xref: /linux/fs/inode.c (revision 0c93ea4064a209cdc36de8a9a3003d43d08f46f7)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
27 
28 /*
29  * This is needed for the following functions:
30  *  - inode_has_buffers
31  *  - invalidate_inode_buffers
32  *  - invalidate_bdev
33  *
34  * FIXME: remove all knowledge of the buffer layer from this file
35  */
36 #include <linux/buffer_head.h>
37 
38 /*
39  * New inode.c implementation.
40  *
41  * This implementation has the basic premise of trying
42  * to be extremely low-overhead and SMP-safe, yet be
43  * simple enough to be "obviously correct".
44  *
45  * Famous last words.
46  */
47 
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49 
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52 
53 /*
54  * Inode lookup is no longer as critical as it used to be:
55  * most of the lookups are going to be through the dcache.
56  */
57 #define I_HASHBITS	i_hash_shift
58 #define I_HASHMASK	i_hash_mask
59 
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62 
63 /*
64  * Each inode can be on two separate lists. One is
65  * the hash list of the inode, used for lookups. The
66  * other linked list is the "type" list:
67  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
68  *  "dirty"  - as "in_use" but also dirty
69  *  "unused" - valid inode, i_count = 0
70  *
71  * A "dirty" list is maintained for each super block,
72  * allowing for low-overhead inode sync() operations.
73  */
74 
75 LIST_HEAD(inode_in_use);
76 LIST_HEAD(inode_unused);
77 static struct hlist_head *inode_hashtable __read_mostly;
78 
79 /*
80  * A simple spinlock to protect the list manipulations.
81  *
82  * NOTE! You also have to own the lock if you change
83  * the i_state of an inode while it is in use..
84  */
85 DEFINE_SPINLOCK(inode_lock);
86 
87 /*
88  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
89  * icache shrinking path, and the umount path.  Without this exclusion,
90  * by the time prune_icache calls iput for the inode whose pages it has
91  * been invalidating, or by the time it calls clear_inode & destroy_inode
92  * from its final dispose_list, the struct super_block they refer to
93  * (for inode->i_sb->s_op) may already have been freed and reused.
94  */
95 static DEFINE_MUTEX(iprune_mutex);
96 
97 /*
98  * Statistics gathering..
99  */
100 struct inodes_stat_t inodes_stat;
101 
102 static struct kmem_cache * inode_cachep __read_mostly;
103 
104 static void wake_up_inode(struct inode *inode)
105 {
106 	/*
107 	 * Prevent speculative execution through spin_unlock(&inode_lock);
108 	 */
109 	smp_mb();
110 	wake_up_bit(&inode->i_state, __I_LOCK);
111 }
112 
113 /**
114  * inode_init_always - perform inode structure intialisation
115  * @sb: superblock inode belongs to
116  * @inode: inode to initialise
117  *
118  * These are initializations that need to be done on every inode
119  * allocation as the fields are not initialised by slab allocation.
120  */
121 struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
122 {
123 	static const struct address_space_operations empty_aops;
124 	static struct inode_operations empty_iops;
125 	static const struct file_operations empty_fops;
126 
127 	struct address_space * const mapping = &inode->i_data;
128 
129 	inode->i_sb = sb;
130 	inode->i_blkbits = sb->s_blocksize_bits;
131 	inode->i_flags = 0;
132 	atomic_set(&inode->i_count, 1);
133 	inode->i_op = &empty_iops;
134 	inode->i_fop = &empty_fops;
135 	inode->i_nlink = 1;
136 	inode->i_uid = 0;
137 	inode->i_gid = 0;
138 	atomic_set(&inode->i_writecount, 0);
139 	inode->i_size = 0;
140 	inode->i_blocks = 0;
141 	inode->i_bytes = 0;
142 	inode->i_generation = 0;
143 #ifdef CONFIG_QUOTA
144 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
145 #endif
146 	inode->i_pipe = NULL;
147 	inode->i_bdev = NULL;
148 	inode->i_cdev = NULL;
149 	inode->i_rdev = 0;
150 	inode->dirtied_when = 0;
151 
152 	if (security_inode_alloc(inode))
153 		goto out_free_inode;
154 
155 	/* allocate and initialize an i_integrity */
156 	if (ima_inode_alloc(inode))
157 		goto out_free_security;
158 
159 	spin_lock_init(&inode->i_lock);
160 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161 
162 	mutex_init(&inode->i_mutex);
163 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164 
165 	init_rwsem(&inode->i_alloc_sem);
166 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
167 
168 	mapping->a_ops = &empty_aops;
169 	mapping->host = inode;
170 	mapping->flags = 0;
171 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 	mapping->assoc_mapping = NULL;
173 	mapping->backing_dev_info = &default_backing_dev_info;
174 	mapping->writeback_index = 0;
175 
176 	/*
177 	 * If the block_device provides a backing_dev_info for client
178 	 * inodes then use that.  Otherwise the inode share the bdev's
179 	 * backing_dev_info.
180 	 */
181 	if (sb->s_bdev) {
182 		struct backing_dev_info *bdi;
183 
184 		bdi = sb->s_bdev->bd_inode_backing_dev_info;
185 		if (!bdi)
186 			bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
187 		mapping->backing_dev_info = bdi;
188 	}
189 	inode->i_private = NULL;
190 	inode->i_mapping = mapping;
191 
192 	return inode;
193 
194 out_free_security:
195 	security_inode_free(inode);
196 out_free_inode:
197 	if (inode->i_sb->s_op->destroy_inode)
198 		inode->i_sb->s_op->destroy_inode(inode);
199 	else
200 		kmem_cache_free(inode_cachep, (inode));
201 	return NULL;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204 
205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 	struct inode *inode;
208 
209 	if (sb->s_op->alloc_inode)
210 		inode = sb->s_op->alloc_inode(sb);
211 	else
212 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213 
214 	if (inode)
215 		return inode_init_always(sb, inode);
216 	return NULL;
217 }
218 
219 void destroy_inode(struct inode *inode)
220 {
221 	BUG_ON(inode_has_buffers(inode));
222 	security_inode_free(inode);
223 	if (inode->i_sb->s_op->destroy_inode)
224 		inode->i_sb->s_op->destroy_inode(inode);
225 	else
226 		kmem_cache_free(inode_cachep, (inode));
227 }
228 EXPORT_SYMBOL(destroy_inode);
229 
230 
231 /*
232  * These are initializations that only need to be done
233  * once, because the fields are idempotent across use
234  * of the inode, so let the slab aware of that.
235  */
236 void inode_init_once(struct inode *inode)
237 {
238 	memset(inode, 0, sizeof(*inode));
239 	INIT_HLIST_NODE(&inode->i_hash);
240 	INIT_LIST_HEAD(&inode->i_dentry);
241 	INIT_LIST_HEAD(&inode->i_devices);
242 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
243 	spin_lock_init(&inode->i_data.tree_lock);
244 	spin_lock_init(&inode->i_data.i_mmap_lock);
245 	INIT_LIST_HEAD(&inode->i_data.private_list);
246 	spin_lock_init(&inode->i_data.private_lock);
247 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
248 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
249 	i_size_ordered_init(inode);
250 #ifdef CONFIG_INOTIFY
251 	INIT_LIST_HEAD(&inode->inotify_watches);
252 	mutex_init(&inode->inotify_mutex);
253 #endif
254 }
255 
256 EXPORT_SYMBOL(inode_init_once);
257 
258 static void init_once(void *foo)
259 {
260 	struct inode * inode = (struct inode *) foo;
261 
262 	inode_init_once(inode);
263 }
264 
265 /*
266  * inode_lock must be held
267  */
268 void __iget(struct inode * inode)
269 {
270 	if (atomic_read(&inode->i_count)) {
271 		atomic_inc(&inode->i_count);
272 		return;
273 	}
274 	atomic_inc(&inode->i_count);
275 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
276 		list_move(&inode->i_list, &inode_in_use);
277 	inodes_stat.nr_unused--;
278 }
279 
280 /**
281  * clear_inode - clear an inode
282  * @inode: inode to clear
283  *
284  * This is called by the filesystem to tell us
285  * that the inode is no longer useful. We just
286  * terminate it with extreme prejudice.
287  */
288 void clear_inode(struct inode *inode)
289 {
290 	might_sleep();
291 	invalidate_inode_buffers(inode);
292 
293 	BUG_ON(inode->i_data.nrpages);
294 	BUG_ON(!(inode->i_state & I_FREEING));
295 	BUG_ON(inode->i_state & I_CLEAR);
296 	inode_sync_wait(inode);
297 	DQUOT_DROP(inode);
298 	if (inode->i_sb->s_op->clear_inode)
299 		inode->i_sb->s_op->clear_inode(inode);
300 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
301 		bd_forget(inode);
302 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
303 		cd_forget(inode);
304 	inode->i_state = I_CLEAR;
305 }
306 
307 EXPORT_SYMBOL(clear_inode);
308 
309 /*
310  * dispose_list - dispose of the contents of a local list
311  * @head: the head of the list to free
312  *
313  * Dispose-list gets a local list with local inodes in it, so it doesn't
314  * need to worry about list corruption and SMP locks.
315  */
316 static void dispose_list(struct list_head *head)
317 {
318 	int nr_disposed = 0;
319 
320 	while (!list_empty(head)) {
321 		struct inode *inode;
322 
323 		inode = list_first_entry(head, struct inode, i_list);
324 		list_del(&inode->i_list);
325 
326 		if (inode->i_data.nrpages)
327 			truncate_inode_pages(&inode->i_data, 0);
328 		clear_inode(inode);
329 
330 		spin_lock(&inode_lock);
331 		hlist_del_init(&inode->i_hash);
332 		list_del_init(&inode->i_sb_list);
333 		spin_unlock(&inode_lock);
334 
335 		wake_up_inode(inode);
336 		destroy_inode(inode);
337 		nr_disposed++;
338 	}
339 	spin_lock(&inode_lock);
340 	inodes_stat.nr_inodes -= nr_disposed;
341 	spin_unlock(&inode_lock);
342 }
343 
344 /*
345  * Invalidate all inodes for a device.
346  */
347 static int invalidate_list(struct list_head *head, struct list_head *dispose)
348 {
349 	struct list_head *next;
350 	int busy = 0, count = 0;
351 
352 	next = head->next;
353 	for (;;) {
354 		struct list_head * tmp = next;
355 		struct inode * inode;
356 
357 		/*
358 		 * We can reschedule here without worrying about the list's
359 		 * consistency because the per-sb list of inodes must not
360 		 * change during umount anymore, and because iprune_mutex keeps
361 		 * shrink_icache_memory() away.
362 		 */
363 		cond_resched_lock(&inode_lock);
364 
365 		next = next->next;
366 		if (tmp == head)
367 			break;
368 		inode = list_entry(tmp, struct inode, i_sb_list);
369 		invalidate_inode_buffers(inode);
370 		if (!atomic_read(&inode->i_count)) {
371 			list_move(&inode->i_list, dispose);
372 			WARN_ON(inode->i_state & I_NEW);
373 			inode->i_state |= I_FREEING;
374 			count++;
375 			continue;
376 		}
377 		busy = 1;
378 	}
379 	/* only unused inodes may be cached with i_count zero */
380 	inodes_stat.nr_unused -= count;
381 	return busy;
382 }
383 
384 /**
385  *	invalidate_inodes	- discard the inodes on a device
386  *	@sb: superblock
387  *
388  *	Discard all of the inodes for a given superblock. If the discard
389  *	fails because there are busy inodes then a non zero value is returned.
390  *	If the discard is successful all the inodes have been discarded.
391  */
392 int invalidate_inodes(struct super_block * sb)
393 {
394 	int busy;
395 	LIST_HEAD(throw_away);
396 
397 	mutex_lock(&iprune_mutex);
398 	spin_lock(&inode_lock);
399 	inotify_unmount_inodes(&sb->s_inodes);
400 	busy = invalidate_list(&sb->s_inodes, &throw_away);
401 	spin_unlock(&inode_lock);
402 
403 	dispose_list(&throw_away);
404 	mutex_unlock(&iprune_mutex);
405 
406 	return busy;
407 }
408 
409 EXPORT_SYMBOL(invalidate_inodes);
410 
411 static int can_unuse(struct inode *inode)
412 {
413 	if (inode->i_state)
414 		return 0;
415 	if (inode_has_buffers(inode))
416 		return 0;
417 	if (atomic_read(&inode->i_count))
418 		return 0;
419 	if (inode->i_data.nrpages)
420 		return 0;
421 	return 1;
422 }
423 
424 /*
425  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
426  * a temporary list and then are freed outside inode_lock by dispose_list().
427  *
428  * Any inodes which are pinned purely because of attached pagecache have their
429  * pagecache removed.  We expect the final iput() on that inode to add it to
430  * the front of the inode_unused list.  So look for it there and if the
431  * inode is still freeable, proceed.  The right inode is found 99.9% of the
432  * time in testing on a 4-way.
433  *
434  * If the inode has metadata buffers attached to mapping->private_list then
435  * try to remove them.
436  */
437 static void prune_icache(int nr_to_scan)
438 {
439 	LIST_HEAD(freeable);
440 	int nr_pruned = 0;
441 	int nr_scanned;
442 	unsigned long reap = 0;
443 
444 	mutex_lock(&iprune_mutex);
445 	spin_lock(&inode_lock);
446 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
447 		struct inode *inode;
448 
449 		if (list_empty(&inode_unused))
450 			break;
451 
452 		inode = list_entry(inode_unused.prev, struct inode, i_list);
453 
454 		if (inode->i_state || atomic_read(&inode->i_count)) {
455 			list_move(&inode->i_list, &inode_unused);
456 			continue;
457 		}
458 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
459 			__iget(inode);
460 			spin_unlock(&inode_lock);
461 			if (remove_inode_buffers(inode))
462 				reap += invalidate_mapping_pages(&inode->i_data,
463 								0, -1);
464 			iput(inode);
465 			spin_lock(&inode_lock);
466 
467 			if (inode != list_entry(inode_unused.next,
468 						struct inode, i_list))
469 				continue;	/* wrong inode or list_empty */
470 			if (!can_unuse(inode))
471 				continue;
472 		}
473 		list_move(&inode->i_list, &freeable);
474 		WARN_ON(inode->i_state & I_NEW);
475 		inode->i_state |= I_FREEING;
476 		nr_pruned++;
477 	}
478 	inodes_stat.nr_unused -= nr_pruned;
479 	if (current_is_kswapd())
480 		__count_vm_events(KSWAPD_INODESTEAL, reap);
481 	else
482 		__count_vm_events(PGINODESTEAL, reap);
483 	spin_unlock(&inode_lock);
484 
485 	dispose_list(&freeable);
486 	mutex_unlock(&iprune_mutex);
487 }
488 
489 /*
490  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
491  * "unused" means that no dentries are referring to the inodes: the files are
492  * not open and the dcache references to those inodes have already been
493  * reclaimed.
494  *
495  * This function is passed the number of inodes to scan, and it returns the
496  * total number of remaining possibly-reclaimable inodes.
497  */
498 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
499 {
500 	if (nr) {
501 		/*
502 		 * Nasty deadlock avoidance.  We may hold various FS locks,
503 		 * and we don't want to recurse into the FS that called us
504 		 * in clear_inode() and friends..
505 	 	 */
506 		if (!(gfp_mask & __GFP_FS))
507 			return -1;
508 		prune_icache(nr);
509 	}
510 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
511 }
512 
513 static struct shrinker icache_shrinker = {
514 	.shrink = shrink_icache_memory,
515 	.seeks = DEFAULT_SEEKS,
516 };
517 
518 static void __wait_on_freeing_inode(struct inode *inode);
519 /*
520  * Called with the inode lock held.
521  * NOTE: we are not increasing the inode-refcount, you must call __iget()
522  * by hand after calling find_inode now! This simplifies iunique and won't
523  * add any additional branch in the common code.
524  */
525 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
526 {
527 	struct hlist_node *node;
528 	struct inode * inode = NULL;
529 
530 repeat:
531 	hlist_for_each_entry(inode, node, head, i_hash) {
532 		if (inode->i_sb != sb)
533 			continue;
534 		if (!test(inode, data))
535 			continue;
536 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
537 			__wait_on_freeing_inode(inode);
538 			goto repeat;
539 		}
540 		break;
541 	}
542 	return node ? inode : NULL;
543 }
544 
545 /*
546  * find_inode_fast is the fast path version of find_inode, see the comment at
547  * iget_locked for details.
548  */
549 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
550 {
551 	struct hlist_node *node;
552 	struct inode * inode = NULL;
553 
554 repeat:
555 	hlist_for_each_entry(inode, node, head, i_hash) {
556 		if (inode->i_ino != ino)
557 			continue;
558 		if (inode->i_sb != sb)
559 			continue;
560 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
561 			__wait_on_freeing_inode(inode);
562 			goto repeat;
563 		}
564 		break;
565 	}
566 	return node ? inode : NULL;
567 }
568 
569 static unsigned long hash(struct super_block *sb, unsigned long hashval)
570 {
571 	unsigned long tmp;
572 
573 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
574 			L1_CACHE_BYTES;
575 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
576 	return tmp & I_HASHMASK;
577 }
578 
579 static inline void
580 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
581 			struct inode *inode)
582 {
583 	inodes_stat.nr_inodes++;
584 	list_add(&inode->i_list, &inode_in_use);
585 	list_add(&inode->i_sb_list, &sb->s_inodes);
586 	if (head)
587 		hlist_add_head(&inode->i_hash, head);
588 }
589 
590 /**
591  * inode_add_to_lists - add a new inode to relevant lists
592  * @sb: superblock inode belongs to
593  * @inode: inode to mark in use
594  *
595  * When an inode is allocated it needs to be accounted for, added to the in use
596  * list, the owning superblock and the inode hash. This needs to be done under
597  * the inode_lock, so export a function to do this rather than the inode lock
598  * itself. We calculate the hash list to add to here so it is all internal
599  * which requires the caller to have already set up the inode number in the
600  * inode to add.
601  */
602 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
603 {
604 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
605 
606 	spin_lock(&inode_lock);
607 	__inode_add_to_lists(sb, head, inode);
608 	spin_unlock(&inode_lock);
609 }
610 EXPORT_SYMBOL_GPL(inode_add_to_lists);
611 
612 /**
613  *	new_inode 	- obtain an inode
614  *	@sb: superblock
615  *
616  *	Allocates a new inode for given superblock. The default gfp_mask
617  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
618  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
619  *	for the page cache are not reclaimable or migratable,
620  *	mapping_set_gfp_mask() must be called with suitable flags on the
621  *	newly created inode's mapping
622  *
623  */
624 struct inode *new_inode(struct super_block *sb)
625 {
626 	/*
627 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
628 	 * error if st_ino won't fit in target struct field. Use 32bit counter
629 	 * here to attempt to avoid that.
630 	 */
631 	static unsigned int last_ino;
632 	struct inode * inode;
633 
634 	spin_lock_prefetch(&inode_lock);
635 
636 	inode = alloc_inode(sb);
637 	if (inode) {
638 		spin_lock(&inode_lock);
639 		__inode_add_to_lists(sb, NULL, inode);
640 		inode->i_ino = ++last_ino;
641 		inode->i_state = 0;
642 		spin_unlock(&inode_lock);
643 	}
644 	return inode;
645 }
646 
647 EXPORT_SYMBOL(new_inode);
648 
649 void unlock_new_inode(struct inode *inode)
650 {
651 #ifdef CONFIG_DEBUG_LOCK_ALLOC
652 	if (inode->i_mode & S_IFDIR) {
653 		struct file_system_type *type = inode->i_sb->s_type;
654 
655 		/*
656 		 * ensure nobody is actually holding i_mutex
657 		 */
658 		mutex_destroy(&inode->i_mutex);
659 		mutex_init(&inode->i_mutex);
660 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
661 	}
662 #endif
663 	/*
664 	 * This is special!  We do not need the spinlock
665 	 * when clearing I_LOCK, because we're guaranteed
666 	 * that nobody else tries to do anything about the
667 	 * state of the inode when it is locked, as we
668 	 * just created it (so there can be no old holders
669 	 * that haven't tested I_LOCK).
670 	 */
671 	WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
672 	inode->i_state &= ~(I_LOCK|I_NEW);
673 	wake_up_inode(inode);
674 }
675 
676 EXPORT_SYMBOL(unlock_new_inode);
677 
678 /*
679  * This is called without the inode lock held.. Be careful.
680  *
681  * We no longer cache the sb_flags in i_flags - see fs.h
682  *	-- rmk@arm.uk.linux.org
683  */
684 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
685 {
686 	struct inode * inode;
687 
688 	inode = alloc_inode(sb);
689 	if (inode) {
690 		struct inode * old;
691 
692 		spin_lock(&inode_lock);
693 		/* We released the lock, so.. */
694 		old = find_inode(sb, head, test, data);
695 		if (!old) {
696 			if (set(inode, data))
697 				goto set_failed;
698 
699 			__inode_add_to_lists(sb, head, inode);
700 			inode->i_state = I_LOCK|I_NEW;
701 			spin_unlock(&inode_lock);
702 
703 			/* Return the locked inode with I_NEW set, the
704 			 * caller is responsible for filling in the contents
705 			 */
706 			return inode;
707 		}
708 
709 		/*
710 		 * Uhhuh, somebody else created the same inode under
711 		 * us. Use the old inode instead of the one we just
712 		 * allocated.
713 		 */
714 		__iget(old);
715 		spin_unlock(&inode_lock);
716 		destroy_inode(inode);
717 		inode = old;
718 		wait_on_inode(inode);
719 	}
720 	return inode;
721 
722 set_failed:
723 	spin_unlock(&inode_lock);
724 	destroy_inode(inode);
725 	return NULL;
726 }
727 
728 /*
729  * get_new_inode_fast is the fast path version of get_new_inode, see the
730  * comment at iget_locked for details.
731  */
732 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
733 {
734 	struct inode * inode;
735 
736 	inode = alloc_inode(sb);
737 	if (inode) {
738 		struct inode * old;
739 
740 		spin_lock(&inode_lock);
741 		/* We released the lock, so.. */
742 		old = find_inode_fast(sb, head, ino);
743 		if (!old) {
744 			inode->i_ino = ino;
745 			__inode_add_to_lists(sb, head, inode);
746 			inode->i_state = I_LOCK|I_NEW;
747 			spin_unlock(&inode_lock);
748 
749 			/* Return the locked inode with I_NEW set, the
750 			 * caller is responsible for filling in the contents
751 			 */
752 			return inode;
753 		}
754 
755 		/*
756 		 * Uhhuh, somebody else created the same inode under
757 		 * us. Use the old inode instead of the one we just
758 		 * allocated.
759 		 */
760 		__iget(old);
761 		spin_unlock(&inode_lock);
762 		destroy_inode(inode);
763 		inode = old;
764 		wait_on_inode(inode);
765 	}
766 	return inode;
767 }
768 
769 /**
770  *	iunique - get a unique inode number
771  *	@sb: superblock
772  *	@max_reserved: highest reserved inode number
773  *
774  *	Obtain an inode number that is unique on the system for a given
775  *	superblock. This is used by file systems that have no natural
776  *	permanent inode numbering system. An inode number is returned that
777  *	is higher than the reserved limit but unique.
778  *
779  *	BUGS:
780  *	With a large number of inodes live on the file system this function
781  *	currently becomes quite slow.
782  */
783 ino_t iunique(struct super_block *sb, ino_t max_reserved)
784 {
785 	/*
786 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
787 	 * error if st_ino won't fit in target struct field. Use 32bit counter
788 	 * here to attempt to avoid that.
789 	 */
790 	static unsigned int counter;
791 	struct inode *inode;
792 	struct hlist_head *head;
793 	ino_t res;
794 
795 	spin_lock(&inode_lock);
796 	do {
797 		if (counter <= max_reserved)
798 			counter = max_reserved + 1;
799 		res = counter++;
800 		head = inode_hashtable + hash(sb, res);
801 		inode = find_inode_fast(sb, head, res);
802 	} while (inode != NULL);
803 	spin_unlock(&inode_lock);
804 
805 	return res;
806 }
807 EXPORT_SYMBOL(iunique);
808 
809 struct inode *igrab(struct inode *inode)
810 {
811 	spin_lock(&inode_lock);
812 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
813 		__iget(inode);
814 	else
815 		/*
816 		 * Handle the case where s_op->clear_inode is not been
817 		 * called yet, and somebody is calling igrab
818 		 * while the inode is getting freed.
819 		 */
820 		inode = NULL;
821 	spin_unlock(&inode_lock);
822 	return inode;
823 }
824 
825 EXPORT_SYMBOL(igrab);
826 
827 /**
828  * ifind - internal function, you want ilookup5() or iget5().
829  * @sb:		super block of file system to search
830  * @head:       the head of the list to search
831  * @test:	callback used for comparisons between inodes
832  * @data:	opaque data pointer to pass to @test
833  * @wait:	if true wait for the inode to be unlocked, if false do not
834  *
835  * ifind() searches for the inode specified by @data in the inode
836  * cache. This is a generalized version of ifind_fast() for file systems where
837  * the inode number is not sufficient for unique identification of an inode.
838  *
839  * If the inode is in the cache, the inode is returned with an incremented
840  * reference count.
841  *
842  * Otherwise NULL is returned.
843  *
844  * Note, @test is called with the inode_lock held, so can't sleep.
845  */
846 static struct inode *ifind(struct super_block *sb,
847 		struct hlist_head *head, int (*test)(struct inode *, void *),
848 		void *data, const int wait)
849 {
850 	struct inode *inode;
851 
852 	spin_lock(&inode_lock);
853 	inode = find_inode(sb, head, test, data);
854 	if (inode) {
855 		__iget(inode);
856 		spin_unlock(&inode_lock);
857 		if (likely(wait))
858 			wait_on_inode(inode);
859 		return inode;
860 	}
861 	spin_unlock(&inode_lock);
862 	return NULL;
863 }
864 
865 /**
866  * ifind_fast - internal function, you want ilookup() or iget().
867  * @sb:		super block of file system to search
868  * @head:       head of the list to search
869  * @ino:	inode number to search for
870  *
871  * ifind_fast() searches for the inode @ino in the inode cache. This is for
872  * file systems where the inode number is sufficient for unique identification
873  * of an inode.
874  *
875  * If the inode is in the cache, the inode is returned with an incremented
876  * reference count.
877  *
878  * Otherwise NULL is returned.
879  */
880 static struct inode *ifind_fast(struct super_block *sb,
881 		struct hlist_head *head, unsigned long ino)
882 {
883 	struct inode *inode;
884 
885 	spin_lock(&inode_lock);
886 	inode = find_inode_fast(sb, head, ino);
887 	if (inode) {
888 		__iget(inode);
889 		spin_unlock(&inode_lock);
890 		wait_on_inode(inode);
891 		return inode;
892 	}
893 	spin_unlock(&inode_lock);
894 	return NULL;
895 }
896 
897 /**
898  * ilookup5_nowait - search for an inode in the inode cache
899  * @sb:		super block of file system to search
900  * @hashval:	hash value (usually inode number) to search for
901  * @test:	callback used for comparisons between inodes
902  * @data:	opaque data pointer to pass to @test
903  *
904  * ilookup5() uses ifind() to search for the inode specified by @hashval and
905  * @data in the inode cache. This is a generalized version of ilookup() for
906  * file systems where the inode number is not sufficient for unique
907  * identification of an inode.
908  *
909  * If the inode is in the cache, the inode is returned with an incremented
910  * reference count.  Note, the inode lock is not waited upon so you have to be
911  * very careful what you do with the returned inode.  You probably should be
912  * using ilookup5() instead.
913  *
914  * Otherwise NULL is returned.
915  *
916  * Note, @test is called with the inode_lock held, so can't sleep.
917  */
918 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
919 		int (*test)(struct inode *, void *), void *data)
920 {
921 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
922 
923 	return ifind(sb, head, test, data, 0);
924 }
925 
926 EXPORT_SYMBOL(ilookup5_nowait);
927 
928 /**
929  * ilookup5 - search for an inode in the inode cache
930  * @sb:		super block of file system to search
931  * @hashval:	hash value (usually inode number) to search for
932  * @test:	callback used for comparisons between inodes
933  * @data:	opaque data pointer to pass to @test
934  *
935  * ilookup5() uses ifind() to search for the inode specified by @hashval and
936  * @data in the inode cache. This is a generalized version of ilookup() for
937  * file systems where the inode number is not sufficient for unique
938  * identification of an inode.
939  *
940  * If the inode is in the cache, the inode lock is waited upon and the inode is
941  * returned with an incremented reference count.
942  *
943  * Otherwise NULL is returned.
944  *
945  * Note, @test is called with the inode_lock held, so can't sleep.
946  */
947 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
948 		int (*test)(struct inode *, void *), void *data)
949 {
950 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
951 
952 	return ifind(sb, head, test, data, 1);
953 }
954 
955 EXPORT_SYMBOL(ilookup5);
956 
957 /**
958  * ilookup - search for an inode in the inode cache
959  * @sb:		super block of file system to search
960  * @ino:	inode number to search for
961  *
962  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
963  * This is for file systems where the inode number is sufficient for unique
964  * identification of an inode.
965  *
966  * If the inode is in the cache, the inode is returned with an incremented
967  * reference count.
968  *
969  * Otherwise NULL is returned.
970  */
971 struct inode *ilookup(struct super_block *sb, unsigned long ino)
972 {
973 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
974 
975 	return ifind_fast(sb, head, ino);
976 }
977 
978 EXPORT_SYMBOL(ilookup);
979 
980 /**
981  * iget5_locked - obtain an inode from a mounted file system
982  * @sb:		super block of file system
983  * @hashval:	hash value (usually inode number) to get
984  * @test:	callback used for comparisons between inodes
985  * @set:	callback used to initialize a new struct inode
986  * @data:	opaque data pointer to pass to @test and @set
987  *
988  * iget5_locked() uses ifind() to search for the inode specified by @hashval
989  * and @data in the inode cache and if present it is returned with an increased
990  * reference count. This is a generalized version of iget_locked() for file
991  * systems where the inode number is not sufficient for unique identification
992  * of an inode.
993  *
994  * If the inode is not in cache, get_new_inode() is called to allocate a new
995  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
996  * file system gets to fill it in before unlocking it via unlock_new_inode().
997  *
998  * Note both @test and @set are called with the inode_lock held, so can't sleep.
999  */
1000 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1001 		int (*test)(struct inode *, void *),
1002 		int (*set)(struct inode *, void *), void *data)
1003 {
1004 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1005 	struct inode *inode;
1006 
1007 	inode = ifind(sb, head, test, data, 1);
1008 	if (inode)
1009 		return inode;
1010 	/*
1011 	 * get_new_inode() will do the right thing, re-trying the search
1012 	 * in case it had to block at any point.
1013 	 */
1014 	return get_new_inode(sb, head, test, set, data);
1015 }
1016 
1017 EXPORT_SYMBOL(iget5_locked);
1018 
1019 /**
1020  * iget_locked - obtain an inode from a mounted file system
1021  * @sb:		super block of file system
1022  * @ino:	inode number to get
1023  *
1024  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1025  * the inode cache and if present it is returned with an increased reference
1026  * count. This is for file systems where the inode number is sufficient for
1027  * unique identification of an inode.
1028  *
1029  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1030  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1031  * The file system gets to fill it in before unlocking it via
1032  * unlock_new_inode().
1033  */
1034 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1035 {
1036 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1037 	struct inode *inode;
1038 
1039 	inode = ifind_fast(sb, head, ino);
1040 	if (inode)
1041 		return inode;
1042 	/*
1043 	 * get_new_inode_fast() will do the right thing, re-trying the search
1044 	 * in case it had to block at any point.
1045 	 */
1046 	return get_new_inode_fast(sb, head, ino);
1047 }
1048 
1049 EXPORT_SYMBOL(iget_locked);
1050 
1051 int insert_inode_locked(struct inode *inode)
1052 {
1053 	struct super_block *sb = inode->i_sb;
1054 	ino_t ino = inode->i_ino;
1055 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1056 	struct inode *old;
1057 
1058 	inode->i_state |= I_LOCK|I_NEW;
1059 	while (1) {
1060 		spin_lock(&inode_lock);
1061 		old = find_inode_fast(sb, head, ino);
1062 		if (likely(!old)) {
1063 			hlist_add_head(&inode->i_hash, head);
1064 			spin_unlock(&inode_lock);
1065 			return 0;
1066 		}
1067 		__iget(old);
1068 		spin_unlock(&inode_lock);
1069 		wait_on_inode(old);
1070 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1071 			iput(old);
1072 			return -EBUSY;
1073 		}
1074 		iput(old);
1075 	}
1076 }
1077 
1078 EXPORT_SYMBOL(insert_inode_locked);
1079 
1080 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1081 		int (*test)(struct inode *, void *), void *data)
1082 {
1083 	struct super_block *sb = inode->i_sb;
1084 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1085 	struct inode *old;
1086 
1087 	inode->i_state |= I_LOCK|I_NEW;
1088 
1089 	while (1) {
1090 		spin_lock(&inode_lock);
1091 		old = find_inode(sb, head, test, data);
1092 		if (likely(!old)) {
1093 			hlist_add_head(&inode->i_hash, head);
1094 			spin_unlock(&inode_lock);
1095 			return 0;
1096 		}
1097 		__iget(old);
1098 		spin_unlock(&inode_lock);
1099 		wait_on_inode(old);
1100 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1101 			iput(old);
1102 			return -EBUSY;
1103 		}
1104 		iput(old);
1105 	}
1106 }
1107 
1108 EXPORT_SYMBOL(insert_inode_locked4);
1109 
1110 /**
1111  *	__insert_inode_hash - hash an inode
1112  *	@inode: unhashed inode
1113  *	@hashval: unsigned long value used to locate this object in the
1114  *		inode_hashtable.
1115  *
1116  *	Add an inode to the inode hash for this superblock.
1117  */
1118 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1119 {
1120 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1121 	spin_lock(&inode_lock);
1122 	hlist_add_head(&inode->i_hash, head);
1123 	spin_unlock(&inode_lock);
1124 }
1125 
1126 EXPORT_SYMBOL(__insert_inode_hash);
1127 
1128 /**
1129  *	remove_inode_hash - remove an inode from the hash
1130  *	@inode: inode to unhash
1131  *
1132  *	Remove an inode from the superblock.
1133  */
1134 void remove_inode_hash(struct inode *inode)
1135 {
1136 	spin_lock(&inode_lock);
1137 	hlist_del_init(&inode->i_hash);
1138 	spin_unlock(&inode_lock);
1139 }
1140 
1141 EXPORT_SYMBOL(remove_inode_hash);
1142 
1143 /*
1144  * Tell the filesystem that this inode is no longer of any interest and should
1145  * be completely destroyed.
1146  *
1147  * We leave the inode in the inode hash table until *after* the filesystem's
1148  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1149  * instigate) will always find up-to-date information either in the hash or on
1150  * disk.
1151  *
1152  * I_FREEING is set so that no-one will take a new reference to the inode while
1153  * it is being deleted.
1154  */
1155 void generic_delete_inode(struct inode *inode)
1156 {
1157 	const struct super_operations *op = inode->i_sb->s_op;
1158 
1159 	list_del_init(&inode->i_list);
1160 	list_del_init(&inode->i_sb_list);
1161 	WARN_ON(inode->i_state & I_NEW);
1162 	inode->i_state |= I_FREEING;
1163 	inodes_stat.nr_inodes--;
1164 	spin_unlock(&inode_lock);
1165 
1166 	security_inode_delete(inode);
1167 
1168 	if (op->delete_inode) {
1169 		void (*delete)(struct inode *) = op->delete_inode;
1170 		if (!is_bad_inode(inode))
1171 			DQUOT_INIT(inode);
1172 		/* Filesystems implementing their own
1173 		 * s_op->delete_inode are required to call
1174 		 * truncate_inode_pages and clear_inode()
1175 		 * internally */
1176 		delete(inode);
1177 	} else {
1178 		truncate_inode_pages(&inode->i_data, 0);
1179 		clear_inode(inode);
1180 	}
1181 	spin_lock(&inode_lock);
1182 	hlist_del_init(&inode->i_hash);
1183 	spin_unlock(&inode_lock);
1184 	wake_up_inode(inode);
1185 	BUG_ON(inode->i_state != I_CLEAR);
1186 	destroy_inode(inode);
1187 }
1188 
1189 EXPORT_SYMBOL(generic_delete_inode);
1190 
1191 static void generic_forget_inode(struct inode *inode)
1192 {
1193 	struct super_block *sb = inode->i_sb;
1194 
1195 	if (!hlist_unhashed(&inode->i_hash)) {
1196 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1197 			list_move(&inode->i_list, &inode_unused);
1198 		inodes_stat.nr_unused++;
1199 		if (sb->s_flags & MS_ACTIVE) {
1200 			spin_unlock(&inode_lock);
1201 			return;
1202 		}
1203 		WARN_ON(inode->i_state & I_NEW);
1204 		inode->i_state |= I_WILL_FREE;
1205 		spin_unlock(&inode_lock);
1206 		write_inode_now(inode, 1);
1207 		spin_lock(&inode_lock);
1208 		WARN_ON(inode->i_state & I_NEW);
1209 		inode->i_state &= ~I_WILL_FREE;
1210 		inodes_stat.nr_unused--;
1211 		hlist_del_init(&inode->i_hash);
1212 	}
1213 	list_del_init(&inode->i_list);
1214 	list_del_init(&inode->i_sb_list);
1215 	WARN_ON(inode->i_state & I_NEW);
1216 	inode->i_state |= I_FREEING;
1217 	inodes_stat.nr_inodes--;
1218 	spin_unlock(&inode_lock);
1219 	if (inode->i_data.nrpages)
1220 		truncate_inode_pages(&inode->i_data, 0);
1221 	clear_inode(inode);
1222 	wake_up_inode(inode);
1223 	destroy_inode(inode);
1224 }
1225 
1226 /*
1227  * Normal UNIX filesystem behaviour: delete the
1228  * inode when the usage count drops to zero, and
1229  * i_nlink is zero.
1230  */
1231 void generic_drop_inode(struct inode *inode)
1232 {
1233 	if (!inode->i_nlink)
1234 		generic_delete_inode(inode);
1235 	else
1236 		generic_forget_inode(inode);
1237 }
1238 
1239 EXPORT_SYMBOL_GPL(generic_drop_inode);
1240 
1241 /*
1242  * Called when we're dropping the last reference
1243  * to an inode.
1244  *
1245  * Call the FS "drop()" function, defaulting to
1246  * the legacy UNIX filesystem behaviour..
1247  *
1248  * NOTE! NOTE! NOTE! We're called with the inode lock
1249  * held, and the drop function is supposed to release
1250  * the lock!
1251  */
1252 static inline void iput_final(struct inode *inode)
1253 {
1254 	const struct super_operations *op = inode->i_sb->s_op;
1255 	void (*drop)(struct inode *) = generic_drop_inode;
1256 
1257 	if (op && op->drop_inode)
1258 		drop = op->drop_inode;
1259 	drop(inode);
1260 }
1261 
1262 /**
1263  *	iput	- put an inode
1264  *	@inode: inode to put
1265  *
1266  *	Puts an inode, dropping its usage count. If the inode use count hits
1267  *	zero, the inode is then freed and may also be destroyed.
1268  *
1269  *	Consequently, iput() can sleep.
1270  */
1271 void iput(struct inode *inode)
1272 {
1273 	if (inode) {
1274 		BUG_ON(inode->i_state == I_CLEAR);
1275 
1276 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1277 			iput_final(inode);
1278 	}
1279 }
1280 
1281 EXPORT_SYMBOL(iput);
1282 
1283 /**
1284  *	bmap	- find a block number in a file
1285  *	@inode: inode of file
1286  *	@block: block to find
1287  *
1288  *	Returns the block number on the device holding the inode that
1289  *	is the disk block number for the block of the file requested.
1290  *	That is, asked for block 4 of inode 1 the function will return the
1291  *	disk block relative to the disk start that holds that block of the
1292  *	file.
1293  */
1294 sector_t bmap(struct inode * inode, sector_t block)
1295 {
1296 	sector_t res = 0;
1297 	if (inode->i_mapping->a_ops->bmap)
1298 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1299 	return res;
1300 }
1301 EXPORT_SYMBOL(bmap);
1302 
1303 /*
1304  * With relative atime, only update atime if the previous atime is
1305  * earlier than either the ctime or mtime or if at least a day has
1306  * passed since the last atime update.
1307  */
1308 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1309 			     struct timespec now)
1310 {
1311 
1312 	if (!(mnt->mnt_flags & MNT_RELATIME))
1313 		return 1;
1314 	/*
1315 	 * Is mtime younger than atime? If yes, update atime:
1316 	 */
1317 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1318 		return 1;
1319 	/*
1320 	 * Is ctime younger than atime? If yes, update atime:
1321 	 */
1322 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1323 		return 1;
1324 
1325 	/*
1326 	 * Is the previous atime value older than a day? If yes,
1327 	 * update atime:
1328 	 */
1329 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1330 		return 1;
1331 	/*
1332 	 * Good, we can skip the atime update:
1333 	 */
1334 	return 0;
1335 }
1336 
1337 /**
1338  *	touch_atime	-	update the access time
1339  *	@mnt: mount the inode is accessed on
1340  *	@dentry: dentry accessed
1341  *
1342  *	Update the accessed time on an inode and mark it for writeback.
1343  *	This function automatically handles read only file systems and media,
1344  *	as well as the "noatime" flag and inode specific "noatime" markers.
1345  */
1346 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1347 {
1348 	struct inode *inode = dentry->d_inode;
1349 	struct timespec now;
1350 
1351 	if (mnt_want_write(mnt))
1352 		return;
1353 	if (inode->i_flags & S_NOATIME)
1354 		goto out;
1355 	if (IS_NOATIME(inode))
1356 		goto out;
1357 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1358 		goto out;
1359 
1360 	if (mnt->mnt_flags & MNT_NOATIME)
1361 		goto out;
1362 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1363 		goto out;
1364 
1365 	now = current_fs_time(inode->i_sb);
1366 
1367 	if (!relatime_need_update(mnt, inode, now))
1368 		goto out;
1369 
1370 	if (timespec_equal(&inode->i_atime, &now))
1371 		goto out;
1372 
1373 	inode->i_atime = now;
1374 	mark_inode_dirty_sync(inode);
1375 out:
1376 	mnt_drop_write(mnt);
1377 }
1378 EXPORT_SYMBOL(touch_atime);
1379 
1380 /**
1381  *	file_update_time	-	update mtime and ctime time
1382  *	@file: file accessed
1383  *
1384  *	Update the mtime and ctime members of an inode and mark the inode
1385  *	for writeback.  Note that this function is meant exclusively for
1386  *	usage in the file write path of filesystems, and filesystems may
1387  *	choose to explicitly ignore update via this function with the
1388  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1389  *	timestamps are handled by the server.
1390  */
1391 
1392 void file_update_time(struct file *file)
1393 {
1394 	struct inode *inode = file->f_path.dentry->d_inode;
1395 	struct timespec now;
1396 	int sync_it = 0;
1397 	int err;
1398 
1399 	if (IS_NOCMTIME(inode))
1400 		return;
1401 
1402 	err = mnt_want_write(file->f_path.mnt);
1403 	if (err)
1404 		return;
1405 
1406 	now = current_fs_time(inode->i_sb);
1407 	if (!timespec_equal(&inode->i_mtime, &now)) {
1408 		inode->i_mtime = now;
1409 		sync_it = 1;
1410 	}
1411 
1412 	if (!timespec_equal(&inode->i_ctime, &now)) {
1413 		inode->i_ctime = now;
1414 		sync_it = 1;
1415 	}
1416 
1417 	if (IS_I_VERSION(inode)) {
1418 		inode_inc_iversion(inode);
1419 		sync_it = 1;
1420 	}
1421 
1422 	if (sync_it)
1423 		mark_inode_dirty_sync(inode);
1424 	mnt_drop_write(file->f_path.mnt);
1425 }
1426 
1427 EXPORT_SYMBOL(file_update_time);
1428 
1429 int inode_needs_sync(struct inode *inode)
1430 {
1431 	if (IS_SYNC(inode))
1432 		return 1;
1433 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1434 		return 1;
1435 	return 0;
1436 }
1437 
1438 EXPORT_SYMBOL(inode_needs_sync);
1439 
1440 int inode_wait(void *word)
1441 {
1442 	schedule();
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL(inode_wait);
1446 
1447 /*
1448  * If we try to find an inode in the inode hash while it is being
1449  * deleted, we have to wait until the filesystem completes its
1450  * deletion before reporting that it isn't found.  This function waits
1451  * until the deletion _might_ have completed.  Callers are responsible
1452  * to recheck inode state.
1453  *
1454  * It doesn't matter if I_LOCK is not set initially, a call to
1455  * wake_up_inode() after removing from the hash list will DTRT.
1456  *
1457  * This is called with inode_lock held.
1458  */
1459 static void __wait_on_freeing_inode(struct inode *inode)
1460 {
1461 	wait_queue_head_t *wq;
1462 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1463 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1464 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1465 	spin_unlock(&inode_lock);
1466 	schedule();
1467 	finish_wait(wq, &wait.wait);
1468 	spin_lock(&inode_lock);
1469 }
1470 
1471 /*
1472  * We rarely want to lock two inodes that do not have a parent/child
1473  * relationship (such as directory, child inode) simultaneously. The
1474  * vast majority of file systems should be able to get along fine
1475  * without this. Do not use these functions except as a last resort.
1476  */
1477 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1478 {
1479 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1480 		if (inode1)
1481 			mutex_lock(&inode1->i_mutex);
1482 		else if (inode2)
1483 			mutex_lock(&inode2->i_mutex);
1484 		return;
1485 	}
1486 
1487 	if (inode1 < inode2) {
1488 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1489 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1490 	} else {
1491 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1492 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1493 	}
1494 }
1495 EXPORT_SYMBOL(inode_double_lock);
1496 
1497 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1498 {
1499 	if (inode1)
1500 		mutex_unlock(&inode1->i_mutex);
1501 
1502 	if (inode2 && inode2 != inode1)
1503 		mutex_unlock(&inode2->i_mutex);
1504 }
1505 EXPORT_SYMBOL(inode_double_unlock);
1506 
1507 static __initdata unsigned long ihash_entries;
1508 static int __init set_ihash_entries(char *str)
1509 {
1510 	if (!str)
1511 		return 0;
1512 	ihash_entries = simple_strtoul(str, &str, 0);
1513 	return 1;
1514 }
1515 __setup("ihash_entries=", set_ihash_entries);
1516 
1517 /*
1518  * Initialize the waitqueues and inode hash table.
1519  */
1520 void __init inode_init_early(void)
1521 {
1522 	int loop;
1523 
1524 	/* If hashes are distributed across NUMA nodes, defer
1525 	 * hash allocation until vmalloc space is available.
1526 	 */
1527 	if (hashdist)
1528 		return;
1529 
1530 	inode_hashtable =
1531 		alloc_large_system_hash("Inode-cache",
1532 					sizeof(struct hlist_head),
1533 					ihash_entries,
1534 					14,
1535 					HASH_EARLY,
1536 					&i_hash_shift,
1537 					&i_hash_mask,
1538 					0);
1539 
1540 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1541 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1542 }
1543 
1544 void __init inode_init(void)
1545 {
1546 	int loop;
1547 
1548 	/* inode slab cache */
1549 	inode_cachep = kmem_cache_create("inode_cache",
1550 					 sizeof(struct inode),
1551 					 0,
1552 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1553 					 SLAB_MEM_SPREAD),
1554 					 init_once);
1555 	register_shrinker(&icache_shrinker);
1556 
1557 	/* Hash may have been set up in inode_init_early */
1558 	if (!hashdist)
1559 		return;
1560 
1561 	inode_hashtable =
1562 		alloc_large_system_hash("Inode-cache",
1563 					sizeof(struct hlist_head),
1564 					ihash_entries,
1565 					14,
1566 					0,
1567 					&i_hash_shift,
1568 					&i_hash_mask,
1569 					0);
1570 
1571 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1572 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1573 }
1574 
1575 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1576 {
1577 	inode->i_mode = mode;
1578 	if (S_ISCHR(mode)) {
1579 		inode->i_fop = &def_chr_fops;
1580 		inode->i_rdev = rdev;
1581 	} else if (S_ISBLK(mode)) {
1582 		inode->i_fop = &def_blk_fops;
1583 		inode->i_rdev = rdev;
1584 	} else if (S_ISFIFO(mode))
1585 		inode->i_fop = &def_fifo_fops;
1586 	else if (S_ISSOCK(mode))
1587 		inode->i_fop = &bad_sock_fops;
1588 	else
1589 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1590 		       mode);
1591 }
1592 EXPORT_SYMBOL(init_special_inode);
1593