xref: /linux/fs/inode.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode->i_sb->s_inode_list_lock protects:
32  *   inode->i_sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode->i_sb->s_inode_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static long get_nr_inodes(void)
79 {
80 	int i;
81 	long sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline long get_nr_inodes_unused(void)
88 {
89 	int i;
90 	long sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 long get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 	return -ENXIO;
119 }
120 
121 /**
122  * inode_init_always - perform inode structure intialisation
123  * @sb: superblock inode belongs to
124  * @inode: inode to initialise
125  *
126  * These are initializations that need to be done on every inode
127  * allocation as the fields are not initialised by slab allocation.
128  */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 	static const struct inode_operations empty_iops;
132 	static const struct file_operations no_open_fops = {.open = no_open};
133 	struct address_space *const mapping = &inode->i_data;
134 
135 	inode->i_sb = sb;
136 	inode->i_blkbits = sb->s_blocksize_bits;
137 	inode->i_flags = 0;
138 	atomic_set(&inode->i_count, 1);
139 	inode->i_op = &empty_iops;
140 	inode->i_fop = &no_open_fops;
141 	inode->__i_nlink = 1;
142 	inode->i_opflags = 0;
143 	i_uid_write(inode, 0);
144 	i_gid_write(inode, 0);
145 	atomic_set(&inode->i_writecount, 0);
146 	inode->i_size = 0;
147 	inode->i_blocks = 0;
148 	inode->i_bytes = 0;
149 	inode->i_generation = 0;
150 	inode->i_pipe = NULL;
151 	inode->i_bdev = NULL;
152 	inode->i_cdev = NULL;
153 	inode->i_link = NULL;
154 	inode->i_dir_seq = 0;
155 	inode->i_rdev = 0;
156 	inode->dirtied_when = 0;
157 
158 #ifdef CONFIG_CGROUP_WRITEBACK
159 	inode->i_wb_frn_winner = 0;
160 	inode->i_wb_frn_avg_time = 0;
161 	inode->i_wb_frn_history = 0;
162 #endif
163 
164 	if (security_inode_alloc(inode))
165 		goto out;
166 	spin_lock_init(&inode->i_lock);
167 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168 
169 	init_rwsem(&inode->i_rwsem);
170 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
171 
172 	atomic_set(&inode->i_dio_count, 0);
173 
174 	mapping->a_ops = &empty_aops;
175 	mapping->host = inode;
176 	mapping->flags = 0;
177 	atomic_set(&mapping->i_mmap_writable, 0);
178 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
179 	mapping->private_data = NULL;
180 	mapping->writeback_index = 0;
181 	inode->i_private = NULL;
182 	inode->i_mapping = mapping;
183 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
184 #ifdef CONFIG_FS_POSIX_ACL
185 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
186 #endif
187 
188 #ifdef CONFIG_FSNOTIFY
189 	inode->i_fsnotify_mask = 0;
190 #endif
191 	inode->i_flctx = NULL;
192 	this_cpu_inc(nr_inodes);
193 
194 	return 0;
195 out:
196 	return -ENOMEM;
197 }
198 EXPORT_SYMBOL(inode_init_always);
199 
200 static struct inode *alloc_inode(struct super_block *sb)
201 {
202 	struct inode *inode;
203 
204 	if (sb->s_op->alloc_inode)
205 		inode = sb->s_op->alloc_inode(sb);
206 	else
207 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
208 
209 	if (!inode)
210 		return NULL;
211 
212 	if (unlikely(inode_init_always(sb, inode))) {
213 		if (inode->i_sb->s_op->destroy_inode)
214 			inode->i_sb->s_op->destroy_inode(inode);
215 		else
216 			kmem_cache_free(inode_cachep, inode);
217 		return NULL;
218 	}
219 
220 	return inode;
221 }
222 
223 void free_inode_nonrcu(struct inode *inode)
224 {
225 	kmem_cache_free(inode_cachep, inode);
226 }
227 EXPORT_SYMBOL(free_inode_nonrcu);
228 
229 void __destroy_inode(struct inode *inode)
230 {
231 	BUG_ON(inode_has_buffers(inode));
232 	inode_detach_wb(inode);
233 	security_inode_free(inode);
234 	fsnotify_inode_delete(inode);
235 	locks_free_lock_context(inode);
236 	if (!inode->i_nlink) {
237 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 		atomic_long_dec(&inode->i_sb->s_remove_count);
239 	}
240 
241 #ifdef CONFIG_FS_POSIX_ACL
242 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
243 		posix_acl_release(inode->i_acl);
244 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
245 		posix_acl_release(inode->i_default_acl);
246 #endif
247 	this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250 
251 static void i_callback(struct rcu_head *head)
252 {
253 	struct inode *inode = container_of(head, struct inode, i_rcu);
254 	kmem_cache_free(inode_cachep, inode);
255 }
256 
257 static void destroy_inode(struct inode *inode)
258 {
259 	BUG_ON(!list_empty(&inode->i_lru));
260 	__destroy_inode(inode);
261 	if (inode->i_sb->s_op->destroy_inode)
262 		inode->i_sb->s_op->destroy_inode(inode);
263 	else
264 		call_rcu(&inode->i_rcu, i_callback);
265 }
266 
267 /**
268  * drop_nlink - directly drop an inode's link count
269  * @inode: inode
270  *
271  * This is a low-level filesystem helper to replace any
272  * direct filesystem manipulation of i_nlink.  In cases
273  * where we are attempting to track writes to the
274  * filesystem, a decrement to zero means an imminent
275  * write when the file is truncated and actually unlinked
276  * on the filesystem.
277  */
278 void drop_nlink(struct inode *inode)
279 {
280 	WARN_ON(inode->i_nlink == 0);
281 	inode->__i_nlink--;
282 	if (!inode->i_nlink)
283 		atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286 
287 /**
288  * clear_nlink - directly zero an inode's link count
289  * @inode: inode
290  *
291  * This is a low-level filesystem helper to replace any
292  * direct filesystem manipulation of i_nlink.  See
293  * drop_nlink() for why we care about i_nlink hitting zero.
294  */
295 void clear_nlink(struct inode *inode)
296 {
297 	if (inode->i_nlink) {
298 		inode->__i_nlink = 0;
299 		atomic_long_inc(&inode->i_sb->s_remove_count);
300 	}
301 }
302 EXPORT_SYMBOL(clear_nlink);
303 
304 /**
305  * set_nlink - directly set an inode's link count
306  * @inode: inode
307  * @nlink: new nlink (should be non-zero)
308  *
309  * This is a low-level filesystem helper to replace any
310  * direct filesystem manipulation of i_nlink.
311  */
312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 	if (!nlink) {
315 		clear_nlink(inode);
316 	} else {
317 		/* Yes, some filesystems do change nlink from zero to one */
318 		if (inode->i_nlink == 0)
319 			atomic_long_dec(&inode->i_sb->s_remove_count);
320 
321 		inode->__i_nlink = nlink;
322 	}
323 }
324 EXPORT_SYMBOL(set_nlink);
325 
326 /**
327  * inc_nlink - directly increment an inode's link count
328  * @inode: inode
329  *
330  * This is a low-level filesystem helper to replace any
331  * direct filesystem manipulation of i_nlink.  Currently,
332  * it is only here for parity with dec_nlink().
333  */
334 void inc_nlink(struct inode *inode)
335 {
336 	if (unlikely(inode->i_nlink == 0)) {
337 		WARN_ON(!(inode->i_state & I_LINKABLE));
338 		atomic_long_dec(&inode->i_sb->s_remove_count);
339 	}
340 
341 	inode->__i_nlink++;
342 }
343 EXPORT_SYMBOL(inc_nlink);
344 
345 void address_space_init_once(struct address_space *mapping)
346 {
347 	memset(mapping, 0, sizeof(*mapping));
348 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
349 	spin_lock_init(&mapping->tree_lock);
350 	init_rwsem(&mapping->i_mmap_rwsem);
351 	INIT_LIST_HEAD(&mapping->private_list);
352 	spin_lock_init(&mapping->private_lock);
353 	mapping->i_mmap = RB_ROOT;
354 }
355 EXPORT_SYMBOL(address_space_init_once);
356 
357 /*
358  * These are initializations that only need to be done
359  * once, because the fields are idempotent across use
360  * of the inode, so let the slab aware of that.
361  */
362 void inode_init_once(struct inode *inode)
363 {
364 	memset(inode, 0, sizeof(*inode));
365 	INIT_HLIST_NODE(&inode->i_hash);
366 	INIT_LIST_HEAD(&inode->i_devices);
367 	INIT_LIST_HEAD(&inode->i_io_list);
368 	INIT_LIST_HEAD(&inode->i_lru);
369 	address_space_init_once(&inode->i_data);
370 	i_size_ordered_init(inode);
371 #ifdef CONFIG_FSNOTIFY
372 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
373 #endif
374 }
375 EXPORT_SYMBOL(inode_init_once);
376 
377 static void init_once(void *foo)
378 {
379 	struct inode *inode = (struct inode *) foo;
380 
381 	inode_init_once(inode);
382 }
383 
384 /*
385  * inode->i_lock must be held
386  */
387 void __iget(struct inode *inode)
388 {
389 	atomic_inc(&inode->i_count);
390 }
391 
392 /*
393  * get additional reference to inode; caller must already hold one.
394  */
395 void ihold(struct inode *inode)
396 {
397 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
398 }
399 EXPORT_SYMBOL(ihold);
400 
401 static void inode_lru_list_add(struct inode *inode)
402 {
403 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
404 		this_cpu_inc(nr_unused);
405 }
406 
407 /*
408  * Add inode to LRU if needed (inode is unused and clean).
409  *
410  * Needs inode->i_lock held.
411  */
412 void inode_add_lru(struct inode *inode)
413 {
414 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
415 				I_FREEING | I_WILL_FREE)) &&
416 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
417 		inode_lru_list_add(inode);
418 }
419 
420 
421 static void inode_lru_list_del(struct inode *inode)
422 {
423 
424 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
425 		this_cpu_dec(nr_unused);
426 }
427 
428 /**
429  * inode_sb_list_add - add inode to the superblock list of inodes
430  * @inode: inode to add
431  */
432 void inode_sb_list_add(struct inode *inode)
433 {
434 	spin_lock(&inode->i_sb->s_inode_list_lock);
435 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
436 	spin_unlock(&inode->i_sb->s_inode_list_lock);
437 }
438 EXPORT_SYMBOL_GPL(inode_sb_list_add);
439 
440 static inline void inode_sb_list_del(struct inode *inode)
441 {
442 	if (!list_empty(&inode->i_sb_list)) {
443 		spin_lock(&inode->i_sb->s_inode_list_lock);
444 		list_del_init(&inode->i_sb_list);
445 		spin_unlock(&inode->i_sb->s_inode_list_lock);
446 	}
447 }
448 
449 static unsigned long hash(struct super_block *sb, unsigned long hashval)
450 {
451 	unsigned long tmp;
452 
453 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
454 			L1_CACHE_BYTES;
455 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
456 	return tmp & i_hash_mask;
457 }
458 
459 /**
460  *	__insert_inode_hash - hash an inode
461  *	@inode: unhashed inode
462  *	@hashval: unsigned long value used to locate this object in the
463  *		inode_hashtable.
464  *
465  *	Add an inode to the inode hash for this superblock.
466  */
467 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
468 {
469 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
470 
471 	spin_lock(&inode_hash_lock);
472 	spin_lock(&inode->i_lock);
473 	hlist_add_head(&inode->i_hash, b);
474 	spin_unlock(&inode->i_lock);
475 	spin_unlock(&inode_hash_lock);
476 }
477 EXPORT_SYMBOL(__insert_inode_hash);
478 
479 /**
480  *	__remove_inode_hash - remove an inode from the hash
481  *	@inode: inode to unhash
482  *
483  *	Remove an inode from the superblock.
484  */
485 void __remove_inode_hash(struct inode *inode)
486 {
487 	spin_lock(&inode_hash_lock);
488 	spin_lock(&inode->i_lock);
489 	hlist_del_init(&inode->i_hash);
490 	spin_unlock(&inode->i_lock);
491 	spin_unlock(&inode_hash_lock);
492 }
493 EXPORT_SYMBOL(__remove_inode_hash);
494 
495 void clear_inode(struct inode *inode)
496 {
497 	might_sleep();
498 	/*
499 	 * We have to cycle tree_lock here because reclaim can be still in the
500 	 * process of removing the last page (in __delete_from_page_cache())
501 	 * and we must not free mapping under it.
502 	 */
503 	spin_lock_irq(&inode->i_data.tree_lock);
504 	BUG_ON(inode->i_data.nrpages);
505 	BUG_ON(inode->i_data.nrexceptional);
506 	spin_unlock_irq(&inode->i_data.tree_lock);
507 	BUG_ON(!list_empty(&inode->i_data.private_list));
508 	BUG_ON(!(inode->i_state & I_FREEING));
509 	BUG_ON(inode->i_state & I_CLEAR);
510 	/* don't need i_lock here, no concurrent mods to i_state */
511 	inode->i_state = I_FREEING | I_CLEAR;
512 }
513 EXPORT_SYMBOL(clear_inode);
514 
515 /*
516  * Free the inode passed in, removing it from the lists it is still connected
517  * to. We remove any pages still attached to the inode and wait for any IO that
518  * is still in progress before finally destroying the inode.
519  *
520  * An inode must already be marked I_FREEING so that we avoid the inode being
521  * moved back onto lists if we race with other code that manipulates the lists
522  * (e.g. writeback_single_inode). The caller is responsible for setting this.
523  *
524  * An inode must already be removed from the LRU list before being evicted from
525  * the cache. This should occur atomically with setting the I_FREEING state
526  * flag, so no inodes here should ever be on the LRU when being evicted.
527  */
528 static void evict(struct inode *inode)
529 {
530 	const struct super_operations *op = inode->i_sb->s_op;
531 
532 	BUG_ON(!(inode->i_state & I_FREEING));
533 	BUG_ON(!list_empty(&inode->i_lru));
534 
535 	if (!list_empty(&inode->i_io_list))
536 		inode_io_list_del(inode);
537 
538 	inode_sb_list_del(inode);
539 
540 	/*
541 	 * Wait for flusher thread to be done with the inode so that filesystem
542 	 * does not start destroying it while writeback is still running. Since
543 	 * the inode has I_FREEING set, flusher thread won't start new work on
544 	 * the inode.  We just have to wait for running writeback to finish.
545 	 */
546 	inode_wait_for_writeback(inode);
547 
548 	if (op->evict_inode) {
549 		op->evict_inode(inode);
550 	} else {
551 		truncate_inode_pages_final(&inode->i_data);
552 		clear_inode(inode);
553 	}
554 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
555 		bd_forget(inode);
556 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
557 		cd_forget(inode);
558 
559 	remove_inode_hash(inode);
560 
561 	spin_lock(&inode->i_lock);
562 	wake_up_bit(&inode->i_state, __I_NEW);
563 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
564 	spin_unlock(&inode->i_lock);
565 
566 	destroy_inode(inode);
567 }
568 
569 /*
570  * dispose_list - dispose of the contents of a local list
571  * @head: the head of the list to free
572  *
573  * Dispose-list gets a local list with local inodes in it, so it doesn't
574  * need to worry about list corruption and SMP locks.
575  */
576 static void dispose_list(struct list_head *head)
577 {
578 	while (!list_empty(head)) {
579 		struct inode *inode;
580 
581 		inode = list_first_entry(head, struct inode, i_lru);
582 		list_del_init(&inode->i_lru);
583 
584 		evict(inode);
585 		cond_resched();
586 	}
587 }
588 
589 /**
590  * evict_inodes	- evict all evictable inodes for a superblock
591  * @sb:		superblock to operate on
592  *
593  * Make sure that no inodes with zero refcount are retained.  This is
594  * called by superblock shutdown after having MS_ACTIVE flag removed,
595  * so any inode reaching zero refcount during or after that call will
596  * be immediately evicted.
597  */
598 void evict_inodes(struct super_block *sb)
599 {
600 	struct inode *inode, *next;
601 	LIST_HEAD(dispose);
602 
603 again:
604 	spin_lock(&sb->s_inode_list_lock);
605 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
606 		if (atomic_read(&inode->i_count))
607 			continue;
608 
609 		spin_lock(&inode->i_lock);
610 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
611 			spin_unlock(&inode->i_lock);
612 			continue;
613 		}
614 
615 		inode->i_state |= I_FREEING;
616 		inode_lru_list_del(inode);
617 		spin_unlock(&inode->i_lock);
618 		list_add(&inode->i_lru, &dispose);
619 
620 		/*
621 		 * We can have a ton of inodes to evict at unmount time given
622 		 * enough memory, check to see if we need to go to sleep for a
623 		 * bit so we don't livelock.
624 		 */
625 		if (need_resched()) {
626 			spin_unlock(&sb->s_inode_list_lock);
627 			cond_resched();
628 			dispose_list(&dispose);
629 			goto again;
630 		}
631 	}
632 	spin_unlock(&sb->s_inode_list_lock);
633 
634 	dispose_list(&dispose);
635 }
636 
637 /**
638  * invalidate_inodes	- attempt to free all inodes on a superblock
639  * @sb:		superblock to operate on
640  * @kill_dirty: flag to guide handling of dirty inodes
641  *
642  * Attempts to free all inodes for a given superblock.  If there were any
643  * busy inodes return a non-zero value, else zero.
644  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
645  * them as busy.
646  */
647 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
648 {
649 	int busy = 0;
650 	struct inode *inode, *next;
651 	LIST_HEAD(dispose);
652 
653 	spin_lock(&sb->s_inode_list_lock);
654 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
655 		spin_lock(&inode->i_lock);
656 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
657 			spin_unlock(&inode->i_lock);
658 			continue;
659 		}
660 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
661 			spin_unlock(&inode->i_lock);
662 			busy = 1;
663 			continue;
664 		}
665 		if (atomic_read(&inode->i_count)) {
666 			spin_unlock(&inode->i_lock);
667 			busy = 1;
668 			continue;
669 		}
670 
671 		inode->i_state |= I_FREEING;
672 		inode_lru_list_del(inode);
673 		spin_unlock(&inode->i_lock);
674 		list_add(&inode->i_lru, &dispose);
675 	}
676 	spin_unlock(&sb->s_inode_list_lock);
677 
678 	dispose_list(&dispose);
679 
680 	return busy;
681 }
682 
683 /*
684  * Isolate the inode from the LRU in preparation for freeing it.
685  *
686  * Any inodes which are pinned purely because of attached pagecache have their
687  * pagecache removed.  If the inode has metadata buffers attached to
688  * mapping->private_list then try to remove them.
689  *
690  * If the inode has the I_REFERENCED flag set, then it means that it has been
691  * used recently - the flag is set in iput_final(). When we encounter such an
692  * inode, clear the flag and move it to the back of the LRU so it gets another
693  * pass through the LRU before it gets reclaimed. This is necessary because of
694  * the fact we are doing lazy LRU updates to minimise lock contention so the
695  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
696  * with this flag set because they are the inodes that are out of order.
697  */
698 static enum lru_status inode_lru_isolate(struct list_head *item,
699 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
700 {
701 	struct list_head *freeable = arg;
702 	struct inode	*inode = container_of(item, struct inode, i_lru);
703 
704 	/*
705 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
706 	 * If we fail to get the lock, just skip it.
707 	 */
708 	if (!spin_trylock(&inode->i_lock))
709 		return LRU_SKIP;
710 
711 	/*
712 	 * Referenced or dirty inodes are still in use. Give them another pass
713 	 * through the LRU as we canot reclaim them now.
714 	 */
715 	if (atomic_read(&inode->i_count) ||
716 	    (inode->i_state & ~I_REFERENCED)) {
717 		list_lru_isolate(lru, &inode->i_lru);
718 		spin_unlock(&inode->i_lock);
719 		this_cpu_dec(nr_unused);
720 		return LRU_REMOVED;
721 	}
722 
723 	/* recently referenced inodes get one more pass */
724 	if (inode->i_state & I_REFERENCED) {
725 		inode->i_state &= ~I_REFERENCED;
726 		spin_unlock(&inode->i_lock);
727 		return LRU_ROTATE;
728 	}
729 
730 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
731 		__iget(inode);
732 		spin_unlock(&inode->i_lock);
733 		spin_unlock(lru_lock);
734 		if (remove_inode_buffers(inode)) {
735 			unsigned long reap;
736 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
737 			if (current_is_kswapd())
738 				__count_vm_events(KSWAPD_INODESTEAL, reap);
739 			else
740 				__count_vm_events(PGINODESTEAL, reap);
741 			if (current->reclaim_state)
742 				current->reclaim_state->reclaimed_slab += reap;
743 		}
744 		iput(inode);
745 		spin_lock(lru_lock);
746 		return LRU_RETRY;
747 	}
748 
749 	WARN_ON(inode->i_state & I_NEW);
750 	inode->i_state |= I_FREEING;
751 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
752 	spin_unlock(&inode->i_lock);
753 
754 	this_cpu_dec(nr_unused);
755 	return LRU_REMOVED;
756 }
757 
758 /*
759  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
760  * This is called from the superblock shrinker function with a number of inodes
761  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
762  * then are freed outside inode_lock by dispose_list().
763  */
764 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
765 {
766 	LIST_HEAD(freeable);
767 	long freed;
768 
769 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
770 				     inode_lru_isolate, &freeable);
771 	dispose_list(&freeable);
772 	return freed;
773 }
774 
775 static void __wait_on_freeing_inode(struct inode *inode);
776 /*
777  * Called with the inode lock held.
778  */
779 static struct inode *find_inode(struct super_block *sb,
780 				struct hlist_head *head,
781 				int (*test)(struct inode *, void *),
782 				void *data)
783 {
784 	struct inode *inode = NULL;
785 
786 repeat:
787 	hlist_for_each_entry(inode, head, i_hash) {
788 		if (inode->i_sb != sb)
789 			continue;
790 		if (!test(inode, data))
791 			continue;
792 		spin_lock(&inode->i_lock);
793 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
794 			__wait_on_freeing_inode(inode);
795 			goto repeat;
796 		}
797 		__iget(inode);
798 		spin_unlock(&inode->i_lock);
799 		return inode;
800 	}
801 	return NULL;
802 }
803 
804 /*
805  * find_inode_fast is the fast path version of find_inode, see the comment at
806  * iget_locked for details.
807  */
808 static struct inode *find_inode_fast(struct super_block *sb,
809 				struct hlist_head *head, unsigned long ino)
810 {
811 	struct inode *inode = NULL;
812 
813 repeat:
814 	hlist_for_each_entry(inode, head, i_hash) {
815 		if (inode->i_ino != ino)
816 			continue;
817 		if (inode->i_sb != sb)
818 			continue;
819 		spin_lock(&inode->i_lock);
820 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
821 			__wait_on_freeing_inode(inode);
822 			goto repeat;
823 		}
824 		__iget(inode);
825 		spin_unlock(&inode->i_lock);
826 		return inode;
827 	}
828 	return NULL;
829 }
830 
831 /*
832  * Each cpu owns a range of LAST_INO_BATCH numbers.
833  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
834  * to renew the exhausted range.
835  *
836  * This does not significantly increase overflow rate because every CPU can
837  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
838  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
839  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
840  * overflow rate by 2x, which does not seem too significant.
841  *
842  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
843  * error if st_ino won't fit in target struct field. Use 32bit counter
844  * here to attempt to avoid that.
845  */
846 #define LAST_INO_BATCH 1024
847 static DEFINE_PER_CPU(unsigned int, last_ino);
848 
849 unsigned int get_next_ino(void)
850 {
851 	unsigned int *p = &get_cpu_var(last_ino);
852 	unsigned int res = *p;
853 
854 #ifdef CONFIG_SMP
855 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
856 		static atomic_t shared_last_ino;
857 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
858 
859 		res = next - LAST_INO_BATCH;
860 	}
861 #endif
862 
863 	res++;
864 	/* get_next_ino should not provide a 0 inode number */
865 	if (unlikely(!res))
866 		res++;
867 	*p = res;
868 	put_cpu_var(last_ino);
869 	return res;
870 }
871 EXPORT_SYMBOL(get_next_ino);
872 
873 /**
874  *	new_inode_pseudo 	- obtain an inode
875  *	@sb: superblock
876  *
877  *	Allocates a new inode for given superblock.
878  *	Inode wont be chained in superblock s_inodes list
879  *	This means :
880  *	- fs can't be unmount
881  *	- quotas, fsnotify, writeback can't work
882  */
883 struct inode *new_inode_pseudo(struct super_block *sb)
884 {
885 	struct inode *inode = alloc_inode(sb);
886 
887 	if (inode) {
888 		spin_lock(&inode->i_lock);
889 		inode->i_state = 0;
890 		spin_unlock(&inode->i_lock);
891 		INIT_LIST_HEAD(&inode->i_sb_list);
892 	}
893 	return inode;
894 }
895 
896 /**
897  *	new_inode 	- obtain an inode
898  *	@sb: superblock
899  *
900  *	Allocates a new inode for given superblock. The default gfp_mask
901  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
902  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
903  *	for the page cache are not reclaimable or migratable,
904  *	mapping_set_gfp_mask() must be called with suitable flags on the
905  *	newly created inode's mapping
906  *
907  */
908 struct inode *new_inode(struct super_block *sb)
909 {
910 	struct inode *inode;
911 
912 	spin_lock_prefetch(&sb->s_inode_list_lock);
913 
914 	inode = new_inode_pseudo(sb);
915 	if (inode)
916 		inode_sb_list_add(inode);
917 	return inode;
918 }
919 EXPORT_SYMBOL(new_inode);
920 
921 #ifdef CONFIG_DEBUG_LOCK_ALLOC
922 void lockdep_annotate_inode_mutex_key(struct inode *inode)
923 {
924 	if (S_ISDIR(inode->i_mode)) {
925 		struct file_system_type *type = inode->i_sb->s_type;
926 
927 		/* Set new key only if filesystem hasn't already changed it */
928 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
929 			/*
930 			 * ensure nobody is actually holding i_mutex
931 			 */
932 			// mutex_destroy(&inode->i_mutex);
933 			init_rwsem(&inode->i_rwsem);
934 			lockdep_set_class(&inode->i_rwsem,
935 					  &type->i_mutex_dir_key);
936 		}
937 	}
938 }
939 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
940 #endif
941 
942 /**
943  * unlock_new_inode - clear the I_NEW state and wake up any waiters
944  * @inode:	new inode to unlock
945  *
946  * Called when the inode is fully initialised to clear the new state of the
947  * inode and wake up anyone waiting for the inode to finish initialisation.
948  */
949 void unlock_new_inode(struct inode *inode)
950 {
951 	lockdep_annotate_inode_mutex_key(inode);
952 	spin_lock(&inode->i_lock);
953 	WARN_ON(!(inode->i_state & I_NEW));
954 	inode->i_state &= ~I_NEW;
955 	smp_mb();
956 	wake_up_bit(&inode->i_state, __I_NEW);
957 	spin_unlock(&inode->i_lock);
958 }
959 EXPORT_SYMBOL(unlock_new_inode);
960 
961 /**
962  * lock_two_nondirectories - take two i_mutexes on non-directory objects
963  *
964  * Lock any non-NULL argument that is not a directory.
965  * Zero, one or two objects may be locked by this function.
966  *
967  * @inode1: first inode to lock
968  * @inode2: second inode to lock
969  */
970 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
971 {
972 	if (inode1 > inode2)
973 		swap(inode1, inode2);
974 
975 	if (inode1 && !S_ISDIR(inode1->i_mode))
976 		inode_lock(inode1);
977 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
978 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
979 }
980 EXPORT_SYMBOL(lock_two_nondirectories);
981 
982 /**
983  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
984  * @inode1: first inode to unlock
985  * @inode2: second inode to unlock
986  */
987 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
988 {
989 	if (inode1 && !S_ISDIR(inode1->i_mode))
990 		inode_unlock(inode1);
991 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
992 		inode_unlock(inode2);
993 }
994 EXPORT_SYMBOL(unlock_two_nondirectories);
995 
996 /**
997  * iget5_locked - obtain an inode from a mounted file system
998  * @sb:		super block of file system
999  * @hashval:	hash value (usually inode number) to get
1000  * @test:	callback used for comparisons between inodes
1001  * @set:	callback used to initialize a new struct inode
1002  * @data:	opaque data pointer to pass to @test and @set
1003  *
1004  * Search for the inode specified by @hashval and @data in the inode cache,
1005  * and if present it is return it with an increased reference count. This is
1006  * a generalized version of iget_locked() for file systems where the inode
1007  * number is not sufficient for unique identification of an inode.
1008  *
1009  * If the inode is not in cache, allocate a new inode and return it locked,
1010  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1011  * before unlocking it via unlock_new_inode().
1012  *
1013  * Note both @test and @set are called with the inode_hash_lock held, so can't
1014  * sleep.
1015  */
1016 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1017 		int (*test)(struct inode *, void *),
1018 		int (*set)(struct inode *, void *), void *data)
1019 {
1020 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1021 	struct inode *inode;
1022 
1023 	spin_lock(&inode_hash_lock);
1024 	inode = find_inode(sb, head, test, data);
1025 	spin_unlock(&inode_hash_lock);
1026 
1027 	if (inode) {
1028 		wait_on_inode(inode);
1029 		return inode;
1030 	}
1031 
1032 	inode = alloc_inode(sb);
1033 	if (inode) {
1034 		struct inode *old;
1035 
1036 		spin_lock(&inode_hash_lock);
1037 		/* We released the lock, so.. */
1038 		old = find_inode(sb, head, test, data);
1039 		if (!old) {
1040 			if (set(inode, data))
1041 				goto set_failed;
1042 
1043 			spin_lock(&inode->i_lock);
1044 			inode->i_state = I_NEW;
1045 			hlist_add_head(&inode->i_hash, head);
1046 			spin_unlock(&inode->i_lock);
1047 			inode_sb_list_add(inode);
1048 			spin_unlock(&inode_hash_lock);
1049 
1050 			/* Return the locked inode with I_NEW set, the
1051 			 * caller is responsible for filling in the contents
1052 			 */
1053 			return inode;
1054 		}
1055 
1056 		/*
1057 		 * Uhhuh, somebody else created the same inode under
1058 		 * us. Use the old inode instead of the one we just
1059 		 * allocated.
1060 		 */
1061 		spin_unlock(&inode_hash_lock);
1062 		destroy_inode(inode);
1063 		inode = old;
1064 		wait_on_inode(inode);
1065 	}
1066 	return inode;
1067 
1068 set_failed:
1069 	spin_unlock(&inode_hash_lock);
1070 	destroy_inode(inode);
1071 	return NULL;
1072 }
1073 EXPORT_SYMBOL(iget5_locked);
1074 
1075 /**
1076  * iget_locked - obtain an inode from a mounted file system
1077  * @sb:		super block of file system
1078  * @ino:	inode number to get
1079  *
1080  * Search for the inode specified by @ino in the inode cache and if present
1081  * return it with an increased reference count. This is for file systems
1082  * where the inode number is sufficient for unique identification of an inode.
1083  *
1084  * If the inode is not in cache, allocate a new inode and return it locked,
1085  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1086  * before unlocking it via unlock_new_inode().
1087  */
1088 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1089 {
1090 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1091 	struct inode *inode;
1092 
1093 	spin_lock(&inode_hash_lock);
1094 	inode = find_inode_fast(sb, head, ino);
1095 	spin_unlock(&inode_hash_lock);
1096 	if (inode) {
1097 		wait_on_inode(inode);
1098 		return inode;
1099 	}
1100 
1101 	inode = alloc_inode(sb);
1102 	if (inode) {
1103 		struct inode *old;
1104 
1105 		spin_lock(&inode_hash_lock);
1106 		/* We released the lock, so.. */
1107 		old = find_inode_fast(sb, head, ino);
1108 		if (!old) {
1109 			inode->i_ino = ino;
1110 			spin_lock(&inode->i_lock);
1111 			inode->i_state = I_NEW;
1112 			hlist_add_head(&inode->i_hash, head);
1113 			spin_unlock(&inode->i_lock);
1114 			inode_sb_list_add(inode);
1115 			spin_unlock(&inode_hash_lock);
1116 
1117 			/* Return the locked inode with I_NEW set, the
1118 			 * caller is responsible for filling in the contents
1119 			 */
1120 			return inode;
1121 		}
1122 
1123 		/*
1124 		 * Uhhuh, somebody else created the same inode under
1125 		 * us. Use the old inode instead of the one we just
1126 		 * allocated.
1127 		 */
1128 		spin_unlock(&inode_hash_lock);
1129 		destroy_inode(inode);
1130 		inode = old;
1131 		wait_on_inode(inode);
1132 	}
1133 	return inode;
1134 }
1135 EXPORT_SYMBOL(iget_locked);
1136 
1137 /*
1138  * search the inode cache for a matching inode number.
1139  * If we find one, then the inode number we are trying to
1140  * allocate is not unique and so we should not use it.
1141  *
1142  * Returns 1 if the inode number is unique, 0 if it is not.
1143  */
1144 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1145 {
1146 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1147 	struct inode *inode;
1148 
1149 	spin_lock(&inode_hash_lock);
1150 	hlist_for_each_entry(inode, b, i_hash) {
1151 		if (inode->i_ino == ino && inode->i_sb == sb) {
1152 			spin_unlock(&inode_hash_lock);
1153 			return 0;
1154 		}
1155 	}
1156 	spin_unlock(&inode_hash_lock);
1157 
1158 	return 1;
1159 }
1160 
1161 /**
1162  *	iunique - get a unique inode number
1163  *	@sb: superblock
1164  *	@max_reserved: highest reserved inode number
1165  *
1166  *	Obtain an inode number that is unique on the system for a given
1167  *	superblock. This is used by file systems that have no natural
1168  *	permanent inode numbering system. An inode number is returned that
1169  *	is higher than the reserved limit but unique.
1170  *
1171  *	BUGS:
1172  *	With a large number of inodes live on the file system this function
1173  *	currently becomes quite slow.
1174  */
1175 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1176 {
1177 	/*
1178 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1179 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1180 	 * here to attempt to avoid that.
1181 	 */
1182 	static DEFINE_SPINLOCK(iunique_lock);
1183 	static unsigned int counter;
1184 	ino_t res;
1185 
1186 	spin_lock(&iunique_lock);
1187 	do {
1188 		if (counter <= max_reserved)
1189 			counter = max_reserved + 1;
1190 		res = counter++;
1191 	} while (!test_inode_iunique(sb, res));
1192 	spin_unlock(&iunique_lock);
1193 
1194 	return res;
1195 }
1196 EXPORT_SYMBOL(iunique);
1197 
1198 struct inode *igrab(struct inode *inode)
1199 {
1200 	spin_lock(&inode->i_lock);
1201 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1202 		__iget(inode);
1203 		spin_unlock(&inode->i_lock);
1204 	} else {
1205 		spin_unlock(&inode->i_lock);
1206 		/*
1207 		 * Handle the case where s_op->clear_inode is not been
1208 		 * called yet, and somebody is calling igrab
1209 		 * while the inode is getting freed.
1210 		 */
1211 		inode = NULL;
1212 	}
1213 	return inode;
1214 }
1215 EXPORT_SYMBOL(igrab);
1216 
1217 /**
1218  * ilookup5_nowait - search for an inode in the inode cache
1219  * @sb:		super block of file system to search
1220  * @hashval:	hash value (usually inode number) to search for
1221  * @test:	callback used for comparisons between inodes
1222  * @data:	opaque data pointer to pass to @test
1223  *
1224  * Search for the inode specified by @hashval and @data in the inode cache.
1225  * If the inode is in the cache, the inode is returned with an incremented
1226  * reference count.
1227  *
1228  * Note: I_NEW is not waited upon so you have to be very careful what you do
1229  * with the returned inode.  You probably should be using ilookup5() instead.
1230  *
1231  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1232  */
1233 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1234 		int (*test)(struct inode *, void *), void *data)
1235 {
1236 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1237 	struct inode *inode;
1238 
1239 	spin_lock(&inode_hash_lock);
1240 	inode = find_inode(sb, head, test, data);
1241 	spin_unlock(&inode_hash_lock);
1242 
1243 	return inode;
1244 }
1245 EXPORT_SYMBOL(ilookup5_nowait);
1246 
1247 /**
1248  * ilookup5 - search for an inode in the inode cache
1249  * @sb:		super block of file system to search
1250  * @hashval:	hash value (usually inode number) to search for
1251  * @test:	callback used for comparisons between inodes
1252  * @data:	opaque data pointer to pass to @test
1253  *
1254  * Search for the inode specified by @hashval and @data in the inode cache,
1255  * and if the inode is in the cache, return the inode with an incremented
1256  * reference count.  Waits on I_NEW before returning the inode.
1257  * returned with an incremented reference count.
1258  *
1259  * This is a generalized version of ilookup() for file systems where the
1260  * inode number is not sufficient for unique identification of an inode.
1261  *
1262  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1263  */
1264 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1265 		int (*test)(struct inode *, void *), void *data)
1266 {
1267 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1268 
1269 	if (inode)
1270 		wait_on_inode(inode);
1271 	return inode;
1272 }
1273 EXPORT_SYMBOL(ilookup5);
1274 
1275 /**
1276  * ilookup - search for an inode in the inode cache
1277  * @sb:		super block of file system to search
1278  * @ino:	inode number to search for
1279  *
1280  * Search for the inode @ino in the inode cache, and if the inode is in the
1281  * cache, the inode is returned with an incremented reference count.
1282  */
1283 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1284 {
1285 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1286 	struct inode *inode;
1287 
1288 	spin_lock(&inode_hash_lock);
1289 	inode = find_inode_fast(sb, head, ino);
1290 	spin_unlock(&inode_hash_lock);
1291 
1292 	if (inode)
1293 		wait_on_inode(inode);
1294 	return inode;
1295 }
1296 EXPORT_SYMBOL(ilookup);
1297 
1298 /**
1299  * find_inode_nowait - find an inode in the inode cache
1300  * @sb:		super block of file system to search
1301  * @hashval:	hash value (usually inode number) to search for
1302  * @match:	callback used for comparisons between inodes
1303  * @data:	opaque data pointer to pass to @match
1304  *
1305  * Search for the inode specified by @hashval and @data in the inode
1306  * cache, where the helper function @match will return 0 if the inode
1307  * does not match, 1 if the inode does match, and -1 if the search
1308  * should be stopped.  The @match function must be responsible for
1309  * taking the i_lock spin_lock and checking i_state for an inode being
1310  * freed or being initialized, and incrementing the reference count
1311  * before returning 1.  It also must not sleep, since it is called with
1312  * the inode_hash_lock spinlock held.
1313  *
1314  * This is a even more generalized version of ilookup5() when the
1315  * function must never block --- find_inode() can block in
1316  * __wait_on_freeing_inode() --- or when the caller can not increment
1317  * the reference count because the resulting iput() might cause an
1318  * inode eviction.  The tradeoff is that the @match funtion must be
1319  * very carefully implemented.
1320  */
1321 struct inode *find_inode_nowait(struct super_block *sb,
1322 				unsigned long hashval,
1323 				int (*match)(struct inode *, unsigned long,
1324 					     void *),
1325 				void *data)
1326 {
1327 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1328 	struct inode *inode, *ret_inode = NULL;
1329 	int mval;
1330 
1331 	spin_lock(&inode_hash_lock);
1332 	hlist_for_each_entry(inode, head, i_hash) {
1333 		if (inode->i_sb != sb)
1334 			continue;
1335 		mval = match(inode, hashval, data);
1336 		if (mval == 0)
1337 			continue;
1338 		if (mval == 1)
1339 			ret_inode = inode;
1340 		goto out;
1341 	}
1342 out:
1343 	spin_unlock(&inode_hash_lock);
1344 	return ret_inode;
1345 }
1346 EXPORT_SYMBOL(find_inode_nowait);
1347 
1348 int insert_inode_locked(struct inode *inode)
1349 {
1350 	struct super_block *sb = inode->i_sb;
1351 	ino_t ino = inode->i_ino;
1352 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1353 
1354 	while (1) {
1355 		struct inode *old = NULL;
1356 		spin_lock(&inode_hash_lock);
1357 		hlist_for_each_entry(old, head, i_hash) {
1358 			if (old->i_ino != ino)
1359 				continue;
1360 			if (old->i_sb != sb)
1361 				continue;
1362 			spin_lock(&old->i_lock);
1363 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1364 				spin_unlock(&old->i_lock);
1365 				continue;
1366 			}
1367 			break;
1368 		}
1369 		if (likely(!old)) {
1370 			spin_lock(&inode->i_lock);
1371 			inode->i_state |= I_NEW;
1372 			hlist_add_head(&inode->i_hash, head);
1373 			spin_unlock(&inode->i_lock);
1374 			spin_unlock(&inode_hash_lock);
1375 			return 0;
1376 		}
1377 		__iget(old);
1378 		spin_unlock(&old->i_lock);
1379 		spin_unlock(&inode_hash_lock);
1380 		wait_on_inode(old);
1381 		if (unlikely(!inode_unhashed(old))) {
1382 			iput(old);
1383 			return -EBUSY;
1384 		}
1385 		iput(old);
1386 	}
1387 }
1388 EXPORT_SYMBOL(insert_inode_locked);
1389 
1390 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1391 		int (*test)(struct inode *, void *), void *data)
1392 {
1393 	struct super_block *sb = inode->i_sb;
1394 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1395 
1396 	while (1) {
1397 		struct inode *old = NULL;
1398 
1399 		spin_lock(&inode_hash_lock);
1400 		hlist_for_each_entry(old, head, i_hash) {
1401 			if (old->i_sb != sb)
1402 				continue;
1403 			if (!test(old, data))
1404 				continue;
1405 			spin_lock(&old->i_lock);
1406 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1407 				spin_unlock(&old->i_lock);
1408 				continue;
1409 			}
1410 			break;
1411 		}
1412 		if (likely(!old)) {
1413 			spin_lock(&inode->i_lock);
1414 			inode->i_state |= I_NEW;
1415 			hlist_add_head(&inode->i_hash, head);
1416 			spin_unlock(&inode->i_lock);
1417 			spin_unlock(&inode_hash_lock);
1418 			return 0;
1419 		}
1420 		__iget(old);
1421 		spin_unlock(&old->i_lock);
1422 		spin_unlock(&inode_hash_lock);
1423 		wait_on_inode(old);
1424 		if (unlikely(!inode_unhashed(old))) {
1425 			iput(old);
1426 			return -EBUSY;
1427 		}
1428 		iput(old);
1429 	}
1430 }
1431 EXPORT_SYMBOL(insert_inode_locked4);
1432 
1433 
1434 int generic_delete_inode(struct inode *inode)
1435 {
1436 	return 1;
1437 }
1438 EXPORT_SYMBOL(generic_delete_inode);
1439 
1440 /*
1441  * Called when we're dropping the last reference
1442  * to an inode.
1443  *
1444  * Call the FS "drop_inode()" function, defaulting to
1445  * the legacy UNIX filesystem behaviour.  If it tells
1446  * us to evict inode, do so.  Otherwise, retain inode
1447  * in cache if fs is alive, sync and evict if fs is
1448  * shutting down.
1449  */
1450 static void iput_final(struct inode *inode)
1451 {
1452 	struct super_block *sb = inode->i_sb;
1453 	const struct super_operations *op = inode->i_sb->s_op;
1454 	int drop;
1455 
1456 	WARN_ON(inode->i_state & I_NEW);
1457 
1458 	if (op->drop_inode)
1459 		drop = op->drop_inode(inode);
1460 	else
1461 		drop = generic_drop_inode(inode);
1462 
1463 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1464 		inode->i_state |= I_REFERENCED;
1465 		inode_add_lru(inode);
1466 		spin_unlock(&inode->i_lock);
1467 		return;
1468 	}
1469 
1470 	if (!drop) {
1471 		inode->i_state |= I_WILL_FREE;
1472 		spin_unlock(&inode->i_lock);
1473 		write_inode_now(inode, 1);
1474 		spin_lock(&inode->i_lock);
1475 		WARN_ON(inode->i_state & I_NEW);
1476 		inode->i_state &= ~I_WILL_FREE;
1477 	}
1478 
1479 	inode->i_state |= I_FREEING;
1480 	if (!list_empty(&inode->i_lru))
1481 		inode_lru_list_del(inode);
1482 	spin_unlock(&inode->i_lock);
1483 
1484 	evict(inode);
1485 }
1486 
1487 /**
1488  *	iput	- put an inode
1489  *	@inode: inode to put
1490  *
1491  *	Puts an inode, dropping its usage count. If the inode use count hits
1492  *	zero, the inode is then freed and may also be destroyed.
1493  *
1494  *	Consequently, iput() can sleep.
1495  */
1496 void iput(struct inode *inode)
1497 {
1498 	if (!inode)
1499 		return;
1500 	BUG_ON(inode->i_state & I_CLEAR);
1501 retry:
1502 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1503 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1504 			atomic_inc(&inode->i_count);
1505 			inode->i_state &= ~I_DIRTY_TIME;
1506 			spin_unlock(&inode->i_lock);
1507 			trace_writeback_lazytime_iput(inode);
1508 			mark_inode_dirty_sync(inode);
1509 			goto retry;
1510 		}
1511 		iput_final(inode);
1512 	}
1513 }
1514 EXPORT_SYMBOL(iput);
1515 
1516 /**
1517  *	bmap	- find a block number in a file
1518  *	@inode: inode of file
1519  *	@block: block to find
1520  *
1521  *	Returns the block number on the device holding the inode that
1522  *	is the disk block number for the block of the file requested.
1523  *	That is, asked for block 4 of inode 1 the function will return the
1524  *	disk block relative to the disk start that holds that block of the
1525  *	file.
1526  */
1527 sector_t bmap(struct inode *inode, sector_t block)
1528 {
1529 	sector_t res = 0;
1530 	if (inode->i_mapping->a_ops->bmap)
1531 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1532 	return res;
1533 }
1534 EXPORT_SYMBOL(bmap);
1535 
1536 /*
1537  * With relative atime, only update atime if the previous atime is
1538  * earlier than either the ctime or mtime or if at least a day has
1539  * passed since the last atime update.
1540  */
1541 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1542 			     struct timespec now)
1543 {
1544 
1545 	if (!(mnt->mnt_flags & MNT_RELATIME))
1546 		return 1;
1547 	/*
1548 	 * Is mtime younger than atime? If yes, update atime:
1549 	 */
1550 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1551 		return 1;
1552 	/*
1553 	 * Is ctime younger than atime? If yes, update atime:
1554 	 */
1555 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1556 		return 1;
1557 
1558 	/*
1559 	 * Is the previous atime value older than a day? If yes,
1560 	 * update atime:
1561 	 */
1562 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1563 		return 1;
1564 	/*
1565 	 * Good, we can skip the atime update:
1566 	 */
1567 	return 0;
1568 }
1569 
1570 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1571 {
1572 	int iflags = I_DIRTY_TIME;
1573 
1574 	if (flags & S_ATIME)
1575 		inode->i_atime = *time;
1576 	if (flags & S_VERSION)
1577 		inode_inc_iversion(inode);
1578 	if (flags & S_CTIME)
1579 		inode->i_ctime = *time;
1580 	if (flags & S_MTIME)
1581 		inode->i_mtime = *time;
1582 
1583 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1584 		iflags |= I_DIRTY_SYNC;
1585 	__mark_inode_dirty(inode, iflags);
1586 	return 0;
1587 }
1588 EXPORT_SYMBOL(generic_update_time);
1589 
1590 /*
1591  * This does the actual work of updating an inodes time or version.  Must have
1592  * had called mnt_want_write() before calling this.
1593  */
1594 static int update_time(struct inode *inode, struct timespec *time, int flags)
1595 {
1596 	int (*update_time)(struct inode *, struct timespec *, int);
1597 
1598 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1599 		generic_update_time;
1600 
1601 	return update_time(inode, time, flags);
1602 }
1603 
1604 /**
1605  *	touch_atime	-	update the access time
1606  *	@path: the &struct path to update
1607  *	@inode: inode to update
1608  *
1609  *	Update the accessed time on an inode and mark it for writeback.
1610  *	This function automatically handles read only file systems and media,
1611  *	as well as the "noatime" flag and inode specific "noatime" markers.
1612  */
1613 bool atime_needs_update(const struct path *path, struct inode *inode)
1614 {
1615 	struct vfsmount *mnt = path->mnt;
1616 	struct timespec now;
1617 
1618 	if (inode->i_flags & S_NOATIME)
1619 		return false;
1620 	if (IS_NOATIME(inode))
1621 		return false;
1622 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1623 		return false;
1624 
1625 	if (mnt->mnt_flags & MNT_NOATIME)
1626 		return false;
1627 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1628 		return false;
1629 
1630 	now = current_fs_time(inode->i_sb);
1631 
1632 	if (!relatime_need_update(mnt, inode, now))
1633 		return false;
1634 
1635 	if (timespec_equal(&inode->i_atime, &now))
1636 		return false;
1637 
1638 	return true;
1639 }
1640 
1641 void touch_atime(const struct path *path)
1642 {
1643 	struct vfsmount *mnt = path->mnt;
1644 	struct inode *inode = d_inode(path->dentry);
1645 	struct timespec now;
1646 
1647 	if (!atime_needs_update(path, inode))
1648 		return;
1649 
1650 	if (!sb_start_write_trylock(inode->i_sb))
1651 		return;
1652 
1653 	if (__mnt_want_write(mnt) != 0)
1654 		goto skip_update;
1655 	/*
1656 	 * File systems can error out when updating inodes if they need to
1657 	 * allocate new space to modify an inode (such is the case for
1658 	 * Btrfs), but since we touch atime while walking down the path we
1659 	 * really don't care if we failed to update the atime of the file,
1660 	 * so just ignore the return value.
1661 	 * We may also fail on filesystems that have the ability to make parts
1662 	 * of the fs read only, e.g. subvolumes in Btrfs.
1663 	 */
1664 	now = current_fs_time(inode->i_sb);
1665 	update_time(inode, &now, S_ATIME);
1666 	__mnt_drop_write(mnt);
1667 skip_update:
1668 	sb_end_write(inode->i_sb);
1669 }
1670 EXPORT_SYMBOL(touch_atime);
1671 
1672 /*
1673  * The logic we want is
1674  *
1675  *	if suid or (sgid and xgrp)
1676  *		remove privs
1677  */
1678 int should_remove_suid(struct dentry *dentry)
1679 {
1680 	umode_t mode = d_inode(dentry)->i_mode;
1681 	int kill = 0;
1682 
1683 	/* suid always must be killed */
1684 	if (unlikely(mode & S_ISUID))
1685 		kill = ATTR_KILL_SUID;
1686 
1687 	/*
1688 	 * sgid without any exec bits is just a mandatory locking mark; leave
1689 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1690 	 */
1691 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1692 		kill |= ATTR_KILL_SGID;
1693 
1694 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1695 		return kill;
1696 
1697 	return 0;
1698 }
1699 EXPORT_SYMBOL(should_remove_suid);
1700 
1701 /*
1702  * Return mask of changes for notify_change() that need to be done as a
1703  * response to write or truncate. Return 0 if nothing has to be changed.
1704  * Negative value on error (change should be denied).
1705  */
1706 int dentry_needs_remove_privs(struct dentry *dentry)
1707 {
1708 	struct inode *inode = d_inode(dentry);
1709 	int mask = 0;
1710 	int ret;
1711 
1712 	if (IS_NOSEC(inode))
1713 		return 0;
1714 
1715 	mask = should_remove_suid(dentry);
1716 	ret = security_inode_need_killpriv(dentry);
1717 	if (ret < 0)
1718 		return ret;
1719 	if (ret)
1720 		mask |= ATTR_KILL_PRIV;
1721 	return mask;
1722 }
1723 EXPORT_SYMBOL(dentry_needs_remove_privs);
1724 
1725 static int __remove_privs(struct dentry *dentry, int kill)
1726 {
1727 	struct iattr newattrs;
1728 
1729 	newattrs.ia_valid = ATTR_FORCE | kill;
1730 	/*
1731 	 * Note we call this on write, so notify_change will not
1732 	 * encounter any conflicting delegations:
1733 	 */
1734 	return notify_change(dentry, &newattrs, NULL);
1735 }
1736 
1737 /*
1738  * Remove special file priviledges (suid, capabilities) when file is written
1739  * to or truncated.
1740  */
1741 int file_remove_privs(struct file *file)
1742 {
1743 	struct dentry *dentry = file->f_path.dentry;
1744 	struct inode *inode = d_inode(dentry);
1745 	int kill;
1746 	int error = 0;
1747 
1748 	/* Fast path for nothing security related */
1749 	if (IS_NOSEC(inode))
1750 		return 0;
1751 
1752 	kill = file_needs_remove_privs(file);
1753 	if (kill < 0)
1754 		return kill;
1755 	if (kill)
1756 		error = __remove_privs(dentry, kill);
1757 	if (!error)
1758 		inode_has_no_xattr(inode);
1759 
1760 	return error;
1761 }
1762 EXPORT_SYMBOL(file_remove_privs);
1763 
1764 /**
1765  *	file_update_time	-	update mtime and ctime time
1766  *	@file: file accessed
1767  *
1768  *	Update the mtime and ctime members of an inode and mark the inode
1769  *	for writeback.  Note that this function is meant exclusively for
1770  *	usage in the file write path of filesystems, and filesystems may
1771  *	choose to explicitly ignore update via this function with the
1772  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1773  *	timestamps are handled by the server.  This can return an error for
1774  *	file systems who need to allocate space in order to update an inode.
1775  */
1776 
1777 int file_update_time(struct file *file)
1778 {
1779 	struct inode *inode = file_inode(file);
1780 	struct timespec now;
1781 	int sync_it = 0;
1782 	int ret;
1783 
1784 	/* First try to exhaust all avenues to not sync */
1785 	if (IS_NOCMTIME(inode))
1786 		return 0;
1787 
1788 	now = current_fs_time(inode->i_sb);
1789 	if (!timespec_equal(&inode->i_mtime, &now))
1790 		sync_it = S_MTIME;
1791 
1792 	if (!timespec_equal(&inode->i_ctime, &now))
1793 		sync_it |= S_CTIME;
1794 
1795 	if (IS_I_VERSION(inode))
1796 		sync_it |= S_VERSION;
1797 
1798 	if (!sync_it)
1799 		return 0;
1800 
1801 	/* Finally allowed to write? Takes lock. */
1802 	if (__mnt_want_write_file(file))
1803 		return 0;
1804 
1805 	ret = update_time(inode, &now, sync_it);
1806 	__mnt_drop_write_file(file);
1807 
1808 	return ret;
1809 }
1810 EXPORT_SYMBOL(file_update_time);
1811 
1812 int inode_needs_sync(struct inode *inode)
1813 {
1814 	if (IS_SYNC(inode))
1815 		return 1;
1816 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1817 		return 1;
1818 	return 0;
1819 }
1820 EXPORT_SYMBOL(inode_needs_sync);
1821 
1822 /*
1823  * If we try to find an inode in the inode hash while it is being
1824  * deleted, we have to wait until the filesystem completes its
1825  * deletion before reporting that it isn't found.  This function waits
1826  * until the deletion _might_ have completed.  Callers are responsible
1827  * to recheck inode state.
1828  *
1829  * It doesn't matter if I_NEW is not set initially, a call to
1830  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1831  * will DTRT.
1832  */
1833 static void __wait_on_freeing_inode(struct inode *inode)
1834 {
1835 	wait_queue_head_t *wq;
1836 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1837 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1838 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1839 	spin_unlock(&inode->i_lock);
1840 	spin_unlock(&inode_hash_lock);
1841 	schedule();
1842 	finish_wait(wq, &wait.wait);
1843 	spin_lock(&inode_hash_lock);
1844 }
1845 
1846 static __initdata unsigned long ihash_entries;
1847 static int __init set_ihash_entries(char *str)
1848 {
1849 	if (!str)
1850 		return 0;
1851 	ihash_entries = simple_strtoul(str, &str, 0);
1852 	return 1;
1853 }
1854 __setup("ihash_entries=", set_ihash_entries);
1855 
1856 /*
1857  * Initialize the waitqueues and inode hash table.
1858  */
1859 void __init inode_init_early(void)
1860 {
1861 	unsigned int loop;
1862 
1863 	/* If hashes are distributed across NUMA nodes, defer
1864 	 * hash allocation until vmalloc space is available.
1865 	 */
1866 	if (hashdist)
1867 		return;
1868 
1869 	inode_hashtable =
1870 		alloc_large_system_hash("Inode-cache",
1871 					sizeof(struct hlist_head),
1872 					ihash_entries,
1873 					14,
1874 					HASH_EARLY,
1875 					&i_hash_shift,
1876 					&i_hash_mask,
1877 					0,
1878 					0);
1879 
1880 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1881 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1882 }
1883 
1884 void __init inode_init(void)
1885 {
1886 	unsigned int loop;
1887 
1888 	/* inode slab cache */
1889 	inode_cachep = kmem_cache_create("inode_cache",
1890 					 sizeof(struct inode),
1891 					 0,
1892 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1893 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1894 					 init_once);
1895 
1896 	/* Hash may have been set up in inode_init_early */
1897 	if (!hashdist)
1898 		return;
1899 
1900 	inode_hashtable =
1901 		alloc_large_system_hash("Inode-cache",
1902 					sizeof(struct hlist_head),
1903 					ihash_entries,
1904 					14,
1905 					0,
1906 					&i_hash_shift,
1907 					&i_hash_mask,
1908 					0,
1909 					0);
1910 
1911 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1912 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1913 }
1914 
1915 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1916 {
1917 	inode->i_mode = mode;
1918 	if (S_ISCHR(mode)) {
1919 		inode->i_fop = &def_chr_fops;
1920 		inode->i_rdev = rdev;
1921 	} else if (S_ISBLK(mode)) {
1922 		inode->i_fop = &def_blk_fops;
1923 		inode->i_rdev = rdev;
1924 	} else if (S_ISFIFO(mode))
1925 		inode->i_fop = &pipefifo_fops;
1926 	else if (S_ISSOCK(mode))
1927 		;	/* leave it no_open_fops */
1928 	else
1929 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1930 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1931 				  inode->i_ino);
1932 }
1933 EXPORT_SYMBOL(init_special_inode);
1934 
1935 /**
1936  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1937  * @inode: New inode
1938  * @dir: Directory inode
1939  * @mode: mode of the new inode
1940  */
1941 void inode_init_owner(struct inode *inode, const struct inode *dir,
1942 			umode_t mode)
1943 {
1944 	inode->i_uid = current_fsuid();
1945 	if (dir && dir->i_mode & S_ISGID) {
1946 		inode->i_gid = dir->i_gid;
1947 		if (S_ISDIR(mode))
1948 			mode |= S_ISGID;
1949 	} else
1950 		inode->i_gid = current_fsgid();
1951 	inode->i_mode = mode;
1952 }
1953 EXPORT_SYMBOL(inode_init_owner);
1954 
1955 /**
1956  * inode_owner_or_capable - check current task permissions to inode
1957  * @inode: inode being checked
1958  *
1959  * Return true if current either has CAP_FOWNER in a namespace with the
1960  * inode owner uid mapped, or owns the file.
1961  */
1962 bool inode_owner_or_capable(const struct inode *inode)
1963 {
1964 	struct user_namespace *ns;
1965 
1966 	if (uid_eq(current_fsuid(), inode->i_uid))
1967 		return true;
1968 
1969 	ns = current_user_ns();
1970 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1971 		return true;
1972 	return false;
1973 }
1974 EXPORT_SYMBOL(inode_owner_or_capable);
1975 
1976 /*
1977  * Direct i/o helper functions
1978  */
1979 static void __inode_dio_wait(struct inode *inode)
1980 {
1981 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1982 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1983 
1984 	do {
1985 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1986 		if (atomic_read(&inode->i_dio_count))
1987 			schedule();
1988 	} while (atomic_read(&inode->i_dio_count));
1989 	finish_wait(wq, &q.wait);
1990 }
1991 
1992 /**
1993  * inode_dio_wait - wait for outstanding DIO requests to finish
1994  * @inode: inode to wait for
1995  *
1996  * Waits for all pending direct I/O requests to finish so that we can
1997  * proceed with a truncate or equivalent operation.
1998  *
1999  * Must be called under a lock that serializes taking new references
2000  * to i_dio_count, usually by inode->i_mutex.
2001  */
2002 void inode_dio_wait(struct inode *inode)
2003 {
2004 	if (atomic_read(&inode->i_dio_count))
2005 		__inode_dio_wait(inode);
2006 }
2007 EXPORT_SYMBOL(inode_dio_wait);
2008 
2009 /*
2010  * inode_set_flags - atomically set some inode flags
2011  *
2012  * Note: the caller should be holding i_mutex, or else be sure that
2013  * they have exclusive access to the inode structure (i.e., while the
2014  * inode is being instantiated).  The reason for the cmpxchg() loop
2015  * --- which wouldn't be necessary if all code paths which modify
2016  * i_flags actually followed this rule, is that there is at least one
2017  * code path which doesn't today so we use cmpxchg() out of an abundance
2018  * of caution.
2019  *
2020  * In the long run, i_mutex is overkill, and we should probably look
2021  * at using the i_lock spinlock to protect i_flags, and then make sure
2022  * it is so documented in include/linux/fs.h and that all code follows
2023  * the locking convention!!
2024  */
2025 void inode_set_flags(struct inode *inode, unsigned int flags,
2026 		     unsigned int mask)
2027 {
2028 	unsigned int old_flags, new_flags;
2029 
2030 	WARN_ON_ONCE(flags & ~mask);
2031 	do {
2032 		old_flags = ACCESS_ONCE(inode->i_flags);
2033 		new_flags = (old_flags & ~mask) | flags;
2034 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2035 				  new_flags) != old_flags));
2036 }
2037 EXPORT_SYMBOL(inode_set_flags);
2038 
2039 void inode_nohighmem(struct inode *inode)
2040 {
2041 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2042 }
2043 EXPORT_SYMBOL(inode_nohighmem);
2044