1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/ima.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/mount.h> 26 #include <linux/async.h> 27 28 /* 29 * This is needed for the following functions: 30 * - inode_has_buffers 31 * - invalidate_inode_buffers 32 * - invalidate_bdev 33 * 34 * FIXME: remove all knowledge of the buffer layer from this file 35 */ 36 #include <linux/buffer_head.h> 37 38 /* 39 * New inode.c implementation. 40 * 41 * This implementation has the basic premise of trying 42 * to be extremely low-overhead and SMP-safe, yet be 43 * simple enough to be "obviously correct". 44 * 45 * Famous last words. 46 */ 47 48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 49 50 /* #define INODE_PARANOIA 1 */ 51 /* #define INODE_DEBUG 1 */ 52 53 /* 54 * Inode lookup is no longer as critical as it used to be: 55 * most of the lookups are going to be through the dcache. 56 */ 57 #define I_HASHBITS i_hash_shift 58 #define I_HASHMASK i_hash_mask 59 60 static unsigned int i_hash_mask __read_mostly; 61 static unsigned int i_hash_shift __read_mostly; 62 63 /* 64 * Each inode can be on two separate lists. One is 65 * the hash list of the inode, used for lookups. The 66 * other linked list is the "type" list: 67 * "in_use" - valid inode, i_count > 0, i_nlink > 0 68 * "dirty" - as "in_use" but also dirty 69 * "unused" - valid inode, i_count = 0 70 * 71 * A "dirty" list is maintained for each super block, 72 * allowing for low-overhead inode sync() operations. 73 */ 74 75 LIST_HEAD(inode_in_use); 76 LIST_HEAD(inode_unused); 77 static struct hlist_head *inode_hashtable __read_mostly; 78 79 /* 80 * A simple spinlock to protect the list manipulations. 81 * 82 * NOTE! You also have to own the lock if you change 83 * the i_state of an inode while it is in use.. 84 */ 85 DEFINE_SPINLOCK(inode_lock); 86 87 /* 88 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 89 * icache shrinking path, and the umount path. Without this exclusion, 90 * by the time prune_icache calls iput for the inode whose pages it has 91 * been invalidating, or by the time it calls clear_inode & destroy_inode 92 * from its final dispose_list, the struct super_block they refer to 93 * (for inode->i_sb->s_op) may already have been freed and reused. 94 */ 95 static DEFINE_MUTEX(iprune_mutex); 96 97 /* 98 * Statistics gathering.. 99 */ 100 struct inodes_stat_t inodes_stat; 101 102 static struct kmem_cache * inode_cachep __read_mostly; 103 104 static void wake_up_inode(struct inode *inode) 105 { 106 /* 107 * Prevent speculative execution through spin_unlock(&inode_lock); 108 */ 109 smp_mb(); 110 wake_up_bit(&inode->i_state, __I_LOCK); 111 } 112 113 /** 114 * inode_init_always - perform inode structure intialisation 115 * @sb: superblock inode belongs to 116 * @inode: inode to initialise 117 * 118 * These are initializations that need to be done on every inode 119 * allocation as the fields are not initialised by slab allocation. 120 */ 121 struct inode *inode_init_always(struct super_block *sb, struct inode *inode) 122 { 123 static const struct address_space_operations empty_aops; 124 static struct inode_operations empty_iops; 125 static const struct file_operations empty_fops; 126 127 struct address_space * const mapping = &inode->i_data; 128 129 inode->i_sb = sb; 130 inode->i_blkbits = sb->s_blocksize_bits; 131 inode->i_flags = 0; 132 atomic_set(&inode->i_count, 1); 133 inode->i_op = &empty_iops; 134 inode->i_fop = &empty_fops; 135 inode->i_nlink = 1; 136 inode->i_uid = 0; 137 inode->i_gid = 0; 138 atomic_set(&inode->i_writecount, 0); 139 inode->i_size = 0; 140 inode->i_blocks = 0; 141 inode->i_bytes = 0; 142 inode->i_generation = 0; 143 #ifdef CONFIG_QUOTA 144 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 145 #endif 146 inode->i_pipe = NULL; 147 inode->i_bdev = NULL; 148 inode->i_cdev = NULL; 149 inode->i_rdev = 0; 150 inode->dirtied_when = 0; 151 152 if (security_inode_alloc(inode)) 153 goto out_free_inode; 154 155 /* allocate and initialize an i_integrity */ 156 if (ima_inode_alloc(inode)) 157 goto out_free_security; 158 159 spin_lock_init(&inode->i_lock); 160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 161 162 mutex_init(&inode->i_mutex); 163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 164 165 init_rwsem(&inode->i_alloc_sem); 166 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 167 168 mapping->a_ops = &empty_aops; 169 mapping->host = inode; 170 mapping->flags = 0; 171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 172 mapping->assoc_mapping = NULL; 173 mapping->backing_dev_info = &default_backing_dev_info; 174 mapping->writeback_index = 0; 175 176 /* 177 * If the block_device provides a backing_dev_info for client 178 * inodes then use that. Otherwise the inode share the bdev's 179 * backing_dev_info. 180 */ 181 if (sb->s_bdev) { 182 struct backing_dev_info *bdi; 183 184 bdi = sb->s_bdev->bd_inode_backing_dev_info; 185 if (!bdi) 186 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 187 mapping->backing_dev_info = bdi; 188 } 189 inode->i_private = NULL; 190 inode->i_mapping = mapping; 191 192 return inode; 193 194 out_free_security: 195 security_inode_free(inode); 196 out_free_inode: 197 if (inode->i_sb->s_op->destroy_inode) 198 inode->i_sb->s_op->destroy_inode(inode); 199 else 200 kmem_cache_free(inode_cachep, (inode)); 201 return NULL; 202 } 203 EXPORT_SYMBOL(inode_init_always); 204 205 static struct inode *alloc_inode(struct super_block *sb) 206 { 207 struct inode *inode; 208 209 if (sb->s_op->alloc_inode) 210 inode = sb->s_op->alloc_inode(sb); 211 else 212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 213 214 if (inode) 215 return inode_init_always(sb, inode); 216 return NULL; 217 } 218 219 void destroy_inode(struct inode *inode) 220 { 221 BUG_ON(inode_has_buffers(inode)); 222 security_inode_free(inode); 223 if (inode->i_sb->s_op->destroy_inode) 224 inode->i_sb->s_op->destroy_inode(inode); 225 else 226 kmem_cache_free(inode_cachep, (inode)); 227 } 228 EXPORT_SYMBOL(destroy_inode); 229 230 231 /* 232 * These are initializations that only need to be done 233 * once, because the fields are idempotent across use 234 * of the inode, so let the slab aware of that. 235 */ 236 void inode_init_once(struct inode *inode) 237 { 238 memset(inode, 0, sizeof(*inode)); 239 INIT_HLIST_NODE(&inode->i_hash); 240 INIT_LIST_HEAD(&inode->i_dentry); 241 INIT_LIST_HEAD(&inode->i_devices); 242 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 243 spin_lock_init(&inode->i_data.tree_lock); 244 spin_lock_init(&inode->i_data.i_mmap_lock); 245 INIT_LIST_HEAD(&inode->i_data.private_list); 246 spin_lock_init(&inode->i_data.private_lock); 247 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 248 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 249 i_size_ordered_init(inode); 250 #ifdef CONFIG_INOTIFY 251 INIT_LIST_HEAD(&inode->inotify_watches); 252 mutex_init(&inode->inotify_mutex); 253 #endif 254 } 255 256 EXPORT_SYMBOL(inode_init_once); 257 258 static void init_once(void *foo) 259 { 260 struct inode * inode = (struct inode *) foo; 261 262 inode_init_once(inode); 263 } 264 265 /* 266 * inode_lock must be held 267 */ 268 void __iget(struct inode * inode) 269 { 270 if (atomic_read(&inode->i_count)) { 271 atomic_inc(&inode->i_count); 272 return; 273 } 274 atomic_inc(&inode->i_count); 275 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 276 list_move(&inode->i_list, &inode_in_use); 277 inodes_stat.nr_unused--; 278 } 279 280 /** 281 * clear_inode - clear an inode 282 * @inode: inode to clear 283 * 284 * This is called by the filesystem to tell us 285 * that the inode is no longer useful. We just 286 * terminate it with extreme prejudice. 287 */ 288 void clear_inode(struct inode *inode) 289 { 290 might_sleep(); 291 invalidate_inode_buffers(inode); 292 293 BUG_ON(inode->i_data.nrpages); 294 BUG_ON(!(inode->i_state & I_FREEING)); 295 BUG_ON(inode->i_state & I_CLEAR); 296 inode_sync_wait(inode); 297 DQUOT_DROP(inode); 298 if (inode->i_sb->s_op->clear_inode) 299 inode->i_sb->s_op->clear_inode(inode); 300 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 301 bd_forget(inode); 302 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 303 cd_forget(inode); 304 inode->i_state = I_CLEAR; 305 } 306 307 EXPORT_SYMBOL(clear_inode); 308 309 /* 310 * dispose_list - dispose of the contents of a local list 311 * @head: the head of the list to free 312 * 313 * Dispose-list gets a local list with local inodes in it, so it doesn't 314 * need to worry about list corruption and SMP locks. 315 */ 316 static void dispose_list(struct list_head *head) 317 { 318 int nr_disposed = 0; 319 320 while (!list_empty(head)) { 321 struct inode *inode; 322 323 inode = list_first_entry(head, struct inode, i_list); 324 list_del(&inode->i_list); 325 326 if (inode->i_data.nrpages) 327 truncate_inode_pages(&inode->i_data, 0); 328 clear_inode(inode); 329 330 spin_lock(&inode_lock); 331 hlist_del_init(&inode->i_hash); 332 list_del_init(&inode->i_sb_list); 333 spin_unlock(&inode_lock); 334 335 wake_up_inode(inode); 336 destroy_inode(inode); 337 nr_disposed++; 338 } 339 spin_lock(&inode_lock); 340 inodes_stat.nr_inodes -= nr_disposed; 341 spin_unlock(&inode_lock); 342 } 343 344 /* 345 * Invalidate all inodes for a device. 346 */ 347 static int invalidate_list(struct list_head *head, struct list_head *dispose) 348 { 349 struct list_head *next; 350 int busy = 0, count = 0; 351 352 next = head->next; 353 for (;;) { 354 struct list_head * tmp = next; 355 struct inode * inode; 356 357 /* 358 * We can reschedule here without worrying about the list's 359 * consistency because the per-sb list of inodes must not 360 * change during umount anymore, and because iprune_mutex keeps 361 * shrink_icache_memory() away. 362 */ 363 cond_resched_lock(&inode_lock); 364 365 next = next->next; 366 if (tmp == head) 367 break; 368 inode = list_entry(tmp, struct inode, i_sb_list); 369 invalidate_inode_buffers(inode); 370 if (!atomic_read(&inode->i_count)) { 371 list_move(&inode->i_list, dispose); 372 WARN_ON(inode->i_state & I_NEW); 373 inode->i_state |= I_FREEING; 374 count++; 375 continue; 376 } 377 busy = 1; 378 } 379 /* only unused inodes may be cached with i_count zero */ 380 inodes_stat.nr_unused -= count; 381 return busy; 382 } 383 384 /** 385 * invalidate_inodes - discard the inodes on a device 386 * @sb: superblock 387 * 388 * Discard all of the inodes for a given superblock. If the discard 389 * fails because there are busy inodes then a non zero value is returned. 390 * If the discard is successful all the inodes have been discarded. 391 */ 392 int invalidate_inodes(struct super_block * sb) 393 { 394 int busy; 395 LIST_HEAD(throw_away); 396 397 mutex_lock(&iprune_mutex); 398 spin_lock(&inode_lock); 399 inotify_unmount_inodes(&sb->s_inodes); 400 busy = invalidate_list(&sb->s_inodes, &throw_away); 401 spin_unlock(&inode_lock); 402 403 dispose_list(&throw_away); 404 mutex_unlock(&iprune_mutex); 405 406 return busy; 407 } 408 409 EXPORT_SYMBOL(invalidate_inodes); 410 411 static int can_unuse(struct inode *inode) 412 { 413 if (inode->i_state) 414 return 0; 415 if (inode_has_buffers(inode)) 416 return 0; 417 if (atomic_read(&inode->i_count)) 418 return 0; 419 if (inode->i_data.nrpages) 420 return 0; 421 return 1; 422 } 423 424 /* 425 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 426 * a temporary list and then are freed outside inode_lock by dispose_list(). 427 * 428 * Any inodes which are pinned purely because of attached pagecache have their 429 * pagecache removed. We expect the final iput() on that inode to add it to 430 * the front of the inode_unused list. So look for it there and if the 431 * inode is still freeable, proceed. The right inode is found 99.9% of the 432 * time in testing on a 4-way. 433 * 434 * If the inode has metadata buffers attached to mapping->private_list then 435 * try to remove them. 436 */ 437 static void prune_icache(int nr_to_scan) 438 { 439 LIST_HEAD(freeable); 440 int nr_pruned = 0; 441 int nr_scanned; 442 unsigned long reap = 0; 443 444 mutex_lock(&iprune_mutex); 445 spin_lock(&inode_lock); 446 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 447 struct inode *inode; 448 449 if (list_empty(&inode_unused)) 450 break; 451 452 inode = list_entry(inode_unused.prev, struct inode, i_list); 453 454 if (inode->i_state || atomic_read(&inode->i_count)) { 455 list_move(&inode->i_list, &inode_unused); 456 continue; 457 } 458 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 459 __iget(inode); 460 spin_unlock(&inode_lock); 461 if (remove_inode_buffers(inode)) 462 reap += invalidate_mapping_pages(&inode->i_data, 463 0, -1); 464 iput(inode); 465 spin_lock(&inode_lock); 466 467 if (inode != list_entry(inode_unused.next, 468 struct inode, i_list)) 469 continue; /* wrong inode or list_empty */ 470 if (!can_unuse(inode)) 471 continue; 472 } 473 list_move(&inode->i_list, &freeable); 474 WARN_ON(inode->i_state & I_NEW); 475 inode->i_state |= I_FREEING; 476 nr_pruned++; 477 } 478 inodes_stat.nr_unused -= nr_pruned; 479 if (current_is_kswapd()) 480 __count_vm_events(KSWAPD_INODESTEAL, reap); 481 else 482 __count_vm_events(PGINODESTEAL, reap); 483 spin_unlock(&inode_lock); 484 485 dispose_list(&freeable); 486 mutex_unlock(&iprune_mutex); 487 } 488 489 /* 490 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 491 * "unused" means that no dentries are referring to the inodes: the files are 492 * not open and the dcache references to those inodes have already been 493 * reclaimed. 494 * 495 * This function is passed the number of inodes to scan, and it returns the 496 * total number of remaining possibly-reclaimable inodes. 497 */ 498 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 499 { 500 if (nr) { 501 /* 502 * Nasty deadlock avoidance. We may hold various FS locks, 503 * and we don't want to recurse into the FS that called us 504 * in clear_inode() and friends.. 505 */ 506 if (!(gfp_mask & __GFP_FS)) 507 return -1; 508 prune_icache(nr); 509 } 510 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 511 } 512 513 static struct shrinker icache_shrinker = { 514 .shrink = shrink_icache_memory, 515 .seeks = DEFAULT_SEEKS, 516 }; 517 518 static void __wait_on_freeing_inode(struct inode *inode); 519 /* 520 * Called with the inode lock held. 521 * NOTE: we are not increasing the inode-refcount, you must call __iget() 522 * by hand after calling find_inode now! This simplifies iunique and won't 523 * add any additional branch in the common code. 524 */ 525 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 526 { 527 struct hlist_node *node; 528 struct inode * inode = NULL; 529 530 repeat: 531 hlist_for_each_entry(inode, node, head, i_hash) { 532 if (inode->i_sb != sb) 533 continue; 534 if (!test(inode, data)) 535 continue; 536 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 537 __wait_on_freeing_inode(inode); 538 goto repeat; 539 } 540 break; 541 } 542 return node ? inode : NULL; 543 } 544 545 /* 546 * find_inode_fast is the fast path version of find_inode, see the comment at 547 * iget_locked for details. 548 */ 549 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 550 { 551 struct hlist_node *node; 552 struct inode * inode = NULL; 553 554 repeat: 555 hlist_for_each_entry(inode, node, head, i_hash) { 556 if (inode->i_ino != ino) 557 continue; 558 if (inode->i_sb != sb) 559 continue; 560 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 561 __wait_on_freeing_inode(inode); 562 goto repeat; 563 } 564 break; 565 } 566 return node ? inode : NULL; 567 } 568 569 static unsigned long hash(struct super_block *sb, unsigned long hashval) 570 { 571 unsigned long tmp; 572 573 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 574 L1_CACHE_BYTES; 575 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 576 return tmp & I_HASHMASK; 577 } 578 579 static inline void 580 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 581 struct inode *inode) 582 { 583 inodes_stat.nr_inodes++; 584 list_add(&inode->i_list, &inode_in_use); 585 list_add(&inode->i_sb_list, &sb->s_inodes); 586 if (head) 587 hlist_add_head(&inode->i_hash, head); 588 } 589 590 /** 591 * inode_add_to_lists - add a new inode to relevant lists 592 * @sb: superblock inode belongs to 593 * @inode: inode to mark in use 594 * 595 * When an inode is allocated it needs to be accounted for, added to the in use 596 * list, the owning superblock and the inode hash. This needs to be done under 597 * the inode_lock, so export a function to do this rather than the inode lock 598 * itself. We calculate the hash list to add to here so it is all internal 599 * which requires the caller to have already set up the inode number in the 600 * inode to add. 601 */ 602 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 603 { 604 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 605 606 spin_lock(&inode_lock); 607 __inode_add_to_lists(sb, head, inode); 608 spin_unlock(&inode_lock); 609 } 610 EXPORT_SYMBOL_GPL(inode_add_to_lists); 611 612 /** 613 * new_inode - obtain an inode 614 * @sb: superblock 615 * 616 * Allocates a new inode for given superblock. The default gfp_mask 617 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 618 * If HIGHMEM pages are unsuitable or it is known that pages allocated 619 * for the page cache are not reclaimable or migratable, 620 * mapping_set_gfp_mask() must be called with suitable flags on the 621 * newly created inode's mapping 622 * 623 */ 624 struct inode *new_inode(struct super_block *sb) 625 { 626 /* 627 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 628 * error if st_ino won't fit in target struct field. Use 32bit counter 629 * here to attempt to avoid that. 630 */ 631 static unsigned int last_ino; 632 struct inode * inode; 633 634 spin_lock_prefetch(&inode_lock); 635 636 inode = alloc_inode(sb); 637 if (inode) { 638 spin_lock(&inode_lock); 639 __inode_add_to_lists(sb, NULL, inode); 640 inode->i_ino = ++last_ino; 641 inode->i_state = 0; 642 spin_unlock(&inode_lock); 643 } 644 return inode; 645 } 646 647 EXPORT_SYMBOL(new_inode); 648 649 void unlock_new_inode(struct inode *inode) 650 { 651 #ifdef CONFIG_DEBUG_LOCK_ALLOC 652 if (inode->i_mode & S_IFDIR) { 653 struct file_system_type *type = inode->i_sb->s_type; 654 655 /* 656 * ensure nobody is actually holding i_mutex 657 */ 658 mutex_destroy(&inode->i_mutex); 659 mutex_init(&inode->i_mutex); 660 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 661 } 662 #endif 663 /* 664 * This is special! We do not need the spinlock 665 * when clearing I_LOCK, because we're guaranteed 666 * that nobody else tries to do anything about the 667 * state of the inode when it is locked, as we 668 * just created it (so there can be no old holders 669 * that haven't tested I_LOCK). 670 */ 671 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW)); 672 inode->i_state &= ~(I_LOCK|I_NEW); 673 wake_up_inode(inode); 674 } 675 676 EXPORT_SYMBOL(unlock_new_inode); 677 678 /* 679 * This is called without the inode lock held.. Be careful. 680 * 681 * We no longer cache the sb_flags in i_flags - see fs.h 682 * -- rmk@arm.uk.linux.org 683 */ 684 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 685 { 686 struct inode * inode; 687 688 inode = alloc_inode(sb); 689 if (inode) { 690 struct inode * old; 691 692 spin_lock(&inode_lock); 693 /* We released the lock, so.. */ 694 old = find_inode(sb, head, test, data); 695 if (!old) { 696 if (set(inode, data)) 697 goto set_failed; 698 699 __inode_add_to_lists(sb, head, inode); 700 inode->i_state = I_LOCK|I_NEW; 701 spin_unlock(&inode_lock); 702 703 /* Return the locked inode with I_NEW set, the 704 * caller is responsible for filling in the contents 705 */ 706 return inode; 707 } 708 709 /* 710 * Uhhuh, somebody else created the same inode under 711 * us. Use the old inode instead of the one we just 712 * allocated. 713 */ 714 __iget(old); 715 spin_unlock(&inode_lock); 716 destroy_inode(inode); 717 inode = old; 718 wait_on_inode(inode); 719 } 720 return inode; 721 722 set_failed: 723 spin_unlock(&inode_lock); 724 destroy_inode(inode); 725 return NULL; 726 } 727 728 /* 729 * get_new_inode_fast is the fast path version of get_new_inode, see the 730 * comment at iget_locked for details. 731 */ 732 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 733 { 734 struct inode * inode; 735 736 inode = alloc_inode(sb); 737 if (inode) { 738 struct inode * old; 739 740 spin_lock(&inode_lock); 741 /* We released the lock, so.. */ 742 old = find_inode_fast(sb, head, ino); 743 if (!old) { 744 inode->i_ino = ino; 745 __inode_add_to_lists(sb, head, inode); 746 inode->i_state = I_LOCK|I_NEW; 747 spin_unlock(&inode_lock); 748 749 /* Return the locked inode with I_NEW set, the 750 * caller is responsible for filling in the contents 751 */ 752 return inode; 753 } 754 755 /* 756 * Uhhuh, somebody else created the same inode under 757 * us. Use the old inode instead of the one we just 758 * allocated. 759 */ 760 __iget(old); 761 spin_unlock(&inode_lock); 762 destroy_inode(inode); 763 inode = old; 764 wait_on_inode(inode); 765 } 766 return inode; 767 } 768 769 /** 770 * iunique - get a unique inode number 771 * @sb: superblock 772 * @max_reserved: highest reserved inode number 773 * 774 * Obtain an inode number that is unique on the system for a given 775 * superblock. This is used by file systems that have no natural 776 * permanent inode numbering system. An inode number is returned that 777 * is higher than the reserved limit but unique. 778 * 779 * BUGS: 780 * With a large number of inodes live on the file system this function 781 * currently becomes quite slow. 782 */ 783 ino_t iunique(struct super_block *sb, ino_t max_reserved) 784 { 785 /* 786 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 787 * error if st_ino won't fit in target struct field. Use 32bit counter 788 * here to attempt to avoid that. 789 */ 790 static unsigned int counter; 791 struct inode *inode; 792 struct hlist_head *head; 793 ino_t res; 794 795 spin_lock(&inode_lock); 796 do { 797 if (counter <= max_reserved) 798 counter = max_reserved + 1; 799 res = counter++; 800 head = inode_hashtable + hash(sb, res); 801 inode = find_inode_fast(sb, head, res); 802 } while (inode != NULL); 803 spin_unlock(&inode_lock); 804 805 return res; 806 } 807 EXPORT_SYMBOL(iunique); 808 809 struct inode *igrab(struct inode *inode) 810 { 811 spin_lock(&inode_lock); 812 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 813 __iget(inode); 814 else 815 /* 816 * Handle the case where s_op->clear_inode is not been 817 * called yet, and somebody is calling igrab 818 * while the inode is getting freed. 819 */ 820 inode = NULL; 821 spin_unlock(&inode_lock); 822 return inode; 823 } 824 825 EXPORT_SYMBOL(igrab); 826 827 /** 828 * ifind - internal function, you want ilookup5() or iget5(). 829 * @sb: super block of file system to search 830 * @head: the head of the list to search 831 * @test: callback used for comparisons between inodes 832 * @data: opaque data pointer to pass to @test 833 * @wait: if true wait for the inode to be unlocked, if false do not 834 * 835 * ifind() searches for the inode specified by @data in the inode 836 * cache. This is a generalized version of ifind_fast() for file systems where 837 * the inode number is not sufficient for unique identification of an inode. 838 * 839 * If the inode is in the cache, the inode is returned with an incremented 840 * reference count. 841 * 842 * Otherwise NULL is returned. 843 * 844 * Note, @test is called with the inode_lock held, so can't sleep. 845 */ 846 static struct inode *ifind(struct super_block *sb, 847 struct hlist_head *head, int (*test)(struct inode *, void *), 848 void *data, const int wait) 849 { 850 struct inode *inode; 851 852 spin_lock(&inode_lock); 853 inode = find_inode(sb, head, test, data); 854 if (inode) { 855 __iget(inode); 856 spin_unlock(&inode_lock); 857 if (likely(wait)) 858 wait_on_inode(inode); 859 return inode; 860 } 861 spin_unlock(&inode_lock); 862 return NULL; 863 } 864 865 /** 866 * ifind_fast - internal function, you want ilookup() or iget(). 867 * @sb: super block of file system to search 868 * @head: head of the list to search 869 * @ino: inode number to search for 870 * 871 * ifind_fast() searches for the inode @ino in the inode cache. This is for 872 * file systems where the inode number is sufficient for unique identification 873 * of an inode. 874 * 875 * If the inode is in the cache, the inode is returned with an incremented 876 * reference count. 877 * 878 * Otherwise NULL is returned. 879 */ 880 static struct inode *ifind_fast(struct super_block *sb, 881 struct hlist_head *head, unsigned long ino) 882 { 883 struct inode *inode; 884 885 spin_lock(&inode_lock); 886 inode = find_inode_fast(sb, head, ino); 887 if (inode) { 888 __iget(inode); 889 spin_unlock(&inode_lock); 890 wait_on_inode(inode); 891 return inode; 892 } 893 spin_unlock(&inode_lock); 894 return NULL; 895 } 896 897 /** 898 * ilookup5_nowait - search for an inode in the inode cache 899 * @sb: super block of file system to search 900 * @hashval: hash value (usually inode number) to search for 901 * @test: callback used for comparisons between inodes 902 * @data: opaque data pointer to pass to @test 903 * 904 * ilookup5() uses ifind() to search for the inode specified by @hashval and 905 * @data in the inode cache. This is a generalized version of ilookup() for 906 * file systems where the inode number is not sufficient for unique 907 * identification of an inode. 908 * 909 * If the inode is in the cache, the inode is returned with an incremented 910 * reference count. Note, the inode lock is not waited upon so you have to be 911 * very careful what you do with the returned inode. You probably should be 912 * using ilookup5() instead. 913 * 914 * Otherwise NULL is returned. 915 * 916 * Note, @test is called with the inode_lock held, so can't sleep. 917 */ 918 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 919 int (*test)(struct inode *, void *), void *data) 920 { 921 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 922 923 return ifind(sb, head, test, data, 0); 924 } 925 926 EXPORT_SYMBOL(ilookup5_nowait); 927 928 /** 929 * ilookup5 - search for an inode in the inode cache 930 * @sb: super block of file system to search 931 * @hashval: hash value (usually inode number) to search for 932 * @test: callback used for comparisons between inodes 933 * @data: opaque data pointer to pass to @test 934 * 935 * ilookup5() uses ifind() to search for the inode specified by @hashval and 936 * @data in the inode cache. This is a generalized version of ilookup() for 937 * file systems where the inode number is not sufficient for unique 938 * identification of an inode. 939 * 940 * If the inode is in the cache, the inode lock is waited upon and the inode is 941 * returned with an incremented reference count. 942 * 943 * Otherwise NULL is returned. 944 * 945 * Note, @test is called with the inode_lock held, so can't sleep. 946 */ 947 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 948 int (*test)(struct inode *, void *), void *data) 949 { 950 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 951 952 return ifind(sb, head, test, data, 1); 953 } 954 955 EXPORT_SYMBOL(ilookup5); 956 957 /** 958 * ilookup - search for an inode in the inode cache 959 * @sb: super block of file system to search 960 * @ino: inode number to search for 961 * 962 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 963 * This is for file systems where the inode number is sufficient for unique 964 * identification of an inode. 965 * 966 * If the inode is in the cache, the inode is returned with an incremented 967 * reference count. 968 * 969 * Otherwise NULL is returned. 970 */ 971 struct inode *ilookup(struct super_block *sb, unsigned long ino) 972 { 973 struct hlist_head *head = inode_hashtable + hash(sb, ino); 974 975 return ifind_fast(sb, head, ino); 976 } 977 978 EXPORT_SYMBOL(ilookup); 979 980 /** 981 * iget5_locked - obtain an inode from a mounted file system 982 * @sb: super block of file system 983 * @hashval: hash value (usually inode number) to get 984 * @test: callback used for comparisons between inodes 985 * @set: callback used to initialize a new struct inode 986 * @data: opaque data pointer to pass to @test and @set 987 * 988 * iget5_locked() uses ifind() to search for the inode specified by @hashval 989 * and @data in the inode cache and if present it is returned with an increased 990 * reference count. This is a generalized version of iget_locked() for file 991 * systems where the inode number is not sufficient for unique identification 992 * of an inode. 993 * 994 * If the inode is not in cache, get_new_inode() is called to allocate a new 995 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 996 * file system gets to fill it in before unlocking it via unlock_new_inode(). 997 * 998 * Note both @test and @set are called with the inode_lock held, so can't sleep. 999 */ 1000 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1001 int (*test)(struct inode *, void *), 1002 int (*set)(struct inode *, void *), void *data) 1003 { 1004 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1005 struct inode *inode; 1006 1007 inode = ifind(sb, head, test, data, 1); 1008 if (inode) 1009 return inode; 1010 /* 1011 * get_new_inode() will do the right thing, re-trying the search 1012 * in case it had to block at any point. 1013 */ 1014 return get_new_inode(sb, head, test, set, data); 1015 } 1016 1017 EXPORT_SYMBOL(iget5_locked); 1018 1019 /** 1020 * iget_locked - obtain an inode from a mounted file system 1021 * @sb: super block of file system 1022 * @ino: inode number to get 1023 * 1024 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1025 * the inode cache and if present it is returned with an increased reference 1026 * count. This is for file systems where the inode number is sufficient for 1027 * unique identification of an inode. 1028 * 1029 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1030 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1031 * The file system gets to fill it in before unlocking it via 1032 * unlock_new_inode(). 1033 */ 1034 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1035 { 1036 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1037 struct inode *inode; 1038 1039 inode = ifind_fast(sb, head, ino); 1040 if (inode) 1041 return inode; 1042 /* 1043 * get_new_inode_fast() will do the right thing, re-trying the search 1044 * in case it had to block at any point. 1045 */ 1046 return get_new_inode_fast(sb, head, ino); 1047 } 1048 1049 EXPORT_SYMBOL(iget_locked); 1050 1051 int insert_inode_locked(struct inode *inode) 1052 { 1053 struct super_block *sb = inode->i_sb; 1054 ino_t ino = inode->i_ino; 1055 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1056 struct inode *old; 1057 1058 inode->i_state |= I_LOCK|I_NEW; 1059 while (1) { 1060 spin_lock(&inode_lock); 1061 old = find_inode_fast(sb, head, ino); 1062 if (likely(!old)) { 1063 hlist_add_head(&inode->i_hash, head); 1064 spin_unlock(&inode_lock); 1065 return 0; 1066 } 1067 __iget(old); 1068 spin_unlock(&inode_lock); 1069 wait_on_inode(old); 1070 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1071 iput(old); 1072 return -EBUSY; 1073 } 1074 iput(old); 1075 } 1076 } 1077 1078 EXPORT_SYMBOL(insert_inode_locked); 1079 1080 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1081 int (*test)(struct inode *, void *), void *data) 1082 { 1083 struct super_block *sb = inode->i_sb; 1084 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1085 struct inode *old; 1086 1087 inode->i_state |= I_LOCK|I_NEW; 1088 1089 while (1) { 1090 spin_lock(&inode_lock); 1091 old = find_inode(sb, head, test, data); 1092 if (likely(!old)) { 1093 hlist_add_head(&inode->i_hash, head); 1094 spin_unlock(&inode_lock); 1095 return 0; 1096 } 1097 __iget(old); 1098 spin_unlock(&inode_lock); 1099 wait_on_inode(old); 1100 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1101 iput(old); 1102 return -EBUSY; 1103 } 1104 iput(old); 1105 } 1106 } 1107 1108 EXPORT_SYMBOL(insert_inode_locked4); 1109 1110 /** 1111 * __insert_inode_hash - hash an inode 1112 * @inode: unhashed inode 1113 * @hashval: unsigned long value used to locate this object in the 1114 * inode_hashtable. 1115 * 1116 * Add an inode to the inode hash for this superblock. 1117 */ 1118 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1119 { 1120 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1121 spin_lock(&inode_lock); 1122 hlist_add_head(&inode->i_hash, head); 1123 spin_unlock(&inode_lock); 1124 } 1125 1126 EXPORT_SYMBOL(__insert_inode_hash); 1127 1128 /** 1129 * remove_inode_hash - remove an inode from the hash 1130 * @inode: inode to unhash 1131 * 1132 * Remove an inode from the superblock. 1133 */ 1134 void remove_inode_hash(struct inode *inode) 1135 { 1136 spin_lock(&inode_lock); 1137 hlist_del_init(&inode->i_hash); 1138 spin_unlock(&inode_lock); 1139 } 1140 1141 EXPORT_SYMBOL(remove_inode_hash); 1142 1143 /* 1144 * Tell the filesystem that this inode is no longer of any interest and should 1145 * be completely destroyed. 1146 * 1147 * We leave the inode in the inode hash table until *after* the filesystem's 1148 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1149 * instigate) will always find up-to-date information either in the hash or on 1150 * disk. 1151 * 1152 * I_FREEING is set so that no-one will take a new reference to the inode while 1153 * it is being deleted. 1154 */ 1155 void generic_delete_inode(struct inode *inode) 1156 { 1157 const struct super_operations *op = inode->i_sb->s_op; 1158 1159 list_del_init(&inode->i_list); 1160 list_del_init(&inode->i_sb_list); 1161 WARN_ON(inode->i_state & I_NEW); 1162 inode->i_state |= I_FREEING; 1163 inodes_stat.nr_inodes--; 1164 spin_unlock(&inode_lock); 1165 1166 security_inode_delete(inode); 1167 1168 if (op->delete_inode) { 1169 void (*delete)(struct inode *) = op->delete_inode; 1170 if (!is_bad_inode(inode)) 1171 DQUOT_INIT(inode); 1172 /* Filesystems implementing their own 1173 * s_op->delete_inode are required to call 1174 * truncate_inode_pages and clear_inode() 1175 * internally */ 1176 delete(inode); 1177 } else { 1178 truncate_inode_pages(&inode->i_data, 0); 1179 clear_inode(inode); 1180 } 1181 spin_lock(&inode_lock); 1182 hlist_del_init(&inode->i_hash); 1183 spin_unlock(&inode_lock); 1184 wake_up_inode(inode); 1185 BUG_ON(inode->i_state != I_CLEAR); 1186 destroy_inode(inode); 1187 } 1188 1189 EXPORT_SYMBOL(generic_delete_inode); 1190 1191 static void generic_forget_inode(struct inode *inode) 1192 { 1193 struct super_block *sb = inode->i_sb; 1194 1195 if (!hlist_unhashed(&inode->i_hash)) { 1196 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1197 list_move(&inode->i_list, &inode_unused); 1198 inodes_stat.nr_unused++; 1199 if (sb->s_flags & MS_ACTIVE) { 1200 spin_unlock(&inode_lock); 1201 return; 1202 } 1203 WARN_ON(inode->i_state & I_NEW); 1204 inode->i_state |= I_WILL_FREE; 1205 spin_unlock(&inode_lock); 1206 write_inode_now(inode, 1); 1207 spin_lock(&inode_lock); 1208 WARN_ON(inode->i_state & I_NEW); 1209 inode->i_state &= ~I_WILL_FREE; 1210 inodes_stat.nr_unused--; 1211 hlist_del_init(&inode->i_hash); 1212 } 1213 list_del_init(&inode->i_list); 1214 list_del_init(&inode->i_sb_list); 1215 WARN_ON(inode->i_state & I_NEW); 1216 inode->i_state |= I_FREEING; 1217 inodes_stat.nr_inodes--; 1218 spin_unlock(&inode_lock); 1219 if (inode->i_data.nrpages) 1220 truncate_inode_pages(&inode->i_data, 0); 1221 clear_inode(inode); 1222 wake_up_inode(inode); 1223 destroy_inode(inode); 1224 } 1225 1226 /* 1227 * Normal UNIX filesystem behaviour: delete the 1228 * inode when the usage count drops to zero, and 1229 * i_nlink is zero. 1230 */ 1231 void generic_drop_inode(struct inode *inode) 1232 { 1233 if (!inode->i_nlink) 1234 generic_delete_inode(inode); 1235 else 1236 generic_forget_inode(inode); 1237 } 1238 1239 EXPORT_SYMBOL_GPL(generic_drop_inode); 1240 1241 /* 1242 * Called when we're dropping the last reference 1243 * to an inode. 1244 * 1245 * Call the FS "drop()" function, defaulting to 1246 * the legacy UNIX filesystem behaviour.. 1247 * 1248 * NOTE! NOTE! NOTE! We're called with the inode lock 1249 * held, and the drop function is supposed to release 1250 * the lock! 1251 */ 1252 static inline void iput_final(struct inode *inode) 1253 { 1254 const struct super_operations *op = inode->i_sb->s_op; 1255 void (*drop)(struct inode *) = generic_drop_inode; 1256 1257 if (op && op->drop_inode) 1258 drop = op->drop_inode; 1259 drop(inode); 1260 } 1261 1262 /** 1263 * iput - put an inode 1264 * @inode: inode to put 1265 * 1266 * Puts an inode, dropping its usage count. If the inode use count hits 1267 * zero, the inode is then freed and may also be destroyed. 1268 * 1269 * Consequently, iput() can sleep. 1270 */ 1271 void iput(struct inode *inode) 1272 { 1273 if (inode) { 1274 BUG_ON(inode->i_state == I_CLEAR); 1275 1276 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1277 iput_final(inode); 1278 } 1279 } 1280 1281 EXPORT_SYMBOL(iput); 1282 1283 /** 1284 * bmap - find a block number in a file 1285 * @inode: inode of file 1286 * @block: block to find 1287 * 1288 * Returns the block number on the device holding the inode that 1289 * is the disk block number for the block of the file requested. 1290 * That is, asked for block 4 of inode 1 the function will return the 1291 * disk block relative to the disk start that holds that block of the 1292 * file. 1293 */ 1294 sector_t bmap(struct inode * inode, sector_t block) 1295 { 1296 sector_t res = 0; 1297 if (inode->i_mapping->a_ops->bmap) 1298 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1299 return res; 1300 } 1301 EXPORT_SYMBOL(bmap); 1302 1303 /* 1304 * With relative atime, only update atime if the previous atime is 1305 * earlier than either the ctime or mtime or if at least a day has 1306 * passed since the last atime update. 1307 */ 1308 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1309 struct timespec now) 1310 { 1311 1312 if (!(mnt->mnt_flags & MNT_RELATIME)) 1313 return 1; 1314 /* 1315 * Is mtime younger than atime? If yes, update atime: 1316 */ 1317 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1318 return 1; 1319 /* 1320 * Is ctime younger than atime? If yes, update atime: 1321 */ 1322 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1323 return 1; 1324 1325 /* 1326 * Is the previous atime value older than a day? If yes, 1327 * update atime: 1328 */ 1329 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1330 return 1; 1331 /* 1332 * Good, we can skip the atime update: 1333 */ 1334 return 0; 1335 } 1336 1337 /** 1338 * touch_atime - update the access time 1339 * @mnt: mount the inode is accessed on 1340 * @dentry: dentry accessed 1341 * 1342 * Update the accessed time on an inode and mark it for writeback. 1343 * This function automatically handles read only file systems and media, 1344 * as well as the "noatime" flag and inode specific "noatime" markers. 1345 */ 1346 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1347 { 1348 struct inode *inode = dentry->d_inode; 1349 struct timespec now; 1350 1351 if (mnt_want_write(mnt)) 1352 return; 1353 if (inode->i_flags & S_NOATIME) 1354 goto out; 1355 if (IS_NOATIME(inode)) 1356 goto out; 1357 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1358 goto out; 1359 1360 if (mnt->mnt_flags & MNT_NOATIME) 1361 goto out; 1362 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1363 goto out; 1364 1365 now = current_fs_time(inode->i_sb); 1366 1367 if (!relatime_need_update(mnt, inode, now)) 1368 goto out; 1369 1370 if (timespec_equal(&inode->i_atime, &now)) 1371 goto out; 1372 1373 inode->i_atime = now; 1374 mark_inode_dirty_sync(inode); 1375 out: 1376 mnt_drop_write(mnt); 1377 } 1378 EXPORT_SYMBOL(touch_atime); 1379 1380 /** 1381 * file_update_time - update mtime and ctime time 1382 * @file: file accessed 1383 * 1384 * Update the mtime and ctime members of an inode and mark the inode 1385 * for writeback. Note that this function is meant exclusively for 1386 * usage in the file write path of filesystems, and filesystems may 1387 * choose to explicitly ignore update via this function with the 1388 * S_NOCTIME inode flag, e.g. for network filesystem where these 1389 * timestamps are handled by the server. 1390 */ 1391 1392 void file_update_time(struct file *file) 1393 { 1394 struct inode *inode = file->f_path.dentry->d_inode; 1395 struct timespec now; 1396 int sync_it = 0; 1397 int err; 1398 1399 if (IS_NOCMTIME(inode)) 1400 return; 1401 1402 err = mnt_want_write(file->f_path.mnt); 1403 if (err) 1404 return; 1405 1406 now = current_fs_time(inode->i_sb); 1407 if (!timespec_equal(&inode->i_mtime, &now)) { 1408 inode->i_mtime = now; 1409 sync_it = 1; 1410 } 1411 1412 if (!timespec_equal(&inode->i_ctime, &now)) { 1413 inode->i_ctime = now; 1414 sync_it = 1; 1415 } 1416 1417 if (IS_I_VERSION(inode)) { 1418 inode_inc_iversion(inode); 1419 sync_it = 1; 1420 } 1421 1422 if (sync_it) 1423 mark_inode_dirty_sync(inode); 1424 mnt_drop_write(file->f_path.mnt); 1425 } 1426 1427 EXPORT_SYMBOL(file_update_time); 1428 1429 int inode_needs_sync(struct inode *inode) 1430 { 1431 if (IS_SYNC(inode)) 1432 return 1; 1433 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1434 return 1; 1435 return 0; 1436 } 1437 1438 EXPORT_SYMBOL(inode_needs_sync); 1439 1440 int inode_wait(void *word) 1441 { 1442 schedule(); 1443 return 0; 1444 } 1445 EXPORT_SYMBOL(inode_wait); 1446 1447 /* 1448 * If we try to find an inode in the inode hash while it is being 1449 * deleted, we have to wait until the filesystem completes its 1450 * deletion before reporting that it isn't found. This function waits 1451 * until the deletion _might_ have completed. Callers are responsible 1452 * to recheck inode state. 1453 * 1454 * It doesn't matter if I_LOCK is not set initially, a call to 1455 * wake_up_inode() after removing from the hash list will DTRT. 1456 * 1457 * This is called with inode_lock held. 1458 */ 1459 static void __wait_on_freeing_inode(struct inode *inode) 1460 { 1461 wait_queue_head_t *wq; 1462 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1463 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1464 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1465 spin_unlock(&inode_lock); 1466 schedule(); 1467 finish_wait(wq, &wait.wait); 1468 spin_lock(&inode_lock); 1469 } 1470 1471 /* 1472 * We rarely want to lock two inodes that do not have a parent/child 1473 * relationship (such as directory, child inode) simultaneously. The 1474 * vast majority of file systems should be able to get along fine 1475 * without this. Do not use these functions except as a last resort. 1476 */ 1477 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1478 { 1479 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1480 if (inode1) 1481 mutex_lock(&inode1->i_mutex); 1482 else if (inode2) 1483 mutex_lock(&inode2->i_mutex); 1484 return; 1485 } 1486 1487 if (inode1 < inode2) { 1488 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1489 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1490 } else { 1491 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1492 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1493 } 1494 } 1495 EXPORT_SYMBOL(inode_double_lock); 1496 1497 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1498 { 1499 if (inode1) 1500 mutex_unlock(&inode1->i_mutex); 1501 1502 if (inode2 && inode2 != inode1) 1503 mutex_unlock(&inode2->i_mutex); 1504 } 1505 EXPORT_SYMBOL(inode_double_unlock); 1506 1507 static __initdata unsigned long ihash_entries; 1508 static int __init set_ihash_entries(char *str) 1509 { 1510 if (!str) 1511 return 0; 1512 ihash_entries = simple_strtoul(str, &str, 0); 1513 return 1; 1514 } 1515 __setup("ihash_entries=", set_ihash_entries); 1516 1517 /* 1518 * Initialize the waitqueues and inode hash table. 1519 */ 1520 void __init inode_init_early(void) 1521 { 1522 int loop; 1523 1524 /* If hashes are distributed across NUMA nodes, defer 1525 * hash allocation until vmalloc space is available. 1526 */ 1527 if (hashdist) 1528 return; 1529 1530 inode_hashtable = 1531 alloc_large_system_hash("Inode-cache", 1532 sizeof(struct hlist_head), 1533 ihash_entries, 1534 14, 1535 HASH_EARLY, 1536 &i_hash_shift, 1537 &i_hash_mask, 1538 0); 1539 1540 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1541 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1542 } 1543 1544 void __init inode_init(void) 1545 { 1546 int loop; 1547 1548 /* inode slab cache */ 1549 inode_cachep = kmem_cache_create("inode_cache", 1550 sizeof(struct inode), 1551 0, 1552 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1553 SLAB_MEM_SPREAD), 1554 init_once); 1555 register_shrinker(&icache_shrinker); 1556 1557 /* Hash may have been set up in inode_init_early */ 1558 if (!hashdist) 1559 return; 1560 1561 inode_hashtable = 1562 alloc_large_system_hash("Inode-cache", 1563 sizeof(struct hlist_head), 1564 ihash_entries, 1565 14, 1566 0, 1567 &i_hash_shift, 1568 &i_hash_mask, 1569 0); 1570 1571 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1572 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1573 } 1574 1575 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1576 { 1577 inode->i_mode = mode; 1578 if (S_ISCHR(mode)) { 1579 inode->i_fop = &def_chr_fops; 1580 inode->i_rdev = rdev; 1581 } else if (S_ISBLK(mode)) { 1582 inode->i_fop = &def_blk_fops; 1583 inode->i_rdev = rdev; 1584 } else if (S_ISFIFO(mode)) 1585 inode->i_fop = &def_fifo_fops; 1586 else if (S_ISSOCK(mode)) 1587 inode->i_fop = &bad_sock_fops; 1588 else 1589 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1590 mode); 1591 } 1592 EXPORT_SYMBOL(init_special_inode); 1593