inode->i_hash); 550 spin_unlock(&inode->i_lock); 551 spin_unlock(&inode_hash_lock); 552 } 553 EXPORT_SYMBOL(__remove_inode_hash); 554 555 void dump_mapping(const struct address_space *mapping) 556 { 557 struct inode *host; 558 const struct address_space_operations *a_ops; 559 struct hlist_node *dentry_first; 560 struct dentry *dentry_ptr; 561 struct dentry dentry; 562 unsigned long ino; 563 564 /* 565 * If mapping is an invalid pointer, we don't want to crash 566 * accessing it, so probe everything depending on it carefully. 567 */ 568 if (get_kernel_nofault(host, &mapping->host) || 569 get_kernel_nofault(a_ops, &mapping->a_ops)) { 570 pr_warn("invalid mapping:%px\n", mapping); 571 return; 572 } 573 574 if (!host) { 575 pr_warn("aops:%ps\n", a_ops); 576 return; 577 } 578 579 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 580 get_kernel_nofault(ino, &host->i_ino)) { 581 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 582 return; 583 } 584 585 if (!dentry_first) { 586 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 587 return; 588 } 589 590 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 591 if (get_kernel_nofault(dentry, dentry_ptr) || 592 !dentry.d_parent || !dentry.d_name.name) { 593 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 594 a_ops, ino, dentry_ptr); 595 return; 596 } 597 598 /* 599 * if dentry is corrupted, the %pd handler may still crash, 600 * but it's unlikely that we reach here with a corrupt mapping 601 */ 602 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 603 } 604 605 void clear_inode(struct inode *inode) 606 { 607 /* 608 * We have to cycle the i_pages lock here because reclaim can be in the 609 * process of removing the last page (in __filemap_remove_folio()) 610 * and we must not free the mapping under it. 611 */ 612 xa_lock_irq(&inode->i_data.i_pages); 613 BUG_ON(inode->i_data.nrpages); 614 /* 615 * Almost always, mapping_empty(&inode->i_data) here; but there are 616 * two known and long-standing ways in which nodes may get left behind 617 * (when deep radix-tree node allocation failed partway; or when THP 618 * collapse_file() failed). Until those two known cases are cleaned up, 619 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 620 * nor even WARN_ON(!mapping_empty). 621 */ 622 xa_unlock_irq(&inode->i_data.i_pages); 623 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 624 BUG_ON(!(inode->i_state & I_FREEING)); 625 BUG_ON(inode->i_state & I_CLEAR); 626 BUG_ON(!list_empty(&inode->i_wb_list)); 627 /* don't need i_lock here, no concurrent mods to i_state */ 628 inode->i_state = I_FREEING | I_CLEAR; 629 } 630 EXPORT_SYMBOL(clear_inode); 631 632 /* 633 * Free the inode passed in, removing it from the lists it is still connected 634 * to. We remove any pages still attached to the inode and wait for any IO that 635 * is still in progress before finally destroying the inode. 636 * 637 * An inode must already be marked I_FREEING so that we avoid the inode being 638 * moved back onto lists if we race with other code that manipulates the lists 639 * (e.g. writeback_single_inode). The caller is responsible for setting this. 640 * 641 * An inode must already be removed from the LRU list before being evicted from 642 * the cache. This should occur atomically with setting the I_FREEING state 643 * flag, so no inodes here should ever be on the LRU when being evicted. 644 */ 645 static void evict(struct inode *inode) 646 { 647 const struct super_operations *op = inode->i_sb->s_op; 648 649 BUG_ON(!(inode->i_state & I_FREEING)); 650 BUG_ON(!list_empty(&inode->i_lru)); 651 652 if (!list_empty(&inode->i_io_list)) 653 inode_io_list_del(inode); 654 655 inode_sb_list_del(inode); 656 657 /* 658 * Wait for flusher thread to be done with the inode so that filesystem 659 * does not start destroying it while writeback is still running. Since 660 * the inode has I_FREEING set, flusher thread won't start new work on 661 * the inode. We just have to wait for running writeback to finish. 662 */ 663 inode_wait_for_writeback(inode); 664 665 if (op->evict_inode) { 666 op->evict_inode(inode); 667 } else { 668 truncate_inode_pages_final(&inode->i_data); 669 clear_inode(inode); 670 } 671 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 672 cd_forget(inode); 673 674 remove_inode_hash(inode); 675 676 spin_lock(&inode->i_lock); 677 wake_up_bit(&inode->i_state, __I_NEW); 678 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 679 spin_unlock(&inode->i_lock); 680 681 destroy_inode(inode); 682 } 683 684 /* 685 * dispose_list - dispose of the contents of a local list 686 * @head: the head of the list to free 687 * 688 * Dispose-list gets a local list with local inodes in it, so it doesn't 689 * need to worry about list corruption and SMP locks. 690 */ 691 static void dispose_list(struct list_head *head) 692 { 693 while (!list_empty(head)) { 694 struct inode *inode; 695 696 inode = list_first_entry(head, struct inode, i_lru); 697 list_del_init(&inode->i_lru); 698 699 evict(inode); 700 cond_resched(); 701 } 702 } 703 704 /** 705 * evict_inodes - evict all evictable inodes for a superblock 706 * @sb: superblock to operate on 707 * 708 * Make sure that no inodes with zero refcount are retained. This is 709 * called by superblock shutdown after having SB_ACTIVE flag removed, 710 * so any inode reaching zero refcount during or after that call will 711 * be immediately evicted. 712 */ 713 void evict_inodes(struct super_block *sb) 714 { 715 struct inode *inode, *next; 716 LIST_HEAD(dispose); 717 718 again: 719 spin_lock(&sb->s_inode_list_lock); 720 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 721 if (atomic_read(&inode->i_count)) 722 continue; 723 724 spin_lock(&inode->i_lock); 725 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 726 spin_unlock(&inode->i_lock); 727 continue; 728 } 729 730 inode->i_state |= I_FREEING; 731 inode_lru_list_del(inode); 732 spin_unlock(&inode->i_lock); 733 list_add(&inode->i_lru, &dispose); 734 735 /* 736 * We can have a ton of inodes to evict at unmount time given 737 * enough memory, check to see if we need to go to sleep for a 738 * bit so we don't livelock. 739 */ 740 if (need_resched()) { 741 spin_unlock(&sb->s_inode_list_lock); 742 cond_resched(); 743 dispose_list(&dispose); 744 goto again; 745 } 746 } 747 spin_unlock(&sb->s_inode_list_lock); 748 749 dispose_list(&dispose); 750 } 751 EXPORT_SYMBOL_GPL(evict_inodes); 752 753 /** 754 * invalidate_inodes - attempt to free all inodes on a superblock 755 * @sb: superblock to operate on 756 * 757 * Attempts to free all inodes (including dirty inodes) for a given superblock. 758 */ 759 void invalidate_inodes(struct super_block *sb) 760 { 761 struct inode *inode, *next; 762 LIST_HEAD(dispose); 763 764 again: 765 spin_lock(&sb->s_inode_list_lock); 766 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 767 spin_lock(&inode->i_lock); 768 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 769 spin_unlock(&inode->i_lock); 770 continue; 771 } 772 if (atomic_read(&inode->i_count)) { 773 spin_unlock(&inode->i_lock); 774 continue; 775 } 776 777 inode->i_state |= I_FREEING; 778 inode_lru_list_del(inode); 779 spin_unlock(&inode->i_lock); 780 list_add(&inode->i_lru, &dispose); 781 if (need_resched()) { 782 spin_unlock(&sb->s_inode_list_lock); 783 cond_resched(); 784 dispose_list(&dispose); 785 goto again; 786 } 787 } 788 spin_unlock(&sb->s_inode_list_lock); 789 790 dispose_list(&dispose); 791 } 792 793 /* 794 * Isolate the inode from the LRU in preparation for freeing it. 795 * 796 * If the inode has the I_REFERENCED flag set, then it means that it has been 797 * used recently - the flag is set in iput_final(). When we encounter such an 798 * inode, clear the flag and move it to the back of the LRU so it gets another 799 * pass through the LRU before it gets reclaimed. This is necessary because of 800 * the fact we are doing lazy LRU updates to minimise lock contention so the 801 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 802 * with this flag set because they are the inodes that are out of order. 803 */ 804 static enum lru_status inode_lru_isolate(struct list_head *item, 805 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 806 { 807 struct list_head *freeable = arg; 808 struct inode *inode = container_of(item, struct inode, i_lru); 809 810 /* 811 * We are inverting the lru lock/inode->i_lock here, so use a 812 * trylock. If we fail to get the lock, just skip it. 813 */ 814 if (!spin_trylock(&inode->i_lock)) 815 return LRU_SKIP; 816 817 /* 818 * Inodes can get referenced, redirtied, or repopulated while 819 * they're already on the LRU, and this can make them 820 * unreclaimable for a while. Remove them lazily here; iput, 821 * sync, or the last page cache deletion will requeue them. 822 */ 823 if (atomic_read(&inode->i_count) || 824 (inode->i_state & ~I_REFERENCED) || 825 !mapping_shrinkable(&inode->i_data)) { 826 list_lru_isolate(lru, &inode->i_lru); 827 spin_unlock(&inode->i_lock); 828 this_cpu_dec(nr_unused); 829 return LRU_REMOVED; 830 } 831 832 /* Recently referenced inodes get one more pass */ 833 if (inode->i_state & I_REFERENCED) { 834 inode->i_state &= ~I_REFERENCED; 835 spin_unlock(&inode->i_lock); 836 return LRU_ROTATE; 837 } 838 839 /* 840 * On highmem systems, mapping_shrinkable() permits dropping 841 * page cache in order to free up struct inodes: lowmem might 842 * be under pressure before the cache inside the highmem zone. 843 */ 844 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 845 __iget(inode); 846 spin_unlock(&inode->i_lock); 847 spin_unlock(lru_lock); 848 if (remove_inode_buffers(inode)) { 849 unsigned long reap; 850 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 851 if (current_is_kswapd()) 852 __count_vm_events(KSWAPD_INODESTEAL, reap); 853 else 854 __count_vm_events(PGINODESTEAL, reap); 855 mm_account_reclaimed_pages(reap); 856 } 857 iput(inode); 858 spin_lock(lru_lock); 859 return LRU_RETRY; 860 } 861 862 WARN_ON(inode->i_state & I_NEW); 863 inode->i_state |= I_FREEING; 864 list_lru_isolate_move(lru, &inode->i_lru, freeable); 865 spin_unlock(&inode->i_lock); 866 867 this_cpu_dec(nr_unused); 868 return LRU_REMOVED; 869 } 870 871 /* 872 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 873 * This is called from the superblock shrinker function with a number of inodes 874 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 875 * then are freed outside inode_lock by dispose_list(). 876 */ 877 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 878 { 879 LIST_HEAD(freeable); 880 long freed; 881 882 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 883 inode_lru_isolate, &freeable); 884 dispose_list(&freeable); 885 return freed; 886 } 887 888 static void __wait_on_freeing_inode(struct inode *inode); 889 /* 890 * Called with the inode lock held. 891 */ 892 static struct inode *find_inode(struct super_block *sb, 893 struct hlist_head *head, 894 int (*test)(struct inode *, void *), 895 void *data) 896 { 897 struct inode *inode = NULL; 898 899 repeat: 900 hlist_for_each_entry(inode, head, i_hash) { 901 if (inode->i_sb != sb) 902 continue; 903 if (!test(inode, data)) 904 continue; 905 spin_lock(&inode->i_lock); 906 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 907 __wait_on_freeing_inode(inode); 908 goto repeat; 909 } 910 if (unlikely(inode->i_state & I_CREATING)) { 911 spin_unlock(&inode->i_lock); 912 return ERR_PTR(-ESTALE); 913 } 914 __iget(inode); 915 spin_unlock(&inode->i_lock); 916 return inode; 917 } 918 return NULL; 919 } 920 921 /* 922 * find_inode_fast is the fast path version of find_inode, see the comment at 923 * iget_locked for details. 924 */ 925 static struct inode *find_inode_fast(struct super_block *sb, 926 struct hlist_head *head, unsigned long ino) 927 { 928 struct inode *inode = NULL; 929 930 repeat: 931 hlist_for_each_entry(inode, head, i_hash) { 932 if (inode->i_ino != ino) 933 continue; 934 if (inode->i_sb != sb) 935 continue; 936 spin_lock(&inode->i_lock); 937 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 938 __wait_on_freeing_inode(inode); 939 goto repeat; 940 } 941 if (unlikely(inode->i_state & I_CREATING)) { 942 spin_unlock(&inode->i_lock); 943 return ERR_PTR(-ESTALE); 944 } 945 __iget(inode); 946 spin_unlock(&inode->i_lock); 947 return inode; 948 } 949 return NULL; 950 } 951 952 /* 953 * Each cpu owns a range of LAST_INO_BATCH numbers. 954 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 955 * to renew the exhausted range. 956 * 957 * This does not significantly increase overflow rate because every CPU can 958 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 959 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 960 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 961 * overflow rate by 2x, which does not seem too significant. 962 * 963 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 964 * error if st_ino won't fit in target struct field. Use 32bit counter 965 * here to attempt to avoid that. 966 */ 967 #define LAST_INO_BATCH 1024 968 static DEFINE_PER_CPU(unsigned int, last_ino); 969 970 unsigned int get_next_ino(void) 971 { 972 unsigned int *p = &get_cpu_var(last_ino); 973 unsigned int res = *p; 974 975 #ifdef CONFIG_SMP 976 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 977 static atomic_t shared_last_ino; 978 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 979 980 res = next - LAST_INO_BATCH; 981 } 982 #endif 983 984 res++; 985 /* get_next_ino should not provide a 0 inode number */ 986 if (unlikely(!res)) 987 res++; 988 *p = res; 989 put_cpu_var(last_ino); 990 return res; 991 } 992 EXPORT_SYMBOL(get_next_ino); 993 994 /** 995 * new_inode_pseudo - obtain an inode 996 * @sb: superblock 997 * 998 * Allocates a new inode for given superblock. 999 * Inode wont be chained in superblock s_inodes list 1000 * This means : 1001 * - fs can't be unmount 1002 * - quotas, fsnotify, writeback can't work 1003 */ 1004 struct inode *new_inode_pseudo(struct super_block *sb) 1005 { 1006 struct inode *inode = alloc_inode(sb); 1007 1008 if (inode) { 1009 spin_lock(&inode->i_lock); 1010 inode->i_state = 0; 1011 spin_unlock(&inode->i_lock); 1012 } 1013 return inode; 1014 } 1015 1016 /** 1017 * new_inode - obtain an inode 1018 * @sb: superblock 1019 * 1020 * Allocates a new inode for given superblock. The default gfp_mask 1021 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1022 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1023 * for the page cache are not reclaimable or migratable, 1024 * mapping_set_gfp_mask() must be called with suitable flags on the 1025 * newly created inode's mapping 1026 * 1027 */ 1028 struct inode *new_inode(struct super_block *sb) 1029 { 1030 struct inode *inode; 1031 1032 inode = new_inode_pseudo(sb); 1033 if (inode) 1034 inode_sb_list_add(inode); 1035 return inode; 1036 } 1037 EXPORT_SYMBOL(new_inode); 1038 1039 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1040 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1041 { 1042 if (S_ISDIR(inode->i_mode)) { 1043 struct file_system_type *type = inode->i_sb->s_type; 1044 1045 /* Set new key only if filesystem hasn't already changed it */ 1046 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1047 /* 1048 * ensure nobody is actually holding i_mutex 1049 */ 1050 // mutex_destroy(&inode->i_mutex); 1051 init_rwsem(&inode->i_rwsem); 1052 lockdep_set_class(&inode->i_rwsem, 1053 &type->i_mutex_dir_key); 1054 } 1055 } 1056 } 1057 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1058 #endif 1059 1060 /** 1061 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1062 * @inode: new inode to unlock 1063 * 1064 * Called when the inode is fully initialised to clear the new state of the 1065 * inode and wake up anyone waiting for the inode to finish initialisation. 1066 */ 1067 void unlock_new_inode(struct inode *inode) 1068 { 1069 lockdep_annotate_inode_mutex_key(inode); 1070 spin_lock(&inode->i_lock); 1071 WARN_ON(!(inode->i_state & I_NEW)); 1072 inode->i_state &= ~I_NEW & ~I_CREATING; 1073 smp_mb(); 1074 wake_up_bit(&inode->i_state, __I_NEW); 1075 spin_unlock(&inode->i_lock); 1076 } 1077 EXPORT_SYMBOL(unlock_new_inode); 1078 1079 void discard_new_inode(struct inode *inode) 1080 { 1081 lockdep_annotate_inode_mutex_key(inode); 1082 spin_lock(&inode->i_lock); 1083 WARN_ON(!(inode->i_state & I_NEW)); 1084 inode->i_state &= ~I_NEW; 1085 smp_mb(); 1086 wake_up_bit(&inode->i_state, __I_NEW); 1087 spin_unlock(&inode->i_lock); 1088 iput(inode); 1089 } 1090 EXPORT_SYMBOL(discard_new_inode); 1091 1092 /** 1093 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1094 * 1095 * Lock any non-NULL argument. Passed objects must not be directories. 1096 * Zero, one or two objects may be locked by this function. 1097 * 1098 * @inode1: first inode to lock 1099 * @inode2: second inode to lock 1100 */ 1101 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1102 { 1103 if (inode1) 1104 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1105 if (inode2) 1106 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1107 if (inode1 > inode2) 1108 swap(inode1, inode2); 1109 if (inode1) 1110 inode_lock(inode1); 1111 if (inode2 && inode2 != inode1) 1112 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1113 } 1114 EXPORT_SYMBOL(lock_two_nondirectories); 1115 1116 /** 1117 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1118 * @inode1: first inode to unlock 1119 * @inode2: second inode to unlock 1120 */ 1121 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1122 { 1123 if (inode1) { 1124 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1125 inode_unlock(inode1); 1126 } 1127 if (inode2 && inode2 != inode1) { 1128 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1129 inode_unlock(inode2); 1130 } 1131 } 1132 EXPORT_SYMBOL(unlock_two_nondirectories); 1133 1134 /** 1135 * inode_insert5 - obtain an inode from a mounted file system 1136 * @inode: pre-allocated inode to use for insert to cache 1137 * @hashval: hash value (usually inode number) to get 1138 * @test: callback used for comparisons between inodes 1139 * @set: callback used to initialize a new struct inode 1140 * @data: opaque data pointer to pass to @test and @set 1141 * 1142 * Search for the inode specified by @hashval and @data in the inode cache, 1143 * and if present it is return it with an increased reference count. This is 1144 * a variant of iget5_locked() for callers that don't want to fail on memory 1145 * allocation of inode. 1146 * 1147 * If the inode is not in cache, insert the pre-allocated inode to cache and 1148 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1149 * to fill it in before unlocking it via unlock_new_inode(). 1150 * 1151 * Note both @test and @set are called with the inode_hash_lock held, so can't 1152 * sleep. 1153 */ 1154 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1155 int (*test)(struct inode *, void *), 1156 int (*set)(struct inode *, void *), void *data) 1157 { 1158 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1159 struct inode *old; 1160 1161 again: 1162 spin_lock(&inode_hash_lock); 1163 old = find_inode(inode->i_sb, head, test, data); 1164 if (unlikely(old)) { 1165 /* 1166 * Uhhuh, somebody else created the same inode under us. 1167 * Use the old inode instead of the preallocated one. 1168 */ 1169 spin_unlock(&inode_hash_lock); 1170 if (IS_ERR(old)) 1171 return NULL; 1172 wait_on_inode(old); 1173 if (unlikely(inode_unhashed(old))) { 1174 iput(old); 1175 goto again; 1176 } 1177 return old; 1178 } 1179 1180 if (set && unlikely(set(inode, data))) { 1181 inode = NULL; 1182 goto unlock; 1183 } 1184 1185 /* 1186 * Return the locked inode with I_NEW set, the 1187 * caller is responsible for filling in the contents 1188 */ 1189 spin_lock(&inode->i_lock); 1190 inode->i_state |= I_NEW; 1191 hlist_add_head_rcu(&inode->i_hash, head); 1192 spin_unlock(&inode->i_lock); 1193 1194 /* 1195 * Add inode to the sb list if it's not already. It has I_NEW at this 1196 * point, so it should be safe to test i_sb_list locklessly. 1197 */ 1198 if (list_empty(&inode->i_sb_list)) 1199 inode_sb_list_add(inode); 1200 unlock: 1201 spin_unlock(&inode_hash_lock); 1202 1203 return inode; 1204 } 1205 EXPORT_SYMBOL(inode_insert5); 1206 1207 /** 1208 * iget5_locked - obtain an inode from a mounted file system 1209 * @sb: super block of file system 1210 * @hashval: hash value (usually inode number) to get 1211 * @test: callback used for comparisons between inodes 1212 * @set: callback used to initialize a new struct inode 1213 * @data: opaque data pointer to pass to @test and @set 1214 * 1215 * Search for the inode specified by @hashval and @data in the inode cache, 1216 * and if present it is return it with an increased reference count. This is 1217 * a generalized version of iget_locked() for file systems where the inode 1218 * number is not sufficient for unique identification of an inode. 1219 * 1220 * If the inode is not in cache, allocate a new inode and return it locked, 1221 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1222 * before unlocking it via unlock_new_inode(). 1223 * 1224 * Note both @test and @set are called with the inode_hash_lock held, so can't 1225 * sleep. 1226 */ 1227 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1228 int (*test)(struct inode *, void *), 1229 int (*set)(struct inode *, void *), void *data) 1230 { 1231 struct inode *inode = ilookup5(sb, hashval, test, data); 1232 1233 if (!inode) { 1234 struct inode *new = alloc_inode(sb); 1235 1236 if (new) { 1237 new->i_state = 0; 1238 inode = inode_insert5(new, hashval, test, set, data); 1239 if (unlikely(inode != new)) 1240 destroy_inode(new); 1241 } 1242 } 1243 return inode; 1244 } 1245 EXPORT_SYMBOL(iget5_locked); 1246 1247 /** 1248 * iget_locked - obtain an inode from a mounted file system 1249 * @sb: super block of file system 1250 * @ino: inode number to get 1251 * 1252 * Search for the inode specified by @ino in the inode cache and if present 1253 * return it with an increased reference count. This is for file systems 1254 * where the inode number is sufficient for unique identification of an inode. 1255 * 1256 * If the inode is not in cache, allocate a new inode and return it locked, 1257 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1258 * before unlocking it via unlock_new_inode(). 1259 */ 1260 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1261 { 1262 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1263 struct inode *inode; 1264 again: 1265 spin_lock(&inode_hash_lock); 1266 inode = find_inode_fast(sb, head, ino); 1267 spin_unlock(&inode_hash_lock); 1268 if (inode) { 1269 if (IS_ERR(inode)) 1270 return NULL; 1271 wait_on_inode(inode); 1272 if (unlikely(inode_unhashed(inode))) { 1273 iput(inode); 1274 goto again; 1275 } 1276 return inode; 1277 } 1278 1279 inode = alloc_inode(sb); 1280 if (inode) { 1281 struct inode *old; 1282 1283 spin_lock(&inode_hash_lock); 1284 /* We released the lock, so.. */ 1285 old = find_inode_fast(sb, head, ino); 1286 if (!old) { 1287 inode->i_ino = ino; 1288 spin_lock(&inode->i_lock); 1289 inode->i_state = I_NEW; 1290 hlist_add_head_rcu(&inode->i_hash, head); 1291 spin_unlock(&inode->i_lock); 1292 inode_sb_list_add(inode); 1293 spin_unlock(&inode_hash_lock); 1294 1295 /* Return the locked inode with I_NEW set, the 1296 * caller is responsible for filling in the contents 1297 */ 1298 return inode; 1299 } 1300 1301 /* 1302 * Uhhuh, somebody else created the same inode under 1303 * us. Use the old inode instead of the one we just 1304 * allocated. 1305 */ 1306 spin_unlock(&inode_hash_lock); 1307 destroy_inode(inode); 1308 if (IS_ERR(old)) 1309 return NULL; 1310 inode = old; 1311 wait_on_inode(inode); 1312 if (unlikely(inode_unhashed(inode))) { 1313 iput(inode); 1314 goto again; 1315 } 1316 } 1317 return inode; 1318 } 1319 EXPORT_SYMBOL(iget_locked); 1320 1321 /* 1322 * search the inode cache for a matching inode number. 1323 * If we find one, then the inode number we are trying to 1324 * allocate is not unique and so we should not use it. 1325 * 1326 * Returns 1 if the inode number is unique, 0 if it is not. 1327 */ 1328 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1329 { 1330 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1331 struct inode *inode; 1332 1333 hlist_for_each_entry_rcu(inode, b, i_hash) { 1334 if (inode->i_ino == ino && inode->i_sb == sb) 1335 return 0; 1336 } 1337 return 1; 1338 } 1339 1340 /** 1341 * iunique - get a unique inode number 1342 * @sb: superblock 1343 * @max_reserved: highest reserved inode number 1344 * 1345 * Obtain an inode number that is unique on the system for a given 1346 * superblock. This is used by file systems that have no natural 1347 * permanent inode numbering system. An inode number is returned that 1348 * is higher than the reserved limit but unique. 1349 * 1350 * BUGS: 1351 * With a large number of inodes live on the file system this function 1352 * currently becomes quite slow. 1353 */ 1354 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1355 { 1356 /* 1357 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1358 * error if st_ino won't fit in target struct field. Use 32bit counter 1359 * here to attempt to avoid that. 1360 */ 1361 static DEFINE_SPINLOCK(iunique_lock); 1362 static unsigned int counter; 1363 ino_t res; 1364 1365 rcu_read_lock(); 1366 spin_lock(&iunique_lock); 1367 do { 1368 if (counter <= max_reserved) 1369 counter = max_reserved + 1; 1370 res = counter++; 1371 } while (!test_inode_iunique(sb, res)); 1372 spin_unlock(&iunique_lock); 1373 rcu_read_unlock(); 1374 1375 return res; 1376 } 1377 EXPORT_SYMBOL(iunique); 1378 1379 struct inode *igrab(struct inode *inode) 1380 { 1381 spin_lock(&inode->i_lock); 1382 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1383 __iget(inode); 1384 spin_unlock(&inode->i_lock); 1385 } else { 1386 spin_unlock(&inode->i_lock); 1387 /* 1388 * Handle the case where s_op->clear_inode is not been 1389 * called yet, and somebody is calling igrab 1390 * while the inode is getting freed. 1391 */ 1392 inode = NULL; 1393 } 1394 return inode; 1395 } 1396 EXPORT_SYMBOL(igrab); 1397 1398 /** 1399 * ilookup5_nowait - search for an inode in the inode cache 1400 * @sb: super block of file system to search 1401 * @hashval: hash value (usually inode number) to search for 1402 * @test: callback used for comparisons between inodes 1403 * @data: opaque data pointer to pass to @test 1404 * 1405 * Search for the inode specified by @hashval and @data in the inode cache. 1406 * If the inode is in the cache, the inode is returned with an incremented 1407 * reference count. 1408 * 1409 * Note: I_NEW is not waited upon so you have to be very careful what you do 1410 * with the returned inode. You probably should be using ilookup5() instead. 1411 * 1412 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1413 */ 1414 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1415 int (*test)(struct inode *, void *), void *data) 1416 { 1417 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1418 struct inode *inode; 1419 1420 spin_lock(&inode_hash_lock); 1421 inode = find_inode(sb, head, test, data); 1422 spin_unlock(&inode_hash_lock); 1423 1424 return IS_ERR(inode) ? NULL : inode; 1425 } 1426 EXPORT_SYMBOL(ilookup5_nowait); 1427 1428 /** 1429 * ilookup5 - search for an inode in the inode cache 1430 * @sb: super block of file system to search 1431 * @hashval: hash value (usually inode number) to search for 1432 * @test: callback used for comparisons between inodes 1433 * @data: opaque data pointer to pass to @test 1434 * 1435 * Search for the inode specified by @hashval and @data in the inode cache, 1436 * and if the inode is in the cache, return the inode with an incremented 1437 * reference count. Waits on I_NEW before returning the inode. 1438 * returned with an incremented reference count. 1439 * 1440 * This is a generalized version of ilookup() for file systems where the 1441 * inode number is not sufficient for unique identification of an inode. 1442 * 1443 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1444 */ 1445 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1446 int (*test)(struct inode *, void *), void *data) 1447 { 1448 struct inode *inode; 1449 again: 1450 inode = ilookup5_nowait(sb, hashval, test, data); 1451 if (inode) { 1452 wait_on_inode(inode); 1453 if (unlikely(inode_unhashed(inode))) { 1454 iput(inode); 1455 goto again; 1456 } 1457 } 1458 return inode; 1459 } 1460 EXPORT_SYMBOL(ilookup5); 1461 1462 /** 1463 * ilookup - search for an inode in the inode cache 1464 * @sb: super block of file system to search 1465 * @ino: inode number to search for 1466 * 1467 * Search for the inode @ino in the inode cache, and if the inode is in the 1468 * cache, the inode is returned with an incremented reference count. 1469 */ 1470 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1471 { 1472 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1473 struct inode *inode; 1474 again: 1475 spin_lock(&inode_hash_lock); 1476 inode = find_inode_fast(sb, head, ino); 1477 spin_unlock(&inode_hash_lock); 1478 1479 if (inode) { 1480 if (IS_ERR(inode)) 1481 return NULL; 1482 wait_on_inode(inode); 1483 if (unlikely(inode_unhashed(inode))) { 1484 iput(inode); 1485 goto again; 1486 } 1487 } 1488 return inode; 1489 } 1490 EXPORT_SYMBOL(ilookup); 1491 1492 /** 1493 * find_inode_nowait - find an inode in the inode cache 1494 * @sb: super block of file system to search 1495 * @hashval: hash value (usually inode number) to search for 1496 * @match: callback used for comparisons between inodes 1497 * @data: opaque data pointer to pass to @match 1498 * 1499 * Search for the inode specified by @hashval and @data in the inode 1500 * cache, where the helper function @match will return 0 if the inode 1501 * does not match, 1 if the inode does match, and -1 if the search 1502 * should be stopped. The @match function must be responsible for 1503 * taking the i_lock spin_lock and checking i_state for an inode being 1504 * freed or being initialized, and incrementing the reference count 1505 * before returning 1. It also must not sleep, since it is called with 1506 * the inode_hash_lock spinlock held. 1507 * 1508 * This is a even more generalized version of ilookup5() when the 1509 * function must never block --- find_inode() can block in 1510 * __wait_on_freeing_inode() --- or when the caller can not increment 1511 * the reference count because the resulting iput() might cause an 1512 * inode eviction. The tradeoff is that the @match funtion must be 1513 * very carefully implemented. 1514 */ 1515 struct inode *find_inode_nowait(struct super_block *sb, 1516 unsigned long hashval, 1517 int (*match)(struct inode *, unsigned long, 1518 void *), 1519 void *data) 1520 { 1521 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1522 struct inode *inode, *ret_inode = NULL; 1523 int mval; 1524 1525 spin_lock(&inode_hash_lock); 1526 hlist_for_each_entry(inode, head, i_hash) { 1527 if (inode->i_sb != sb) 1528 continue; 1529 mval = match(inode, hashval, data); 1530 if (mval == 0) 1531 continue; 1532 if (mval == 1) 1533 ret_inode = inode; 1534 goto out; 1535 } 1536 out: 1537 spin_unlock(&inode_hash_lock); 1538 return ret_inode; 1539 } 1540 EXPORT_SYMBOL(find_inode_nowait); 1541 1542 /** 1543 * find_inode_rcu - find an inode in the inode cache 1544 * @sb: Super block of file system to search 1545 * @hashval: Key to hash 1546 * @test: Function to test match on an inode 1547 * @data: Data for test function 1548 * 1549 * Search for the inode specified by @hashval and @data in the inode cache, 1550 * where the helper function @test will return 0 if the inode does not match 1551 * and 1 if it does. The @test function must be responsible for taking the 1552 * i_lock spin_lock and checking i_state for an inode being freed or being 1553 * initialized. 1554 * 1555 * If successful, this will return the inode for which the @test function 1556 * returned 1 and NULL otherwise. 1557 * 1558 * The @test function is not permitted to take a ref on any inode presented. 1559 * It is also not permitted to sleep. 1560 * 1561 * The caller must hold the RCU read lock. 1562 */ 1563 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1564 int (*test)(struct inode *, void *), void *data) 1565 { 1566 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1567 struct inode *inode; 1568 1569 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1570 "suspicious find_inode_rcu() usage"); 1571 1572 hlist_for_each_entry_rcu(inode, head, i_hash) { 1573 if (inode->i_sb == sb && 1574 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1575 test(inode, data)) 1576 return inode; 1577 } 1578 return NULL; 1579 } 1580 EXPORT_SYMBOL(find_inode_rcu); 1581 1582 /** 1583 * find_inode_by_ino_rcu - Find an inode in the inode cache 1584 * @sb: Super block of file system to search 1585 * @ino: The inode number to match 1586 * 1587 * Search for the inode specified by @hashval and @data in the inode cache, 1588 * where the helper function @test will return 0 if the inode does not match 1589 * and 1 if it does. The @test function must be responsible for taking the 1590 * i_lock spin_lock and checking i_state for an inode being freed or being 1591 * initialized. 1592 * 1593 * If successful, this will return the inode for which the @test function 1594 * returned 1 and NULL otherwise. 1595 * 1596 * The @test function is not permitted to take a ref on any inode presented. 1597 * It is also not permitted to sleep. 1598 * 1599 * The caller must hold the RCU read lock. 1600 */ 1601 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1602 unsigned long ino) 1603 { 1604 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1605 struct inode *inode; 1606 1607 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1608 "suspicious find_inode_by_ino_rcu() usage"); 1609 1610 hlist_for_each_entry_rcu(inode, head, i_hash) { 1611 if (inode->i_ino == ino && 1612 inode->i_sb == sb && 1613 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1614 return inode; 1615 } 1616 return NULL; 1617 } 1618 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1619 1620 int insert_inode_locked(struct inode *inode) 1621 { 1622 struct super_block *sb = inode->i_sb; 1623 ino_t ino = inode->i_ino; 1624 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1625 1626 while (1) { 1627 struct inode *old = NULL; 1628 spin_lock(&inode_hash_lock); 1629 hlist_for_each_entry(old, head, i_hash) { 1630 if (old->i_ino != ino) 1631 continue; 1632 if (old->i_sb != sb) 1633 continue; 1634 spin_lock(&old->i_lock); 1635 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1636 spin_unlock(&old->i_lock); 1637 continue; 1638 } 1639 break; 1640 } 1641 if (likely(!old)) { 1642 spin_lock(&inode->i_lock); 1643 inode->i_state |= I_NEW | I_CREATING; 1644 hlist_add_head_rcu(&inode->i_hash, head); 1645 spin_unlock(&inode->i_lock); 1646 spin_unlock(&inode_hash_lock); 1647 return 0; 1648 } 1649 if (unlikely(old->i_state & I_CREATING)) { 1650 spin_unlock(&old->i_lock); 1651 spin_unlock(&inode_hash_lock); 1652 return -EBUSY; 1653 } 1654 __iget(old); 1655 spin_unlock(&old->i_lock); 1656 spin_unlock(&inode_hash_lock); 1657 wait_on_inode(old); 1658 if (unlikely(!inode_unhashed(old))) { 1659 iput(old); 1660 return -EBUSY; 1661 } 1662 iput(old); 1663 } 1664 } 1665 EXPORT_SYMBOL(insert_inode_locked); 1666 1667 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1668 int (*test)(struct inode *, void *), void *data) 1669 { 1670 struct inode *old; 1671 1672 inode->i_state |= I_CREATING; 1673 old = inode_insert5(inode, hashval, test, NULL, data); 1674 1675 if (old != inode) { 1676 iput(old); 1677 return -EBUSY; 1678 } 1679 return 0; 1680 } 1681 EXPORT_SYMBOL(insert_inode_locked4); 1682 1683 1684 int generic_delete_inode(struct inode *inode) 1685 { 1686 return 1; 1687 } 1688 EXPORT_SYMBOL(generic_delete_inode); 1689 1690 /* 1691 * Called when we're dropping the last reference 1692 * to an inode. 1693 * 1694 * Call the FS "drop_inode()" function, defaulting to 1695 * the legacy UNIX filesystem behaviour. If it tells 1696 * us to evict inode, do so. Otherwise, retain inode 1697 * in cache if fs is alive, sync and evict if fs is 1698 * shutting down. 1699 */ 1700 static void iput_final(struct inode *inode) 1701 { 1702 struct super_block *sb = inode->i_sb; 1703 const struct super_operations *op = inode->i_sb->s_op; 1704 unsigned long state; 1705 int drop; 1706 1707 WARN_ON(inode->i_state & I_NEW); 1708 1709 if (op->drop_inode) 1710 drop = op->drop_inode(inode); 1711 else 1712 drop = generic_drop_inode(inode); 1713 1714 if (!drop && 1715 !(inode->i_state & I_DONTCACHE) && 1716 (sb->s_flags & SB_ACTIVE)) { 1717 __inode_add_lru(inode, true); 1718 spin_unlock(&inode->i_lock); 1719 return; 1720 } 1721 1722 state = inode->i_state; 1723 if (!drop) { 1724 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1725 spin_unlock(&inode->i_lock); 1726 1727 write_inode_now(inode, 1); 1728 1729 spin_lock(&inode->i_lock); 1730 state = inode->i_state; 1731 WARN_ON(state & I_NEW); 1732 state &= ~I_WILL_FREE; 1733 } 1734 1735 WRITE_ONCE(inode->i_state, state | I_FREEING); 1736 if (!list_empty(&inode->i_lru)) 1737 inode_lru_list_del(inode); 1738 spin_unlock(&inode->i_lock); 1739 1740 evict(inode); 1741 } 1742 1743 /** 1744 * iput - put an inode 1745 * @inode: inode to put 1746 * 1747 * Puts an inode, dropping its usage count. If the inode use count hits 1748 * zero, the inode is then freed and may also be destroyed. 1749 * 1750 * Consequently, iput() can sleep. 1751 */ 1752 void iput(struct inode *inode) 1753 { 1754 if (!inode) 1755 return; 1756 BUG_ON(inode->i_state & I_CLEAR); 1757 retry: 1758 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1759 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1760 atomic_inc(&inode->i_count); 1761 spin_unlock(&inode->i_lock); 1762 trace_writeback_lazytime_iput(inode); 1763 mark_inode_dirty_sync(inode); 1764 goto retry; 1765 } 1766 iput_final(inode); 1767 } 1768 } 1769 EXPORT_SYMBOL(iput); 1770 1771 #ifdef CONFIG_BLOCK 1772 /** 1773 * bmap - find a block number in a file 1774 * @inode: inode owning the block number being requested 1775 * @block: pointer containing the block to find 1776 * 1777 * Replaces the value in ``*block`` with the block number on the device holding 1778 * corresponding to the requested block number in the file. 1779 * That is, asked for block 4 of inode 1 the function will replace the 1780 * 4 in ``*block``, with disk block relative to the disk start that holds that 1781 * block of the file. 1782 * 1783 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1784 * hole, returns 0 and ``*block`` is also set to 0. 1785 */ 1786 int bmap(struct inode *inode, sector_t *block) 1787 { 1788 if (!inode->i_mapping->a_ops->bmap) 1789 return -EINVAL; 1790 1791 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1792 return 0; 1793 } 1794 EXPORT_SYMBOL(bmap); 1795 #endif 1796 1797 /* 1798 * With relative atime, only update atime if the previous atime is 1799 * earlier than or equal to either the ctime or mtime, 1800 * or if at least a day has passed since the last atime update. 1801 */ 1802 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1803 struct timespec64 now) 1804 { 1805 struct timespec64 atime, mtime, ctime; 1806 1807 if (!(mnt->mnt_flags & MNT_RELATIME)) 1808 return true; 1809 /* 1810 * Is mtime younger than or equal to atime? If yes, update atime: 1811 */ 1812 atime = inode_get_atime(inode); 1813 mtime = inode_get_mtime(inode); 1814 if (timespec64_compare(&mtime, &atime) >= 0) 1815 return true; 1816 /* 1817 * Is ctime younger than or equal to atime? If yes, update atime: 1818 */ 1819 ctime = inode_get_ctime(inode); 1820 if (timespec64_compare(&ctime, &atime) >= 0) 1821 return true; 1822 1823 /* 1824 * Is the previous atime value older than a day? If yes, 1825 * update atime: 1826 */ 1827 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 1828 return true; 1829 /* 1830 * Good, we can skip the atime update: 1831 */ 1832 return false; 1833 } 1834 1835 /** 1836 * inode_update_timestamps - update the timestamps on the inode 1837 * @inode: inode to be updated 1838 * @flags: S_* flags that needed to be updated 1839 * 1840 * The update_time function is called when an inode's timestamps need to be 1841 * updated for a read or write operation. This function handles updating the 1842 * actual timestamps. It's up to the caller to ensure that the inode is marked 1843 * dirty appropriately. 1844 * 1845 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1846 * attempt to update all three of them. S_ATIME updates can be handled 1847 * independently of the rest. 1848 * 1849 * Returns a set of S_* flags indicating which values changed. 1850 */ 1851 int inode_update_timestamps(struct inode *inode, int flags) 1852 { 1853 int updated = 0; 1854 struct timespec64 now; 1855 1856 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1857 struct timespec64 ctime = inode_get_ctime(inode); 1858 struct timespec64 mtime = inode_get_mtime(inode); 1859 1860 now = inode_set_ctime_current(inode); 1861 if (!timespec64_equal(&now, &ctime)) 1862 updated |= S_CTIME; 1863 if (!timespec64_equal(&now, &mtime)) { 1864 inode_set_mtime_to_ts(inode, now); 1865 updated |= S_MTIME; 1866 } 1867 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1868 updated |= S_VERSION; 1869 } else { 1870 now = current_time(inode); 1871 } 1872 1873 if (flags & S_ATIME) { 1874 struct timespec64 atime = inode_get_atime(inode); 1875 1876 if (!timespec64_equal(&now, &atime)) { 1877 inode_set_atime_to_ts(inode, now); 1878 updated |= S_ATIME; 1879 } 1880 } 1881 return updated; 1882 } 1883 EXPORT_SYMBOL(inode_update_timestamps); 1884 1885 /** 1886 * generic_update_time - update the timestamps on the inode 1887 * @inode: inode to be updated 1888 * @flags: S_* flags that needed to be updated 1889 * 1890 * The update_time function is called when an inode's timestamps need to be 1891 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1892 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1893 * updates can be handled done independently of the rest. 1894 * 1895 * Returns a S_* mask indicating which fields were updated. 1896 */ 1897 int generic_update_time(struct inode *inode, int flags) 1898 { 1899 int updated = inode_update_timestamps(inode, flags); 1900 int dirty_flags = 0; 1901 1902 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1903 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1904 if (updated & S_VERSION) 1905 dirty_flags |= I_DIRTY_SYNC; 1906 __mark_inode_dirty(inode, dirty_flags); 1907 return updated; 1908 } 1909 EXPORT_SYMBOL(generic_update_time); 1910 1911 /* 1912 * This does the actual work of updating an inodes time or version. Must have 1913 * had called mnt_want_write() before calling this. 1914 */ 1915 int inode_update_time(struct inode *inode, int flags) 1916 { 1917 if (inode->i_op->update_time) 1918 return inode->i_op->update_time(inode, flags); 1919 generic_update_time(inode, flags); 1920 return 0; 1921 } 1922 EXPORT_SYMBOL(inode_update_time); 1923 1924 /** 1925 * atime_needs_update - update the access time 1926 * @path: the &struct path to update 1927 * @inode: inode to update 1928 * 1929 * Update the accessed time on an inode and mark it for writeback. 1930 * This function automatically handles read only file systems and media, 1931 * as well as the "noatime" flag and inode specific "noatime" markers. 1932 */ 1933 bool atime_needs_update(const struct path *path, struct inode *inode) 1934 { 1935 struct vfsmount *mnt = path->mnt; 1936 struct timespec64 now, atime; 1937 1938 if (inode->i_flags & S_NOATIME) 1939 return false; 1940 1941 /* Atime updates will likely cause i_uid and i_gid to be written 1942 * back improprely if their true value is unknown to the vfs. 1943 */ 1944 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 1945 return false; 1946 1947 if (IS_NOATIME(inode)) 1948 return false; 1949 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1950 return false; 1951 1952 if (mnt->mnt_flags & MNT_NOATIME) 1953 return false; 1954 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1955 return false; 1956 1957 now = current_time(inode); 1958 1959 if (!relatime_need_update(mnt, inode, now)) 1960 return false; 1961 1962 atime = inode_get_atime(inode); 1963 if (timespec64_equal(&atime, &now)) 1964 return false; 1965 1966 return true; 1967 } 1968 1969 void touch_atime(const struct path *path) 1970 { 1971 struct vfsmount *mnt = path->mnt; 1972 struct inode *inode = d_inode(path->dentry); 1973 1974 if (!atime_needs_update(path, inode)) 1975 return; 1976 1977 if (!sb_start_write_trylock(inode->i_sb)) 1978 return; 1979 1980 if (mnt_get_write_access(mnt) != 0) 1981 goto skip_update; 1982 /* 1983 * File systems can error out when updating inodes if they need to 1984 * allocate new space to modify an inode (such is the case for 1985 * Btrfs), but since we touch atime while walking down the path we 1986 * really don't care if we failed to update the atime of the file, 1987 * so just ignore the return value. 1988 * We may also fail on filesystems that have the ability to make parts 1989 * of the fs read only, e.g. subvolumes in Btrfs. 1990 */ 1991 inode_update_time(inode, S_ATIME); 1992 mnt_put_write_access(mnt); 1993 skip_update: 1994 sb_end_write(inode->i_sb); 1995 } 1996 EXPORT_SYMBOL(touch_atime); 1997 1998 /* 1999 * Return mask of changes for notify_change() that need to be done as a 2000 * response to write or truncate. Return 0 if nothing has to be changed. 2001 * Negative value on error (change should be denied). 2002 */ 2003 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2004 struct dentry *dentry) 2005 { 2006 struct inode *inode = d_inode(dentry); 2007 int mask = 0; 2008 int ret; 2009 2010 if (IS_NOSEC(inode)) 2011 return 0; 2012 2013 mask = setattr_should_drop_suidgid(idmap, inode); 2014 ret = security_inode_need_killpriv(dentry); 2015 if (ret < 0) 2016 return ret; 2017 if (ret) 2018 mask |= ATTR_KILL_PRIV; 2019 return mask; 2020 } 2021 2022 static int __remove_privs(struct mnt_idmap *idmap, 2023 struct dentry *dentry, int kill) 2024 { 2025 struct iattr newattrs; 2026 2027 newattrs.ia_valid = ATTR_FORCE | kill; 2028 /* 2029 * Note we call this on write, so notify_change will not 2030 * encounter any conflicting delegations: 2031 */ 2032 return notify_change(idmap, dentry, &newattrs, NULL); 2033 } 2034 2035 static int __file_remove_privs(struct file *file, unsigned int flags) 2036 { 2037 struct dentry *dentry = file_dentry(file); 2038 struct inode *inode = file_inode(file); 2039 int error = 0; 2040 int kill; 2041 2042 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2043 return 0; 2044 2045 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2046 if (kill < 0) 2047 return kill; 2048 2049 if (kill) { 2050 if (flags & IOCB_NOWAIT) 2051 return -EAGAIN; 2052 2053 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2054 } 2055 2056 if (!error) 2057 inode_has_no_xattr(inode); 2058 return error; 2059 } 2060 2061 /** 2062 * file_remove_privs - remove special file privileges (suid, capabilities) 2063 * @file: file to remove privileges from 2064 * 2065 * When file is modified by a write or truncation ensure that special 2066 * file privileges are removed. 2067 * 2068 * Return: 0 on success, negative errno on failure. 2069 */ 2070 int file_remove_privs(struct file *file) 2071 { 2072 return __file_remove_privs(file, 0); 2073 } 2074 EXPORT_SYMBOL(file_remove_privs); 2075 2076 static int inode_needs_update_time(struct inode *inode) 2077 { 2078 int sync_it = 0; 2079 struct timespec64 now = current_time(inode); 2080 struct timespec64 ts; 2081 2082 /* First try to exhaust all avenues to not sync */ 2083 if (IS_NOCMTIME(inode)) 2084 return 0; 2085 2086 ts = inode_get_mtime(inode); 2087 if (!timespec64_equal(&ts, &now)) 2088 sync_it = S_MTIME; 2089 2090 ts = inode_get_ctime(inode); 2091 if (!timespec64_equal(&ts, &now)) 2092 sync_it |= S_CTIME; 2093 2094 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2095 sync_it |= S_VERSION; 2096 2097 return sync_it; 2098 } 2099 2100 static int __file_update_time(struct file *file, int sync_mode) 2101 { 2102 int ret = 0; 2103 struct inode *inode = file_inode(file); 2104 2105 /* try to update time settings */ 2106 if (!mnt_get_write_access_file(file)) { 2107 ret = inode_update_time(inode, sync_mode); 2108 mnt_put_write_access_file(file); 2109 } 2110 2111 return ret; 2112 } 2113 2114 /** 2115 * file_update_time - update mtime and ctime time 2116 * @file: file accessed 2117 * 2118 * Update the mtime and ctime members of an inode and mark the inode for 2119 * writeback. Note that this function is meant exclusively for usage in 2120 * the file write path of filesystems, and filesystems may choose to 2121 * explicitly ignore updates via this function with the _NOCMTIME inode 2122 * flag, e.g. for network filesystem where these imestamps are handled 2123 * by the server. This can return an error for file systems who need to 2124 * allocate space in order to update an inode. 2125 * 2126 * Return: 0 on success, negative errno on failure. 2127 */ 2128 int file_update_time(struct file *file) 2129 { 2130 int ret; 2131 struct inode *inode = file_inode(file); 2132 2133 ret = inode_needs_update_time(inode); 2134 if (ret <= 0) 2135 return ret; 2136 2137 return __file_update_time(file, ret); 2138 } 2139 EXPORT_SYMBOL(file_update_time); 2140 2141 /** 2142 * file_modified_flags - handle mandated vfs changes when modifying a file 2143 * @file: file that was modified 2144 * @flags: kiocb flags 2145 * 2146 * When file has been modified ensure that special 2147 * file privileges are removed and time settings are updated. 2148 * 2149 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2150 * time settings will not be updated. It will return -EAGAIN. 2151 * 2152 * Context: Caller must hold the file's inode lock. 2153 * 2154 * Return: 0 on success, negative errno on failure. 2155 */ 2156 static int file_modified_flags(struct file *file, int flags) 2157 { 2158 int ret; 2159 struct inode *inode = file_inode(file); 2160 2161 /* 2162 * Clear the security bits if the process is not being run by root. 2163 * This keeps people from modifying setuid and setgid binaries. 2164 */ 2165 ret = __file_remove_privs(file, flags); 2166 if (ret) 2167 return ret; 2168 2169 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2170 return 0; 2171 2172 ret = inode_needs_update_time(inode); 2173 if (ret <= 0) 2174 return ret; 2175 if (flags & IOCB_NOWAIT) 2176 return -EAGAIN; 2177 2178 return __file_update_time(file, ret); 2179 } 2180 2181 /** 2182 * file_modified - handle mandated vfs changes when modifying a file 2183 * @file: file that was modified 2184 * 2185 * When file has been modified ensure that special 2186 * file privileges are removed and time settings are updated. 2187 * 2188 * Context: Caller must hold the file's inode lock. 2189 * 2190 * Return: 0 on success, negative errno on failure. 2191 */ 2192 int file_modified(struct file *file) 2193 { 2194 return file_modified_flags(file, 0); 2195 } 2196 EXPORT_SYMBOL(file_modified); 2197 2198 /** 2199 * kiocb_modified - handle mandated vfs changes when modifying a file 2200 * @iocb: iocb that was modified 2201 * 2202 * When file has been modified ensure that special 2203 * file privileges are removed and time settings are updated. 2204 * 2205 * Context: Caller must hold the file's inode lock. 2206 * 2207 * Return: 0 on success, negative errno on failure. 2208 */ 2209 int kiocb_modified(struct kiocb *iocb) 2210 { 2211 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2212 } 2213 EXPORT_SYMBOL_GPL(kiocb_modified); 2214 2215 int inode_needs_sync(struct inode *inode) 2216 { 2217 if (IS_SYNC(inode)) 2218 return 1; 2219 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2220 return 1; 2221 return 0; 2222 } 2223 EXPORT_SYMBOL(inode_needs_sync); 2224 2225 /* 2226 * If we try to find an inode in the inode hash while it is being 2227 * deleted, we have to wait until the filesystem completes its 2228 * deletion before reporting that it isn't found. This function waits 2229 * until the deletion _might_ have completed. Callers are responsible 2230 * to recheck inode state. 2231 * 2232 * It doesn't matter if I_NEW is not set initially, a call to 2233 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2234 * will DTRT. 2235 */ 2236 static void __wait_on_freeing_inode(struct inode *inode) 2237 { 2238 wait_queue_head_t *wq; 2239 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2240 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2241 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2242 spin_unlock(&inode->i_lock); 2243 spin_unlock(&inode_hash_lock); 2244 schedule(); 2245 finish_wait(wq, &wait.wq_entry); 2246 spin_lock(&inode_hash_lock); 2247 } 2248 2249 static __initdata unsigned long ihash_entries; 2250 static int __init set_ihash_entries(char *str) 2251 { 2252 if (!str) 2253 return 0; 2254 ihash_entries = simple_strtoul(str, &str, 0); 2255 return 1; 2256 } 2257 __setup("ihash_entries=", set_ihash_entries); 2258 2259 /* 2260 * Initialize the waitqueues and inode hash table. 2261 */ 2262 void __init inode_init_early(void) 2263 { 2264 /* If hashes are distributed across NUMA nodes, defer 2265 * hash allocation until vmalloc space is available. 2266 */ 2267 if (hashdist) 2268 return; 2269 2270 inode_hashtable = 2271 alloc_large_system_hash("Inode-cache", 2272 sizeof(struct hlist_head), 2273 ihash_entries, 2274 14, 2275 HASH_EARLY | HASH_ZERO, 2276 &i_hash_shift, 2277 &i_hash_mask, 2278 0, 2279 0); 2280 } 2281 2282 void __init inode_init(void) 2283 { 2284 /* inode slab cache */ 2285 inode_cachep = kmem_cache_create("inode_cache", 2286 sizeof(struct inode), 2287 0, 2288 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2289 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2290 init_once); 2291 2292 /* Hash may have been set up in inode_init_early */ 2293 if (!hashdist) 2294 return; 2295 2296 inode_hashtable = 2297 alloc_large_system_hash("Inode-cache", 2298 sizeof(struct hlist_head), 2299 ihash_entries, 2300 14, 2301 HASH_ZERO, 2302 &i_hash_shift, 2303 &i_hash_mask, 2304 0, 2305 0); 2306 } 2307 2308 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2309 { 2310 inode->i_mode = mode; 2311 if (S_ISCHR(mode)) { 2312 inode->i_fop = &def_chr_fops; 2313 inode->i_rdev = rdev; 2314 } else if (S_ISBLK(mode)) { 2315 if (IS_ENABLED(CONFIG_BLOCK)) 2316 inode->i_fop = &def_blk_fops; 2317 inode->i_rdev = rdev; 2318 } else if (S_ISFIFO(mode)) 2319 inode->i_fop = &pipefifo_fops; 2320 else if (S_ISSOCK(mode)) 2321 ; /* leave it no_open_fops */ 2322 else 2323 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2324 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2325 inode->i_ino); 2326 } 2327 EXPORT_SYMBOL(init_special_inode); 2328 2329 /** 2330 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2331 * @idmap: idmap of the mount the inode was created from 2332 * @inode: New inode 2333 * @dir: Directory inode 2334 * @mode: mode of the new inode 2335 * 2336 * If the inode has been created through an idmapped mount the idmap of 2337 * the vfsmount must be passed through @idmap. This function will then take 2338 * care to map the inode according to @idmap before checking permissions 2339 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2340 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2341 */ 2342 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2343 const struct inode *dir, umode_t mode) 2344 { 2345 inode_fsuid_set(inode, idmap); 2346 if (dir && dir->i_mode & S_ISGID) { 2347 inode->i_gid = dir->i_gid; 2348 2349 /* Directories are special, and always inherit S_ISGID */ 2350 if (S_ISDIR(mode)) 2351 mode |= S_ISGID; 2352 } else 2353 inode_fsgid_set(inode, idmap); 2354 inode->i_mode = mode; 2355 } 2356 EXPORT_SYMBOL(inode_init_owner); 2357 2358 /** 2359 * inode_owner_or_capable - check current task permissions to inode 2360 * @idmap: idmap of the mount the inode was found from 2361 * @inode: inode being checked 2362 * 2363 * Return true if current either has CAP_FOWNER in a namespace with the 2364 * inode owner uid mapped, or owns the file. 2365 * 2366 * If the inode has been found through an idmapped mount the idmap of 2367 * the vfsmount must be passed through @idmap. This function will then take 2368 * care to map the inode according to @idmap before checking permissions. 2369 * On non-idmapped mounts or if permission checking is to be performed on the 2370 * raw inode simply pass @nop_mnt_idmap. 2371 */ 2372 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2373 const struct inode *inode) 2374 { 2375 vfsuid_t vfsuid; 2376 struct user_namespace *ns; 2377 2378 vfsuid = i_uid_into_vfsuid(idmap, inode); 2379 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2380 return true; 2381 2382 ns = current_user_ns(); 2383 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2384 return true; 2385 return false; 2386 } 2387 EXPORT_SYMBOL(inode_owner_or_capable); 2388 2389 /* 2390 * Direct i/o helper functions 2391 */ 2392 static void __inode_dio_wait(struct inode *inode) 2393 { 2394 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2395 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2396 2397 do { 2398 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2399 if (atomic_read(&inode->i_dio_count)) 2400 schedule(); 2401 } while (atomic_read(&inode->i_dio_count)); 2402 finish_wait(wq, &q.wq_entry); 2403 } 2404 2405 /** 2406 * inode_dio_wait - wait for outstanding DIO requests to finish 2407 * @inode: inode to wait for 2408 * 2409 * Waits for all pending direct I/O requests to finish so that we can 2410 * proceed with a truncate or equivalent operation. 2411 * 2412 * Must be called under a lock that serializes taking new references 2413 * to i_dio_count, usually by inode->i_mutex. 2414 */ 2415 void inode_dio_wait(struct inode *inode) 2416 { 2417 if (atomic_read(&inode->i_dio_count)) 2418 __inode_dio_wait(inode); 2419 } 2420 EXPORT_SYMBOL(inode_dio_wait); 2421 2422 /* 2423 * inode_set_flags - atomically set some inode flags 2424 * 2425 * Note: the caller should be holding i_mutex, or else be sure that 2426 * they have exclusive access to the inode structure (i.e., while the 2427 * inode is being instantiated). The reason for the cmpxchg() loop 2428 * --- which wouldn't be necessary if all code paths which modify 2429 * i_flags actually followed this rule, is that there is at least one 2430 * code path which doesn't today so we use cmpxchg() out of an abundance 2431 * of caution. 2432 * 2433 * In the long run, i_mutex is overkill, and we should probably look 2434 * at using the i_lock spinlock to protect i_flags, and then make sure 2435 * it is so documented in include/linux/fs.h and that all code follows 2436 * the locking convention!! 2437 */ 2438 void inode_set_flags(struct inode *inode, unsigned int flags, 2439 unsigned int mask) 2440 { 2441 WARN_ON_ONCE(flags & ~mask); 2442 set_mask_bits(&inode->i_flags, mask, flags); 2443 } 2444 EXPORT_SYMBOL(inode_set_flags); 2445 2446 void inode_nohighmem(struct inode *inode) 2447 { 2448 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2449 } 2450 EXPORT_SYMBOL(inode_nohighmem); 2451 2452 /** 2453 * timestamp_truncate - Truncate timespec to a granularity 2454 * @t: Timespec 2455 * @inode: inode being updated 2456 * 2457 * Truncate a timespec to the granularity supported by the fs 2458 * containing the inode. Always rounds down. gran must 2459 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2460 */ 2461 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2462 { 2463 struct super_block *sb = inode->i_sb; 2464 unsigned int gran = sb->s_time_gran; 2465 2466 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2467 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2468 t.tv_nsec = 0; 2469 2470 /* Avoid division in the common cases 1 ns and 1 s. */ 2471 if (gran == 1) 2472 ; /* nothing */ 2473 else if (gran == NSEC_PER_SEC) 2474 t.tv_nsec = 0; 2475 else if (gran > 1 && gran < NSEC_PER_SEC) 2476 t.tv_nsec -= t.tv_nsec % gran; 2477 else 2478 WARN(1, "invalid file time granularity: %u", gran); 2479 return t; 2480 } 2481 EXPORT_SYMBOL(timestamp_truncate); 2482 2483 /** 2484 * current_time - Return FS time 2485 * @inode: inode. 2486 * 2487 * Return the current time truncated to the time granularity supported by 2488 * the fs. 2489 * 2490 * Note that inode and inode->sb cannot be NULL. 2491 * Otherwise, the function warns and returns time without truncation. 2492 */ 2493 struct timespec64 current_time(struct inode *inode) 2494 { 2495 struct timespec64 now; 2496 2497 ktime_get_coarse_real_ts64(&now); 2498 return timestamp_truncate(now, inode); 2499 } 2500 EXPORT_SYMBOL(current_time); 2501 2502 /** 2503 * inode_set_ctime_current - set the ctime to current_time 2504 * @inode: inode 2505 * 2506 * Set the inode->i_ctime to the current value for the inode. Returns 2507 * the current value that was assigned to i_ctime. 2508 */ 2509 struct timespec64 inode_set_ctime_current(struct inode *inode) 2510 { 2511 struct timespec64 now = current_time(inode); 2512 2513 inode_set_ctime(inode, now.tv_sec, now.tv_nsec); 2514 return now; 2515 } 2516 EXPORT_SYMBOL(inode_set_ctime_current); 2517 2518 /** 2519 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2520 * @idmap: idmap of the mount @inode was found from 2521 * @inode: inode to check 2522 * @vfsgid: the new/current vfsgid of @inode 2523 * 2524 * Check wether @vfsgid is in the caller's group list or if the caller is 2525 * privileged with CAP_FSETID over @inode. This can be used to determine 2526 * whether the setgid bit can be kept or must be dropped. 2527 * 2528 * Return: true if the caller is sufficiently privileged, false if not. 2529 */ 2530 bool in_group_or_capable(struct mnt_idmap *idmap, 2531 const struct inode *inode, vfsgid_t vfsgid) 2532 { 2533 if (vfsgid_in_group_p(vfsgid)) 2534 return true; 2535 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2536 return true; 2537 return false; 2538 } 2539 2540 /** 2541 * mode_strip_sgid - handle the sgid bit for non-directories 2542 * @idmap: idmap of the mount the inode was created from 2543 * @dir: parent directory inode 2544 * @mode: mode of the file to be created in @dir 2545 * 2546 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2547 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2548 * either in the group of the parent directory or they have CAP_FSETID 2549 * in their user namespace and are privileged over the parent directory. 2550 * In all other cases, strip the S_ISGID bit from @mode. 2551 * 2552 * Return: the new mode to use for the file 2553 */ 2554 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2555 const struct inode *dir, umode_t mode) 2556 { 2557 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2558 return mode; 2559 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2560 return mode; 2561 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2562 return mode; 2563 return mode & ~S_ISGID; 2564 } 2565 EXPORT_SYMBOL(mode_strip_sgid); 2566