xref: /linux/fs/inode.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
21 
22 /*
23  * Inode locking rules:
24  *
25  * inode->i_lock protects:
26  *   inode->i_state, inode->i_hash, __iget()
27  * inode->i_sb->s_inode_lru_lock protects:
28  *   inode->i_sb->s_inode_lru, inode->i_lru
29  * inode_sb_list_lock protects:
30  *   sb->s_inodes, inode->i_sb_list
31  * bdi->wb.list_lock protects:
32  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33  * inode_hash_lock protects:
34  *   inode_hashtable, inode->i_hash
35  *
36  * Lock ordering:
37  *
38  * inode_sb_list_lock
39  *   inode->i_lock
40  *     inode->i_sb->s_inode_lru_lock
41  *
42  * bdi->wb.list_lock
43  *   inode->i_lock
44  *
45  * inode_hash_lock
46  *   inode_sb_list_lock
47  *   inode->i_lock
48  *
49  * iunique_lock
50  *   inode_hash_lock
51  */
52 
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57 
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static int get_nr_inodes(void)
79 {
80 	int i;
81 	int sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline int get_nr_inodes_unused(void)
88 {
89 	int i;
90 	int sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 int get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_dointvec(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 /**
117  * inode_init_always - perform inode structure intialisation
118  * @sb: superblock inode belongs to
119  * @inode: inode to initialise
120  *
121  * These are initializations that need to be done on every inode
122  * allocation as the fields are not initialised by slab allocation.
123  */
124 int inode_init_always(struct super_block *sb, struct inode *inode)
125 {
126 	static const struct inode_operations empty_iops;
127 	static const struct file_operations empty_fops;
128 	struct address_space *const mapping = &inode->i_data;
129 
130 	inode->i_sb = sb;
131 	inode->i_blkbits = sb->s_blocksize_bits;
132 	inode->i_flags = 0;
133 	atomic_set(&inode->i_count, 1);
134 	inode->i_op = &empty_iops;
135 	inode->i_fop = &empty_fops;
136 	inode->__i_nlink = 1;
137 	inode->i_opflags = 0;
138 	i_uid_write(inode, 0);
139 	i_gid_write(inode, 0);
140 	atomic_set(&inode->i_writecount, 0);
141 	inode->i_size = 0;
142 	inode->i_blocks = 0;
143 	inode->i_bytes = 0;
144 	inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 	inode->i_pipe = NULL;
149 	inode->i_bdev = NULL;
150 	inode->i_cdev = NULL;
151 	inode->i_rdev = 0;
152 	inode->dirtied_when = 0;
153 
154 	if (security_inode_alloc(inode))
155 		goto out;
156 	spin_lock_init(&inode->i_lock);
157 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158 
159 	mutex_init(&inode->i_mutex);
160 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161 
162 	atomic_set(&inode->i_dio_count, 0);
163 
164 	mapping->a_ops = &empty_aops;
165 	mapping->host = inode;
166 	mapping->flags = 0;
167 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
168 	mapping->private_data = NULL;
169 	mapping->backing_dev_info = &default_backing_dev_info;
170 	mapping->writeback_index = 0;
171 
172 	/*
173 	 * If the block_device provides a backing_dev_info for client
174 	 * inodes then use that.  Otherwise the inode share the bdev's
175 	 * backing_dev_info.
176 	 */
177 	if (sb->s_bdev) {
178 		struct backing_dev_info *bdi;
179 
180 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 		mapping->backing_dev_info = bdi;
182 	}
183 	inode->i_private = NULL;
184 	inode->i_mapping = mapping;
185 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189 
190 #ifdef CONFIG_FSNOTIFY
191 	inode->i_fsnotify_mask = 0;
192 #endif
193 
194 	this_cpu_inc(nr_inodes);
195 
196 	return 0;
197 out:
198 	return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201 
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 	struct inode *inode;
205 
206 	if (sb->s_op->alloc_inode)
207 		inode = sb->s_op->alloc_inode(sb);
208 	else
209 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210 
211 	if (!inode)
212 		return NULL;
213 
214 	if (unlikely(inode_init_always(sb, inode))) {
215 		if (inode->i_sb->s_op->destroy_inode)
216 			inode->i_sb->s_op->destroy_inode(inode);
217 		else
218 			kmem_cache_free(inode_cachep, inode);
219 		return NULL;
220 	}
221 
222 	return inode;
223 }
224 
225 void free_inode_nonrcu(struct inode *inode)
226 {
227 	kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230 
231 void __destroy_inode(struct inode *inode)
232 {
233 	BUG_ON(inode_has_buffers(inode));
234 	security_inode_free(inode);
235 	fsnotify_inode_delete(inode);
236 	if (!inode->i_nlink) {
237 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 		atomic_long_dec(&inode->i_sb->s_remove_count);
239 	}
240 
241 #ifdef CONFIG_FS_POSIX_ACL
242 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 		posix_acl_release(inode->i_acl);
244 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 		posix_acl_release(inode->i_default_acl);
246 #endif
247 	this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250 
251 static void i_callback(struct rcu_head *head)
252 {
253 	struct inode *inode = container_of(head, struct inode, i_rcu);
254 	kmem_cache_free(inode_cachep, inode);
255 }
256 
257 static void destroy_inode(struct inode *inode)
258 {
259 	BUG_ON(!list_empty(&inode->i_lru));
260 	__destroy_inode(inode);
261 	if (inode->i_sb->s_op->destroy_inode)
262 		inode->i_sb->s_op->destroy_inode(inode);
263 	else
264 		call_rcu(&inode->i_rcu, i_callback);
265 }
266 
267 /**
268  * drop_nlink - directly drop an inode's link count
269  * @inode: inode
270  *
271  * This is a low-level filesystem helper to replace any
272  * direct filesystem manipulation of i_nlink.  In cases
273  * where we are attempting to track writes to the
274  * filesystem, a decrement to zero means an imminent
275  * write when the file is truncated and actually unlinked
276  * on the filesystem.
277  */
278 void drop_nlink(struct inode *inode)
279 {
280 	WARN_ON(inode->i_nlink == 0);
281 	inode->__i_nlink--;
282 	if (!inode->i_nlink)
283 		atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286 
287 /**
288  * clear_nlink - directly zero an inode's link count
289  * @inode: inode
290  *
291  * This is a low-level filesystem helper to replace any
292  * direct filesystem manipulation of i_nlink.  See
293  * drop_nlink() for why we care about i_nlink hitting zero.
294  */
295 void clear_nlink(struct inode *inode)
296 {
297 	if (inode->i_nlink) {
298 		inode->__i_nlink = 0;
299 		atomic_long_inc(&inode->i_sb->s_remove_count);
300 	}
301 }
302 EXPORT_SYMBOL(clear_nlink);
303 
304 /**
305  * set_nlink - directly set an inode's link count
306  * @inode: inode
307  * @nlink: new nlink (should be non-zero)
308  *
309  * This is a low-level filesystem helper to replace any
310  * direct filesystem manipulation of i_nlink.
311  */
312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 	if (!nlink) {
315 		clear_nlink(inode);
316 	} else {
317 		/* Yes, some filesystems do change nlink from zero to one */
318 		if (inode->i_nlink == 0)
319 			atomic_long_dec(&inode->i_sb->s_remove_count);
320 
321 		inode->__i_nlink = nlink;
322 	}
323 }
324 EXPORT_SYMBOL(set_nlink);
325 
326 /**
327  * inc_nlink - directly increment an inode's link count
328  * @inode: inode
329  *
330  * This is a low-level filesystem helper to replace any
331  * direct filesystem manipulation of i_nlink.  Currently,
332  * it is only here for parity with dec_nlink().
333  */
334 void inc_nlink(struct inode *inode)
335 {
336 	if (WARN_ON(inode->i_nlink == 0))
337 		atomic_long_dec(&inode->i_sb->s_remove_count);
338 
339 	inode->__i_nlink++;
340 }
341 EXPORT_SYMBOL(inc_nlink);
342 
343 void address_space_init_once(struct address_space *mapping)
344 {
345 	memset(mapping, 0, sizeof(*mapping));
346 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
347 	spin_lock_init(&mapping->tree_lock);
348 	mutex_init(&mapping->i_mmap_mutex);
349 	INIT_LIST_HEAD(&mapping->private_list);
350 	spin_lock_init(&mapping->private_lock);
351 	mapping->i_mmap = RB_ROOT;
352 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
353 }
354 EXPORT_SYMBOL(address_space_init_once);
355 
356 /*
357  * These are initializations that only need to be done
358  * once, because the fields are idempotent across use
359  * of the inode, so let the slab aware of that.
360  */
361 void inode_init_once(struct inode *inode)
362 {
363 	memset(inode, 0, sizeof(*inode));
364 	INIT_HLIST_NODE(&inode->i_hash);
365 	INIT_LIST_HEAD(&inode->i_devices);
366 	INIT_LIST_HEAD(&inode->i_wb_list);
367 	INIT_LIST_HEAD(&inode->i_lru);
368 	address_space_init_once(&inode->i_data);
369 	i_size_ordered_init(inode);
370 #ifdef CONFIG_FSNOTIFY
371 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372 #endif
373 }
374 EXPORT_SYMBOL(inode_init_once);
375 
376 static void init_once(void *foo)
377 {
378 	struct inode *inode = (struct inode *) foo;
379 
380 	inode_init_once(inode);
381 }
382 
383 /*
384  * inode->i_lock must be held
385  */
386 void __iget(struct inode *inode)
387 {
388 	atomic_inc(&inode->i_count);
389 }
390 
391 /*
392  * get additional reference to inode; caller must already hold one.
393  */
394 void ihold(struct inode *inode)
395 {
396 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397 }
398 EXPORT_SYMBOL(ihold);
399 
400 static void inode_lru_list_add(struct inode *inode)
401 {
402 	spin_lock(&inode->i_sb->s_inode_lru_lock);
403 	if (list_empty(&inode->i_lru)) {
404 		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
405 		inode->i_sb->s_nr_inodes_unused++;
406 		this_cpu_inc(nr_unused);
407 	}
408 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
409 }
410 
411 /*
412  * Add inode to LRU if needed (inode is unused and clean).
413  *
414  * Needs inode->i_lock held.
415  */
416 void inode_add_lru(struct inode *inode)
417 {
418 	if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
419 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
420 		inode_lru_list_add(inode);
421 }
422 
423 
424 static void inode_lru_list_del(struct inode *inode)
425 {
426 	spin_lock(&inode->i_sb->s_inode_lru_lock);
427 	if (!list_empty(&inode->i_lru)) {
428 		list_del_init(&inode->i_lru);
429 		inode->i_sb->s_nr_inodes_unused--;
430 		this_cpu_dec(nr_unused);
431 	}
432 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
433 }
434 
435 /**
436  * inode_sb_list_add - add inode to the superblock list of inodes
437  * @inode: inode to add
438  */
439 void inode_sb_list_add(struct inode *inode)
440 {
441 	spin_lock(&inode_sb_list_lock);
442 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
443 	spin_unlock(&inode_sb_list_lock);
444 }
445 EXPORT_SYMBOL_GPL(inode_sb_list_add);
446 
447 static inline void inode_sb_list_del(struct inode *inode)
448 {
449 	if (!list_empty(&inode->i_sb_list)) {
450 		spin_lock(&inode_sb_list_lock);
451 		list_del_init(&inode->i_sb_list);
452 		spin_unlock(&inode_sb_list_lock);
453 	}
454 }
455 
456 static unsigned long hash(struct super_block *sb, unsigned long hashval)
457 {
458 	unsigned long tmp;
459 
460 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
461 			L1_CACHE_BYTES;
462 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
463 	return tmp & i_hash_mask;
464 }
465 
466 /**
467  *	__insert_inode_hash - hash an inode
468  *	@inode: unhashed inode
469  *	@hashval: unsigned long value used to locate this object in the
470  *		inode_hashtable.
471  *
472  *	Add an inode to the inode hash for this superblock.
473  */
474 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
475 {
476 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
477 
478 	spin_lock(&inode_hash_lock);
479 	spin_lock(&inode->i_lock);
480 	hlist_add_head(&inode->i_hash, b);
481 	spin_unlock(&inode->i_lock);
482 	spin_unlock(&inode_hash_lock);
483 }
484 EXPORT_SYMBOL(__insert_inode_hash);
485 
486 /**
487  *	__remove_inode_hash - remove an inode from the hash
488  *	@inode: inode to unhash
489  *
490  *	Remove an inode from the superblock.
491  */
492 void __remove_inode_hash(struct inode *inode)
493 {
494 	spin_lock(&inode_hash_lock);
495 	spin_lock(&inode->i_lock);
496 	hlist_del_init(&inode->i_hash);
497 	spin_unlock(&inode->i_lock);
498 	spin_unlock(&inode_hash_lock);
499 }
500 EXPORT_SYMBOL(__remove_inode_hash);
501 
502 void clear_inode(struct inode *inode)
503 {
504 	might_sleep();
505 	/*
506 	 * We have to cycle tree_lock here because reclaim can be still in the
507 	 * process of removing the last page (in __delete_from_page_cache())
508 	 * and we must not free mapping under it.
509 	 */
510 	spin_lock_irq(&inode->i_data.tree_lock);
511 	BUG_ON(inode->i_data.nrpages);
512 	spin_unlock_irq(&inode->i_data.tree_lock);
513 	BUG_ON(!list_empty(&inode->i_data.private_list));
514 	BUG_ON(!(inode->i_state & I_FREEING));
515 	BUG_ON(inode->i_state & I_CLEAR);
516 	/* don't need i_lock here, no concurrent mods to i_state */
517 	inode->i_state = I_FREEING | I_CLEAR;
518 }
519 EXPORT_SYMBOL(clear_inode);
520 
521 /*
522  * Free the inode passed in, removing it from the lists it is still connected
523  * to. We remove any pages still attached to the inode and wait for any IO that
524  * is still in progress before finally destroying the inode.
525  *
526  * An inode must already be marked I_FREEING so that we avoid the inode being
527  * moved back onto lists if we race with other code that manipulates the lists
528  * (e.g. writeback_single_inode). The caller is responsible for setting this.
529  *
530  * An inode must already be removed from the LRU list before being evicted from
531  * the cache. This should occur atomically with setting the I_FREEING state
532  * flag, so no inodes here should ever be on the LRU when being evicted.
533  */
534 static void evict(struct inode *inode)
535 {
536 	const struct super_operations *op = inode->i_sb->s_op;
537 
538 	BUG_ON(!(inode->i_state & I_FREEING));
539 	BUG_ON(!list_empty(&inode->i_lru));
540 
541 	if (!list_empty(&inode->i_wb_list))
542 		inode_wb_list_del(inode);
543 
544 	inode_sb_list_del(inode);
545 
546 	/*
547 	 * Wait for flusher thread to be done with the inode so that filesystem
548 	 * does not start destroying it while writeback is still running. Since
549 	 * the inode has I_FREEING set, flusher thread won't start new work on
550 	 * the inode.  We just have to wait for running writeback to finish.
551 	 */
552 	inode_wait_for_writeback(inode);
553 
554 	if (op->evict_inode) {
555 		op->evict_inode(inode);
556 	} else {
557 		if (inode->i_data.nrpages)
558 			truncate_inode_pages(&inode->i_data, 0);
559 		clear_inode(inode);
560 	}
561 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
562 		bd_forget(inode);
563 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
564 		cd_forget(inode);
565 
566 	remove_inode_hash(inode);
567 
568 	spin_lock(&inode->i_lock);
569 	wake_up_bit(&inode->i_state, __I_NEW);
570 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
571 	spin_unlock(&inode->i_lock);
572 
573 	destroy_inode(inode);
574 }
575 
576 /*
577  * dispose_list - dispose of the contents of a local list
578  * @head: the head of the list to free
579  *
580  * Dispose-list gets a local list with local inodes in it, so it doesn't
581  * need to worry about list corruption and SMP locks.
582  */
583 static void dispose_list(struct list_head *head)
584 {
585 	while (!list_empty(head)) {
586 		struct inode *inode;
587 
588 		inode = list_first_entry(head, struct inode, i_lru);
589 		list_del_init(&inode->i_lru);
590 
591 		evict(inode);
592 	}
593 }
594 
595 /**
596  * evict_inodes	- evict all evictable inodes for a superblock
597  * @sb:		superblock to operate on
598  *
599  * Make sure that no inodes with zero refcount are retained.  This is
600  * called by superblock shutdown after having MS_ACTIVE flag removed,
601  * so any inode reaching zero refcount during or after that call will
602  * be immediately evicted.
603  */
604 void evict_inodes(struct super_block *sb)
605 {
606 	struct inode *inode, *next;
607 	LIST_HEAD(dispose);
608 
609 	spin_lock(&inode_sb_list_lock);
610 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
611 		if (atomic_read(&inode->i_count))
612 			continue;
613 
614 		spin_lock(&inode->i_lock);
615 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
616 			spin_unlock(&inode->i_lock);
617 			continue;
618 		}
619 
620 		inode->i_state |= I_FREEING;
621 		inode_lru_list_del(inode);
622 		spin_unlock(&inode->i_lock);
623 		list_add(&inode->i_lru, &dispose);
624 	}
625 	spin_unlock(&inode_sb_list_lock);
626 
627 	dispose_list(&dispose);
628 }
629 
630 /**
631  * invalidate_inodes	- attempt to free all inodes on a superblock
632  * @sb:		superblock to operate on
633  * @kill_dirty: flag to guide handling of dirty inodes
634  *
635  * Attempts to free all inodes for a given superblock.  If there were any
636  * busy inodes return a non-zero value, else zero.
637  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
638  * them as busy.
639  */
640 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
641 {
642 	int busy = 0;
643 	struct inode *inode, *next;
644 	LIST_HEAD(dispose);
645 
646 	spin_lock(&inode_sb_list_lock);
647 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
648 		spin_lock(&inode->i_lock);
649 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
650 			spin_unlock(&inode->i_lock);
651 			continue;
652 		}
653 		if (inode->i_state & I_DIRTY && !kill_dirty) {
654 			spin_unlock(&inode->i_lock);
655 			busy = 1;
656 			continue;
657 		}
658 		if (atomic_read(&inode->i_count)) {
659 			spin_unlock(&inode->i_lock);
660 			busy = 1;
661 			continue;
662 		}
663 
664 		inode->i_state |= I_FREEING;
665 		inode_lru_list_del(inode);
666 		spin_unlock(&inode->i_lock);
667 		list_add(&inode->i_lru, &dispose);
668 	}
669 	spin_unlock(&inode_sb_list_lock);
670 
671 	dispose_list(&dispose);
672 
673 	return busy;
674 }
675 
676 static int can_unuse(struct inode *inode)
677 {
678 	if (inode->i_state & ~I_REFERENCED)
679 		return 0;
680 	if (inode_has_buffers(inode))
681 		return 0;
682 	if (atomic_read(&inode->i_count))
683 		return 0;
684 	if (inode->i_data.nrpages)
685 		return 0;
686 	return 1;
687 }
688 
689 /*
690  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
691  * This is called from the superblock shrinker function with a number of inodes
692  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
693  * then are freed outside inode_lock by dispose_list().
694  *
695  * Any inodes which are pinned purely because of attached pagecache have their
696  * pagecache removed.  If the inode has metadata buffers attached to
697  * mapping->private_list then try to remove them.
698  *
699  * If the inode has the I_REFERENCED flag set, then it means that it has been
700  * used recently - the flag is set in iput_final(). When we encounter such an
701  * inode, clear the flag and move it to the back of the LRU so it gets another
702  * pass through the LRU before it gets reclaimed. This is necessary because of
703  * the fact we are doing lazy LRU updates to minimise lock contention so the
704  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
705  * with this flag set because they are the inodes that are out of order.
706  */
707 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
708 {
709 	LIST_HEAD(freeable);
710 	int nr_scanned;
711 	unsigned long reap = 0;
712 
713 	spin_lock(&sb->s_inode_lru_lock);
714 	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
715 		struct inode *inode;
716 
717 		if (list_empty(&sb->s_inode_lru))
718 			break;
719 
720 		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
721 
722 		/*
723 		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
724 		 * so use a trylock. If we fail to get the lock, just move the
725 		 * inode to the back of the list so we don't spin on it.
726 		 */
727 		if (!spin_trylock(&inode->i_lock)) {
728 			list_move_tail(&inode->i_lru, &sb->s_inode_lru);
729 			continue;
730 		}
731 
732 		/*
733 		 * Referenced or dirty inodes are still in use. Give them
734 		 * another pass through the LRU as we canot reclaim them now.
735 		 */
736 		if (atomic_read(&inode->i_count) ||
737 		    (inode->i_state & ~I_REFERENCED)) {
738 			list_del_init(&inode->i_lru);
739 			spin_unlock(&inode->i_lock);
740 			sb->s_nr_inodes_unused--;
741 			this_cpu_dec(nr_unused);
742 			continue;
743 		}
744 
745 		/* recently referenced inodes get one more pass */
746 		if (inode->i_state & I_REFERENCED) {
747 			inode->i_state &= ~I_REFERENCED;
748 			list_move(&inode->i_lru, &sb->s_inode_lru);
749 			spin_unlock(&inode->i_lock);
750 			continue;
751 		}
752 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
753 			__iget(inode);
754 			spin_unlock(&inode->i_lock);
755 			spin_unlock(&sb->s_inode_lru_lock);
756 			if (remove_inode_buffers(inode))
757 				reap += invalidate_mapping_pages(&inode->i_data,
758 								0, -1);
759 			iput(inode);
760 			spin_lock(&sb->s_inode_lru_lock);
761 
762 			if (inode != list_entry(sb->s_inode_lru.next,
763 						struct inode, i_lru))
764 				continue;	/* wrong inode or list_empty */
765 			/* avoid lock inversions with trylock */
766 			if (!spin_trylock(&inode->i_lock))
767 				continue;
768 			if (!can_unuse(inode)) {
769 				spin_unlock(&inode->i_lock);
770 				continue;
771 			}
772 		}
773 		WARN_ON(inode->i_state & I_NEW);
774 		inode->i_state |= I_FREEING;
775 		spin_unlock(&inode->i_lock);
776 
777 		list_move(&inode->i_lru, &freeable);
778 		sb->s_nr_inodes_unused--;
779 		this_cpu_dec(nr_unused);
780 	}
781 	if (current_is_kswapd())
782 		__count_vm_events(KSWAPD_INODESTEAL, reap);
783 	else
784 		__count_vm_events(PGINODESTEAL, reap);
785 	spin_unlock(&sb->s_inode_lru_lock);
786 	if (current->reclaim_state)
787 		current->reclaim_state->reclaimed_slab += reap;
788 
789 	dispose_list(&freeable);
790 }
791 
792 static void __wait_on_freeing_inode(struct inode *inode);
793 /*
794  * Called with the inode lock held.
795  */
796 static struct inode *find_inode(struct super_block *sb,
797 				struct hlist_head *head,
798 				int (*test)(struct inode *, void *),
799 				void *data)
800 {
801 	struct hlist_node *node;
802 	struct inode *inode = NULL;
803 
804 repeat:
805 	hlist_for_each_entry(inode, node, head, i_hash) {
806 		spin_lock(&inode->i_lock);
807 		if (inode->i_sb != sb) {
808 			spin_unlock(&inode->i_lock);
809 			continue;
810 		}
811 		if (!test(inode, data)) {
812 			spin_unlock(&inode->i_lock);
813 			continue;
814 		}
815 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
816 			__wait_on_freeing_inode(inode);
817 			goto repeat;
818 		}
819 		__iget(inode);
820 		spin_unlock(&inode->i_lock);
821 		return inode;
822 	}
823 	return NULL;
824 }
825 
826 /*
827  * find_inode_fast is the fast path version of find_inode, see the comment at
828  * iget_locked for details.
829  */
830 static struct inode *find_inode_fast(struct super_block *sb,
831 				struct hlist_head *head, unsigned long ino)
832 {
833 	struct hlist_node *node;
834 	struct inode *inode = NULL;
835 
836 repeat:
837 	hlist_for_each_entry(inode, node, head, i_hash) {
838 		spin_lock(&inode->i_lock);
839 		if (inode->i_ino != ino) {
840 			spin_unlock(&inode->i_lock);
841 			continue;
842 		}
843 		if (inode->i_sb != sb) {
844 			spin_unlock(&inode->i_lock);
845 			continue;
846 		}
847 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
848 			__wait_on_freeing_inode(inode);
849 			goto repeat;
850 		}
851 		__iget(inode);
852 		spin_unlock(&inode->i_lock);
853 		return inode;
854 	}
855 	return NULL;
856 }
857 
858 /*
859  * Each cpu owns a range of LAST_INO_BATCH numbers.
860  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
861  * to renew the exhausted range.
862  *
863  * This does not significantly increase overflow rate because every CPU can
864  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
865  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
866  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
867  * overflow rate by 2x, which does not seem too significant.
868  *
869  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
870  * error if st_ino won't fit in target struct field. Use 32bit counter
871  * here to attempt to avoid that.
872  */
873 #define LAST_INO_BATCH 1024
874 static DEFINE_PER_CPU(unsigned int, last_ino);
875 
876 unsigned int get_next_ino(void)
877 {
878 	unsigned int *p = &get_cpu_var(last_ino);
879 	unsigned int res = *p;
880 
881 #ifdef CONFIG_SMP
882 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
883 		static atomic_t shared_last_ino;
884 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
885 
886 		res = next - LAST_INO_BATCH;
887 	}
888 #endif
889 
890 	*p = ++res;
891 	put_cpu_var(last_ino);
892 	return res;
893 }
894 EXPORT_SYMBOL(get_next_ino);
895 
896 /**
897  *	new_inode_pseudo 	- obtain an inode
898  *	@sb: superblock
899  *
900  *	Allocates a new inode for given superblock.
901  *	Inode wont be chained in superblock s_inodes list
902  *	This means :
903  *	- fs can't be unmount
904  *	- quotas, fsnotify, writeback can't work
905  */
906 struct inode *new_inode_pseudo(struct super_block *sb)
907 {
908 	struct inode *inode = alloc_inode(sb);
909 
910 	if (inode) {
911 		spin_lock(&inode->i_lock);
912 		inode->i_state = 0;
913 		spin_unlock(&inode->i_lock);
914 		INIT_LIST_HEAD(&inode->i_sb_list);
915 	}
916 	return inode;
917 }
918 
919 /**
920  *	new_inode 	- obtain an inode
921  *	@sb: superblock
922  *
923  *	Allocates a new inode for given superblock. The default gfp_mask
924  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
925  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
926  *	for the page cache are not reclaimable or migratable,
927  *	mapping_set_gfp_mask() must be called with suitable flags on the
928  *	newly created inode's mapping
929  *
930  */
931 struct inode *new_inode(struct super_block *sb)
932 {
933 	struct inode *inode;
934 
935 	spin_lock_prefetch(&inode_sb_list_lock);
936 
937 	inode = new_inode_pseudo(sb);
938 	if (inode)
939 		inode_sb_list_add(inode);
940 	return inode;
941 }
942 EXPORT_SYMBOL(new_inode);
943 
944 #ifdef CONFIG_DEBUG_LOCK_ALLOC
945 void lockdep_annotate_inode_mutex_key(struct inode *inode)
946 {
947 	if (S_ISDIR(inode->i_mode)) {
948 		struct file_system_type *type = inode->i_sb->s_type;
949 
950 		/* Set new key only if filesystem hasn't already changed it */
951 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
952 			/*
953 			 * ensure nobody is actually holding i_mutex
954 			 */
955 			mutex_destroy(&inode->i_mutex);
956 			mutex_init(&inode->i_mutex);
957 			lockdep_set_class(&inode->i_mutex,
958 					  &type->i_mutex_dir_key);
959 		}
960 	}
961 }
962 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
963 #endif
964 
965 /**
966  * unlock_new_inode - clear the I_NEW state and wake up any waiters
967  * @inode:	new inode to unlock
968  *
969  * Called when the inode is fully initialised to clear the new state of the
970  * inode and wake up anyone waiting for the inode to finish initialisation.
971  */
972 void unlock_new_inode(struct inode *inode)
973 {
974 	lockdep_annotate_inode_mutex_key(inode);
975 	spin_lock(&inode->i_lock);
976 	WARN_ON(!(inode->i_state & I_NEW));
977 	inode->i_state &= ~I_NEW;
978 	smp_mb();
979 	wake_up_bit(&inode->i_state, __I_NEW);
980 	spin_unlock(&inode->i_lock);
981 }
982 EXPORT_SYMBOL(unlock_new_inode);
983 
984 /**
985  * iget5_locked - obtain an inode from a mounted file system
986  * @sb:		super block of file system
987  * @hashval:	hash value (usually inode number) to get
988  * @test:	callback used for comparisons between inodes
989  * @set:	callback used to initialize a new struct inode
990  * @data:	opaque data pointer to pass to @test and @set
991  *
992  * Search for the inode specified by @hashval and @data in the inode cache,
993  * and if present it is return it with an increased reference count. This is
994  * a generalized version of iget_locked() for file systems where the inode
995  * number is not sufficient for unique identification of an inode.
996  *
997  * If the inode is not in cache, allocate a new inode and return it locked,
998  * hashed, and with the I_NEW flag set. The file system gets to fill it in
999  * before unlocking it via unlock_new_inode().
1000  *
1001  * Note both @test and @set are called with the inode_hash_lock held, so can't
1002  * sleep.
1003  */
1004 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1005 		int (*test)(struct inode *, void *),
1006 		int (*set)(struct inode *, void *), void *data)
1007 {
1008 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1009 	struct inode *inode;
1010 
1011 	spin_lock(&inode_hash_lock);
1012 	inode = find_inode(sb, head, test, data);
1013 	spin_unlock(&inode_hash_lock);
1014 
1015 	if (inode) {
1016 		wait_on_inode(inode);
1017 		return inode;
1018 	}
1019 
1020 	inode = alloc_inode(sb);
1021 	if (inode) {
1022 		struct inode *old;
1023 
1024 		spin_lock(&inode_hash_lock);
1025 		/* We released the lock, so.. */
1026 		old = find_inode(sb, head, test, data);
1027 		if (!old) {
1028 			if (set(inode, data))
1029 				goto set_failed;
1030 
1031 			spin_lock(&inode->i_lock);
1032 			inode->i_state = I_NEW;
1033 			hlist_add_head(&inode->i_hash, head);
1034 			spin_unlock(&inode->i_lock);
1035 			inode_sb_list_add(inode);
1036 			spin_unlock(&inode_hash_lock);
1037 
1038 			/* Return the locked inode with I_NEW set, the
1039 			 * caller is responsible for filling in the contents
1040 			 */
1041 			return inode;
1042 		}
1043 
1044 		/*
1045 		 * Uhhuh, somebody else created the same inode under
1046 		 * us. Use the old inode instead of the one we just
1047 		 * allocated.
1048 		 */
1049 		spin_unlock(&inode_hash_lock);
1050 		destroy_inode(inode);
1051 		inode = old;
1052 		wait_on_inode(inode);
1053 	}
1054 	return inode;
1055 
1056 set_failed:
1057 	spin_unlock(&inode_hash_lock);
1058 	destroy_inode(inode);
1059 	return NULL;
1060 }
1061 EXPORT_SYMBOL(iget5_locked);
1062 
1063 /**
1064  * iget_locked - obtain an inode from a mounted file system
1065  * @sb:		super block of file system
1066  * @ino:	inode number to get
1067  *
1068  * Search for the inode specified by @ino in the inode cache and if present
1069  * return it with an increased reference count. This is for file systems
1070  * where the inode number is sufficient for unique identification of an inode.
1071  *
1072  * If the inode is not in cache, allocate a new inode and return it locked,
1073  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1074  * before unlocking it via unlock_new_inode().
1075  */
1076 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1077 {
1078 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1079 	struct inode *inode;
1080 
1081 	spin_lock(&inode_hash_lock);
1082 	inode = find_inode_fast(sb, head, ino);
1083 	spin_unlock(&inode_hash_lock);
1084 	if (inode) {
1085 		wait_on_inode(inode);
1086 		return inode;
1087 	}
1088 
1089 	inode = alloc_inode(sb);
1090 	if (inode) {
1091 		struct inode *old;
1092 
1093 		spin_lock(&inode_hash_lock);
1094 		/* We released the lock, so.. */
1095 		old = find_inode_fast(sb, head, ino);
1096 		if (!old) {
1097 			inode->i_ino = ino;
1098 			spin_lock(&inode->i_lock);
1099 			inode->i_state = I_NEW;
1100 			hlist_add_head(&inode->i_hash, head);
1101 			spin_unlock(&inode->i_lock);
1102 			inode_sb_list_add(inode);
1103 			spin_unlock(&inode_hash_lock);
1104 
1105 			/* Return the locked inode with I_NEW set, the
1106 			 * caller is responsible for filling in the contents
1107 			 */
1108 			return inode;
1109 		}
1110 
1111 		/*
1112 		 * Uhhuh, somebody else created the same inode under
1113 		 * us. Use the old inode instead of the one we just
1114 		 * allocated.
1115 		 */
1116 		spin_unlock(&inode_hash_lock);
1117 		destroy_inode(inode);
1118 		inode = old;
1119 		wait_on_inode(inode);
1120 	}
1121 	return inode;
1122 }
1123 EXPORT_SYMBOL(iget_locked);
1124 
1125 /*
1126  * search the inode cache for a matching inode number.
1127  * If we find one, then the inode number we are trying to
1128  * allocate is not unique and so we should not use it.
1129  *
1130  * Returns 1 if the inode number is unique, 0 if it is not.
1131  */
1132 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1133 {
1134 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1135 	struct hlist_node *node;
1136 	struct inode *inode;
1137 
1138 	spin_lock(&inode_hash_lock);
1139 	hlist_for_each_entry(inode, node, b, i_hash) {
1140 		if (inode->i_ino == ino && inode->i_sb == sb) {
1141 			spin_unlock(&inode_hash_lock);
1142 			return 0;
1143 		}
1144 	}
1145 	spin_unlock(&inode_hash_lock);
1146 
1147 	return 1;
1148 }
1149 
1150 /**
1151  *	iunique - get a unique inode number
1152  *	@sb: superblock
1153  *	@max_reserved: highest reserved inode number
1154  *
1155  *	Obtain an inode number that is unique on the system for a given
1156  *	superblock. This is used by file systems that have no natural
1157  *	permanent inode numbering system. An inode number is returned that
1158  *	is higher than the reserved limit but unique.
1159  *
1160  *	BUGS:
1161  *	With a large number of inodes live on the file system this function
1162  *	currently becomes quite slow.
1163  */
1164 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1165 {
1166 	/*
1167 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1168 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1169 	 * here to attempt to avoid that.
1170 	 */
1171 	static DEFINE_SPINLOCK(iunique_lock);
1172 	static unsigned int counter;
1173 	ino_t res;
1174 
1175 	spin_lock(&iunique_lock);
1176 	do {
1177 		if (counter <= max_reserved)
1178 			counter = max_reserved + 1;
1179 		res = counter++;
1180 	} while (!test_inode_iunique(sb, res));
1181 	spin_unlock(&iunique_lock);
1182 
1183 	return res;
1184 }
1185 EXPORT_SYMBOL(iunique);
1186 
1187 struct inode *igrab(struct inode *inode)
1188 {
1189 	spin_lock(&inode->i_lock);
1190 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1191 		__iget(inode);
1192 		spin_unlock(&inode->i_lock);
1193 	} else {
1194 		spin_unlock(&inode->i_lock);
1195 		/*
1196 		 * Handle the case where s_op->clear_inode is not been
1197 		 * called yet, and somebody is calling igrab
1198 		 * while the inode is getting freed.
1199 		 */
1200 		inode = NULL;
1201 	}
1202 	return inode;
1203 }
1204 EXPORT_SYMBOL(igrab);
1205 
1206 /**
1207  * ilookup5_nowait - search for an inode in the inode cache
1208  * @sb:		super block of file system to search
1209  * @hashval:	hash value (usually inode number) to search for
1210  * @test:	callback used for comparisons between inodes
1211  * @data:	opaque data pointer to pass to @test
1212  *
1213  * Search for the inode specified by @hashval and @data in the inode cache.
1214  * If the inode is in the cache, the inode is returned with an incremented
1215  * reference count.
1216  *
1217  * Note: I_NEW is not waited upon so you have to be very careful what you do
1218  * with the returned inode.  You probably should be using ilookup5() instead.
1219  *
1220  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1221  */
1222 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1223 		int (*test)(struct inode *, void *), void *data)
1224 {
1225 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1226 	struct inode *inode;
1227 
1228 	spin_lock(&inode_hash_lock);
1229 	inode = find_inode(sb, head, test, data);
1230 	spin_unlock(&inode_hash_lock);
1231 
1232 	return inode;
1233 }
1234 EXPORT_SYMBOL(ilookup5_nowait);
1235 
1236 /**
1237  * ilookup5 - search for an inode in the inode cache
1238  * @sb:		super block of file system to search
1239  * @hashval:	hash value (usually inode number) to search for
1240  * @test:	callback used for comparisons between inodes
1241  * @data:	opaque data pointer to pass to @test
1242  *
1243  * Search for the inode specified by @hashval and @data in the inode cache,
1244  * and if the inode is in the cache, return the inode with an incremented
1245  * reference count.  Waits on I_NEW before returning the inode.
1246  * returned with an incremented reference count.
1247  *
1248  * This is a generalized version of ilookup() for file systems where the
1249  * inode number is not sufficient for unique identification of an inode.
1250  *
1251  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1252  */
1253 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1254 		int (*test)(struct inode *, void *), void *data)
1255 {
1256 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1257 
1258 	if (inode)
1259 		wait_on_inode(inode);
1260 	return inode;
1261 }
1262 EXPORT_SYMBOL(ilookup5);
1263 
1264 /**
1265  * ilookup - search for an inode in the inode cache
1266  * @sb:		super block of file system to search
1267  * @ino:	inode number to search for
1268  *
1269  * Search for the inode @ino in the inode cache, and if the inode is in the
1270  * cache, the inode is returned with an incremented reference count.
1271  */
1272 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1273 {
1274 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1275 	struct inode *inode;
1276 
1277 	spin_lock(&inode_hash_lock);
1278 	inode = find_inode_fast(sb, head, ino);
1279 	spin_unlock(&inode_hash_lock);
1280 
1281 	if (inode)
1282 		wait_on_inode(inode);
1283 	return inode;
1284 }
1285 EXPORT_SYMBOL(ilookup);
1286 
1287 int insert_inode_locked(struct inode *inode)
1288 {
1289 	struct super_block *sb = inode->i_sb;
1290 	ino_t ino = inode->i_ino;
1291 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1292 
1293 	while (1) {
1294 		struct hlist_node *node;
1295 		struct inode *old = NULL;
1296 		spin_lock(&inode_hash_lock);
1297 		hlist_for_each_entry(old, node, head, i_hash) {
1298 			if (old->i_ino != ino)
1299 				continue;
1300 			if (old->i_sb != sb)
1301 				continue;
1302 			spin_lock(&old->i_lock);
1303 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1304 				spin_unlock(&old->i_lock);
1305 				continue;
1306 			}
1307 			break;
1308 		}
1309 		if (likely(!node)) {
1310 			spin_lock(&inode->i_lock);
1311 			inode->i_state |= I_NEW;
1312 			hlist_add_head(&inode->i_hash, head);
1313 			spin_unlock(&inode->i_lock);
1314 			spin_unlock(&inode_hash_lock);
1315 			return 0;
1316 		}
1317 		__iget(old);
1318 		spin_unlock(&old->i_lock);
1319 		spin_unlock(&inode_hash_lock);
1320 		wait_on_inode(old);
1321 		if (unlikely(!inode_unhashed(old))) {
1322 			iput(old);
1323 			return -EBUSY;
1324 		}
1325 		iput(old);
1326 	}
1327 }
1328 EXPORT_SYMBOL(insert_inode_locked);
1329 
1330 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1331 		int (*test)(struct inode *, void *), void *data)
1332 {
1333 	struct super_block *sb = inode->i_sb;
1334 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1335 
1336 	while (1) {
1337 		struct hlist_node *node;
1338 		struct inode *old = NULL;
1339 
1340 		spin_lock(&inode_hash_lock);
1341 		hlist_for_each_entry(old, node, head, i_hash) {
1342 			if (old->i_sb != sb)
1343 				continue;
1344 			if (!test(old, data))
1345 				continue;
1346 			spin_lock(&old->i_lock);
1347 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1348 				spin_unlock(&old->i_lock);
1349 				continue;
1350 			}
1351 			break;
1352 		}
1353 		if (likely(!node)) {
1354 			spin_lock(&inode->i_lock);
1355 			inode->i_state |= I_NEW;
1356 			hlist_add_head(&inode->i_hash, head);
1357 			spin_unlock(&inode->i_lock);
1358 			spin_unlock(&inode_hash_lock);
1359 			return 0;
1360 		}
1361 		__iget(old);
1362 		spin_unlock(&old->i_lock);
1363 		spin_unlock(&inode_hash_lock);
1364 		wait_on_inode(old);
1365 		if (unlikely(!inode_unhashed(old))) {
1366 			iput(old);
1367 			return -EBUSY;
1368 		}
1369 		iput(old);
1370 	}
1371 }
1372 EXPORT_SYMBOL(insert_inode_locked4);
1373 
1374 
1375 int generic_delete_inode(struct inode *inode)
1376 {
1377 	return 1;
1378 }
1379 EXPORT_SYMBOL(generic_delete_inode);
1380 
1381 /*
1382  * Called when we're dropping the last reference
1383  * to an inode.
1384  *
1385  * Call the FS "drop_inode()" function, defaulting to
1386  * the legacy UNIX filesystem behaviour.  If it tells
1387  * us to evict inode, do so.  Otherwise, retain inode
1388  * in cache if fs is alive, sync and evict if fs is
1389  * shutting down.
1390  */
1391 static void iput_final(struct inode *inode)
1392 {
1393 	struct super_block *sb = inode->i_sb;
1394 	const struct super_operations *op = inode->i_sb->s_op;
1395 	int drop;
1396 
1397 	WARN_ON(inode->i_state & I_NEW);
1398 
1399 	if (op->drop_inode)
1400 		drop = op->drop_inode(inode);
1401 	else
1402 		drop = generic_drop_inode(inode);
1403 
1404 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1405 		inode->i_state |= I_REFERENCED;
1406 		inode_add_lru(inode);
1407 		spin_unlock(&inode->i_lock);
1408 		return;
1409 	}
1410 
1411 	if (!drop) {
1412 		inode->i_state |= I_WILL_FREE;
1413 		spin_unlock(&inode->i_lock);
1414 		write_inode_now(inode, 1);
1415 		spin_lock(&inode->i_lock);
1416 		WARN_ON(inode->i_state & I_NEW);
1417 		inode->i_state &= ~I_WILL_FREE;
1418 	}
1419 
1420 	inode->i_state |= I_FREEING;
1421 	if (!list_empty(&inode->i_lru))
1422 		inode_lru_list_del(inode);
1423 	spin_unlock(&inode->i_lock);
1424 
1425 	evict(inode);
1426 }
1427 
1428 /**
1429  *	iput	- put an inode
1430  *	@inode: inode to put
1431  *
1432  *	Puts an inode, dropping its usage count. If the inode use count hits
1433  *	zero, the inode is then freed and may also be destroyed.
1434  *
1435  *	Consequently, iput() can sleep.
1436  */
1437 void iput(struct inode *inode)
1438 {
1439 	if (inode) {
1440 		BUG_ON(inode->i_state & I_CLEAR);
1441 
1442 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1443 			iput_final(inode);
1444 	}
1445 }
1446 EXPORT_SYMBOL(iput);
1447 
1448 /**
1449  *	bmap	- find a block number in a file
1450  *	@inode: inode of file
1451  *	@block: block to find
1452  *
1453  *	Returns the block number on the device holding the inode that
1454  *	is the disk block number for the block of the file requested.
1455  *	That is, asked for block 4 of inode 1 the function will return the
1456  *	disk block relative to the disk start that holds that block of the
1457  *	file.
1458  */
1459 sector_t bmap(struct inode *inode, sector_t block)
1460 {
1461 	sector_t res = 0;
1462 	if (inode->i_mapping->a_ops->bmap)
1463 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1464 	return res;
1465 }
1466 EXPORT_SYMBOL(bmap);
1467 
1468 /*
1469  * With relative atime, only update atime if the previous atime is
1470  * earlier than either the ctime or mtime or if at least a day has
1471  * passed since the last atime update.
1472  */
1473 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1474 			     struct timespec now)
1475 {
1476 
1477 	if (!(mnt->mnt_flags & MNT_RELATIME))
1478 		return 1;
1479 	/*
1480 	 * Is mtime younger than atime? If yes, update atime:
1481 	 */
1482 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1483 		return 1;
1484 	/*
1485 	 * Is ctime younger than atime? If yes, update atime:
1486 	 */
1487 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1488 		return 1;
1489 
1490 	/*
1491 	 * Is the previous atime value older than a day? If yes,
1492 	 * update atime:
1493 	 */
1494 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1495 		return 1;
1496 	/*
1497 	 * Good, we can skip the atime update:
1498 	 */
1499 	return 0;
1500 }
1501 
1502 /*
1503  * This does the actual work of updating an inodes time or version.  Must have
1504  * had called mnt_want_write() before calling this.
1505  */
1506 static int update_time(struct inode *inode, struct timespec *time, int flags)
1507 {
1508 	if (inode->i_op->update_time)
1509 		return inode->i_op->update_time(inode, time, flags);
1510 
1511 	if (flags & S_ATIME)
1512 		inode->i_atime = *time;
1513 	if (flags & S_VERSION)
1514 		inode_inc_iversion(inode);
1515 	if (flags & S_CTIME)
1516 		inode->i_ctime = *time;
1517 	if (flags & S_MTIME)
1518 		inode->i_mtime = *time;
1519 	mark_inode_dirty_sync(inode);
1520 	return 0;
1521 }
1522 
1523 /**
1524  *	touch_atime	-	update the access time
1525  *	@path: the &struct path to update
1526  *
1527  *	Update the accessed time on an inode and mark it for writeback.
1528  *	This function automatically handles read only file systems and media,
1529  *	as well as the "noatime" flag and inode specific "noatime" markers.
1530  */
1531 void touch_atime(struct path *path)
1532 {
1533 	struct vfsmount *mnt = path->mnt;
1534 	struct inode *inode = path->dentry->d_inode;
1535 	struct timespec now;
1536 
1537 	if (inode->i_flags & S_NOATIME)
1538 		return;
1539 	if (IS_NOATIME(inode))
1540 		return;
1541 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1542 		return;
1543 
1544 	if (mnt->mnt_flags & MNT_NOATIME)
1545 		return;
1546 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1547 		return;
1548 
1549 	now = current_fs_time(inode->i_sb);
1550 
1551 	if (!relatime_need_update(mnt, inode, now))
1552 		return;
1553 
1554 	if (timespec_equal(&inode->i_atime, &now))
1555 		return;
1556 
1557 	if (!sb_start_write_trylock(inode->i_sb))
1558 		return;
1559 
1560 	if (__mnt_want_write(mnt))
1561 		goto skip_update;
1562 	/*
1563 	 * File systems can error out when updating inodes if they need to
1564 	 * allocate new space to modify an inode (such is the case for
1565 	 * Btrfs), but since we touch atime while walking down the path we
1566 	 * really don't care if we failed to update the atime of the file,
1567 	 * so just ignore the return value.
1568 	 * We may also fail on filesystems that have the ability to make parts
1569 	 * of the fs read only, e.g. subvolumes in Btrfs.
1570 	 */
1571 	update_time(inode, &now, S_ATIME);
1572 	__mnt_drop_write(mnt);
1573 skip_update:
1574 	sb_end_write(inode->i_sb);
1575 }
1576 EXPORT_SYMBOL(touch_atime);
1577 
1578 /*
1579  * The logic we want is
1580  *
1581  *	if suid or (sgid and xgrp)
1582  *		remove privs
1583  */
1584 int should_remove_suid(struct dentry *dentry)
1585 {
1586 	umode_t mode = dentry->d_inode->i_mode;
1587 	int kill = 0;
1588 
1589 	/* suid always must be killed */
1590 	if (unlikely(mode & S_ISUID))
1591 		kill = ATTR_KILL_SUID;
1592 
1593 	/*
1594 	 * sgid without any exec bits is just a mandatory locking mark; leave
1595 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1596 	 */
1597 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1598 		kill |= ATTR_KILL_SGID;
1599 
1600 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1601 		return kill;
1602 
1603 	return 0;
1604 }
1605 EXPORT_SYMBOL(should_remove_suid);
1606 
1607 static int __remove_suid(struct dentry *dentry, int kill)
1608 {
1609 	struct iattr newattrs;
1610 
1611 	newattrs.ia_valid = ATTR_FORCE | kill;
1612 	return notify_change(dentry, &newattrs);
1613 }
1614 
1615 int file_remove_suid(struct file *file)
1616 {
1617 	struct dentry *dentry = file->f_path.dentry;
1618 	struct inode *inode = dentry->d_inode;
1619 	int killsuid;
1620 	int killpriv;
1621 	int error = 0;
1622 
1623 	/* Fast path for nothing security related */
1624 	if (IS_NOSEC(inode))
1625 		return 0;
1626 
1627 	killsuid = should_remove_suid(dentry);
1628 	killpriv = security_inode_need_killpriv(dentry);
1629 
1630 	if (killpriv < 0)
1631 		return killpriv;
1632 	if (killpriv)
1633 		error = security_inode_killpriv(dentry);
1634 	if (!error && killsuid)
1635 		error = __remove_suid(dentry, killsuid);
1636 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1637 		inode->i_flags |= S_NOSEC;
1638 
1639 	return error;
1640 }
1641 EXPORT_SYMBOL(file_remove_suid);
1642 
1643 /**
1644  *	file_update_time	-	update mtime and ctime time
1645  *	@file: file accessed
1646  *
1647  *	Update the mtime and ctime members of an inode and mark the inode
1648  *	for writeback.  Note that this function is meant exclusively for
1649  *	usage in the file write path of filesystems, and filesystems may
1650  *	choose to explicitly ignore update via this function with the
1651  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1652  *	timestamps are handled by the server.  This can return an error for
1653  *	file systems who need to allocate space in order to update an inode.
1654  */
1655 
1656 int file_update_time(struct file *file)
1657 {
1658 	struct inode *inode = file->f_path.dentry->d_inode;
1659 	struct timespec now;
1660 	int sync_it = 0;
1661 	int ret;
1662 
1663 	/* First try to exhaust all avenues to not sync */
1664 	if (IS_NOCMTIME(inode))
1665 		return 0;
1666 
1667 	now = current_fs_time(inode->i_sb);
1668 	if (!timespec_equal(&inode->i_mtime, &now))
1669 		sync_it = S_MTIME;
1670 
1671 	if (!timespec_equal(&inode->i_ctime, &now))
1672 		sync_it |= S_CTIME;
1673 
1674 	if (IS_I_VERSION(inode))
1675 		sync_it |= S_VERSION;
1676 
1677 	if (!sync_it)
1678 		return 0;
1679 
1680 	/* Finally allowed to write? Takes lock. */
1681 	if (__mnt_want_write_file(file))
1682 		return 0;
1683 
1684 	ret = update_time(inode, &now, sync_it);
1685 	__mnt_drop_write_file(file);
1686 
1687 	return ret;
1688 }
1689 EXPORT_SYMBOL(file_update_time);
1690 
1691 int inode_needs_sync(struct inode *inode)
1692 {
1693 	if (IS_SYNC(inode))
1694 		return 1;
1695 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1696 		return 1;
1697 	return 0;
1698 }
1699 EXPORT_SYMBOL(inode_needs_sync);
1700 
1701 int inode_wait(void *word)
1702 {
1703 	schedule();
1704 	return 0;
1705 }
1706 EXPORT_SYMBOL(inode_wait);
1707 
1708 /*
1709  * If we try to find an inode in the inode hash while it is being
1710  * deleted, we have to wait until the filesystem completes its
1711  * deletion before reporting that it isn't found.  This function waits
1712  * until the deletion _might_ have completed.  Callers are responsible
1713  * to recheck inode state.
1714  *
1715  * It doesn't matter if I_NEW is not set initially, a call to
1716  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1717  * will DTRT.
1718  */
1719 static void __wait_on_freeing_inode(struct inode *inode)
1720 {
1721 	wait_queue_head_t *wq;
1722 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1723 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1724 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1725 	spin_unlock(&inode->i_lock);
1726 	spin_unlock(&inode_hash_lock);
1727 	schedule();
1728 	finish_wait(wq, &wait.wait);
1729 	spin_lock(&inode_hash_lock);
1730 }
1731 
1732 static __initdata unsigned long ihash_entries;
1733 static int __init set_ihash_entries(char *str)
1734 {
1735 	if (!str)
1736 		return 0;
1737 	ihash_entries = simple_strtoul(str, &str, 0);
1738 	return 1;
1739 }
1740 __setup("ihash_entries=", set_ihash_entries);
1741 
1742 /*
1743  * Initialize the waitqueues and inode hash table.
1744  */
1745 void __init inode_init_early(void)
1746 {
1747 	unsigned int loop;
1748 
1749 	/* If hashes are distributed across NUMA nodes, defer
1750 	 * hash allocation until vmalloc space is available.
1751 	 */
1752 	if (hashdist)
1753 		return;
1754 
1755 	inode_hashtable =
1756 		alloc_large_system_hash("Inode-cache",
1757 					sizeof(struct hlist_head),
1758 					ihash_entries,
1759 					14,
1760 					HASH_EARLY,
1761 					&i_hash_shift,
1762 					&i_hash_mask,
1763 					0,
1764 					0);
1765 
1766 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1767 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1768 }
1769 
1770 void __init inode_init(void)
1771 {
1772 	unsigned int loop;
1773 
1774 	/* inode slab cache */
1775 	inode_cachep = kmem_cache_create("inode_cache",
1776 					 sizeof(struct inode),
1777 					 0,
1778 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1779 					 SLAB_MEM_SPREAD),
1780 					 init_once);
1781 
1782 	/* Hash may have been set up in inode_init_early */
1783 	if (!hashdist)
1784 		return;
1785 
1786 	inode_hashtable =
1787 		alloc_large_system_hash("Inode-cache",
1788 					sizeof(struct hlist_head),
1789 					ihash_entries,
1790 					14,
1791 					0,
1792 					&i_hash_shift,
1793 					&i_hash_mask,
1794 					0,
1795 					0);
1796 
1797 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1798 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1799 }
1800 
1801 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1802 {
1803 	inode->i_mode = mode;
1804 	if (S_ISCHR(mode)) {
1805 		inode->i_fop = &def_chr_fops;
1806 		inode->i_rdev = rdev;
1807 	} else if (S_ISBLK(mode)) {
1808 		inode->i_fop = &def_blk_fops;
1809 		inode->i_rdev = rdev;
1810 	} else if (S_ISFIFO(mode))
1811 		inode->i_fop = &def_fifo_fops;
1812 	else if (S_ISSOCK(mode))
1813 		inode->i_fop = &bad_sock_fops;
1814 	else
1815 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1816 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1817 				  inode->i_ino);
1818 }
1819 EXPORT_SYMBOL(init_special_inode);
1820 
1821 /**
1822  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1823  * @inode: New inode
1824  * @dir: Directory inode
1825  * @mode: mode of the new inode
1826  */
1827 void inode_init_owner(struct inode *inode, const struct inode *dir,
1828 			umode_t mode)
1829 {
1830 	inode->i_uid = current_fsuid();
1831 	if (dir && dir->i_mode & S_ISGID) {
1832 		inode->i_gid = dir->i_gid;
1833 		if (S_ISDIR(mode))
1834 			mode |= S_ISGID;
1835 	} else
1836 		inode->i_gid = current_fsgid();
1837 	inode->i_mode = mode;
1838 }
1839 EXPORT_SYMBOL(inode_init_owner);
1840 
1841 /**
1842  * inode_owner_or_capable - check current task permissions to inode
1843  * @inode: inode being checked
1844  *
1845  * Return true if current either has CAP_FOWNER to the inode, or
1846  * owns the file.
1847  */
1848 bool inode_owner_or_capable(const struct inode *inode)
1849 {
1850 	if (uid_eq(current_fsuid(), inode->i_uid))
1851 		return true;
1852 	if (inode_capable(inode, CAP_FOWNER))
1853 		return true;
1854 	return false;
1855 }
1856 EXPORT_SYMBOL(inode_owner_or_capable);
1857 
1858 /*
1859  * Direct i/o helper functions
1860  */
1861 static void __inode_dio_wait(struct inode *inode)
1862 {
1863 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1864 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1865 
1866 	do {
1867 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1868 		if (atomic_read(&inode->i_dio_count))
1869 			schedule();
1870 	} while (atomic_read(&inode->i_dio_count));
1871 	finish_wait(wq, &q.wait);
1872 }
1873 
1874 /**
1875  * inode_dio_wait - wait for outstanding DIO requests to finish
1876  * @inode: inode to wait for
1877  *
1878  * Waits for all pending direct I/O requests to finish so that we can
1879  * proceed with a truncate or equivalent operation.
1880  *
1881  * Must be called under a lock that serializes taking new references
1882  * to i_dio_count, usually by inode->i_mutex.
1883  */
1884 void inode_dio_wait(struct inode *inode)
1885 {
1886 	if (atomic_read(&inode->i_dio_count))
1887 		__inode_dio_wait(inode);
1888 }
1889 EXPORT_SYMBOL(inode_dio_wait);
1890 
1891 /*
1892  * inode_dio_done - signal finish of a direct I/O requests
1893  * @inode: inode the direct I/O happens on
1894  *
1895  * This is called once we've finished processing a direct I/O request,
1896  * and is used to wake up callers waiting for direct I/O to be quiesced.
1897  */
1898 void inode_dio_done(struct inode *inode)
1899 {
1900 	if (atomic_dec_and_test(&inode->i_dio_count))
1901 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1902 }
1903 EXPORT_SYMBOL(inode_dio_done);
1904