xref: /linux/fs/inode.c (revision 0ade34c37012ea5c516d9aa4d19a56e9f40a55ed)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
24 
25 /*
26  * Inode locking rules:
27  *
28  * inode->i_lock protects:
29  *   inode->i_state, inode->i_hash, __iget()
30  * Inode LRU list locks protect:
31  *   inode->i_sb->s_inode_lru, inode->i_lru
32  * inode->i_sb->s_inode_list_lock protects:
33  *   inode->i_sb->s_inodes, inode->i_sb_list
34  * bdi->wb.list_lock protects:
35  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36  * inode_hash_lock protects:
37  *   inode_hashtable, inode->i_hash
38  *
39  * Lock ordering:
40  *
41  * inode->i_sb->s_inode_list_lock
42  *   inode->i_lock
43  *     Inode LRU list locks
44  *
45  * bdi->wb.list_lock
46  *   inode->i_lock
47  *
48  * inode_hash_lock
49  *   inode->i_sb->s_inode_list_lock
50  *   inode->i_lock
51  *
52  * iunique_lock
53  *   inode_hash_lock
54  */
55 
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 	return -ENXIO;
120 }
121 
122 /**
123  * inode_init_always - perform inode structure initialisation
124  * @sb: superblock inode belongs to
125  * @inode: inode to initialise
126  *
127  * These are initializations that need to be done on every inode
128  * allocation as the fields are not initialised by slab allocation.
129  */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 	static const struct inode_operations empty_iops;
133 	static const struct file_operations no_open_fops = {.open = no_open};
134 	struct address_space *const mapping = &inode->i_data;
135 
136 	inode->i_sb = sb;
137 	inode->i_blkbits = sb->s_blocksize_bits;
138 	inode->i_flags = 0;
139 	atomic_set(&inode->i_count, 1);
140 	inode->i_op = &empty_iops;
141 	inode->i_fop = &no_open_fops;
142 	inode->__i_nlink = 1;
143 	inode->i_opflags = 0;
144 	if (sb->s_xattr)
145 		inode->i_opflags |= IOP_XATTR;
146 	i_uid_write(inode, 0);
147 	i_gid_write(inode, 0);
148 	atomic_set(&inode->i_writecount, 0);
149 	inode->i_size = 0;
150 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 	inode->i_blocks = 0;
152 	inode->i_bytes = 0;
153 	inode->i_generation = 0;
154 	inode->i_pipe = NULL;
155 	inode->i_bdev = NULL;
156 	inode->i_cdev = NULL;
157 	inode->i_link = NULL;
158 	inode->i_dir_seq = 0;
159 	inode->i_rdev = 0;
160 	inode->dirtied_when = 0;
161 
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	inode->i_wb_frn_winner = 0;
164 	inode->i_wb_frn_avg_time = 0;
165 	inode->i_wb_frn_history = 0;
166 #endif
167 
168 	if (security_inode_alloc(inode))
169 		goto out;
170 	spin_lock_init(&inode->i_lock);
171 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172 
173 	init_rwsem(&inode->i_rwsem);
174 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175 
176 	atomic_set(&inode->i_dio_count, 0);
177 
178 	mapping->a_ops = &empty_aops;
179 	mapping->host = inode;
180 	mapping->flags = 0;
181 	atomic_set(&mapping->i_mmap_writable, 0);
182 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
183 	mapping->private_data = NULL;
184 	mapping->writeback_index = 0;
185 	inode->i_private = NULL;
186 	inode->i_mapping = mapping;
187 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
188 #ifdef CONFIG_FS_POSIX_ACL
189 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191 
192 #ifdef CONFIG_FSNOTIFY
193 	inode->i_fsnotify_mask = 0;
194 #endif
195 	inode->i_flctx = NULL;
196 	this_cpu_inc(nr_inodes);
197 
198 	return 0;
199 out:
200 	return -ENOMEM;
201 }
202 EXPORT_SYMBOL(inode_init_always);
203 
204 static struct inode *alloc_inode(struct super_block *sb)
205 {
206 	struct inode *inode;
207 
208 	if (sb->s_op->alloc_inode)
209 		inode = sb->s_op->alloc_inode(sb);
210 	else
211 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
212 
213 	if (!inode)
214 		return NULL;
215 
216 	if (unlikely(inode_init_always(sb, inode))) {
217 		if (inode->i_sb->s_op->destroy_inode)
218 			inode->i_sb->s_op->destroy_inode(inode);
219 		else
220 			kmem_cache_free(inode_cachep, inode);
221 		return NULL;
222 	}
223 
224 	return inode;
225 }
226 
227 void free_inode_nonrcu(struct inode *inode)
228 {
229 	kmem_cache_free(inode_cachep, inode);
230 }
231 EXPORT_SYMBOL(free_inode_nonrcu);
232 
233 void __destroy_inode(struct inode *inode)
234 {
235 	BUG_ON(inode_has_buffers(inode));
236 	inode_detach_wb(inode);
237 	security_inode_free(inode);
238 	fsnotify_inode_delete(inode);
239 	locks_free_lock_context(inode);
240 	if (!inode->i_nlink) {
241 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
242 		atomic_long_dec(&inode->i_sb->s_remove_count);
243 	}
244 
245 #ifdef CONFIG_FS_POSIX_ACL
246 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
247 		posix_acl_release(inode->i_acl);
248 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
249 		posix_acl_release(inode->i_default_acl);
250 #endif
251 	this_cpu_dec(nr_inodes);
252 }
253 EXPORT_SYMBOL(__destroy_inode);
254 
255 static void i_callback(struct rcu_head *head)
256 {
257 	struct inode *inode = container_of(head, struct inode, i_rcu);
258 	kmem_cache_free(inode_cachep, inode);
259 }
260 
261 static void destroy_inode(struct inode *inode)
262 {
263 	BUG_ON(!list_empty(&inode->i_lru));
264 	__destroy_inode(inode);
265 	if (inode->i_sb->s_op->destroy_inode)
266 		inode->i_sb->s_op->destroy_inode(inode);
267 	else
268 		call_rcu(&inode->i_rcu, i_callback);
269 }
270 
271 /**
272  * drop_nlink - directly drop an inode's link count
273  * @inode: inode
274  *
275  * This is a low-level filesystem helper to replace any
276  * direct filesystem manipulation of i_nlink.  In cases
277  * where we are attempting to track writes to the
278  * filesystem, a decrement to zero means an imminent
279  * write when the file is truncated and actually unlinked
280  * on the filesystem.
281  */
282 void drop_nlink(struct inode *inode)
283 {
284 	WARN_ON(inode->i_nlink == 0);
285 	inode->__i_nlink--;
286 	if (!inode->i_nlink)
287 		atomic_long_inc(&inode->i_sb->s_remove_count);
288 }
289 EXPORT_SYMBOL(drop_nlink);
290 
291 /**
292  * clear_nlink - directly zero an inode's link count
293  * @inode: inode
294  *
295  * This is a low-level filesystem helper to replace any
296  * direct filesystem manipulation of i_nlink.  See
297  * drop_nlink() for why we care about i_nlink hitting zero.
298  */
299 void clear_nlink(struct inode *inode)
300 {
301 	if (inode->i_nlink) {
302 		inode->__i_nlink = 0;
303 		atomic_long_inc(&inode->i_sb->s_remove_count);
304 	}
305 }
306 EXPORT_SYMBOL(clear_nlink);
307 
308 /**
309  * set_nlink - directly set an inode's link count
310  * @inode: inode
311  * @nlink: new nlink (should be non-zero)
312  *
313  * This is a low-level filesystem helper to replace any
314  * direct filesystem manipulation of i_nlink.
315  */
316 void set_nlink(struct inode *inode, unsigned int nlink)
317 {
318 	if (!nlink) {
319 		clear_nlink(inode);
320 	} else {
321 		/* Yes, some filesystems do change nlink from zero to one */
322 		if (inode->i_nlink == 0)
323 			atomic_long_dec(&inode->i_sb->s_remove_count);
324 
325 		inode->__i_nlink = nlink;
326 	}
327 }
328 EXPORT_SYMBOL(set_nlink);
329 
330 /**
331  * inc_nlink - directly increment an inode's link count
332  * @inode: inode
333  *
334  * This is a low-level filesystem helper to replace any
335  * direct filesystem manipulation of i_nlink.  Currently,
336  * it is only here for parity with dec_nlink().
337  */
338 void inc_nlink(struct inode *inode)
339 {
340 	if (unlikely(inode->i_nlink == 0)) {
341 		WARN_ON(!(inode->i_state & I_LINKABLE));
342 		atomic_long_dec(&inode->i_sb->s_remove_count);
343 	}
344 
345 	inode->__i_nlink++;
346 }
347 EXPORT_SYMBOL(inc_nlink);
348 
349 void address_space_init_once(struct address_space *mapping)
350 {
351 	memset(mapping, 0, sizeof(*mapping));
352 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
353 	spin_lock_init(&mapping->tree_lock);
354 	init_rwsem(&mapping->i_mmap_rwsem);
355 	INIT_LIST_HEAD(&mapping->private_list);
356 	spin_lock_init(&mapping->private_lock);
357 	mapping->i_mmap = RB_ROOT_CACHED;
358 }
359 EXPORT_SYMBOL(address_space_init_once);
360 
361 /*
362  * These are initializations that only need to be done
363  * once, because the fields are idempotent across use
364  * of the inode, so let the slab aware of that.
365  */
366 void inode_init_once(struct inode *inode)
367 {
368 	memset(inode, 0, sizeof(*inode));
369 	INIT_HLIST_NODE(&inode->i_hash);
370 	INIT_LIST_HEAD(&inode->i_devices);
371 	INIT_LIST_HEAD(&inode->i_io_list);
372 	INIT_LIST_HEAD(&inode->i_wb_list);
373 	INIT_LIST_HEAD(&inode->i_lru);
374 	address_space_init_once(&inode->i_data);
375 	i_size_ordered_init(inode);
376 }
377 EXPORT_SYMBOL(inode_init_once);
378 
379 static void init_once(void *foo)
380 {
381 	struct inode *inode = (struct inode *) foo;
382 
383 	inode_init_once(inode);
384 }
385 
386 /*
387  * inode->i_lock must be held
388  */
389 void __iget(struct inode *inode)
390 {
391 	atomic_inc(&inode->i_count);
392 }
393 
394 /*
395  * get additional reference to inode; caller must already hold one.
396  */
397 void ihold(struct inode *inode)
398 {
399 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400 }
401 EXPORT_SYMBOL(ihold);
402 
403 static void inode_lru_list_add(struct inode *inode)
404 {
405 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
406 		this_cpu_inc(nr_unused);
407 	else
408 		inode->i_state |= I_REFERENCED;
409 }
410 
411 /*
412  * Add inode to LRU if needed (inode is unused and clean).
413  *
414  * Needs inode->i_lock held.
415  */
416 void inode_add_lru(struct inode *inode)
417 {
418 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
419 				I_FREEING | I_WILL_FREE)) &&
420 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
421 		inode_lru_list_add(inode);
422 }
423 
424 
425 static void inode_lru_list_del(struct inode *inode)
426 {
427 
428 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 		this_cpu_dec(nr_unused);
430 }
431 
432 /**
433  * inode_sb_list_add - add inode to the superblock list of inodes
434  * @inode: inode to add
435  */
436 void inode_sb_list_add(struct inode *inode)
437 {
438 	spin_lock(&inode->i_sb->s_inode_list_lock);
439 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
440 	spin_unlock(&inode->i_sb->s_inode_list_lock);
441 }
442 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443 
444 static inline void inode_sb_list_del(struct inode *inode)
445 {
446 	if (!list_empty(&inode->i_sb_list)) {
447 		spin_lock(&inode->i_sb->s_inode_list_lock);
448 		list_del_init(&inode->i_sb_list);
449 		spin_unlock(&inode->i_sb->s_inode_list_lock);
450 	}
451 }
452 
453 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 {
455 	unsigned long tmp;
456 
457 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 			L1_CACHE_BYTES;
459 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
460 	return tmp & i_hash_mask;
461 }
462 
463 /**
464  *	__insert_inode_hash - hash an inode
465  *	@inode: unhashed inode
466  *	@hashval: unsigned long value used to locate this object in the
467  *		inode_hashtable.
468  *
469  *	Add an inode to the inode hash for this superblock.
470  */
471 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 {
473 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474 
475 	spin_lock(&inode_hash_lock);
476 	spin_lock(&inode->i_lock);
477 	hlist_add_head(&inode->i_hash, b);
478 	spin_unlock(&inode->i_lock);
479 	spin_unlock(&inode_hash_lock);
480 }
481 EXPORT_SYMBOL(__insert_inode_hash);
482 
483 /**
484  *	__remove_inode_hash - remove an inode from the hash
485  *	@inode: inode to unhash
486  *
487  *	Remove an inode from the superblock.
488  */
489 void __remove_inode_hash(struct inode *inode)
490 {
491 	spin_lock(&inode_hash_lock);
492 	spin_lock(&inode->i_lock);
493 	hlist_del_init(&inode->i_hash);
494 	spin_unlock(&inode->i_lock);
495 	spin_unlock(&inode_hash_lock);
496 }
497 EXPORT_SYMBOL(__remove_inode_hash);
498 
499 void clear_inode(struct inode *inode)
500 {
501 	might_sleep();
502 	/*
503 	 * We have to cycle tree_lock here because reclaim can be still in the
504 	 * process of removing the last page (in __delete_from_page_cache())
505 	 * and we must not free mapping under it.
506 	 */
507 	spin_lock_irq(&inode->i_data.tree_lock);
508 	BUG_ON(inode->i_data.nrpages);
509 	BUG_ON(inode->i_data.nrexceptional);
510 	spin_unlock_irq(&inode->i_data.tree_lock);
511 	BUG_ON(!list_empty(&inode->i_data.private_list));
512 	BUG_ON(!(inode->i_state & I_FREEING));
513 	BUG_ON(inode->i_state & I_CLEAR);
514 	BUG_ON(!list_empty(&inode->i_wb_list));
515 	/* don't need i_lock here, no concurrent mods to i_state */
516 	inode->i_state = I_FREEING | I_CLEAR;
517 }
518 EXPORT_SYMBOL(clear_inode);
519 
520 /*
521  * Free the inode passed in, removing it from the lists it is still connected
522  * to. We remove any pages still attached to the inode and wait for any IO that
523  * is still in progress before finally destroying the inode.
524  *
525  * An inode must already be marked I_FREEING so that we avoid the inode being
526  * moved back onto lists if we race with other code that manipulates the lists
527  * (e.g. writeback_single_inode). The caller is responsible for setting this.
528  *
529  * An inode must already be removed from the LRU list before being evicted from
530  * the cache. This should occur atomically with setting the I_FREEING state
531  * flag, so no inodes here should ever be on the LRU when being evicted.
532  */
533 static void evict(struct inode *inode)
534 {
535 	const struct super_operations *op = inode->i_sb->s_op;
536 
537 	BUG_ON(!(inode->i_state & I_FREEING));
538 	BUG_ON(!list_empty(&inode->i_lru));
539 
540 	if (!list_empty(&inode->i_io_list))
541 		inode_io_list_del(inode);
542 
543 	inode_sb_list_del(inode);
544 
545 	/*
546 	 * Wait for flusher thread to be done with the inode so that filesystem
547 	 * does not start destroying it while writeback is still running. Since
548 	 * the inode has I_FREEING set, flusher thread won't start new work on
549 	 * the inode.  We just have to wait for running writeback to finish.
550 	 */
551 	inode_wait_for_writeback(inode);
552 
553 	if (op->evict_inode) {
554 		op->evict_inode(inode);
555 	} else {
556 		truncate_inode_pages_final(&inode->i_data);
557 		clear_inode(inode);
558 	}
559 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
560 		bd_forget(inode);
561 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
562 		cd_forget(inode);
563 
564 	remove_inode_hash(inode);
565 
566 	spin_lock(&inode->i_lock);
567 	wake_up_bit(&inode->i_state, __I_NEW);
568 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
569 	spin_unlock(&inode->i_lock);
570 
571 	destroy_inode(inode);
572 }
573 
574 /*
575  * dispose_list - dispose of the contents of a local list
576  * @head: the head of the list to free
577  *
578  * Dispose-list gets a local list with local inodes in it, so it doesn't
579  * need to worry about list corruption and SMP locks.
580  */
581 static void dispose_list(struct list_head *head)
582 {
583 	while (!list_empty(head)) {
584 		struct inode *inode;
585 
586 		inode = list_first_entry(head, struct inode, i_lru);
587 		list_del_init(&inode->i_lru);
588 
589 		evict(inode);
590 		cond_resched();
591 	}
592 }
593 
594 /**
595  * evict_inodes	- evict all evictable inodes for a superblock
596  * @sb:		superblock to operate on
597  *
598  * Make sure that no inodes with zero refcount are retained.  This is
599  * called by superblock shutdown after having SB_ACTIVE flag removed,
600  * so any inode reaching zero refcount during or after that call will
601  * be immediately evicted.
602  */
603 void evict_inodes(struct super_block *sb)
604 {
605 	struct inode *inode, *next;
606 	LIST_HEAD(dispose);
607 
608 again:
609 	spin_lock(&sb->s_inode_list_lock);
610 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
611 		if (atomic_read(&inode->i_count))
612 			continue;
613 
614 		spin_lock(&inode->i_lock);
615 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
616 			spin_unlock(&inode->i_lock);
617 			continue;
618 		}
619 
620 		inode->i_state |= I_FREEING;
621 		inode_lru_list_del(inode);
622 		spin_unlock(&inode->i_lock);
623 		list_add(&inode->i_lru, &dispose);
624 
625 		/*
626 		 * We can have a ton of inodes to evict at unmount time given
627 		 * enough memory, check to see if we need to go to sleep for a
628 		 * bit so we don't livelock.
629 		 */
630 		if (need_resched()) {
631 			spin_unlock(&sb->s_inode_list_lock);
632 			cond_resched();
633 			dispose_list(&dispose);
634 			goto again;
635 		}
636 	}
637 	spin_unlock(&sb->s_inode_list_lock);
638 
639 	dispose_list(&dispose);
640 }
641 EXPORT_SYMBOL_GPL(evict_inodes);
642 
643 /**
644  * invalidate_inodes	- attempt to free all inodes on a superblock
645  * @sb:		superblock to operate on
646  * @kill_dirty: flag to guide handling of dirty inodes
647  *
648  * Attempts to free all inodes for a given superblock.  If there were any
649  * busy inodes return a non-zero value, else zero.
650  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
651  * them as busy.
652  */
653 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
654 {
655 	int busy = 0;
656 	struct inode *inode, *next;
657 	LIST_HEAD(dispose);
658 
659 	spin_lock(&sb->s_inode_list_lock);
660 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
661 		spin_lock(&inode->i_lock);
662 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
663 			spin_unlock(&inode->i_lock);
664 			continue;
665 		}
666 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
667 			spin_unlock(&inode->i_lock);
668 			busy = 1;
669 			continue;
670 		}
671 		if (atomic_read(&inode->i_count)) {
672 			spin_unlock(&inode->i_lock);
673 			busy = 1;
674 			continue;
675 		}
676 
677 		inode->i_state |= I_FREEING;
678 		inode_lru_list_del(inode);
679 		spin_unlock(&inode->i_lock);
680 		list_add(&inode->i_lru, &dispose);
681 	}
682 	spin_unlock(&sb->s_inode_list_lock);
683 
684 	dispose_list(&dispose);
685 
686 	return busy;
687 }
688 
689 /*
690  * Isolate the inode from the LRU in preparation for freeing it.
691  *
692  * Any inodes which are pinned purely because of attached pagecache have their
693  * pagecache removed.  If the inode has metadata buffers attached to
694  * mapping->private_list then try to remove them.
695  *
696  * If the inode has the I_REFERENCED flag set, then it means that it has been
697  * used recently - the flag is set in iput_final(). When we encounter such an
698  * inode, clear the flag and move it to the back of the LRU so it gets another
699  * pass through the LRU before it gets reclaimed. This is necessary because of
700  * the fact we are doing lazy LRU updates to minimise lock contention so the
701  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
702  * with this flag set because they are the inodes that are out of order.
703  */
704 static enum lru_status inode_lru_isolate(struct list_head *item,
705 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
706 {
707 	struct list_head *freeable = arg;
708 	struct inode	*inode = container_of(item, struct inode, i_lru);
709 
710 	/*
711 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
712 	 * If we fail to get the lock, just skip it.
713 	 */
714 	if (!spin_trylock(&inode->i_lock))
715 		return LRU_SKIP;
716 
717 	/*
718 	 * Referenced or dirty inodes are still in use. Give them another pass
719 	 * through the LRU as we canot reclaim them now.
720 	 */
721 	if (atomic_read(&inode->i_count) ||
722 	    (inode->i_state & ~I_REFERENCED)) {
723 		list_lru_isolate(lru, &inode->i_lru);
724 		spin_unlock(&inode->i_lock);
725 		this_cpu_dec(nr_unused);
726 		return LRU_REMOVED;
727 	}
728 
729 	/* recently referenced inodes get one more pass */
730 	if (inode->i_state & I_REFERENCED) {
731 		inode->i_state &= ~I_REFERENCED;
732 		spin_unlock(&inode->i_lock);
733 		return LRU_ROTATE;
734 	}
735 
736 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
737 		__iget(inode);
738 		spin_unlock(&inode->i_lock);
739 		spin_unlock(lru_lock);
740 		if (remove_inode_buffers(inode)) {
741 			unsigned long reap;
742 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
743 			if (current_is_kswapd())
744 				__count_vm_events(KSWAPD_INODESTEAL, reap);
745 			else
746 				__count_vm_events(PGINODESTEAL, reap);
747 			if (current->reclaim_state)
748 				current->reclaim_state->reclaimed_slab += reap;
749 		}
750 		iput(inode);
751 		spin_lock(lru_lock);
752 		return LRU_RETRY;
753 	}
754 
755 	WARN_ON(inode->i_state & I_NEW);
756 	inode->i_state |= I_FREEING;
757 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
758 	spin_unlock(&inode->i_lock);
759 
760 	this_cpu_dec(nr_unused);
761 	return LRU_REMOVED;
762 }
763 
764 /*
765  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
766  * This is called from the superblock shrinker function with a number of inodes
767  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
768  * then are freed outside inode_lock by dispose_list().
769  */
770 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
771 {
772 	LIST_HEAD(freeable);
773 	long freed;
774 
775 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
776 				     inode_lru_isolate, &freeable);
777 	dispose_list(&freeable);
778 	return freed;
779 }
780 
781 static void __wait_on_freeing_inode(struct inode *inode);
782 /*
783  * Called with the inode lock held.
784  */
785 static struct inode *find_inode(struct super_block *sb,
786 				struct hlist_head *head,
787 				int (*test)(struct inode *, void *),
788 				void *data)
789 {
790 	struct inode *inode = NULL;
791 
792 repeat:
793 	hlist_for_each_entry(inode, head, i_hash) {
794 		if (inode->i_sb != sb)
795 			continue;
796 		if (!test(inode, data))
797 			continue;
798 		spin_lock(&inode->i_lock);
799 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
800 			__wait_on_freeing_inode(inode);
801 			goto repeat;
802 		}
803 		__iget(inode);
804 		spin_unlock(&inode->i_lock);
805 		return inode;
806 	}
807 	return NULL;
808 }
809 
810 /*
811  * find_inode_fast is the fast path version of find_inode, see the comment at
812  * iget_locked for details.
813  */
814 static struct inode *find_inode_fast(struct super_block *sb,
815 				struct hlist_head *head, unsigned long ino)
816 {
817 	struct inode *inode = NULL;
818 
819 repeat:
820 	hlist_for_each_entry(inode, head, i_hash) {
821 		if (inode->i_ino != ino)
822 			continue;
823 		if (inode->i_sb != sb)
824 			continue;
825 		spin_lock(&inode->i_lock);
826 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
827 			__wait_on_freeing_inode(inode);
828 			goto repeat;
829 		}
830 		__iget(inode);
831 		spin_unlock(&inode->i_lock);
832 		return inode;
833 	}
834 	return NULL;
835 }
836 
837 /*
838  * Each cpu owns a range of LAST_INO_BATCH numbers.
839  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
840  * to renew the exhausted range.
841  *
842  * This does not significantly increase overflow rate because every CPU can
843  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
844  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
845  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
846  * overflow rate by 2x, which does not seem too significant.
847  *
848  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
849  * error if st_ino won't fit in target struct field. Use 32bit counter
850  * here to attempt to avoid that.
851  */
852 #define LAST_INO_BATCH 1024
853 static DEFINE_PER_CPU(unsigned int, last_ino);
854 
855 unsigned int get_next_ino(void)
856 {
857 	unsigned int *p = &get_cpu_var(last_ino);
858 	unsigned int res = *p;
859 
860 #ifdef CONFIG_SMP
861 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
862 		static atomic_t shared_last_ino;
863 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
864 
865 		res = next - LAST_INO_BATCH;
866 	}
867 #endif
868 
869 	res++;
870 	/* get_next_ino should not provide a 0 inode number */
871 	if (unlikely(!res))
872 		res++;
873 	*p = res;
874 	put_cpu_var(last_ino);
875 	return res;
876 }
877 EXPORT_SYMBOL(get_next_ino);
878 
879 /**
880  *	new_inode_pseudo 	- obtain an inode
881  *	@sb: superblock
882  *
883  *	Allocates a new inode for given superblock.
884  *	Inode wont be chained in superblock s_inodes list
885  *	This means :
886  *	- fs can't be unmount
887  *	- quotas, fsnotify, writeback can't work
888  */
889 struct inode *new_inode_pseudo(struct super_block *sb)
890 {
891 	struct inode *inode = alloc_inode(sb);
892 
893 	if (inode) {
894 		spin_lock(&inode->i_lock);
895 		inode->i_state = 0;
896 		spin_unlock(&inode->i_lock);
897 		INIT_LIST_HEAD(&inode->i_sb_list);
898 	}
899 	return inode;
900 }
901 
902 /**
903  *	new_inode 	- obtain an inode
904  *	@sb: superblock
905  *
906  *	Allocates a new inode for given superblock. The default gfp_mask
907  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
908  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
909  *	for the page cache are not reclaimable or migratable,
910  *	mapping_set_gfp_mask() must be called with suitable flags on the
911  *	newly created inode's mapping
912  *
913  */
914 struct inode *new_inode(struct super_block *sb)
915 {
916 	struct inode *inode;
917 
918 	spin_lock_prefetch(&sb->s_inode_list_lock);
919 
920 	inode = new_inode_pseudo(sb);
921 	if (inode)
922 		inode_sb_list_add(inode);
923 	return inode;
924 }
925 EXPORT_SYMBOL(new_inode);
926 
927 #ifdef CONFIG_DEBUG_LOCK_ALLOC
928 void lockdep_annotate_inode_mutex_key(struct inode *inode)
929 {
930 	if (S_ISDIR(inode->i_mode)) {
931 		struct file_system_type *type = inode->i_sb->s_type;
932 
933 		/* Set new key only if filesystem hasn't already changed it */
934 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
935 			/*
936 			 * ensure nobody is actually holding i_mutex
937 			 */
938 			// mutex_destroy(&inode->i_mutex);
939 			init_rwsem(&inode->i_rwsem);
940 			lockdep_set_class(&inode->i_rwsem,
941 					  &type->i_mutex_dir_key);
942 		}
943 	}
944 }
945 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
946 #endif
947 
948 /**
949  * unlock_new_inode - clear the I_NEW state and wake up any waiters
950  * @inode:	new inode to unlock
951  *
952  * Called when the inode is fully initialised to clear the new state of the
953  * inode and wake up anyone waiting for the inode to finish initialisation.
954  */
955 void unlock_new_inode(struct inode *inode)
956 {
957 	lockdep_annotate_inode_mutex_key(inode);
958 	spin_lock(&inode->i_lock);
959 	WARN_ON(!(inode->i_state & I_NEW));
960 	inode->i_state &= ~I_NEW;
961 	smp_mb();
962 	wake_up_bit(&inode->i_state, __I_NEW);
963 	spin_unlock(&inode->i_lock);
964 }
965 EXPORT_SYMBOL(unlock_new_inode);
966 
967 /**
968  * lock_two_nondirectories - take two i_mutexes on non-directory objects
969  *
970  * Lock any non-NULL argument that is not a directory.
971  * Zero, one or two objects may be locked by this function.
972  *
973  * @inode1: first inode to lock
974  * @inode2: second inode to lock
975  */
976 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
977 {
978 	if (inode1 > inode2)
979 		swap(inode1, inode2);
980 
981 	if (inode1 && !S_ISDIR(inode1->i_mode))
982 		inode_lock(inode1);
983 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
984 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
985 }
986 EXPORT_SYMBOL(lock_two_nondirectories);
987 
988 /**
989  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
990  * @inode1: first inode to unlock
991  * @inode2: second inode to unlock
992  */
993 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
994 {
995 	if (inode1 && !S_ISDIR(inode1->i_mode))
996 		inode_unlock(inode1);
997 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
998 		inode_unlock(inode2);
999 }
1000 EXPORT_SYMBOL(unlock_two_nondirectories);
1001 
1002 /**
1003  * iget5_locked - obtain an inode from a mounted file system
1004  * @sb:		super block of file system
1005  * @hashval:	hash value (usually inode number) to get
1006  * @test:	callback used for comparisons between inodes
1007  * @set:	callback used to initialize a new struct inode
1008  * @data:	opaque data pointer to pass to @test and @set
1009  *
1010  * Search for the inode specified by @hashval and @data in the inode cache,
1011  * and if present it is return it with an increased reference count. This is
1012  * a generalized version of iget_locked() for file systems where the inode
1013  * number is not sufficient for unique identification of an inode.
1014  *
1015  * If the inode is not in cache, allocate a new inode and return it locked,
1016  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1017  * before unlocking it via unlock_new_inode().
1018  *
1019  * Note both @test and @set are called with the inode_hash_lock held, so can't
1020  * sleep.
1021  */
1022 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1023 		int (*test)(struct inode *, void *),
1024 		int (*set)(struct inode *, void *), void *data)
1025 {
1026 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1027 	struct inode *inode;
1028 again:
1029 	spin_lock(&inode_hash_lock);
1030 	inode = find_inode(sb, head, test, data);
1031 	spin_unlock(&inode_hash_lock);
1032 
1033 	if (inode) {
1034 		wait_on_inode(inode);
1035 		if (unlikely(inode_unhashed(inode))) {
1036 			iput(inode);
1037 			goto again;
1038 		}
1039 		return inode;
1040 	}
1041 
1042 	inode = alloc_inode(sb);
1043 	if (inode) {
1044 		struct inode *old;
1045 
1046 		spin_lock(&inode_hash_lock);
1047 		/* We released the lock, so.. */
1048 		old = find_inode(sb, head, test, data);
1049 		if (!old) {
1050 			if (set(inode, data))
1051 				goto set_failed;
1052 
1053 			spin_lock(&inode->i_lock);
1054 			inode->i_state = I_NEW;
1055 			hlist_add_head(&inode->i_hash, head);
1056 			spin_unlock(&inode->i_lock);
1057 			inode_sb_list_add(inode);
1058 			spin_unlock(&inode_hash_lock);
1059 
1060 			/* Return the locked inode with I_NEW set, the
1061 			 * caller is responsible for filling in the contents
1062 			 */
1063 			return inode;
1064 		}
1065 
1066 		/*
1067 		 * Uhhuh, somebody else created the same inode under
1068 		 * us. Use the old inode instead of the one we just
1069 		 * allocated.
1070 		 */
1071 		spin_unlock(&inode_hash_lock);
1072 		destroy_inode(inode);
1073 		inode = old;
1074 		wait_on_inode(inode);
1075 		if (unlikely(inode_unhashed(inode))) {
1076 			iput(inode);
1077 			goto again;
1078 		}
1079 	}
1080 	return inode;
1081 
1082 set_failed:
1083 	spin_unlock(&inode_hash_lock);
1084 	destroy_inode(inode);
1085 	return NULL;
1086 }
1087 EXPORT_SYMBOL(iget5_locked);
1088 
1089 /**
1090  * iget_locked - obtain an inode from a mounted file system
1091  * @sb:		super block of file system
1092  * @ino:	inode number to get
1093  *
1094  * Search for the inode specified by @ino in the inode cache and if present
1095  * return it with an increased reference count. This is for file systems
1096  * where the inode number is sufficient for unique identification of an inode.
1097  *
1098  * If the inode is not in cache, allocate a new inode and return it locked,
1099  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1100  * before unlocking it via unlock_new_inode().
1101  */
1102 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1103 {
1104 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1105 	struct inode *inode;
1106 again:
1107 	spin_lock(&inode_hash_lock);
1108 	inode = find_inode_fast(sb, head, ino);
1109 	spin_unlock(&inode_hash_lock);
1110 	if (inode) {
1111 		wait_on_inode(inode);
1112 		if (unlikely(inode_unhashed(inode))) {
1113 			iput(inode);
1114 			goto again;
1115 		}
1116 		return inode;
1117 	}
1118 
1119 	inode = alloc_inode(sb);
1120 	if (inode) {
1121 		struct inode *old;
1122 
1123 		spin_lock(&inode_hash_lock);
1124 		/* We released the lock, so.. */
1125 		old = find_inode_fast(sb, head, ino);
1126 		if (!old) {
1127 			inode->i_ino = ino;
1128 			spin_lock(&inode->i_lock);
1129 			inode->i_state = I_NEW;
1130 			hlist_add_head(&inode->i_hash, head);
1131 			spin_unlock(&inode->i_lock);
1132 			inode_sb_list_add(inode);
1133 			spin_unlock(&inode_hash_lock);
1134 
1135 			/* Return the locked inode with I_NEW set, the
1136 			 * caller is responsible for filling in the contents
1137 			 */
1138 			return inode;
1139 		}
1140 
1141 		/*
1142 		 * Uhhuh, somebody else created the same inode under
1143 		 * us. Use the old inode instead of the one we just
1144 		 * allocated.
1145 		 */
1146 		spin_unlock(&inode_hash_lock);
1147 		destroy_inode(inode);
1148 		inode = old;
1149 		wait_on_inode(inode);
1150 		if (unlikely(inode_unhashed(inode))) {
1151 			iput(inode);
1152 			goto again;
1153 		}
1154 	}
1155 	return inode;
1156 }
1157 EXPORT_SYMBOL(iget_locked);
1158 
1159 /*
1160  * search the inode cache for a matching inode number.
1161  * If we find one, then the inode number we are trying to
1162  * allocate is not unique and so we should not use it.
1163  *
1164  * Returns 1 if the inode number is unique, 0 if it is not.
1165  */
1166 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1167 {
1168 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1169 	struct inode *inode;
1170 
1171 	spin_lock(&inode_hash_lock);
1172 	hlist_for_each_entry(inode, b, i_hash) {
1173 		if (inode->i_ino == ino && inode->i_sb == sb) {
1174 			spin_unlock(&inode_hash_lock);
1175 			return 0;
1176 		}
1177 	}
1178 	spin_unlock(&inode_hash_lock);
1179 
1180 	return 1;
1181 }
1182 
1183 /**
1184  *	iunique - get a unique inode number
1185  *	@sb: superblock
1186  *	@max_reserved: highest reserved inode number
1187  *
1188  *	Obtain an inode number that is unique on the system for a given
1189  *	superblock. This is used by file systems that have no natural
1190  *	permanent inode numbering system. An inode number is returned that
1191  *	is higher than the reserved limit but unique.
1192  *
1193  *	BUGS:
1194  *	With a large number of inodes live on the file system this function
1195  *	currently becomes quite slow.
1196  */
1197 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1198 {
1199 	/*
1200 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1201 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1202 	 * here to attempt to avoid that.
1203 	 */
1204 	static DEFINE_SPINLOCK(iunique_lock);
1205 	static unsigned int counter;
1206 	ino_t res;
1207 
1208 	spin_lock(&iunique_lock);
1209 	do {
1210 		if (counter <= max_reserved)
1211 			counter = max_reserved + 1;
1212 		res = counter++;
1213 	} while (!test_inode_iunique(sb, res));
1214 	spin_unlock(&iunique_lock);
1215 
1216 	return res;
1217 }
1218 EXPORT_SYMBOL(iunique);
1219 
1220 struct inode *igrab(struct inode *inode)
1221 {
1222 	spin_lock(&inode->i_lock);
1223 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1224 		__iget(inode);
1225 		spin_unlock(&inode->i_lock);
1226 	} else {
1227 		spin_unlock(&inode->i_lock);
1228 		/*
1229 		 * Handle the case where s_op->clear_inode is not been
1230 		 * called yet, and somebody is calling igrab
1231 		 * while the inode is getting freed.
1232 		 */
1233 		inode = NULL;
1234 	}
1235 	return inode;
1236 }
1237 EXPORT_SYMBOL(igrab);
1238 
1239 /**
1240  * ilookup5_nowait - search for an inode in the inode cache
1241  * @sb:		super block of file system to search
1242  * @hashval:	hash value (usually inode number) to search for
1243  * @test:	callback used for comparisons between inodes
1244  * @data:	opaque data pointer to pass to @test
1245  *
1246  * Search for the inode specified by @hashval and @data in the inode cache.
1247  * If the inode is in the cache, the inode is returned with an incremented
1248  * reference count.
1249  *
1250  * Note: I_NEW is not waited upon so you have to be very careful what you do
1251  * with the returned inode.  You probably should be using ilookup5() instead.
1252  *
1253  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1254  */
1255 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1256 		int (*test)(struct inode *, void *), void *data)
1257 {
1258 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1259 	struct inode *inode;
1260 
1261 	spin_lock(&inode_hash_lock);
1262 	inode = find_inode(sb, head, test, data);
1263 	spin_unlock(&inode_hash_lock);
1264 
1265 	return inode;
1266 }
1267 EXPORT_SYMBOL(ilookup5_nowait);
1268 
1269 /**
1270  * ilookup5 - search for an inode in the inode cache
1271  * @sb:		super block of file system to search
1272  * @hashval:	hash value (usually inode number) to search for
1273  * @test:	callback used for comparisons between inodes
1274  * @data:	opaque data pointer to pass to @test
1275  *
1276  * Search for the inode specified by @hashval and @data in the inode cache,
1277  * and if the inode is in the cache, return the inode with an incremented
1278  * reference count.  Waits on I_NEW before returning the inode.
1279  * returned with an incremented reference count.
1280  *
1281  * This is a generalized version of ilookup() for file systems where the
1282  * inode number is not sufficient for unique identification of an inode.
1283  *
1284  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1285  */
1286 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1287 		int (*test)(struct inode *, void *), void *data)
1288 {
1289 	struct inode *inode;
1290 again:
1291 	inode = ilookup5_nowait(sb, hashval, test, data);
1292 	if (inode) {
1293 		wait_on_inode(inode);
1294 		if (unlikely(inode_unhashed(inode))) {
1295 			iput(inode);
1296 			goto again;
1297 		}
1298 	}
1299 	return inode;
1300 }
1301 EXPORT_SYMBOL(ilookup5);
1302 
1303 /**
1304  * ilookup - search for an inode in the inode cache
1305  * @sb:		super block of file system to search
1306  * @ino:	inode number to search for
1307  *
1308  * Search for the inode @ino in the inode cache, and if the inode is in the
1309  * cache, the inode is returned with an incremented reference count.
1310  */
1311 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1312 {
1313 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1314 	struct inode *inode;
1315 again:
1316 	spin_lock(&inode_hash_lock);
1317 	inode = find_inode_fast(sb, head, ino);
1318 	spin_unlock(&inode_hash_lock);
1319 
1320 	if (inode) {
1321 		wait_on_inode(inode);
1322 		if (unlikely(inode_unhashed(inode))) {
1323 			iput(inode);
1324 			goto again;
1325 		}
1326 	}
1327 	return inode;
1328 }
1329 EXPORT_SYMBOL(ilookup);
1330 
1331 /**
1332  * find_inode_nowait - find an inode in the inode cache
1333  * @sb:		super block of file system to search
1334  * @hashval:	hash value (usually inode number) to search for
1335  * @match:	callback used for comparisons between inodes
1336  * @data:	opaque data pointer to pass to @match
1337  *
1338  * Search for the inode specified by @hashval and @data in the inode
1339  * cache, where the helper function @match will return 0 if the inode
1340  * does not match, 1 if the inode does match, and -1 if the search
1341  * should be stopped.  The @match function must be responsible for
1342  * taking the i_lock spin_lock and checking i_state for an inode being
1343  * freed or being initialized, and incrementing the reference count
1344  * before returning 1.  It also must not sleep, since it is called with
1345  * the inode_hash_lock spinlock held.
1346  *
1347  * This is a even more generalized version of ilookup5() when the
1348  * function must never block --- find_inode() can block in
1349  * __wait_on_freeing_inode() --- or when the caller can not increment
1350  * the reference count because the resulting iput() might cause an
1351  * inode eviction.  The tradeoff is that the @match funtion must be
1352  * very carefully implemented.
1353  */
1354 struct inode *find_inode_nowait(struct super_block *sb,
1355 				unsigned long hashval,
1356 				int (*match)(struct inode *, unsigned long,
1357 					     void *),
1358 				void *data)
1359 {
1360 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1361 	struct inode *inode, *ret_inode = NULL;
1362 	int mval;
1363 
1364 	spin_lock(&inode_hash_lock);
1365 	hlist_for_each_entry(inode, head, i_hash) {
1366 		if (inode->i_sb != sb)
1367 			continue;
1368 		mval = match(inode, hashval, data);
1369 		if (mval == 0)
1370 			continue;
1371 		if (mval == 1)
1372 			ret_inode = inode;
1373 		goto out;
1374 	}
1375 out:
1376 	spin_unlock(&inode_hash_lock);
1377 	return ret_inode;
1378 }
1379 EXPORT_SYMBOL(find_inode_nowait);
1380 
1381 int insert_inode_locked(struct inode *inode)
1382 {
1383 	struct super_block *sb = inode->i_sb;
1384 	ino_t ino = inode->i_ino;
1385 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1386 
1387 	while (1) {
1388 		struct inode *old = NULL;
1389 		spin_lock(&inode_hash_lock);
1390 		hlist_for_each_entry(old, head, i_hash) {
1391 			if (old->i_ino != ino)
1392 				continue;
1393 			if (old->i_sb != sb)
1394 				continue;
1395 			spin_lock(&old->i_lock);
1396 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1397 				spin_unlock(&old->i_lock);
1398 				continue;
1399 			}
1400 			break;
1401 		}
1402 		if (likely(!old)) {
1403 			spin_lock(&inode->i_lock);
1404 			inode->i_state |= I_NEW;
1405 			hlist_add_head(&inode->i_hash, head);
1406 			spin_unlock(&inode->i_lock);
1407 			spin_unlock(&inode_hash_lock);
1408 			return 0;
1409 		}
1410 		__iget(old);
1411 		spin_unlock(&old->i_lock);
1412 		spin_unlock(&inode_hash_lock);
1413 		wait_on_inode(old);
1414 		if (unlikely(!inode_unhashed(old))) {
1415 			iput(old);
1416 			return -EBUSY;
1417 		}
1418 		iput(old);
1419 	}
1420 }
1421 EXPORT_SYMBOL(insert_inode_locked);
1422 
1423 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1424 		int (*test)(struct inode *, void *), void *data)
1425 {
1426 	struct super_block *sb = inode->i_sb;
1427 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1428 
1429 	while (1) {
1430 		struct inode *old = NULL;
1431 
1432 		spin_lock(&inode_hash_lock);
1433 		hlist_for_each_entry(old, head, i_hash) {
1434 			if (old->i_sb != sb)
1435 				continue;
1436 			if (!test(old, data))
1437 				continue;
1438 			spin_lock(&old->i_lock);
1439 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1440 				spin_unlock(&old->i_lock);
1441 				continue;
1442 			}
1443 			break;
1444 		}
1445 		if (likely(!old)) {
1446 			spin_lock(&inode->i_lock);
1447 			inode->i_state |= I_NEW;
1448 			hlist_add_head(&inode->i_hash, head);
1449 			spin_unlock(&inode->i_lock);
1450 			spin_unlock(&inode_hash_lock);
1451 			return 0;
1452 		}
1453 		__iget(old);
1454 		spin_unlock(&old->i_lock);
1455 		spin_unlock(&inode_hash_lock);
1456 		wait_on_inode(old);
1457 		if (unlikely(!inode_unhashed(old))) {
1458 			iput(old);
1459 			return -EBUSY;
1460 		}
1461 		iput(old);
1462 	}
1463 }
1464 EXPORT_SYMBOL(insert_inode_locked4);
1465 
1466 
1467 int generic_delete_inode(struct inode *inode)
1468 {
1469 	return 1;
1470 }
1471 EXPORT_SYMBOL(generic_delete_inode);
1472 
1473 /*
1474  * Called when we're dropping the last reference
1475  * to an inode.
1476  *
1477  * Call the FS "drop_inode()" function, defaulting to
1478  * the legacy UNIX filesystem behaviour.  If it tells
1479  * us to evict inode, do so.  Otherwise, retain inode
1480  * in cache if fs is alive, sync and evict if fs is
1481  * shutting down.
1482  */
1483 static void iput_final(struct inode *inode)
1484 {
1485 	struct super_block *sb = inode->i_sb;
1486 	const struct super_operations *op = inode->i_sb->s_op;
1487 	int drop;
1488 
1489 	WARN_ON(inode->i_state & I_NEW);
1490 
1491 	if (op->drop_inode)
1492 		drop = op->drop_inode(inode);
1493 	else
1494 		drop = generic_drop_inode(inode);
1495 
1496 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1497 		inode_add_lru(inode);
1498 		spin_unlock(&inode->i_lock);
1499 		return;
1500 	}
1501 
1502 	if (!drop) {
1503 		inode->i_state |= I_WILL_FREE;
1504 		spin_unlock(&inode->i_lock);
1505 		write_inode_now(inode, 1);
1506 		spin_lock(&inode->i_lock);
1507 		WARN_ON(inode->i_state & I_NEW);
1508 		inode->i_state &= ~I_WILL_FREE;
1509 	}
1510 
1511 	inode->i_state |= I_FREEING;
1512 	if (!list_empty(&inode->i_lru))
1513 		inode_lru_list_del(inode);
1514 	spin_unlock(&inode->i_lock);
1515 
1516 	evict(inode);
1517 }
1518 
1519 /**
1520  *	iput	- put an inode
1521  *	@inode: inode to put
1522  *
1523  *	Puts an inode, dropping its usage count. If the inode use count hits
1524  *	zero, the inode is then freed and may also be destroyed.
1525  *
1526  *	Consequently, iput() can sleep.
1527  */
1528 void iput(struct inode *inode)
1529 {
1530 	if (!inode)
1531 		return;
1532 	BUG_ON(inode->i_state & I_CLEAR);
1533 retry:
1534 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1535 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1536 			atomic_inc(&inode->i_count);
1537 			inode->i_state &= ~I_DIRTY_TIME;
1538 			spin_unlock(&inode->i_lock);
1539 			trace_writeback_lazytime_iput(inode);
1540 			mark_inode_dirty_sync(inode);
1541 			goto retry;
1542 		}
1543 		iput_final(inode);
1544 	}
1545 }
1546 EXPORT_SYMBOL(iput);
1547 
1548 /**
1549  *	bmap	- find a block number in a file
1550  *	@inode: inode of file
1551  *	@block: block to find
1552  *
1553  *	Returns the block number on the device holding the inode that
1554  *	is the disk block number for the block of the file requested.
1555  *	That is, asked for block 4 of inode 1 the function will return the
1556  *	disk block relative to the disk start that holds that block of the
1557  *	file.
1558  */
1559 sector_t bmap(struct inode *inode, sector_t block)
1560 {
1561 	sector_t res = 0;
1562 	if (inode->i_mapping->a_ops->bmap)
1563 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1564 	return res;
1565 }
1566 EXPORT_SYMBOL(bmap);
1567 
1568 /*
1569  * Update times in overlayed inode from underlying real inode
1570  */
1571 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1572 			       bool rcu)
1573 {
1574 	struct dentry *upperdentry;
1575 
1576 	/*
1577 	 * Nothing to do if in rcu or if non-overlayfs
1578 	 */
1579 	if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1580 		return;
1581 
1582 	upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1583 
1584 	/*
1585 	 * If file is on lower then we can't update atime, so no worries about
1586 	 * stale mtime/ctime.
1587 	 */
1588 	if (upperdentry) {
1589 		struct inode *realinode = d_inode(upperdentry);
1590 
1591 		if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1592 		     !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1593 			inode->i_mtime = realinode->i_mtime;
1594 			inode->i_ctime = realinode->i_ctime;
1595 		}
1596 	}
1597 }
1598 
1599 /*
1600  * With relative atime, only update atime if the previous atime is
1601  * earlier than either the ctime or mtime or if at least a day has
1602  * passed since the last atime update.
1603  */
1604 static int relatime_need_update(const struct path *path, struct inode *inode,
1605 				struct timespec now, bool rcu)
1606 {
1607 
1608 	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1609 		return 1;
1610 
1611 	update_ovl_inode_times(path->dentry, inode, rcu);
1612 	/*
1613 	 * Is mtime younger than atime? If yes, update atime:
1614 	 */
1615 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1616 		return 1;
1617 	/*
1618 	 * Is ctime younger than atime? If yes, update atime:
1619 	 */
1620 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1621 		return 1;
1622 
1623 	/*
1624 	 * Is the previous atime value older than a day? If yes,
1625 	 * update atime:
1626 	 */
1627 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1628 		return 1;
1629 	/*
1630 	 * Good, we can skip the atime update:
1631 	 */
1632 	return 0;
1633 }
1634 
1635 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1636 {
1637 	int iflags = I_DIRTY_TIME;
1638 	bool dirty = false;
1639 
1640 	if (flags & S_ATIME)
1641 		inode->i_atime = *time;
1642 	if (flags & S_VERSION)
1643 		dirty = inode_maybe_inc_iversion(inode, false);
1644 	if (flags & S_CTIME)
1645 		inode->i_ctime = *time;
1646 	if (flags & S_MTIME)
1647 		inode->i_mtime = *time;
1648 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1649 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1650 		dirty = true;
1651 
1652 	if (dirty)
1653 		iflags |= I_DIRTY_SYNC;
1654 	__mark_inode_dirty(inode, iflags);
1655 	return 0;
1656 }
1657 EXPORT_SYMBOL(generic_update_time);
1658 
1659 /*
1660  * This does the actual work of updating an inodes time or version.  Must have
1661  * had called mnt_want_write() before calling this.
1662  */
1663 static int update_time(struct inode *inode, struct timespec *time, int flags)
1664 {
1665 	int (*update_time)(struct inode *, struct timespec *, int);
1666 
1667 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1668 		generic_update_time;
1669 
1670 	return update_time(inode, time, flags);
1671 }
1672 
1673 /**
1674  *	touch_atime	-	update the access time
1675  *	@path: the &struct path to update
1676  *	@inode: inode to update
1677  *
1678  *	Update the accessed time on an inode and mark it for writeback.
1679  *	This function automatically handles read only file systems and media,
1680  *	as well as the "noatime" flag and inode specific "noatime" markers.
1681  */
1682 bool __atime_needs_update(const struct path *path, struct inode *inode,
1683 			  bool rcu)
1684 {
1685 	struct vfsmount *mnt = path->mnt;
1686 	struct timespec now;
1687 
1688 	if (inode->i_flags & S_NOATIME)
1689 		return false;
1690 
1691 	/* Atime updates will likely cause i_uid and i_gid to be written
1692 	 * back improprely if their true value is unknown to the vfs.
1693 	 */
1694 	if (HAS_UNMAPPED_ID(inode))
1695 		return false;
1696 
1697 	if (IS_NOATIME(inode))
1698 		return false;
1699 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1700 		return false;
1701 
1702 	if (mnt->mnt_flags & MNT_NOATIME)
1703 		return false;
1704 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1705 		return false;
1706 
1707 	now = current_time(inode);
1708 
1709 	if (!relatime_need_update(path, inode, now, rcu))
1710 		return false;
1711 
1712 	if (timespec_equal(&inode->i_atime, &now))
1713 		return false;
1714 
1715 	return true;
1716 }
1717 
1718 void touch_atime(const struct path *path)
1719 {
1720 	struct vfsmount *mnt = path->mnt;
1721 	struct inode *inode = d_inode(path->dentry);
1722 	struct timespec now;
1723 
1724 	if (!__atime_needs_update(path, inode, false))
1725 		return;
1726 
1727 	if (!sb_start_write_trylock(inode->i_sb))
1728 		return;
1729 
1730 	if (__mnt_want_write(mnt) != 0)
1731 		goto skip_update;
1732 	/*
1733 	 * File systems can error out when updating inodes if they need to
1734 	 * allocate new space to modify an inode (such is the case for
1735 	 * Btrfs), but since we touch atime while walking down the path we
1736 	 * really don't care if we failed to update the atime of the file,
1737 	 * so just ignore the return value.
1738 	 * We may also fail on filesystems that have the ability to make parts
1739 	 * of the fs read only, e.g. subvolumes in Btrfs.
1740 	 */
1741 	now = current_time(inode);
1742 	update_time(inode, &now, S_ATIME);
1743 	__mnt_drop_write(mnt);
1744 skip_update:
1745 	sb_end_write(inode->i_sb);
1746 }
1747 EXPORT_SYMBOL(touch_atime);
1748 
1749 /*
1750  * The logic we want is
1751  *
1752  *	if suid or (sgid and xgrp)
1753  *		remove privs
1754  */
1755 int should_remove_suid(struct dentry *dentry)
1756 {
1757 	umode_t mode = d_inode(dentry)->i_mode;
1758 	int kill = 0;
1759 
1760 	/* suid always must be killed */
1761 	if (unlikely(mode & S_ISUID))
1762 		kill = ATTR_KILL_SUID;
1763 
1764 	/*
1765 	 * sgid without any exec bits is just a mandatory locking mark; leave
1766 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1767 	 */
1768 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1769 		kill |= ATTR_KILL_SGID;
1770 
1771 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1772 		return kill;
1773 
1774 	return 0;
1775 }
1776 EXPORT_SYMBOL(should_remove_suid);
1777 
1778 /*
1779  * Return mask of changes for notify_change() that need to be done as a
1780  * response to write or truncate. Return 0 if nothing has to be changed.
1781  * Negative value on error (change should be denied).
1782  */
1783 int dentry_needs_remove_privs(struct dentry *dentry)
1784 {
1785 	struct inode *inode = d_inode(dentry);
1786 	int mask = 0;
1787 	int ret;
1788 
1789 	if (IS_NOSEC(inode))
1790 		return 0;
1791 
1792 	mask = should_remove_suid(dentry);
1793 	ret = security_inode_need_killpriv(dentry);
1794 	if (ret < 0)
1795 		return ret;
1796 	if (ret)
1797 		mask |= ATTR_KILL_PRIV;
1798 	return mask;
1799 }
1800 
1801 static int __remove_privs(struct dentry *dentry, int kill)
1802 {
1803 	struct iattr newattrs;
1804 
1805 	newattrs.ia_valid = ATTR_FORCE | kill;
1806 	/*
1807 	 * Note we call this on write, so notify_change will not
1808 	 * encounter any conflicting delegations:
1809 	 */
1810 	return notify_change(dentry, &newattrs, NULL);
1811 }
1812 
1813 /*
1814  * Remove special file priviledges (suid, capabilities) when file is written
1815  * to or truncated.
1816  */
1817 int file_remove_privs(struct file *file)
1818 {
1819 	struct dentry *dentry = file_dentry(file);
1820 	struct inode *inode = file_inode(file);
1821 	int kill;
1822 	int error = 0;
1823 
1824 	/* Fast path for nothing security related */
1825 	if (IS_NOSEC(inode))
1826 		return 0;
1827 
1828 	kill = dentry_needs_remove_privs(dentry);
1829 	if (kill < 0)
1830 		return kill;
1831 	if (kill)
1832 		error = __remove_privs(dentry, kill);
1833 	if (!error)
1834 		inode_has_no_xattr(inode);
1835 
1836 	return error;
1837 }
1838 EXPORT_SYMBOL(file_remove_privs);
1839 
1840 /**
1841  *	file_update_time	-	update mtime and ctime time
1842  *	@file: file accessed
1843  *
1844  *	Update the mtime and ctime members of an inode and mark the inode
1845  *	for writeback.  Note that this function is meant exclusively for
1846  *	usage in the file write path of filesystems, and filesystems may
1847  *	choose to explicitly ignore update via this function with the
1848  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1849  *	timestamps are handled by the server.  This can return an error for
1850  *	file systems who need to allocate space in order to update an inode.
1851  */
1852 
1853 int file_update_time(struct file *file)
1854 {
1855 	struct inode *inode = file_inode(file);
1856 	struct timespec now;
1857 	int sync_it = 0;
1858 	int ret;
1859 
1860 	/* First try to exhaust all avenues to not sync */
1861 	if (IS_NOCMTIME(inode))
1862 		return 0;
1863 
1864 	now = current_time(inode);
1865 	if (!timespec_equal(&inode->i_mtime, &now))
1866 		sync_it = S_MTIME;
1867 
1868 	if (!timespec_equal(&inode->i_ctime, &now))
1869 		sync_it |= S_CTIME;
1870 
1871 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1872 		sync_it |= S_VERSION;
1873 
1874 	if (!sync_it)
1875 		return 0;
1876 
1877 	/* Finally allowed to write? Takes lock. */
1878 	if (__mnt_want_write_file(file))
1879 		return 0;
1880 
1881 	ret = update_time(inode, &now, sync_it);
1882 	__mnt_drop_write_file(file);
1883 
1884 	return ret;
1885 }
1886 EXPORT_SYMBOL(file_update_time);
1887 
1888 int inode_needs_sync(struct inode *inode)
1889 {
1890 	if (IS_SYNC(inode))
1891 		return 1;
1892 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1893 		return 1;
1894 	return 0;
1895 }
1896 EXPORT_SYMBOL(inode_needs_sync);
1897 
1898 /*
1899  * If we try to find an inode in the inode hash while it is being
1900  * deleted, we have to wait until the filesystem completes its
1901  * deletion before reporting that it isn't found.  This function waits
1902  * until the deletion _might_ have completed.  Callers are responsible
1903  * to recheck inode state.
1904  *
1905  * It doesn't matter if I_NEW is not set initially, a call to
1906  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1907  * will DTRT.
1908  */
1909 static void __wait_on_freeing_inode(struct inode *inode)
1910 {
1911 	wait_queue_head_t *wq;
1912 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1913 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1914 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1915 	spin_unlock(&inode->i_lock);
1916 	spin_unlock(&inode_hash_lock);
1917 	schedule();
1918 	finish_wait(wq, &wait.wq_entry);
1919 	spin_lock(&inode_hash_lock);
1920 }
1921 
1922 static __initdata unsigned long ihash_entries;
1923 static int __init set_ihash_entries(char *str)
1924 {
1925 	if (!str)
1926 		return 0;
1927 	ihash_entries = simple_strtoul(str, &str, 0);
1928 	return 1;
1929 }
1930 __setup("ihash_entries=", set_ihash_entries);
1931 
1932 /*
1933  * Initialize the waitqueues and inode hash table.
1934  */
1935 void __init inode_init_early(void)
1936 {
1937 	/* If hashes are distributed across NUMA nodes, defer
1938 	 * hash allocation until vmalloc space is available.
1939 	 */
1940 	if (hashdist)
1941 		return;
1942 
1943 	inode_hashtable =
1944 		alloc_large_system_hash("Inode-cache",
1945 					sizeof(struct hlist_head),
1946 					ihash_entries,
1947 					14,
1948 					HASH_EARLY | HASH_ZERO,
1949 					&i_hash_shift,
1950 					&i_hash_mask,
1951 					0,
1952 					0);
1953 }
1954 
1955 void __init inode_init(void)
1956 {
1957 	/* inode slab cache */
1958 	inode_cachep = kmem_cache_create("inode_cache",
1959 					 sizeof(struct inode),
1960 					 0,
1961 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1962 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1963 					 init_once);
1964 
1965 	/* Hash may have been set up in inode_init_early */
1966 	if (!hashdist)
1967 		return;
1968 
1969 	inode_hashtable =
1970 		alloc_large_system_hash("Inode-cache",
1971 					sizeof(struct hlist_head),
1972 					ihash_entries,
1973 					14,
1974 					HASH_ZERO,
1975 					&i_hash_shift,
1976 					&i_hash_mask,
1977 					0,
1978 					0);
1979 }
1980 
1981 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1982 {
1983 	inode->i_mode = mode;
1984 	if (S_ISCHR(mode)) {
1985 		inode->i_fop = &def_chr_fops;
1986 		inode->i_rdev = rdev;
1987 	} else if (S_ISBLK(mode)) {
1988 		inode->i_fop = &def_blk_fops;
1989 		inode->i_rdev = rdev;
1990 	} else if (S_ISFIFO(mode))
1991 		inode->i_fop = &pipefifo_fops;
1992 	else if (S_ISSOCK(mode))
1993 		;	/* leave it no_open_fops */
1994 	else
1995 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1996 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1997 				  inode->i_ino);
1998 }
1999 EXPORT_SYMBOL(init_special_inode);
2000 
2001 /**
2002  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2003  * @inode: New inode
2004  * @dir: Directory inode
2005  * @mode: mode of the new inode
2006  */
2007 void inode_init_owner(struct inode *inode, const struct inode *dir,
2008 			umode_t mode)
2009 {
2010 	inode->i_uid = current_fsuid();
2011 	if (dir && dir->i_mode & S_ISGID) {
2012 		inode->i_gid = dir->i_gid;
2013 		if (S_ISDIR(mode))
2014 			mode |= S_ISGID;
2015 	} else
2016 		inode->i_gid = current_fsgid();
2017 	inode->i_mode = mode;
2018 }
2019 EXPORT_SYMBOL(inode_init_owner);
2020 
2021 /**
2022  * inode_owner_or_capable - check current task permissions to inode
2023  * @inode: inode being checked
2024  *
2025  * Return true if current either has CAP_FOWNER in a namespace with the
2026  * inode owner uid mapped, or owns the file.
2027  */
2028 bool inode_owner_or_capable(const struct inode *inode)
2029 {
2030 	struct user_namespace *ns;
2031 
2032 	if (uid_eq(current_fsuid(), inode->i_uid))
2033 		return true;
2034 
2035 	ns = current_user_ns();
2036 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2037 		return true;
2038 	return false;
2039 }
2040 EXPORT_SYMBOL(inode_owner_or_capable);
2041 
2042 /*
2043  * Direct i/o helper functions
2044  */
2045 static void __inode_dio_wait(struct inode *inode)
2046 {
2047 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2048 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2049 
2050 	do {
2051 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2052 		if (atomic_read(&inode->i_dio_count))
2053 			schedule();
2054 	} while (atomic_read(&inode->i_dio_count));
2055 	finish_wait(wq, &q.wq_entry);
2056 }
2057 
2058 /**
2059  * inode_dio_wait - wait for outstanding DIO requests to finish
2060  * @inode: inode to wait for
2061  *
2062  * Waits for all pending direct I/O requests to finish so that we can
2063  * proceed with a truncate or equivalent operation.
2064  *
2065  * Must be called under a lock that serializes taking new references
2066  * to i_dio_count, usually by inode->i_mutex.
2067  */
2068 void inode_dio_wait(struct inode *inode)
2069 {
2070 	if (atomic_read(&inode->i_dio_count))
2071 		__inode_dio_wait(inode);
2072 }
2073 EXPORT_SYMBOL(inode_dio_wait);
2074 
2075 /*
2076  * inode_set_flags - atomically set some inode flags
2077  *
2078  * Note: the caller should be holding i_mutex, or else be sure that
2079  * they have exclusive access to the inode structure (i.e., while the
2080  * inode is being instantiated).  The reason for the cmpxchg() loop
2081  * --- which wouldn't be necessary if all code paths which modify
2082  * i_flags actually followed this rule, is that there is at least one
2083  * code path which doesn't today so we use cmpxchg() out of an abundance
2084  * of caution.
2085  *
2086  * In the long run, i_mutex is overkill, and we should probably look
2087  * at using the i_lock spinlock to protect i_flags, and then make sure
2088  * it is so documented in include/linux/fs.h and that all code follows
2089  * the locking convention!!
2090  */
2091 void inode_set_flags(struct inode *inode, unsigned int flags,
2092 		     unsigned int mask)
2093 {
2094 	unsigned int old_flags, new_flags;
2095 
2096 	WARN_ON_ONCE(flags & ~mask);
2097 	do {
2098 		old_flags = READ_ONCE(inode->i_flags);
2099 		new_flags = (old_flags & ~mask) | flags;
2100 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2101 				  new_flags) != old_flags));
2102 }
2103 EXPORT_SYMBOL(inode_set_flags);
2104 
2105 void inode_nohighmem(struct inode *inode)
2106 {
2107 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2108 }
2109 EXPORT_SYMBOL(inode_nohighmem);
2110 
2111 /**
2112  * current_time - Return FS time
2113  * @inode: inode.
2114  *
2115  * Return the current time truncated to the time granularity supported by
2116  * the fs.
2117  *
2118  * Note that inode and inode->sb cannot be NULL.
2119  * Otherwise, the function warns and returns time without truncation.
2120  */
2121 struct timespec current_time(struct inode *inode)
2122 {
2123 	struct timespec now = current_kernel_time();
2124 
2125 	if (unlikely(!inode->i_sb)) {
2126 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2127 		return now;
2128 	}
2129 
2130 	return timespec_trunc(now, inode->i_sb->s_time_gran);
2131 }
2132 EXPORT_SYMBOL(current_time);
2133