1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <linux/iversion.h> 22 #include <trace/events/writeback.h> 23 #include "internal.h" 24 25 /* 26 * Inode locking rules: 27 * 28 * inode->i_lock protects: 29 * inode->i_state, inode->i_hash, __iget() 30 * Inode LRU list locks protect: 31 * inode->i_sb->s_inode_lru, inode->i_lru 32 * inode->i_sb->s_inode_list_lock protects: 33 * inode->i_sb->s_inodes, inode->i_sb_list 34 * bdi->wb.list_lock protects: 35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 36 * inode_hash_lock protects: 37 * inode_hashtable, inode->i_hash 38 * 39 * Lock ordering: 40 * 41 * inode->i_sb->s_inode_list_lock 42 * inode->i_lock 43 * Inode LRU list locks 44 * 45 * bdi->wb.list_lock 46 * inode->i_lock 47 * 48 * inode_hash_lock 49 * inode->i_sb->s_inode_list_lock 50 * inode->i_lock 51 * 52 * iunique_lock 53 * inode_hash_lock 54 */ 55 56 static unsigned int i_hash_mask __read_mostly; 57 static unsigned int i_hash_shift __read_mostly; 58 static struct hlist_head *inode_hashtable __read_mostly; 59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(struct ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 static int no_open(struct inode *inode, struct file *file) 118 { 119 return -ENXIO; 120 } 121 122 /** 123 * inode_init_always - perform inode structure initialisation 124 * @sb: superblock inode belongs to 125 * @inode: inode to initialise 126 * 127 * These are initializations that need to be done on every inode 128 * allocation as the fields are not initialised by slab allocation. 129 */ 130 int inode_init_always(struct super_block *sb, struct inode *inode) 131 { 132 static const struct inode_operations empty_iops; 133 static const struct file_operations no_open_fops = {.open = no_open}; 134 struct address_space *const mapping = &inode->i_data; 135 136 inode->i_sb = sb; 137 inode->i_blkbits = sb->s_blocksize_bits; 138 inode->i_flags = 0; 139 atomic_set(&inode->i_count, 1); 140 inode->i_op = &empty_iops; 141 inode->i_fop = &no_open_fops; 142 inode->__i_nlink = 1; 143 inode->i_opflags = 0; 144 if (sb->s_xattr) 145 inode->i_opflags |= IOP_XATTR; 146 i_uid_write(inode, 0); 147 i_gid_write(inode, 0); 148 atomic_set(&inode->i_writecount, 0); 149 inode->i_size = 0; 150 inode->i_write_hint = WRITE_LIFE_NOT_SET; 151 inode->i_blocks = 0; 152 inode->i_bytes = 0; 153 inode->i_generation = 0; 154 inode->i_pipe = NULL; 155 inode->i_bdev = NULL; 156 inode->i_cdev = NULL; 157 inode->i_link = NULL; 158 inode->i_dir_seq = 0; 159 inode->i_rdev = 0; 160 inode->dirtied_when = 0; 161 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 inode->i_wb_frn_winner = 0; 164 inode->i_wb_frn_avg_time = 0; 165 inode->i_wb_frn_history = 0; 166 #endif 167 168 if (security_inode_alloc(inode)) 169 goto out; 170 spin_lock_init(&inode->i_lock); 171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 172 173 init_rwsem(&inode->i_rwsem); 174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 175 176 atomic_set(&inode->i_dio_count, 0); 177 178 mapping->a_ops = &empty_aops; 179 mapping->host = inode; 180 mapping->flags = 0; 181 atomic_set(&mapping->i_mmap_writable, 0); 182 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 183 mapping->private_data = NULL; 184 mapping->writeback_index = 0; 185 inode->i_private = NULL; 186 inode->i_mapping = mapping; 187 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 188 #ifdef CONFIG_FS_POSIX_ACL 189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 190 #endif 191 192 #ifdef CONFIG_FSNOTIFY 193 inode->i_fsnotify_mask = 0; 194 #endif 195 inode->i_flctx = NULL; 196 this_cpu_inc(nr_inodes); 197 198 return 0; 199 out: 200 return -ENOMEM; 201 } 202 EXPORT_SYMBOL(inode_init_always); 203 204 static struct inode *alloc_inode(struct super_block *sb) 205 { 206 struct inode *inode; 207 208 if (sb->s_op->alloc_inode) 209 inode = sb->s_op->alloc_inode(sb); 210 else 211 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 212 213 if (!inode) 214 return NULL; 215 216 if (unlikely(inode_init_always(sb, inode))) { 217 if (inode->i_sb->s_op->destroy_inode) 218 inode->i_sb->s_op->destroy_inode(inode); 219 else 220 kmem_cache_free(inode_cachep, inode); 221 return NULL; 222 } 223 224 return inode; 225 } 226 227 void free_inode_nonrcu(struct inode *inode) 228 { 229 kmem_cache_free(inode_cachep, inode); 230 } 231 EXPORT_SYMBOL(free_inode_nonrcu); 232 233 void __destroy_inode(struct inode *inode) 234 { 235 BUG_ON(inode_has_buffers(inode)); 236 inode_detach_wb(inode); 237 security_inode_free(inode); 238 fsnotify_inode_delete(inode); 239 locks_free_lock_context(inode); 240 if (!inode->i_nlink) { 241 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 242 atomic_long_dec(&inode->i_sb->s_remove_count); 243 } 244 245 #ifdef CONFIG_FS_POSIX_ACL 246 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 247 posix_acl_release(inode->i_acl); 248 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 249 posix_acl_release(inode->i_default_acl); 250 #endif 251 this_cpu_dec(nr_inodes); 252 } 253 EXPORT_SYMBOL(__destroy_inode); 254 255 static void i_callback(struct rcu_head *head) 256 { 257 struct inode *inode = container_of(head, struct inode, i_rcu); 258 kmem_cache_free(inode_cachep, inode); 259 } 260 261 static void destroy_inode(struct inode *inode) 262 { 263 BUG_ON(!list_empty(&inode->i_lru)); 264 __destroy_inode(inode); 265 if (inode->i_sb->s_op->destroy_inode) 266 inode->i_sb->s_op->destroy_inode(inode); 267 else 268 call_rcu(&inode->i_rcu, i_callback); 269 } 270 271 /** 272 * drop_nlink - directly drop an inode's link count 273 * @inode: inode 274 * 275 * This is a low-level filesystem helper to replace any 276 * direct filesystem manipulation of i_nlink. In cases 277 * where we are attempting to track writes to the 278 * filesystem, a decrement to zero means an imminent 279 * write when the file is truncated and actually unlinked 280 * on the filesystem. 281 */ 282 void drop_nlink(struct inode *inode) 283 { 284 WARN_ON(inode->i_nlink == 0); 285 inode->__i_nlink--; 286 if (!inode->i_nlink) 287 atomic_long_inc(&inode->i_sb->s_remove_count); 288 } 289 EXPORT_SYMBOL(drop_nlink); 290 291 /** 292 * clear_nlink - directly zero an inode's link count 293 * @inode: inode 294 * 295 * This is a low-level filesystem helper to replace any 296 * direct filesystem manipulation of i_nlink. See 297 * drop_nlink() for why we care about i_nlink hitting zero. 298 */ 299 void clear_nlink(struct inode *inode) 300 { 301 if (inode->i_nlink) { 302 inode->__i_nlink = 0; 303 atomic_long_inc(&inode->i_sb->s_remove_count); 304 } 305 } 306 EXPORT_SYMBOL(clear_nlink); 307 308 /** 309 * set_nlink - directly set an inode's link count 310 * @inode: inode 311 * @nlink: new nlink (should be non-zero) 312 * 313 * This is a low-level filesystem helper to replace any 314 * direct filesystem manipulation of i_nlink. 315 */ 316 void set_nlink(struct inode *inode, unsigned int nlink) 317 { 318 if (!nlink) { 319 clear_nlink(inode); 320 } else { 321 /* Yes, some filesystems do change nlink from zero to one */ 322 if (inode->i_nlink == 0) 323 atomic_long_dec(&inode->i_sb->s_remove_count); 324 325 inode->__i_nlink = nlink; 326 } 327 } 328 EXPORT_SYMBOL(set_nlink); 329 330 /** 331 * inc_nlink - directly increment an inode's link count 332 * @inode: inode 333 * 334 * This is a low-level filesystem helper to replace any 335 * direct filesystem manipulation of i_nlink. Currently, 336 * it is only here for parity with dec_nlink(). 337 */ 338 void inc_nlink(struct inode *inode) 339 { 340 if (unlikely(inode->i_nlink == 0)) { 341 WARN_ON(!(inode->i_state & I_LINKABLE)); 342 atomic_long_dec(&inode->i_sb->s_remove_count); 343 } 344 345 inode->__i_nlink++; 346 } 347 EXPORT_SYMBOL(inc_nlink); 348 349 void address_space_init_once(struct address_space *mapping) 350 { 351 memset(mapping, 0, sizeof(*mapping)); 352 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT); 353 spin_lock_init(&mapping->tree_lock); 354 init_rwsem(&mapping->i_mmap_rwsem); 355 INIT_LIST_HEAD(&mapping->private_list); 356 spin_lock_init(&mapping->private_lock); 357 mapping->i_mmap = RB_ROOT_CACHED; 358 } 359 EXPORT_SYMBOL(address_space_init_once); 360 361 /* 362 * These are initializations that only need to be done 363 * once, because the fields are idempotent across use 364 * of the inode, so let the slab aware of that. 365 */ 366 void inode_init_once(struct inode *inode) 367 { 368 memset(inode, 0, sizeof(*inode)); 369 INIT_HLIST_NODE(&inode->i_hash); 370 INIT_LIST_HEAD(&inode->i_devices); 371 INIT_LIST_HEAD(&inode->i_io_list); 372 INIT_LIST_HEAD(&inode->i_wb_list); 373 INIT_LIST_HEAD(&inode->i_lru); 374 address_space_init_once(&inode->i_data); 375 i_size_ordered_init(inode); 376 } 377 EXPORT_SYMBOL(inode_init_once); 378 379 static void init_once(void *foo) 380 { 381 struct inode *inode = (struct inode *) foo; 382 383 inode_init_once(inode); 384 } 385 386 /* 387 * inode->i_lock must be held 388 */ 389 void __iget(struct inode *inode) 390 { 391 atomic_inc(&inode->i_count); 392 } 393 394 /* 395 * get additional reference to inode; caller must already hold one. 396 */ 397 void ihold(struct inode *inode) 398 { 399 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 400 } 401 EXPORT_SYMBOL(ihold); 402 403 static void inode_lru_list_add(struct inode *inode) 404 { 405 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 406 this_cpu_inc(nr_unused); 407 else 408 inode->i_state |= I_REFERENCED; 409 } 410 411 /* 412 * Add inode to LRU if needed (inode is unused and clean). 413 * 414 * Needs inode->i_lock held. 415 */ 416 void inode_add_lru(struct inode *inode) 417 { 418 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 419 I_FREEING | I_WILL_FREE)) && 420 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 421 inode_lru_list_add(inode); 422 } 423 424 425 static void inode_lru_list_del(struct inode *inode) 426 { 427 428 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 429 this_cpu_dec(nr_unused); 430 } 431 432 /** 433 * inode_sb_list_add - add inode to the superblock list of inodes 434 * @inode: inode to add 435 */ 436 void inode_sb_list_add(struct inode *inode) 437 { 438 spin_lock(&inode->i_sb->s_inode_list_lock); 439 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 440 spin_unlock(&inode->i_sb->s_inode_list_lock); 441 } 442 EXPORT_SYMBOL_GPL(inode_sb_list_add); 443 444 static inline void inode_sb_list_del(struct inode *inode) 445 { 446 if (!list_empty(&inode->i_sb_list)) { 447 spin_lock(&inode->i_sb->s_inode_list_lock); 448 list_del_init(&inode->i_sb_list); 449 spin_unlock(&inode->i_sb->s_inode_list_lock); 450 } 451 } 452 453 static unsigned long hash(struct super_block *sb, unsigned long hashval) 454 { 455 unsigned long tmp; 456 457 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 458 L1_CACHE_BYTES; 459 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 460 return tmp & i_hash_mask; 461 } 462 463 /** 464 * __insert_inode_hash - hash an inode 465 * @inode: unhashed inode 466 * @hashval: unsigned long value used to locate this object in the 467 * inode_hashtable. 468 * 469 * Add an inode to the inode hash for this superblock. 470 */ 471 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 472 { 473 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 474 475 spin_lock(&inode_hash_lock); 476 spin_lock(&inode->i_lock); 477 hlist_add_head(&inode->i_hash, b); 478 spin_unlock(&inode->i_lock); 479 spin_unlock(&inode_hash_lock); 480 } 481 EXPORT_SYMBOL(__insert_inode_hash); 482 483 /** 484 * __remove_inode_hash - remove an inode from the hash 485 * @inode: inode to unhash 486 * 487 * Remove an inode from the superblock. 488 */ 489 void __remove_inode_hash(struct inode *inode) 490 { 491 spin_lock(&inode_hash_lock); 492 spin_lock(&inode->i_lock); 493 hlist_del_init(&inode->i_hash); 494 spin_unlock(&inode->i_lock); 495 spin_unlock(&inode_hash_lock); 496 } 497 EXPORT_SYMBOL(__remove_inode_hash); 498 499 void clear_inode(struct inode *inode) 500 { 501 might_sleep(); 502 /* 503 * We have to cycle tree_lock here because reclaim can be still in the 504 * process of removing the last page (in __delete_from_page_cache()) 505 * and we must not free mapping under it. 506 */ 507 spin_lock_irq(&inode->i_data.tree_lock); 508 BUG_ON(inode->i_data.nrpages); 509 BUG_ON(inode->i_data.nrexceptional); 510 spin_unlock_irq(&inode->i_data.tree_lock); 511 BUG_ON(!list_empty(&inode->i_data.private_list)); 512 BUG_ON(!(inode->i_state & I_FREEING)); 513 BUG_ON(inode->i_state & I_CLEAR); 514 BUG_ON(!list_empty(&inode->i_wb_list)); 515 /* don't need i_lock here, no concurrent mods to i_state */ 516 inode->i_state = I_FREEING | I_CLEAR; 517 } 518 EXPORT_SYMBOL(clear_inode); 519 520 /* 521 * Free the inode passed in, removing it from the lists it is still connected 522 * to. We remove any pages still attached to the inode and wait for any IO that 523 * is still in progress before finally destroying the inode. 524 * 525 * An inode must already be marked I_FREEING so that we avoid the inode being 526 * moved back onto lists if we race with other code that manipulates the lists 527 * (e.g. writeback_single_inode). The caller is responsible for setting this. 528 * 529 * An inode must already be removed from the LRU list before being evicted from 530 * the cache. This should occur atomically with setting the I_FREEING state 531 * flag, so no inodes here should ever be on the LRU when being evicted. 532 */ 533 static void evict(struct inode *inode) 534 { 535 const struct super_operations *op = inode->i_sb->s_op; 536 537 BUG_ON(!(inode->i_state & I_FREEING)); 538 BUG_ON(!list_empty(&inode->i_lru)); 539 540 if (!list_empty(&inode->i_io_list)) 541 inode_io_list_del(inode); 542 543 inode_sb_list_del(inode); 544 545 /* 546 * Wait for flusher thread to be done with the inode so that filesystem 547 * does not start destroying it while writeback is still running. Since 548 * the inode has I_FREEING set, flusher thread won't start new work on 549 * the inode. We just have to wait for running writeback to finish. 550 */ 551 inode_wait_for_writeback(inode); 552 553 if (op->evict_inode) { 554 op->evict_inode(inode); 555 } else { 556 truncate_inode_pages_final(&inode->i_data); 557 clear_inode(inode); 558 } 559 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 560 bd_forget(inode); 561 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 562 cd_forget(inode); 563 564 remove_inode_hash(inode); 565 566 spin_lock(&inode->i_lock); 567 wake_up_bit(&inode->i_state, __I_NEW); 568 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 569 spin_unlock(&inode->i_lock); 570 571 destroy_inode(inode); 572 } 573 574 /* 575 * dispose_list - dispose of the contents of a local list 576 * @head: the head of the list to free 577 * 578 * Dispose-list gets a local list with local inodes in it, so it doesn't 579 * need to worry about list corruption and SMP locks. 580 */ 581 static void dispose_list(struct list_head *head) 582 { 583 while (!list_empty(head)) { 584 struct inode *inode; 585 586 inode = list_first_entry(head, struct inode, i_lru); 587 list_del_init(&inode->i_lru); 588 589 evict(inode); 590 cond_resched(); 591 } 592 } 593 594 /** 595 * evict_inodes - evict all evictable inodes for a superblock 596 * @sb: superblock to operate on 597 * 598 * Make sure that no inodes with zero refcount are retained. This is 599 * called by superblock shutdown after having SB_ACTIVE flag removed, 600 * so any inode reaching zero refcount during or after that call will 601 * be immediately evicted. 602 */ 603 void evict_inodes(struct super_block *sb) 604 { 605 struct inode *inode, *next; 606 LIST_HEAD(dispose); 607 608 again: 609 spin_lock(&sb->s_inode_list_lock); 610 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 611 if (atomic_read(&inode->i_count)) 612 continue; 613 614 spin_lock(&inode->i_lock); 615 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 616 spin_unlock(&inode->i_lock); 617 continue; 618 } 619 620 inode->i_state |= I_FREEING; 621 inode_lru_list_del(inode); 622 spin_unlock(&inode->i_lock); 623 list_add(&inode->i_lru, &dispose); 624 625 /* 626 * We can have a ton of inodes to evict at unmount time given 627 * enough memory, check to see if we need to go to sleep for a 628 * bit so we don't livelock. 629 */ 630 if (need_resched()) { 631 spin_unlock(&sb->s_inode_list_lock); 632 cond_resched(); 633 dispose_list(&dispose); 634 goto again; 635 } 636 } 637 spin_unlock(&sb->s_inode_list_lock); 638 639 dispose_list(&dispose); 640 } 641 EXPORT_SYMBOL_GPL(evict_inodes); 642 643 /** 644 * invalidate_inodes - attempt to free all inodes on a superblock 645 * @sb: superblock to operate on 646 * @kill_dirty: flag to guide handling of dirty inodes 647 * 648 * Attempts to free all inodes for a given superblock. If there were any 649 * busy inodes return a non-zero value, else zero. 650 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 651 * them as busy. 652 */ 653 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 654 { 655 int busy = 0; 656 struct inode *inode, *next; 657 LIST_HEAD(dispose); 658 659 spin_lock(&sb->s_inode_list_lock); 660 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 661 spin_lock(&inode->i_lock); 662 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 663 spin_unlock(&inode->i_lock); 664 continue; 665 } 666 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 667 spin_unlock(&inode->i_lock); 668 busy = 1; 669 continue; 670 } 671 if (atomic_read(&inode->i_count)) { 672 spin_unlock(&inode->i_lock); 673 busy = 1; 674 continue; 675 } 676 677 inode->i_state |= I_FREEING; 678 inode_lru_list_del(inode); 679 spin_unlock(&inode->i_lock); 680 list_add(&inode->i_lru, &dispose); 681 } 682 spin_unlock(&sb->s_inode_list_lock); 683 684 dispose_list(&dispose); 685 686 return busy; 687 } 688 689 /* 690 * Isolate the inode from the LRU in preparation for freeing it. 691 * 692 * Any inodes which are pinned purely because of attached pagecache have their 693 * pagecache removed. If the inode has metadata buffers attached to 694 * mapping->private_list then try to remove them. 695 * 696 * If the inode has the I_REFERENCED flag set, then it means that it has been 697 * used recently - the flag is set in iput_final(). When we encounter such an 698 * inode, clear the flag and move it to the back of the LRU so it gets another 699 * pass through the LRU before it gets reclaimed. This is necessary because of 700 * the fact we are doing lazy LRU updates to minimise lock contention so the 701 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 702 * with this flag set because they are the inodes that are out of order. 703 */ 704 static enum lru_status inode_lru_isolate(struct list_head *item, 705 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 706 { 707 struct list_head *freeable = arg; 708 struct inode *inode = container_of(item, struct inode, i_lru); 709 710 /* 711 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 712 * If we fail to get the lock, just skip it. 713 */ 714 if (!spin_trylock(&inode->i_lock)) 715 return LRU_SKIP; 716 717 /* 718 * Referenced or dirty inodes are still in use. Give them another pass 719 * through the LRU as we canot reclaim them now. 720 */ 721 if (atomic_read(&inode->i_count) || 722 (inode->i_state & ~I_REFERENCED)) { 723 list_lru_isolate(lru, &inode->i_lru); 724 spin_unlock(&inode->i_lock); 725 this_cpu_dec(nr_unused); 726 return LRU_REMOVED; 727 } 728 729 /* recently referenced inodes get one more pass */ 730 if (inode->i_state & I_REFERENCED) { 731 inode->i_state &= ~I_REFERENCED; 732 spin_unlock(&inode->i_lock); 733 return LRU_ROTATE; 734 } 735 736 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 737 __iget(inode); 738 spin_unlock(&inode->i_lock); 739 spin_unlock(lru_lock); 740 if (remove_inode_buffers(inode)) { 741 unsigned long reap; 742 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 743 if (current_is_kswapd()) 744 __count_vm_events(KSWAPD_INODESTEAL, reap); 745 else 746 __count_vm_events(PGINODESTEAL, reap); 747 if (current->reclaim_state) 748 current->reclaim_state->reclaimed_slab += reap; 749 } 750 iput(inode); 751 spin_lock(lru_lock); 752 return LRU_RETRY; 753 } 754 755 WARN_ON(inode->i_state & I_NEW); 756 inode->i_state |= I_FREEING; 757 list_lru_isolate_move(lru, &inode->i_lru, freeable); 758 spin_unlock(&inode->i_lock); 759 760 this_cpu_dec(nr_unused); 761 return LRU_REMOVED; 762 } 763 764 /* 765 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 766 * This is called from the superblock shrinker function with a number of inodes 767 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 768 * then are freed outside inode_lock by dispose_list(). 769 */ 770 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 771 { 772 LIST_HEAD(freeable); 773 long freed; 774 775 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 776 inode_lru_isolate, &freeable); 777 dispose_list(&freeable); 778 return freed; 779 } 780 781 static void __wait_on_freeing_inode(struct inode *inode); 782 /* 783 * Called with the inode lock held. 784 */ 785 static struct inode *find_inode(struct super_block *sb, 786 struct hlist_head *head, 787 int (*test)(struct inode *, void *), 788 void *data) 789 { 790 struct inode *inode = NULL; 791 792 repeat: 793 hlist_for_each_entry(inode, head, i_hash) { 794 if (inode->i_sb != sb) 795 continue; 796 if (!test(inode, data)) 797 continue; 798 spin_lock(&inode->i_lock); 799 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 800 __wait_on_freeing_inode(inode); 801 goto repeat; 802 } 803 __iget(inode); 804 spin_unlock(&inode->i_lock); 805 return inode; 806 } 807 return NULL; 808 } 809 810 /* 811 * find_inode_fast is the fast path version of find_inode, see the comment at 812 * iget_locked for details. 813 */ 814 static struct inode *find_inode_fast(struct super_block *sb, 815 struct hlist_head *head, unsigned long ino) 816 { 817 struct inode *inode = NULL; 818 819 repeat: 820 hlist_for_each_entry(inode, head, i_hash) { 821 if (inode->i_ino != ino) 822 continue; 823 if (inode->i_sb != sb) 824 continue; 825 spin_lock(&inode->i_lock); 826 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 827 __wait_on_freeing_inode(inode); 828 goto repeat; 829 } 830 __iget(inode); 831 spin_unlock(&inode->i_lock); 832 return inode; 833 } 834 return NULL; 835 } 836 837 /* 838 * Each cpu owns a range of LAST_INO_BATCH numbers. 839 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 840 * to renew the exhausted range. 841 * 842 * This does not significantly increase overflow rate because every CPU can 843 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 844 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 845 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 846 * overflow rate by 2x, which does not seem too significant. 847 * 848 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 849 * error if st_ino won't fit in target struct field. Use 32bit counter 850 * here to attempt to avoid that. 851 */ 852 #define LAST_INO_BATCH 1024 853 static DEFINE_PER_CPU(unsigned int, last_ino); 854 855 unsigned int get_next_ino(void) 856 { 857 unsigned int *p = &get_cpu_var(last_ino); 858 unsigned int res = *p; 859 860 #ifdef CONFIG_SMP 861 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 862 static atomic_t shared_last_ino; 863 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 864 865 res = next - LAST_INO_BATCH; 866 } 867 #endif 868 869 res++; 870 /* get_next_ino should not provide a 0 inode number */ 871 if (unlikely(!res)) 872 res++; 873 *p = res; 874 put_cpu_var(last_ino); 875 return res; 876 } 877 EXPORT_SYMBOL(get_next_ino); 878 879 /** 880 * new_inode_pseudo - obtain an inode 881 * @sb: superblock 882 * 883 * Allocates a new inode for given superblock. 884 * Inode wont be chained in superblock s_inodes list 885 * This means : 886 * - fs can't be unmount 887 * - quotas, fsnotify, writeback can't work 888 */ 889 struct inode *new_inode_pseudo(struct super_block *sb) 890 { 891 struct inode *inode = alloc_inode(sb); 892 893 if (inode) { 894 spin_lock(&inode->i_lock); 895 inode->i_state = 0; 896 spin_unlock(&inode->i_lock); 897 INIT_LIST_HEAD(&inode->i_sb_list); 898 } 899 return inode; 900 } 901 902 /** 903 * new_inode - obtain an inode 904 * @sb: superblock 905 * 906 * Allocates a new inode for given superblock. The default gfp_mask 907 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 908 * If HIGHMEM pages are unsuitable or it is known that pages allocated 909 * for the page cache are not reclaimable or migratable, 910 * mapping_set_gfp_mask() must be called with suitable flags on the 911 * newly created inode's mapping 912 * 913 */ 914 struct inode *new_inode(struct super_block *sb) 915 { 916 struct inode *inode; 917 918 spin_lock_prefetch(&sb->s_inode_list_lock); 919 920 inode = new_inode_pseudo(sb); 921 if (inode) 922 inode_sb_list_add(inode); 923 return inode; 924 } 925 EXPORT_SYMBOL(new_inode); 926 927 #ifdef CONFIG_DEBUG_LOCK_ALLOC 928 void lockdep_annotate_inode_mutex_key(struct inode *inode) 929 { 930 if (S_ISDIR(inode->i_mode)) { 931 struct file_system_type *type = inode->i_sb->s_type; 932 933 /* Set new key only if filesystem hasn't already changed it */ 934 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 935 /* 936 * ensure nobody is actually holding i_mutex 937 */ 938 // mutex_destroy(&inode->i_mutex); 939 init_rwsem(&inode->i_rwsem); 940 lockdep_set_class(&inode->i_rwsem, 941 &type->i_mutex_dir_key); 942 } 943 } 944 } 945 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 946 #endif 947 948 /** 949 * unlock_new_inode - clear the I_NEW state and wake up any waiters 950 * @inode: new inode to unlock 951 * 952 * Called when the inode is fully initialised to clear the new state of the 953 * inode and wake up anyone waiting for the inode to finish initialisation. 954 */ 955 void unlock_new_inode(struct inode *inode) 956 { 957 lockdep_annotate_inode_mutex_key(inode); 958 spin_lock(&inode->i_lock); 959 WARN_ON(!(inode->i_state & I_NEW)); 960 inode->i_state &= ~I_NEW; 961 smp_mb(); 962 wake_up_bit(&inode->i_state, __I_NEW); 963 spin_unlock(&inode->i_lock); 964 } 965 EXPORT_SYMBOL(unlock_new_inode); 966 967 /** 968 * lock_two_nondirectories - take two i_mutexes on non-directory objects 969 * 970 * Lock any non-NULL argument that is not a directory. 971 * Zero, one or two objects may be locked by this function. 972 * 973 * @inode1: first inode to lock 974 * @inode2: second inode to lock 975 */ 976 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 977 { 978 if (inode1 > inode2) 979 swap(inode1, inode2); 980 981 if (inode1 && !S_ISDIR(inode1->i_mode)) 982 inode_lock(inode1); 983 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 984 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 985 } 986 EXPORT_SYMBOL(lock_two_nondirectories); 987 988 /** 989 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 990 * @inode1: first inode to unlock 991 * @inode2: second inode to unlock 992 */ 993 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 994 { 995 if (inode1 && !S_ISDIR(inode1->i_mode)) 996 inode_unlock(inode1); 997 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 998 inode_unlock(inode2); 999 } 1000 EXPORT_SYMBOL(unlock_two_nondirectories); 1001 1002 /** 1003 * iget5_locked - obtain an inode from a mounted file system 1004 * @sb: super block of file system 1005 * @hashval: hash value (usually inode number) to get 1006 * @test: callback used for comparisons between inodes 1007 * @set: callback used to initialize a new struct inode 1008 * @data: opaque data pointer to pass to @test and @set 1009 * 1010 * Search for the inode specified by @hashval and @data in the inode cache, 1011 * and if present it is return it with an increased reference count. This is 1012 * a generalized version of iget_locked() for file systems where the inode 1013 * number is not sufficient for unique identification of an inode. 1014 * 1015 * If the inode is not in cache, allocate a new inode and return it locked, 1016 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1017 * before unlocking it via unlock_new_inode(). 1018 * 1019 * Note both @test and @set are called with the inode_hash_lock held, so can't 1020 * sleep. 1021 */ 1022 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1023 int (*test)(struct inode *, void *), 1024 int (*set)(struct inode *, void *), void *data) 1025 { 1026 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1027 struct inode *inode; 1028 again: 1029 spin_lock(&inode_hash_lock); 1030 inode = find_inode(sb, head, test, data); 1031 spin_unlock(&inode_hash_lock); 1032 1033 if (inode) { 1034 wait_on_inode(inode); 1035 if (unlikely(inode_unhashed(inode))) { 1036 iput(inode); 1037 goto again; 1038 } 1039 return inode; 1040 } 1041 1042 inode = alloc_inode(sb); 1043 if (inode) { 1044 struct inode *old; 1045 1046 spin_lock(&inode_hash_lock); 1047 /* We released the lock, so.. */ 1048 old = find_inode(sb, head, test, data); 1049 if (!old) { 1050 if (set(inode, data)) 1051 goto set_failed; 1052 1053 spin_lock(&inode->i_lock); 1054 inode->i_state = I_NEW; 1055 hlist_add_head(&inode->i_hash, head); 1056 spin_unlock(&inode->i_lock); 1057 inode_sb_list_add(inode); 1058 spin_unlock(&inode_hash_lock); 1059 1060 /* Return the locked inode with I_NEW set, the 1061 * caller is responsible for filling in the contents 1062 */ 1063 return inode; 1064 } 1065 1066 /* 1067 * Uhhuh, somebody else created the same inode under 1068 * us. Use the old inode instead of the one we just 1069 * allocated. 1070 */ 1071 spin_unlock(&inode_hash_lock); 1072 destroy_inode(inode); 1073 inode = old; 1074 wait_on_inode(inode); 1075 if (unlikely(inode_unhashed(inode))) { 1076 iput(inode); 1077 goto again; 1078 } 1079 } 1080 return inode; 1081 1082 set_failed: 1083 spin_unlock(&inode_hash_lock); 1084 destroy_inode(inode); 1085 return NULL; 1086 } 1087 EXPORT_SYMBOL(iget5_locked); 1088 1089 /** 1090 * iget_locked - obtain an inode from a mounted file system 1091 * @sb: super block of file system 1092 * @ino: inode number to get 1093 * 1094 * Search for the inode specified by @ino in the inode cache and if present 1095 * return it with an increased reference count. This is for file systems 1096 * where the inode number is sufficient for unique identification of an inode. 1097 * 1098 * If the inode is not in cache, allocate a new inode and return it locked, 1099 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1100 * before unlocking it via unlock_new_inode(). 1101 */ 1102 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1103 { 1104 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1105 struct inode *inode; 1106 again: 1107 spin_lock(&inode_hash_lock); 1108 inode = find_inode_fast(sb, head, ino); 1109 spin_unlock(&inode_hash_lock); 1110 if (inode) { 1111 wait_on_inode(inode); 1112 if (unlikely(inode_unhashed(inode))) { 1113 iput(inode); 1114 goto again; 1115 } 1116 return inode; 1117 } 1118 1119 inode = alloc_inode(sb); 1120 if (inode) { 1121 struct inode *old; 1122 1123 spin_lock(&inode_hash_lock); 1124 /* We released the lock, so.. */ 1125 old = find_inode_fast(sb, head, ino); 1126 if (!old) { 1127 inode->i_ino = ino; 1128 spin_lock(&inode->i_lock); 1129 inode->i_state = I_NEW; 1130 hlist_add_head(&inode->i_hash, head); 1131 spin_unlock(&inode->i_lock); 1132 inode_sb_list_add(inode); 1133 spin_unlock(&inode_hash_lock); 1134 1135 /* Return the locked inode with I_NEW set, the 1136 * caller is responsible for filling in the contents 1137 */ 1138 return inode; 1139 } 1140 1141 /* 1142 * Uhhuh, somebody else created the same inode under 1143 * us. Use the old inode instead of the one we just 1144 * allocated. 1145 */ 1146 spin_unlock(&inode_hash_lock); 1147 destroy_inode(inode); 1148 inode = old; 1149 wait_on_inode(inode); 1150 if (unlikely(inode_unhashed(inode))) { 1151 iput(inode); 1152 goto again; 1153 } 1154 } 1155 return inode; 1156 } 1157 EXPORT_SYMBOL(iget_locked); 1158 1159 /* 1160 * search the inode cache for a matching inode number. 1161 * If we find one, then the inode number we are trying to 1162 * allocate is not unique and so we should not use it. 1163 * 1164 * Returns 1 if the inode number is unique, 0 if it is not. 1165 */ 1166 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1167 { 1168 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1169 struct inode *inode; 1170 1171 spin_lock(&inode_hash_lock); 1172 hlist_for_each_entry(inode, b, i_hash) { 1173 if (inode->i_ino == ino && inode->i_sb == sb) { 1174 spin_unlock(&inode_hash_lock); 1175 return 0; 1176 } 1177 } 1178 spin_unlock(&inode_hash_lock); 1179 1180 return 1; 1181 } 1182 1183 /** 1184 * iunique - get a unique inode number 1185 * @sb: superblock 1186 * @max_reserved: highest reserved inode number 1187 * 1188 * Obtain an inode number that is unique on the system for a given 1189 * superblock. This is used by file systems that have no natural 1190 * permanent inode numbering system. An inode number is returned that 1191 * is higher than the reserved limit but unique. 1192 * 1193 * BUGS: 1194 * With a large number of inodes live on the file system this function 1195 * currently becomes quite slow. 1196 */ 1197 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1198 { 1199 /* 1200 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1201 * error if st_ino won't fit in target struct field. Use 32bit counter 1202 * here to attempt to avoid that. 1203 */ 1204 static DEFINE_SPINLOCK(iunique_lock); 1205 static unsigned int counter; 1206 ino_t res; 1207 1208 spin_lock(&iunique_lock); 1209 do { 1210 if (counter <= max_reserved) 1211 counter = max_reserved + 1; 1212 res = counter++; 1213 } while (!test_inode_iunique(sb, res)); 1214 spin_unlock(&iunique_lock); 1215 1216 return res; 1217 } 1218 EXPORT_SYMBOL(iunique); 1219 1220 struct inode *igrab(struct inode *inode) 1221 { 1222 spin_lock(&inode->i_lock); 1223 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1224 __iget(inode); 1225 spin_unlock(&inode->i_lock); 1226 } else { 1227 spin_unlock(&inode->i_lock); 1228 /* 1229 * Handle the case where s_op->clear_inode is not been 1230 * called yet, and somebody is calling igrab 1231 * while the inode is getting freed. 1232 */ 1233 inode = NULL; 1234 } 1235 return inode; 1236 } 1237 EXPORT_SYMBOL(igrab); 1238 1239 /** 1240 * ilookup5_nowait - search for an inode in the inode cache 1241 * @sb: super block of file system to search 1242 * @hashval: hash value (usually inode number) to search for 1243 * @test: callback used for comparisons between inodes 1244 * @data: opaque data pointer to pass to @test 1245 * 1246 * Search for the inode specified by @hashval and @data in the inode cache. 1247 * If the inode is in the cache, the inode is returned with an incremented 1248 * reference count. 1249 * 1250 * Note: I_NEW is not waited upon so you have to be very careful what you do 1251 * with the returned inode. You probably should be using ilookup5() instead. 1252 * 1253 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1254 */ 1255 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1256 int (*test)(struct inode *, void *), void *data) 1257 { 1258 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1259 struct inode *inode; 1260 1261 spin_lock(&inode_hash_lock); 1262 inode = find_inode(sb, head, test, data); 1263 spin_unlock(&inode_hash_lock); 1264 1265 return inode; 1266 } 1267 EXPORT_SYMBOL(ilookup5_nowait); 1268 1269 /** 1270 * ilookup5 - search for an inode in the inode cache 1271 * @sb: super block of file system to search 1272 * @hashval: hash value (usually inode number) to search for 1273 * @test: callback used for comparisons between inodes 1274 * @data: opaque data pointer to pass to @test 1275 * 1276 * Search for the inode specified by @hashval and @data in the inode cache, 1277 * and if the inode is in the cache, return the inode with an incremented 1278 * reference count. Waits on I_NEW before returning the inode. 1279 * returned with an incremented reference count. 1280 * 1281 * This is a generalized version of ilookup() for file systems where the 1282 * inode number is not sufficient for unique identification of an inode. 1283 * 1284 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1285 */ 1286 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1287 int (*test)(struct inode *, void *), void *data) 1288 { 1289 struct inode *inode; 1290 again: 1291 inode = ilookup5_nowait(sb, hashval, test, data); 1292 if (inode) { 1293 wait_on_inode(inode); 1294 if (unlikely(inode_unhashed(inode))) { 1295 iput(inode); 1296 goto again; 1297 } 1298 } 1299 return inode; 1300 } 1301 EXPORT_SYMBOL(ilookup5); 1302 1303 /** 1304 * ilookup - search for an inode in the inode cache 1305 * @sb: super block of file system to search 1306 * @ino: inode number to search for 1307 * 1308 * Search for the inode @ino in the inode cache, and if the inode is in the 1309 * cache, the inode is returned with an incremented reference count. 1310 */ 1311 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1312 { 1313 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1314 struct inode *inode; 1315 again: 1316 spin_lock(&inode_hash_lock); 1317 inode = find_inode_fast(sb, head, ino); 1318 spin_unlock(&inode_hash_lock); 1319 1320 if (inode) { 1321 wait_on_inode(inode); 1322 if (unlikely(inode_unhashed(inode))) { 1323 iput(inode); 1324 goto again; 1325 } 1326 } 1327 return inode; 1328 } 1329 EXPORT_SYMBOL(ilookup); 1330 1331 /** 1332 * find_inode_nowait - find an inode in the inode cache 1333 * @sb: super block of file system to search 1334 * @hashval: hash value (usually inode number) to search for 1335 * @match: callback used for comparisons between inodes 1336 * @data: opaque data pointer to pass to @match 1337 * 1338 * Search for the inode specified by @hashval and @data in the inode 1339 * cache, where the helper function @match will return 0 if the inode 1340 * does not match, 1 if the inode does match, and -1 if the search 1341 * should be stopped. The @match function must be responsible for 1342 * taking the i_lock spin_lock and checking i_state for an inode being 1343 * freed or being initialized, and incrementing the reference count 1344 * before returning 1. It also must not sleep, since it is called with 1345 * the inode_hash_lock spinlock held. 1346 * 1347 * This is a even more generalized version of ilookup5() when the 1348 * function must never block --- find_inode() can block in 1349 * __wait_on_freeing_inode() --- or when the caller can not increment 1350 * the reference count because the resulting iput() might cause an 1351 * inode eviction. The tradeoff is that the @match funtion must be 1352 * very carefully implemented. 1353 */ 1354 struct inode *find_inode_nowait(struct super_block *sb, 1355 unsigned long hashval, 1356 int (*match)(struct inode *, unsigned long, 1357 void *), 1358 void *data) 1359 { 1360 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1361 struct inode *inode, *ret_inode = NULL; 1362 int mval; 1363 1364 spin_lock(&inode_hash_lock); 1365 hlist_for_each_entry(inode, head, i_hash) { 1366 if (inode->i_sb != sb) 1367 continue; 1368 mval = match(inode, hashval, data); 1369 if (mval == 0) 1370 continue; 1371 if (mval == 1) 1372 ret_inode = inode; 1373 goto out; 1374 } 1375 out: 1376 spin_unlock(&inode_hash_lock); 1377 return ret_inode; 1378 } 1379 EXPORT_SYMBOL(find_inode_nowait); 1380 1381 int insert_inode_locked(struct inode *inode) 1382 { 1383 struct super_block *sb = inode->i_sb; 1384 ino_t ino = inode->i_ino; 1385 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1386 1387 while (1) { 1388 struct inode *old = NULL; 1389 spin_lock(&inode_hash_lock); 1390 hlist_for_each_entry(old, head, i_hash) { 1391 if (old->i_ino != ino) 1392 continue; 1393 if (old->i_sb != sb) 1394 continue; 1395 spin_lock(&old->i_lock); 1396 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1397 spin_unlock(&old->i_lock); 1398 continue; 1399 } 1400 break; 1401 } 1402 if (likely(!old)) { 1403 spin_lock(&inode->i_lock); 1404 inode->i_state |= I_NEW; 1405 hlist_add_head(&inode->i_hash, head); 1406 spin_unlock(&inode->i_lock); 1407 spin_unlock(&inode_hash_lock); 1408 return 0; 1409 } 1410 __iget(old); 1411 spin_unlock(&old->i_lock); 1412 spin_unlock(&inode_hash_lock); 1413 wait_on_inode(old); 1414 if (unlikely(!inode_unhashed(old))) { 1415 iput(old); 1416 return -EBUSY; 1417 } 1418 iput(old); 1419 } 1420 } 1421 EXPORT_SYMBOL(insert_inode_locked); 1422 1423 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1424 int (*test)(struct inode *, void *), void *data) 1425 { 1426 struct super_block *sb = inode->i_sb; 1427 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1428 1429 while (1) { 1430 struct inode *old = NULL; 1431 1432 spin_lock(&inode_hash_lock); 1433 hlist_for_each_entry(old, head, i_hash) { 1434 if (old->i_sb != sb) 1435 continue; 1436 if (!test(old, data)) 1437 continue; 1438 spin_lock(&old->i_lock); 1439 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1440 spin_unlock(&old->i_lock); 1441 continue; 1442 } 1443 break; 1444 } 1445 if (likely(!old)) { 1446 spin_lock(&inode->i_lock); 1447 inode->i_state |= I_NEW; 1448 hlist_add_head(&inode->i_hash, head); 1449 spin_unlock(&inode->i_lock); 1450 spin_unlock(&inode_hash_lock); 1451 return 0; 1452 } 1453 __iget(old); 1454 spin_unlock(&old->i_lock); 1455 spin_unlock(&inode_hash_lock); 1456 wait_on_inode(old); 1457 if (unlikely(!inode_unhashed(old))) { 1458 iput(old); 1459 return -EBUSY; 1460 } 1461 iput(old); 1462 } 1463 } 1464 EXPORT_SYMBOL(insert_inode_locked4); 1465 1466 1467 int generic_delete_inode(struct inode *inode) 1468 { 1469 return 1; 1470 } 1471 EXPORT_SYMBOL(generic_delete_inode); 1472 1473 /* 1474 * Called when we're dropping the last reference 1475 * to an inode. 1476 * 1477 * Call the FS "drop_inode()" function, defaulting to 1478 * the legacy UNIX filesystem behaviour. If it tells 1479 * us to evict inode, do so. Otherwise, retain inode 1480 * in cache if fs is alive, sync and evict if fs is 1481 * shutting down. 1482 */ 1483 static void iput_final(struct inode *inode) 1484 { 1485 struct super_block *sb = inode->i_sb; 1486 const struct super_operations *op = inode->i_sb->s_op; 1487 int drop; 1488 1489 WARN_ON(inode->i_state & I_NEW); 1490 1491 if (op->drop_inode) 1492 drop = op->drop_inode(inode); 1493 else 1494 drop = generic_drop_inode(inode); 1495 1496 if (!drop && (sb->s_flags & SB_ACTIVE)) { 1497 inode_add_lru(inode); 1498 spin_unlock(&inode->i_lock); 1499 return; 1500 } 1501 1502 if (!drop) { 1503 inode->i_state |= I_WILL_FREE; 1504 spin_unlock(&inode->i_lock); 1505 write_inode_now(inode, 1); 1506 spin_lock(&inode->i_lock); 1507 WARN_ON(inode->i_state & I_NEW); 1508 inode->i_state &= ~I_WILL_FREE; 1509 } 1510 1511 inode->i_state |= I_FREEING; 1512 if (!list_empty(&inode->i_lru)) 1513 inode_lru_list_del(inode); 1514 spin_unlock(&inode->i_lock); 1515 1516 evict(inode); 1517 } 1518 1519 /** 1520 * iput - put an inode 1521 * @inode: inode to put 1522 * 1523 * Puts an inode, dropping its usage count. If the inode use count hits 1524 * zero, the inode is then freed and may also be destroyed. 1525 * 1526 * Consequently, iput() can sleep. 1527 */ 1528 void iput(struct inode *inode) 1529 { 1530 if (!inode) 1531 return; 1532 BUG_ON(inode->i_state & I_CLEAR); 1533 retry: 1534 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1535 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1536 atomic_inc(&inode->i_count); 1537 inode->i_state &= ~I_DIRTY_TIME; 1538 spin_unlock(&inode->i_lock); 1539 trace_writeback_lazytime_iput(inode); 1540 mark_inode_dirty_sync(inode); 1541 goto retry; 1542 } 1543 iput_final(inode); 1544 } 1545 } 1546 EXPORT_SYMBOL(iput); 1547 1548 /** 1549 * bmap - find a block number in a file 1550 * @inode: inode of file 1551 * @block: block to find 1552 * 1553 * Returns the block number on the device holding the inode that 1554 * is the disk block number for the block of the file requested. 1555 * That is, asked for block 4 of inode 1 the function will return the 1556 * disk block relative to the disk start that holds that block of the 1557 * file. 1558 */ 1559 sector_t bmap(struct inode *inode, sector_t block) 1560 { 1561 sector_t res = 0; 1562 if (inode->i_mapping->a_ops->bmap) 1563 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1564 return res; 1565 } 1566 EXPORT_SYMBOL(bmap); 1567 1568 /* 1569 * Update times in overlayed inode from underlying real inode 1570 */ 1571 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode, 1572 bool rcu) 1573 { 1574 struct dentry *upperdentry; 1575 1576 /* 1577 * Nothing to do if in rcu or if non-overlayfs 1578 */ 1579 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL))) 1580 return; 1581 1582 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER); 1583 1584 /* 1585 * If file is on lower then we can't update atime, so no worries about 1586 * stale mtime/ctime. 1587 */ 1588 if (upperdentry) { 1589 struct inode *realinode = d_inode(upperdentry); 1590 1591 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) || 1592 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) { 1593 inode->i_mtime = realinode->i_mtime; 1594 inode->i_ctime = realinode->i_ctime; 1595 } 1596 } 1597 } 1598 1599 /* 1600 * With relative atime, only update atime if the previous atime is 1601 * earlier than either the ctime or mtime or if at least a day has 1602 * passed since the last atime update. 1603 */ 1604 static int relatime_need_update(const struct path *path, struct inode *inode, 1605 struct timespec now, bool rcu) 1606 { 1607 1608 if (!(path->mnt->mnt_flags & MNT_RELATIME)) 1609 return 1; 1610 1611 update_ovl_inode_times(path->dentry, inode, rcu); 1612 /* 1613 * Is mtime younger than atime? If yes, update atime: 1614 */ 1615 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1616 return 1; 1617 /* 1618 * Is ctime younger than atime? If yes, update atime: 1619 */ 1620 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1621 return 1; 1622 1623 /* 1624 * Is the previous atime value older than a day? If yes, 1625 * update atime: 1626 */ 1627 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1628 return 1; 1629 /* 1630 * Good, we can skip the atime update: 1631 */ 1632 return 0; 1633 } 1634 1635 int generic_update_time(struct inode *inode, struct timespec *time, int flags) 1636 { 1637 int iflags = I_DIRTY_TIME; 1638 bool dirty = false; 1639 1640 if (flags & S_ATIME) 1641 inode->i_atime = *time; 1642 if (flags & S_VERSION) 1643 dirty = inode_maybe_inc_iversion(inode, false); 1644 if (flags & S_CTIME) 1645 inode->i_ctime = *time; 1646 if (flags & S_MTIME) 1647 inode->i_mtime = *time; 1648 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && 1649 !(inode->i_sb->s_flags & SB_LAZYTIME)) 1650 dirty = true; 1651 1652 if (dirty) 1653 iflags |= I_DIRTY_SYNC; 1654 __mark_inode_dirty(inode, iflags); 1655 return 0; 1656 } 1657 EXPORT_SYMBOL(generic_update_time); 1658 1659 /* 1660 * This does the actual work of updating an inodes time or version. Must have 1661 * had called mnt_want_write() before calling this. 1662 */ 1663 static int update_time(struct inode *inode, struct timespec *time, int flags) 1664 { 1665 int (*update_time)(struct inode *, struct timespec *, int); 1666 1667 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1668 generic_update_time; 1669 1670 return update_time(inode, time, flags); 1671 } 1672 1673 /** 1674 * touch_atime - update the access time 1675 * @path: the &struct path to update 1676 * @inode: inode to update 1677 * 1678 * Update the accessed time on an inode and mark it for writeback. 1679 * This function automatically handles read only file systems and media, 1680 * as well as the "noatime" flag and inode specific "noatime" markers. 1681 */ 1682 bool __atime_needs_update(const struct path *path, struct inode *inode, 1683 bool rcu) 1684 { 1685 struct vfsmount *mnt = path->mnt; 1686 struct timespec now; 1687 1688 if (inode->i_flags & S_NOATIME) 1689 return false; 1690 1691 /* Atime updates will likely cause i_uid and i_gid to be written 1692 * back improprely if their true value is unknown to the vfs. 1693 */ 1694 if (HAS_UNMAPPED_ID(inode)) 1695 return false; 1696 1697 if (IS_NOATIME(inode)) 1698 return false; 1699 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1700 return false; 1701 1702 if (mnt->mnt_flags & MNT_NOATIME) 1703 return false; 1704 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1705 return false; 1706 1707 now = current_time(inode); 1708 1709 if (!relatime_need_update(path, inode, now, rcu)) 1710 return false; 1711 1712 if (timespec_equal(&inode->i_atime, &now)) 1713 return false; 1714 1715 return true; 1716 } 1717 1718 void touch_atime(const struct path *path) 1719 { 1720 struct vfsmount *mnt = path->mnt; 1721 struct inode *inode = d_inode(path->dentry); 1722 struct timespec now; 1723 1724 if (!__atime_needs_update(path, inode, false)) 1725 return; 1726 1727 if (!sb_start_write_trylock(inode->i_sb)) 1728 return; 1729 1730 if (__mnt_want_write(mnt) != 0) 1731 goto skip_update; 1732 /* 1733 * File systems can error out when updating inodes if they need to 1734 * allocate new space to modify an inode (such is the case for 1735 * Btrfs), but since we touch atime while walking down the path we 1736 * really don't care if we failed to update the atime of the file, 1737 * so just ignore the return value. 1738 * We may also fail on filesystems that have the ability to make parts 1739 * of the fs read only, e.g. subvolumes in Btrfs. 1740 */ 1741 now = current_time(inode); 1742 update_time(inode, &now, S_ATIME); 1743 __mnt_drop_write(mnt); 1744 skip_update: 1745 sb_end_write(inode->i_sb); 1746 } 1747 EXPORT_SYMBOL(touch_atime); 1748 1749 /* 1750 * The logic we want is 1751 * 1752 * if suid or (sgid and xgrp) 1753 * remove privs 1754 */ 1755 int should_remove_suid(struct dentry *dentry) 1756 { 1757 umode_t mode = d_inode(dentry)->i_mode; 1758 int kill = 0; 1759 1760 /* suid always must be killed */ 1761 if (unlikely(mode & S_ISUID)) 1762 kill = ATTR_KILL_SUID; 1763 1764 /* 1765 * sgid without any exec bits is just a mandatory locking mark; leave 1766 * it alone. If some exec bits are set, it's a real sgid; kill it. 1767 */ 1768 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1769 kill |= ATTR_KILL_SGID; 1770 1771 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1772 return kill; 1773 1774 return 0; 1775 } 1776 EXPORT_SYMBOL(should_remove_suid); 1777 1778 /* 1779 * Return mask of changes for notify_change() that need to be done as a 1780 * response to write or truncate. Return 0 if nothing has to be changed. 1781 * Negative value on error (change should be denied). 1782 */ 1783 int dentry_needs_remove_privs(struct dentry *dentry) 1784 { 1785 struct inode *inode = d_inode(dentry); 1786 int mask = 0; 1787 int ret; 1788 1789 if (IS_NOSEC(inode)) 1790 return 0; 1791 1792 mask = should_remove_suid(dentry); 1793 ret = security_inode_need_killpriv(dentry); 1794 if (ret < 0) 1795 return ret; 1796 if (ret) 1797 mask |= ATTR_KILL_PRIV; 1798 return mask; 1799 } 1800 1801 static int __remove_privs(struct dentry *dentry, int kill) 1802 { 1803 struct iattr newattrs; 1804 1805 newattrs.ia_valid = ATTR_FORCE | kill; 1806 /* 1807 * Note we call this on write, so notify_change will not 1808 * encounter any conflicting delegations: 1809 */ 1810 return notify_change(dentry, &newattrs, NULL); 1811 } 1812 1813 /* 1814 * Remove special file priviledges (suid, capabilities) when file is written 1815 * to or truncated. 1816 */ 1817 int file_remove_privs(struct file *file) 1818 { 1819 struct dentry *dentry = file_dentry(file); 1820 struct inode *inode = file_inode(file); 1821 int kill; 1822 int error = 0; 1823 1824 /* Fast path for nothing security related */ 1825 if (IS_NOSEC(inode)) 1826 return 0; 1827 1828 kill = dentry_needs_remove_privs(dentry); 1829 if (kill < 0) 1830 return kill; 1831 if (kill) 1832 error = __remove_privs(dentry, kill); 1833 if (!error) 1834 inode_has_no_xattr(inode); 1835 1836 return error; 1837 } 1838 EXPORT_SYMBOL(file_remove_privs); 1839 1840 /** 1841 * file_update_time - update mtime and ctime time 1842 * @file: file accessed 1843 * 1844 * Update the mtime and ctime members of an inode and mark the inode 1845 * for writeback. Note that this function is meant exclusively for 1846 * usage in the file write path of filesystems, and filesystems may 1847 * choose to explicitly ignore update via this function with the 1848 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1849 * timestamps are handled by the server. This can return an error for 1850 * file systems who need to allocate space in order to update an inode. 1851 */ 1852 1853 int file_update_time(struct file *file) 1854 { 1855 struct inode *inode = file_inode(file); 1856 struct timespec now; 1857 int sync_it = 0; 1858 int ret; 1859 1860 /* First try to exhaust all avenues to not sync */ 1861 if (IS_NOCMTIME(inode)) 1862 return 0; 1863 1864 now = current_time(inode); 1865 if (!timespec_equal(&inode->i_mtime, &now)) 1866 sync_it = S_MTIME; 1867 1868 if (!timespec_equal(&inode->i_ctime, &now)) 1869 sync_it |= S_CTIME; 1870 1871 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1872 sync_it |= S_VERSION; 1873 1874 if (!sync_it) 1875 return 0; 1876 1877 /* Finally allowed to write? Takes lock. */ 1878 if (__mnt_want_write_file(file)) 1879 return 0; 1880 1881 ret = update_time(inode, &now, sync_it); 1882 __mnt_drop_write_file(file); 1883 1884 return ret; 1885 } 1886 EXPORT_SYMBOL(file_update_time); 1887 1888 int inode_needs_sync(struct inode *inode) 1889 { 1890 if (IS_SYNC(inode)) 1891 return 1; 1892 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1893 return 1; 1894 return 0; 1895 } 1896 EXPORT_SYMBOL(inode_needs_sync); 1897 1898 /* 1899 * If we try to find an inode in the inode hash while it is being 1900 * deleted, we have to wait until the filesystem completes its 1901 * deletion before reporting that it isn't found. This function waits 1902 * until the deletion _might_ have completed. Callers are responsible 1903 * to recheck inode state. 1904 * 1905 * It doesn't matter if I_NEW is not set initially, a call to 1906 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1907 * will DTRT. 1908 */ 1909 static void __wait_on_freeing_inode(struct inode *inode) 1910 { 1911 wait_queue_head_t *wq; 1912 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1913 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1914 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1915 spin_unlock(&inode->i_lock); 1916 spin_unlock(&inode_hash_lock); 1917 schedule(); 1918 finish_wait(wq, &wait.wq_entry); 1919 spin_lock(&inode_hash_lock); 1920 } 1921 1922 static __initdata unsigned long ihash_entries; 1923 static int __init set_ihash_entries(char *str) 1924 { 1925 if (!str) 1926 return 0; 1927 ihash_entries = simple_strtoul(str, &str, 0); 1928 return 1; 1929 } 1930 __setup("ihash_entries=", set_ihash_entries); 1931 1932 /* 1933 * Initialize the waitqueues and inode hash table. 1934 */ 1935 void __init inode_init_early(void) 1936 { 1937 /* If hashes are distributed across NUMA nodes, defer 1938 * hash allocation until vmalloc space is available. 1939 */ 1940 if (hashdist) 1941 return; 1942 1943 inode_hashtable = 1944 alloc_large_system_hash("Inode-cache", 1945 sizeof(struct hlist_head), 1946 ihash_entries, 1947 14, 1948 HASH_EARLY | HASH_ZERO, 1949 &i_hash_shift, 1950 &i_hash_mask, 1951 0, 1952 0); 1953 } 1954 1955 void __init inode_init(void) 1956 { 1957 /* inode slab cache */ 1958 inode_cachep = kmem_cache_create("inode_cache", 1959 sizeof(struct inode), 1960 0, 1961 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1962 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1963 init_once); 1964 1965 /* Hash may have been set up in inode_init_early */ 1966 if (!hashdist) 1967 return; 1968 1969 inode_hashtable = 1970 alloc_large_system_hash("Inode-cache", 1971 sizeof(struct hlist_head), 1972 ihash_entries, 1973 14, 1974 HASH_ZERO, 1975 &i_hash_shift, 1976 &i_hash_mask, 1977 0, 1978 0); 1979 } 1980 1981 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1982 { 1983 inode->i_mode = mode; 1984 if (S_ISCHR(mode)) { 1985 inode->i_fop = &def_chr_fops; 1986 inode->i_rdev = rdev; 1987 } else if (S_ISBLK(mode)) { 1988 inode->i_fop = &def_blk_fops; 1989 inode->i_rdev = rdev; 1990 } else if (S_ISFIFO(mode)) 1991 inode->i_fop = &pipefifo_fops; 1992 else if (S_ISSOCK(mode)) 1993 ; /* leave it no_open_fops */ 1994 else 1995 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1996 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1997 inode->i_ino); 1998 } 1999 EXPORT_SYMBOL(init_special_inode); 2000 2001 /** 2002 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2003 * @inode: New inode 2004 * @dir: Directory inode 2005 * @mode: mode of the new inode 2006 */ 2007 void inode_init_owner(struct inode *inode, const struct inode *dir, 2008 umode_t mode) 2009 { 2010 inode->i_uid = current_fsuid(); 2011 if (dir && dir->i_mode & S_ISGID) { 2012 inode->i_gid = dir->i_gid; 2013 if (S_ISDIR(mode)) 2014 mode |= S_ISGID; 2015 } else 2016 inode->i_gid = current_fsgid(); 2017 inode->i_mode = mode; 2018 } 2019 EXPORT_SYMBOL(inode_init_owner); 2020 2021 /** 2022 * inode_owner_or_capable - check current task permissions to inode 2023 * @inode: inode being checked 2024 * 2025 * Return true if current either has CAP_FOWNER in a namespace with the 2026 * inode owner uid mapped, or owns the file. 2027 */ 2028 bool inode_owner_or_capable(const struct inode *inode) 2029 { 2030 struct user_namespace *ns; 2031 2032 if (uid_eq(current_fsuid(), inode->i_uid)) 2033 return true; 2034 2035 ns = current_user_ns(); 2036 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2037 return true; 2038 return false; 2039 } 2040 EXPORT_SYMBOL(inode_owner_or_capable); 2041 2042 /* 2043 * Direct i/o helper functions 2044 */ 2045 static void __inode_dio_wait(struct inode *inode) 2046 { 2047 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2048 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2049 2050 do { 2051 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2052 if (atomic_read(&inode->i_dio_count)) 2053 schedule(); 2054 } while (atomic_read(&inode->i_dio_count)); 2055 finish_wait(wq, &q.wq_entry); 2056 } 2057 2058 /** 2059 * inode_dio_wait - wait for outstanding DIO requests to finish 2060 * @inode: inode to wait for 2061 * 2062 * Waits for all pending direct I/O requests to finish so that we can 2063 * proceed with a truncate or equivalent operation. 2064 * 2065 * Must be called under a lock that serializes taking new references 2066 * to i_dio_count, usually by inode->i_mutex. 2067 */ 2068 void inode_dio_wait(struct inode *inode) 2069 { 2070 if (atomic_read(&inode->i_dio_count)) 2071 __inode_dio_wait(inode); 2072 } 2073 EXPORT_SYMBOL(inode_dio_wait); 2074 2075 /* 2076 * inode_set_flags - atomically set some inode flags 2077 * 2078 * Note: the caller should be holding i_mutex, or else be sure that 2079 * they have exclusive access to the inode structure (i.e., while the 2080 * inode is being instantiated). The reason for the cmpxchg() loop 2081 * --- which wouldn't be necessary if all code paths which modify 2082 * i_flags actually followed this rule, is that there is at least one 2083 * code path which doesn't today so we use cmpxchg() out of an abundance 2084 * of caution. 2085 * 2086 * In the long run, i_mutex is overkill, and we should probably look 2087 * at using the i_lock spinlock to protect i_flags, and then make sure 2088 * it is so documented in include/linux/fs.h and that all code follows 2089 * the locking convention!! 2090 */ 2091 void inode_set_flags(struct inode *inode, unsigned int flags, 2092 unsigned int mask) 2093 { 2094 unsigned int old_flags, new_flags; 2095 2096 WARN_ON_ONCE(flags & ~mask); 2097 do { 2098 old_flags = READ_ONCE(inode->i_flags); 2099 new_flags = (old_flags & ~mask) | flags; 2100 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2101 new_flags) != old_flags)); 2102 } 2103 EXPORT_SYMBOL(inode_set_flags); 2104 2105 void inode_nohighmem(struct inode *inode) 2106 { 2107 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2108 } 2109 EXPORT_SYMBOL(inode_nohighmem); 2110 2111 /** 2112 * current_time - Return FS time 2113 * @inode: inode. 2114 * 2115 * Return the current time truncated to the time granularity supported by 2116 * the fs. 2117 * 2118 * Note that inode and inode->sb cannot be NULL. 2119 * Otherwise, the function warns and returns time without truncation. 2120 */ 2121 struct timespec current_time(struct inode *inode) 2122 { 2123 struct timespec now = current_kernel_time(); 2124 2125 if (unlikely(!inode->i_sb)) { 2126 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2127 return now; 2128 } 2129 2130 return timespec_trunc(now, inode->i_sb->s_time_gran); 2131 } 2132 EXPORT_SYMBOL(current_time); 2133