1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <linux/rw_hint.h> 24 #include <linux/seq_file.h> 25 #include <linux/debugfs.h> 26 #include <trace/events/writeback.h> 27 #define CREATE_TRACE_POINTS 28 #include <trace/events/timestamp.h> 29 30 #include "internal.h" 31 32 /* 33 * Inode locking rules: 34 * 35 * inode->i_lock protects: 36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 37 * Inode LRU list locks protect: 38 * inode->i_sb->s_inode_lru, inode->i_lru 39 * inode->i_sb->s_inode_list_lock protects: 40 * inode->i_sb->s_inodes, inode->i_sb_list 41 * bdi->wb.list_lock protects: 42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 43 * inode_hash_lock protects: 44 * inode_hashtable, inode->i_hash 45 * 46 * Lock ordering: 47 * 48 * inode->i_sb->s_inode_list_lock 49 * inode->i_lock 50 * Inode LRU list locks 51 * 52 * bdi->wb.list_lock 53 * inode->i_lock 54 * 55 * inode_hash_lock 56 * inode->i_sb->s_inode_list_lock 57 * inode->i_lock 58 * 59 * iunique_lock 60 * inode_hash_lock 61 */ 62 63 static unsigned int i_hash_mask __ro_after_init; 64 static unsigned int i_hash_shift __ro_after_init; 65 static struct hlist_head *inode_hashtable __ro_after_init; 66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 67 68 /* 69 * Empty aops. Can be used for the cases where the user does not 70 * define any of the address_space operations. 71 */ 72 const struct address_space_operations empty_aops = { 73 }; 74 EXPORT_SYMBOL(empty_aops); 75 76 static DEFINE_PER_CPU(unsigned long, nr_inodes); 77 static DEFINE_PER_CPU(unsigned long, nr_unused); 78 79 static struct kmem_cache *inode_cachep __ro_after_init; 80 81 static long get_nr_inodes(void) 82 { 83 int i; 84 long sum = 0; 85 for_each_possible_cpu(i) 86 sum += per_cpu(nr_inodes, i); 87 return sum < 0 ? 0 : sum; 88 } 89 90 static inline long get_nr_inodes_unused(void) 91 { 92 int i; 93 long sum = 0; 94 for_each_possible_cpu(i) 95 sum += per_cpu(nr_unused, i); 96 return sum < 0 ? 0 : sum; 97 } 98 99 long get_nr_dirty_inodes(void) 100 { 101 /* not actually dirty inodes, but a wild approximation */ 102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 103 return nr_dirty > 0 ? nr_dirty : 0; 104 } 105 106 #ifdef CONFIG_DEBUG_FS 107 static DEFINE_PER_CPU(long, mg_ctime_updates); 108 static DEFINE_PER_CPU(long, mg_fine_stamps); 109 static DEFINE_PER_CPU(long, mg_ctime_swaps); 110 111 static unsigned long get_mg_ctime_updates(void) 112 { 113 unsigned long sum = 0; 114 int i; 115 116 for_each_possible_cpu(i) 117 sum += data_race(per_cpu(mg_ctime_updates, i)); 118 return sum; 119 } 120 121 static unsigned long get_mg_fine_stamps(void) 122 { 123 unsigned long sum = 0; 124 int i; 125 126 for_each_possible_cpu(i) 127 sum += data_race(per_cpu(mg_fine_stamps, i)); 128 return sum; 129 } 130 131 static unsigned long get_mg_ctime_swaps(void) 132 { 133 unsigned long sum = 0; 134 int i; 135 136 for_each_possible_cpu(i) 137 sum += data_race(per_cpu(mg_ctime_swaps, i)); 138 return sum; 139 } 140 141 #define mgtime_counter_inc(__var) this_cpu_inc(__var) 142 143 static int mgts_show(struct seq_file *s, void *p) 144 { 145 unsigned long ctime_updates = get_mg_ctime_updates(); 146 unsigned long ctime_swaps = get_mg_ctime_swaps(); 147 unsigned long fine_stamps = get_mg_fine_stamps(); 148 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps(); 149 150 seq_printf(s, "%lu %lu %lu %lu\n", 151 ctime_updates, ctime_swaps, fine_stamps, floor_swaps); 152 return 0; 153 } 154 155 DEFINE_SHOW_ATTRIBUTE(mgts); 156 157 static int __init mg_debugfs_init(void) 158 { 159 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops); 160 return 0; 161 } 162 late_initcall(mg_debugfs_init); 163 164 #else /* ! CONFIG_DEBUG_FS */ 165 166 #define mgtime_counter_inc(__var) do { } while (0) 167 168 #endif /* CONFIG_DEBUG_FS */ 169 170 /* 171 * Handle nr_inode sysctl 172 */ 173 #ifdef CONFIG_SYSCTL 174 /* 175 * Statistics gathering.. 176 */ 177 static struct inodes_stat_t inodes_stat; 178 179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer, 180 size_t *lenp, loff_t *ppos) 181 { 182 inodes_stat.nr_inodes = get_nr_inodes(); 183 inodes_stat.nr_unused = get_nr_inodes_unused(); 184 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 185 } 186 187 static const struct ctl_table inodes_sysctls[] = { 188 { 189 .procname = "inode-nr", 190 .data = &inodes_stat, 191 .maxlen = 2*sizeof(long), 192 .mode = 0444, 193 .proc_handler = proc_nr_inodes, 194 }, 195 { 196 .procname = "inode-state", 197 .data = &inodes_stat, 198 .maxlen = 7*sizeof(long), 199 .mode = 0444, 200 .proc_handler = proc_nr_inodes, 201 }, 202 }; 203 204 static int __init init_fs_inode_sysctls(void) 205 { 206 register_sysctl_init("fs", inodes_sysctls); 207 return 0; 208 } 209 early_initcall(init_fs_inode_sysctls); 210 #endif 211 212 static int no_open(struct inode *inode, struct file *file) 213 { 214 return -ENXIO; 215 } 216 217 /** 218 * inode_init_always_gfp - perform inode structure initialisation 219 * @sb: superblock inode belongs to 220 * @inode: inode to initialise 221 * @gfp: allocation flags 222 * 223 * These are initializations that need to be done on every inode 224 * allocation as the fields are not initialised by slab allocation. 225 * If there are additional allocations required @gfp is used. 226 */ 227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp) 228 { 229 static const struct inode_operations empty_iops; 230 static const struct file_operations no_open_fops = {.open = no_open}; 231 struct address_space *const mapping = &inode->i_data; 232 233 inode->i_sb = sb; 234 inode->i_blkbits = sb->s_blocksize_bits; 235 inode->i_flags = 0; 236 inode->i_state = 0; 237 atomic64_set(&inode->i_sequence, 0); 238 atomic_set(&inode->i_count, 1); 239 inode->i_op = &empty_iops; 240 inode->i_fop = &no_open_fops; 241 inode->i_ino = 0; 242 inode->__i_nlink = 1; 243 inode->i_opflags = 0; 244 if (sb->s_xattr) 245 inode->i_opflags |= IOP_XATTR; 246 if (sb->s_type->fs_flags & FS_MGTIME) 247 inode->i_opflags |= IOP_MGTIME; 248 i_uid_write(inode, 0); 249 i_gid_write(inode, 0); 250 atomic_set(&inode->i_writecount, 0); 251 inode->i_size = 0; 252 inode->i_write_hint = WRITE_LIFE_NOT_SET; 253 inode->i_blocks = 0; 254 inode->i_bytes = 0; 255 inode->i_generation = 0; 256 inode->i_pipe = NULL; 257 inode->i_cdev = NULL; 258 inode->i_link = NULL; 259 inode->i_dir_seq = 0; 260 inode->i_rdev = 0; 261 inode->dirtied_when = 0; 262 263 #ifdef CONFIG_CGROUP_WRITEBACK 264 inode->i_wb_frn_winner = 0; 265 inode->i_wb_frn_avg_time = 0; 266 inode->i_wb_frn_history = 0; 267 #endif 268 269 spin_lock_init(&inode->i_lock); 270 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 271 272 init_rwsem(&inode->i_rwsem); 273 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 274 275 atomic_set(&inode->i_dio_count, 0); 276 277 mapping->a_ops = &empty_aops; 278 mapping->host = inode; 279 mapping->flags = 0; 280 mapping->wb_err = 0; 281 atomic_set(&mapping->i_mmap_writable, 0); 282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 283 atomic_set(&mapping->nr_thps, 0); 284 #endif 285 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 286 mapping->i_private_data = NULL; 287 mapping->writeback_index = 0; 288 init_rwsem(&mapping->invalidate_lock); 289 lockdep_set_class_and_name(&mapping->invalidate_lock, 290 &sb->s_type->invalidate_lock_key, 291 "mapping.invalidate_lock"); 292 if (sb->s_iflags & SB_I_STABLE_WRITES) 293 mapping_set_stable_writes(mapping); 294 inode->i_private = NULL; 295 inode->i_mapping = mapping; 296 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 297 #ifdef CONFIG_FS_POSIX_ACL 298 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 299 #endif 300 301 #ifdef CONFIG_FSNOTIFY 302 inode->i_fsnotify_mask = 0; 303 #endif 304 inode->i_flctx = NULL; 305 306 if (unlikely(security_inode_alloc(inode, gfp))) 307 return -ENOMEM; 308 309 this_cpu_inc(nr_inodes); 310 311 return 0; 312 } 313 EXPORT_SYMBOL(inode_init_always_gfp); 314 315 void free_inode_nonrcu(struct inode *inode) 316 { 317 kmem_cache_free(inode_cachep, inode); 318 } 319 EXPORT_SYMBOL(free_inode_nonrcu); 320 321 static void i_callback(struct rcu_head *head) 322 { 323 struct inode *inode = container_of(head, struct inode, i_rcu); 324 if (inode->free_inode) 325 inode->free_inode(inode); 326 else 327 free_inode_nonrcu(inode); 328 } 329 330 /** 331 * alloc_inode - obtain an inode 332 * @sb: superblock 333 * 334 * Allocates a new inode for given superblock. 335 * Inode wont be chained in superblock s_inodes list 336 * This means : 337 * - fs can't be unmount 338 * - quotas, fsnotify, writeback can't work 339 */ 340 struct inode *alloc_inode(struct super_block *sb) 341 { 342 const struct super_operations *ops = sb->s_op; 343 struct inode *inode; 344 345 if (ops->alloc_inode) 346 inode = ops->alloc_inode(sb); 347 else 348 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 349 350 if (!inode) 351 return NULL; 352 353 if (unlikely(inode_init_always(sb, inode))) { 354 if (ops->destroy_inode) { 355 ops->destroy_inode(inode); 356 if (!ops->free_inode) 357 return NULL; 358 } 359 inode->free_inode = ops->free_inode; 360 i_callback(&inode->i_rcu); 361 return NULL; 362 } 363 364 return inode; 365 } 366 367 void __destroy_inode(struct inode *inode) 368 { 369 BUG_ON(inode_has_buffers(inode)); 370 inode_detach_wb(inode); 371 security_inode_free(inode); 372 fsnotify_inode_delete(inode); 373 locks_free_lock_context(inode); 374 if (!inode->i_nlink) { 375 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 376 atomic_long_dec(&inode->i_sb->s_remove_count); 377 } 378 379 #ifdef CONFIG_FS_POSIX_ACL 380 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 381 posix_acl_release(inode->i_acl); 382 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 383 posix_acl_release(inode->i_default_acl); 384 #endif 385 this_cpu_dec(nr_inodes); 386 } 387 EXPORT_SYMBOL(__destroy_inode); 388 389 static void destroy_inode(struct inode *inode) 390 { 391 const struct super_operations *ops = inode->i_sb->s_op; 392 393 BUG_ON(!list_empty(&inode->i_lru)); 394 __destroy_inode(inode); 395 if (ops->destroy_inode) { 396 ops->destroy_inode(inode); 397 if (!ops->free_inode) 398 return; 399 } 400 inode->free_inode = ops->free_inode; 401 call_rcu(&inode->i_rcu, i_callback); 402 } 403 404 /** 405 * drop_nlink - directly drop an inode's link count 406 * @inode: inode 407 * 408 * This is a low-level filesystem helper to replace any 409 * direct filesystem manipulation of i_nlink. In cases 410 * where we are attempting to track writes to the 411 * filesystem, a decrement to zero means an imminent 412 * write when the file is truncated and actually unlinked 413 * on the filesystem. 414 */ 415 void drop_nlink(struct inode *inode) 416 { 417 WARN_ON(inode->i_nlink == 0); 418 inode->__i_nlink--; 419 if (!inode->i_nlink) 420 atomic_long_inc(&inode->i_sb->s_remove_count); 421 } 422 EXPORT_SYMBOL(drop_nlink); 423 424 /** 425 * clear_nlink - directly zero an inode's link count 426 * @inode: inode 427 * 428 * This is a low-level filesystem helper to replace any 429 * direct filesystem manipulation of i_nlink. See 430 * drop_nlink() for why we care about i_nlink hitting zero. 431 */ 432 void clear_nlink(struct inode *inode) 433 { 434 if (inode->i_nlink) { 435 inode->__i_nlink = 0; 436 atomic_long_inc(&inode->i_sb->s_remove_count); 437 } 438 } 439 EXPORT_SYMBOL(clear_nlink); 440 441 /** 442 * set_nlink - directly set an inode's link count 443 * @inode: inode 444 * @nlink: new nlink (should be non-zero) 445 * 446 * This is a low-level filesystem helper to replace any 447 * direct filesystem manipulation of i_nlink. 448 */ 449 void set_nlink(struct inode *inode, unsigned int nlink) 450 { 451 if (!nlink) { 452 clear_nlink(inode); 453 } else { 454 /* Yes, some filesystems do change nlink from zero to one */ 455 if (inode->i_nlink == 0) 456 atomic_long_dec(&inode->i_sb->s_remove_count); 457 458 inode->__i_nlink = nlink; 459 } 460 } 461 EXPORT_SYMBOL(set_nlink); 462 463 /** 464 * inc_nlink - directly increment an inode's link count 465 * @inode: inode 466 * 467 * This is a low-level filesystem helper to replace any 468 * direct filesystem manipulation of i_nlink. Currently, 469 * it is only here for parity with dec_nlink(). 470 */ 471 void inc_nlink(struct inode *inode) 472 { 473 if (unlikely(inode->i_nlink == 0)) { 474 WARN_ON(!(inode->i_state & I_LINKABLE)); 475 atomic_long_dec(&inode->i_sb->s_remove_count); 476 } 477 478 inode->__i_nlink++; 479 } 480 EXPORT_SYMBOL(inc_nlink); 481 482 static void __address_space_init_once(struct address_space *mapping) 483 { 484 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 485 init_rwsem(&mapping->i_mmap_rwsem); 486 INIT_LIST_HEAD(&mapping->i_private_list); 487 spin_lock_init(&mapping->i_private_lock); 488 mapping->i_mmap = RB_ROOT_CACHED; 489 } 490 491 void address_space_init_once(struct address_space *mapping) 492 { 493 memset(mapping, 0, sizeof(*mapping)); 494 __address_space_init_once(mapping); 495 } 496 EXPORT_SYMBOL(address_space_init_once); 497 498 /* 499 * These are initializations that only need to be done 500 * once, because the fields are idempotent across use 501 * of the inode, so let the slab aware of that. 502 */ 503 void inode_init_once(struct inode *inode) 504 { 505 memset(inode, 0, sizeof(*inode)); 506 INIT_HLIST_NODE(&inode->i_hash); 507 INIT_LIST_HEAD(&inode->i_devices); 508 INIT_LIST_HEAD(&inode->i_io_list); 509 INIT_LIST_HEAD(&inode->i_wb_list); 510 INIT_LIST_HEAD(&inode->i_lru); 511 INIT_LIST_HEAD(&inode->i_sb_list); 512 __address_space_init_once(&inode->i_data); 513 i_size_ordered_init(inode); 514 } 515 EXPORT_SYMBOL(inode_init_once); 516 517 static void init_once(void *foo) 518 { 519 struct inode *inode = (struct inode *) foo; 520 521 inode_init_once(inode); 522 } 523 524 /* 525 * get additional reference to inode; caller must already hold one. 526 */ 527 void ihold(struct inode *inode) 528 { 529 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 530 } 531 EXPORT_SYMBOL(ihold); 532 533 static void __inode_add_lru(struct inode *inode, bool rotate) 534 { 535 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 536 return; 537 if (icount_read(inode)) 538 return; 539 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 540 return; 541 if (!mapping_shrinkable(&inode->i_data)) 542 return; 543 544 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 545 this_cpu_inc(nr_unused); 546 else if (rotate) 547 inode->i_state |= I_REFERENCED; 548 } 549 550 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 551 struct inode *inode, u32 bit) 552 { 553 void *bit_address; 554 555 bit_address = inode_state_wait_address(inode, bit); 556 init_wait_var_entry(wqe, bit_address, 0); 557 return __var_waitqueue(bit_address); 558 } 559 EXPORT_SYMBOL(inode_bit_waitqueue); 560 561 /* 562 * Add inode to LRU if needed (inode is unused and clean). 563 * 564 * Needs inode->i_lock held. 565 */ 566 void inode_add_lru(struct inode *inode) 567 { 568 __inode_add_lru(inode, false); 569 } 570 571 static void inode_lru_list_del(struct inode *inode) 572 { 573 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)) 574 this_cpu_dec(nr_unused); 575 } 576 577 static void inode_pin_lru_isolating(struct inode *inode) 578 { 579 lockdep_assert_held(&inode->i_lock); 580 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 581 inode->i_state |= I_LRU_ISOLATING; 582 } 583 584 static void inode_unpin_lru_isolating(struct inode *inode) 585 { 586 spin_lock(&inode->i_lock); 587 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 588 inode->i_state &= ~I_LRU_ISOLATING; 589 /* Called with inode->i_lock which ensures memory ordering. */ 590 inode_wake_up_bit(inode, __I_LRU_ISOLATING); 591 spin_unlock(&inode->i_lock); 592 } 593 594 static void inode_wait_for_lru_isolating(struct inode *inode) 595 { 596 struct wait_bit_queue_entry wqe; 597 struct wait_queue_head *wq_head; 598 599 lockdep_assert_held(&inode->i_lock); 600 if (!(inode->i_state & I_LRU_ISOLATING)) 601 return; 602 603 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING); 604 for (;;) { 605 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 606 /* 607 * Checking I_LRU_ISOLATING with inode->i_lock guarantees 608 * memory ordering. 609 */ 610 if (!(inode->i_state & I_LRU_ISOLATING)) 611 break; 612 spin_unlock(&inode->i_lock); 613 schedule(); 614 spin_lock(&inode->i_lock); 615 } 616 finish_wait(wq_head, &wqe.wq_entry); 617 WARN_ON(inode->i_state & I_LRU_ISOLATING); 618 } 619 620 /** 621 * inode_sb_list_add - add inode to the superblock list of inodes 622 * @inode: inode to add 623 */ 624 void inode_sb_list_add(struct inode *inode) 625 { 626 struct super_block *sb = inode->i_sb; 627 628 spin_lock(&sb->s_inode_list_lock); 629 list_add(&inode->i_sb_list, &sb->s_inodes); 630 spin_unlock(&sb->s_inode_list_lock); 631 } 632 EXPORT_SYMBOL_GPL(inode_sb_list_add); 633 634 static inline void inode_sb_list_del(struct inode *inode) 635 { 636 struct super_block *sb = inode->i_sb; 637 638 if (!list_empty(&inode->i_sb_list)) { 639 spin_lock(&sb->s_inode_list_lock); 640 list_del_init(&inode->i_sb_list); 641 spin_unlock(&sb->s_inode_list_lock); 642 } 643 } 644 645 static unsigned long hash(struct super_block *sb, unsigned long hashval) 646 { 647 unsigned long tmp; 648 649 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 650 L1_CACHE_BYTES; 651 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 652 return tmp & i_hash_mask; 653 } 654 655 /** 656 * __insert_inode_hash - hash an inode 657 * @inode: unhashed inode 658 * @hashval: unsigned long value used to locate this object in the 659 * inode_hashtable. 660 * 661 * Add an inode to the inode hash for this superblock. 662 */ 663 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 664 { 665 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 666 667 spin_lock(&inode_hash_lock); 668 spin_lock(&inode->i_lock); 669 hlist_add_head_rcu(&inode->i_hash, b); 670 spin_unlock(&inode->i_lock); 671 spin_unlock(&inode_hash_lock); 672 } 673 EXPORT_SYMBOL(__insert_inode_hash); 674 675 /** 676 * __remove_inode_hash - remove an inode from the hash 677 * @inode: inode to unhash 678 * 679 * Remove an inode from the superblock. 680 */ 681 void __remove_inode_hash(struct inode *inode) 682 { 683 spin_lock(&inode_hash_lock); 684 spin_lock(&inode->i_lock); 685 hlist_del_init_rcu(&inode->i_hash); 686 spin_unlock(&inode->i_lock); 687 spin_unlock(&inode_hash_lock); 688 } 689 EXPORT_SYMBOL(__remove_inode_hash); 690 691 void dump_mapping(const struct address_space *mapping) 692 { 693 struct inode *host; 694 const struct address_space_operations *a_ops; 695 struct hlist_node *dentry_first; 696 struct dentry *dentry_ptr; 697 struct dentry dentry; 698 char fname[64] = {}; 699 unsigned long ino; 700 701 /* 702 * If mapping is an invalid pointer, we don't want to crash 703 * accessing it, so probe everything depending on it carefully. 704 */ 705 if (get_kernel_nofault(host, &mapping->host) || 706 get_kernel_nofault(a_ops, &mapping->a_ops)) { 707 pr_warn("invalid mapping:%px\n", mapping); 708 return; 709 } 710 711 if (!host) { 712 pr_warn("aops:%ps\n", a_ops); 713 return; 714 } 715 716 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 717 get_kernel_nofault(ino, &host->i_ino)) { 718 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 719 return; 720 } 721 722 if (!dentry_first) { 723 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 724 return; 725 } 726 727 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 728 if (get_kernel_nofault(dentry, dentry_ptr) || 729 !dentry.d_parent || !dentry.d_name.name) { 730 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 731 a_ops, ino, dentry_ptr); 732 return; 733 } 734 735 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) 736 strscpy(fname, "<invalid>"); 737 /* 738 * Even if strncpy_from_kernel_nofault() succeeded, 739 * the fname could be unreliable 740 */ 741 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", 742 a_ops, ino, fname); 743 } 744 745 void clear_inode(struct inode *inode) 746 { 747 /* 748 * We have to cycle the i_pages lock here because reclaim can be in the 749 * process of removing the last page (in __filemap_remove_folio()) 750 * and we must not free the mapping under it. 751 */ 752 xa_lock_irq(&inode->i_data.i_pages); 753 BUG_ON(inode->i_data.nrpages); 754 /* 755 * Almost always, mapping_empty(&inode->i_data) here; but there are 756 * two known and long-standing ways in which nodes may get left behind 757 * (when deep radix-tree node allocation failed partway; or when THP 758 * collapse_file() failed). Until those two known cases are cleaned up, 759 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 760 * nor even WARN_ON(!mapping_empty). 761 */ 762 xa_unlock_irq(&inode->i_data.i_pages); 763 BUG_ON(!list_empty(&inode->i_data.i_private_list)); 764 BUG_ON(!(inode->i_state & I_FREEING)); 765 BUG_ON(inode->i_state & I_CLEAR); 766 BUG_ON(!list_empty(&inode->i_wb_list)); 767 /* don't need i_lock here, no concurrent mods to i_state */ 768 inode->i_state = I_FREEING | I_CLEAR; 769 } 770 EXPORT_SYMBOL(clear_inode); 771 772 /* 773 * Free the inode passed in, removing it from the lists it is still connected 774 * to. We remove any pages still attached to the inode and wait for any IO that 775 * is still in progress before finally destroying the inode. 776 * 777 * An inode must already be marked I_FREEING so that we avoid the inode being 778 * moved back onto lists if we race with other code that manipulates the lists 779 * (e.g. writeback_single_inode). The caller is responsible for setting this. 780 * 781 * An inode must already be removed from the LRU list before being evicted from 782 * the cache. This should occur atomically with setting the I_FREEING state 783 * flag, so no inodes here should ever be on the LRU when being evicted. 784 */ 785 static void evict(struct inode *inode) 786 { 787 const struct super_operations *op = inode->i_sb->s_op; 788 789 BUG_ON(!(inode->i_state & I_FREEING)); 790 BUG_ON(!list_empty(&inode->i_lru)); 791 792 if (!list_empty(&inode->i_io_list)) 793 inode_io_list_del(inode); 794 795 inode_sb_list_del(inode); 796 797 spin_lock(&inode->i_lock); 798 inode_wait_for_lru_isolating(inode); 799 800 /* 801 * Wait for flusher thread to be done with the inode so that filesystem 802 * does not start destroying it while writeback is still running. Since 803 * the inode has I_FREEING set, flusher thread won't start new work on 804 * the inode. We just have to wait for running writeback to finish. 805 */ 806 inode_wait_for_writeback(inode); 807 spin_unlock(&inode->i_lock); 808 809 if (op->evict_inode) { 810 op->evict_inode(inode); 811 } else { 812 truncate_inode_pages_final(&inode->i_data); 813 clear_inode(inode); 814 } 815 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 816 cd_forget(inode); 817 818 remove_inode_hash(inode); 819 820 /* 821 * Wake up waiters in __wait_on_freeing_inode(). 822 * 823 * It is an invariant that any thread we need to wake up is already 824 * accounted for before remove_inode_hash() acquires ->i_lock -- both 825 * sides take the lock and sleep is aborted if the inode is found 826 * unhashed. Thus either the sleeper wins and goes off CPU, or removal 827 * wins and the sleeper aborts after testing with the lock. 828 * 829 * This also means we don't need any fences for the call below. 830 */ 831 inode_wake_up_bit(inode, __I_NEW); 832 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 833 834 destroy_inode(inode); 835 } 836 837 /* 838 * dispose_list - dispose of the contents of a local list 839 * @head: the head of the list to free 840 * 841 * Dispose-list gets a local list with local inodes in it, so it doesn't 842 * need to worry about list corruption and SMP locks. 843 */ 844 static void dispose_list(struct list_head *head) 845 { 846 while (!list_empty(head)) { 847 struct inode *inode; 848 849 inode = list_first_entry(head, struct inode, i_lru); 850 list_del_init(&inode->i_lru); 851 852 evict(inode); 853 cond_resched(); 854 } 855 } 856 857 /** 858 * evict_inodes - evict all evictable inodes for a superblock 859 * @sb: superblock to operate on 860 * 861 * Make sure that no inodes with zero refcount are retained. This is 862 * called by superblock shutdown after having SB_ACTIVE flag removed, 863 * so any inode reaching zero refcount during or after that call will 864 * be immediately evicted. 865 */ 866 void evict_inodes(struct super_block *sb) 867 { 868 struct inode *inode; 869 LIST_HEAD(dispose); 870 871 again: 872 spin_lock(&sb->s_inode_list_lock); 873 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 874 if (icount_read(inode)) 875 continue; 876 877 spin_lock(&inode->i_lock); 878 if (icount_read(inode)) { 879 spin_unlock(&inode->i_lock); 880 continue; 881 } 882 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 883 spin_unlock(&inode->i_lock); 884 continue; 885 } 886 887 inode->i_state |= I_FREEING; 888 inode_lru_list_del(inode); 889 spin_unlock(&inode->i_lock); 890 list_add(&inode->i_lru, &dispose); 891 892 /* 893 * We can have a ton of inodes to evict at unmount time given 894 * enough memory, check to see if we need to go to sleep for a 895 * bit so we don't livelock. 896 */ 897 if (need_resched()) { 898 spin_unlock(&sb->s_inode_list_lock); 899 cond_resched(); 900 dispose_list(&dispose); 901 goto again; 902 } 903 } 904 spin_unlock(&sb->s_inode_list_lock); 905 906 dispose_list(&dispose); 907 } 908 EXPORT_SYMBOL_GPL(evict_inodes); 909 910 /* 911 * Isolate the inode from the LRU in preparation for freeing it. 912 * 913 * If the inode has the I_REFERENCED flag set, then it means that it has been 914 * used recently - the flag is set in iput_final(). When we encounter such an 915 * inode, clear the flag and move it to the back of the LRU so it gets another 916 * pass through the LRU before it gets reclaimed. This is necessary because of 917 * the fact we are doing lazy LRU updates to minimise lock contention so the 918 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 919 * with this flag set because they are the inodes that are out of order. 920 */ 921 static enum lru_status inode_lru_isolate(struct list_head *item, 922 struct list_lru_one *lru, void *arg) 923 { 924 struct list_head *freeable = arg; 925 struct inode *inode = container_of(item, struct inode, i_lru); 926 927 /* 928 * We are inverting the lru lock/inode->i_lock here, so use a 929 * trylock. If we fail to get the lock, just skip it. 930 */ 931 if (!spin_trylock(&inode->i_lock)) 932 return LRU_SKIP; 933 934 /* 935 * Inodes can get referenced, redirtied, or repopulated while 936 * they're already on the LRU, and this can make them 937 * unreclaimable for a while. Remove them lazily here; iput, 938 * sync, or the last page cache deletion will requeue them. 939 */ 940 if (icount_read(inode) || 941 (inode->i_state & ~I_REFERENCED) || 942 !mapping_shrinkable(&inode->i_data)) { 943 list_lru_isolate(lru, &inode->i_lru); 944 spin_unlock(&inode->i_lock); 945 this_cpu_dec(nr_unused); 946 return LRU_REMOVED; 947 } 948 949 /* Recently referenced inodes get one more pass */ 950 if (inode->i_state & I_REFERENCED) { 951 inode->i_state &= ~I_REFERENCED; 952 spin_unlock(&inode->i_lock); 953 return LRU_ROTATE; 954 } 955 956 /* 957 * On highmem systems, mapping_shrinkable() permits dropping 958 * page cache in order to free up struct inodes: lowmem might 959 * be under pressure before the cache inside the highmem zone. 960 */ 961 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 962 inode_pin_lru_isolating(inode); 963 spin_unlock(&inode->i_lock); 964 spin_unlock(&lru->lock); 965 if (remove_inode_buffers(inode)) { 966 unsigned long reap; 967 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 968 if (current_is_kswapd()) 969 __count_vm_events(KSWAPD_INODESTEAL, reap); 970 else 971 __count_vm_events(PGINODESTEAL, reap); 972 mm_account_reclaimed_pages(reap); 973 } 974 inode_unpin_lru_isolating(inode); 975 return LRU_RETRY; 976 } 977 978 WARN_ON(inode->i_state & I_NEW); 979 inode->i_state |= I_FREEING; 980 list_lru_isolate_move(lru, &inode->i_lru, freeable); 981 spin_unlock(&inode->i_lock); 982 983 this_cpu_dec(nr_unused); 984 return LRU_REMOVED; 985 } 986 987 /* 988 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 989 * This is called from the superblock shrinker function with a number of inodes 990 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 991 * then are freed outside inode_lock by dispose_list(). 992 */ 993 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 994 { 995 LIST_HEAD(freeable); 996 long freed; 997 998 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 999 inode_lru_isolate, &freeable); 1000 dispose_list(&freeable); 1001 return freed; 1002 } 1003 1004 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked); 1005 /* 1006 * Called with the inode lock held. 1007 */ 1008 static struct inode *find_inode(struct super_block *sb, 1009 struct hlist_head *head, 1010 int (*test)(struct inode *, void *), 1011 void *data, bool is_inode_hash_locked) 1012 { 1013 struct inode *inode = NULL; 1014 1015 if (is_inode_hash_locked) 1016 lockdep_assert_held(&inode_hash_lock); 1017 else 1018 lockdep_assert_not_held(&inode_hash_lock); 1019 1020 rcu_read_lock(); 1021 repeat: 1022 hlist_for_each_entry_rcu(inode, head, i_hash) { 1023 if (inode->i_sb != sb) 1024 continue; 1025 if (!test(inode, data)) 1026 continue; 1027 spin_lock(&inode->i_lock); 1028 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1029 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1030 goto repeat; 1031 } 1032 if (unlikely(inode->i_state & I_CREATING)) { 1033 spin_unlock(&inode->i_lock); 1034 rcu_read_unlock(); 1035 return ERR_PTR(-ESTALE); 1036 } 1037 __iget(inode); 1038 spin_unlock(&inode->i_lock); 1039 rcu_read_unlock(); 1040 return inode; 1041 } 1042 rcu_read_unlock(); 1043 return NULL; 1044 } 1045 1046 /* 1047 * find_inode_fast is the fast path version of find_inode, see the comment at 1048 * iget_locked for details. 1049 */ 1050 static struct inode *find_inode_fast(struct super_block *sb, 1051 struct hlist_head *head, unsigned long ino, 1052 bool is_inode_hash_locked) 1053 { 1054 struct inode *inode = NULL; 1055 1056 if (is_inode_hash_locked) 1057 lockdep_assert_held(&inode_hash_lock); 1058 else 1059 lockdep_assert_not_held(&inode_hash_lock); 1060 1061 rcu_read_lock(); 1062 repeat: 1063 hlist_for_each_entry_rcu(inode, head, i_hash) { 1064 if (inode->i_ino != ino) 1065 continue; 1066 if (inode->i_sb != sb) 1067 continue; 1068 spin_lock(&inode->i_lock); 1069 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 1070 __wait_on_freeing_inode(inode, is_inode_hash_locked); 1071 goto repeat; 1072 } 1073 if (unlikely(inode->i_state & I_CREATING)) { 1074 spin_unlock(&inode->i_lock); 1075 rcu_read_unlock(); 1076 return ERR_PTR(-ESTALE); 1077 } 1078 __iget(inode); 1079 spin_unlock(&inode->i_lock); 1080 rcu_read_unlock(); 1081 return inode; 1082 } 1083 rcu_read_unlock(); 1084 return NULL; 1085 } 1086 1087 /* 1088 * Each cpu owns a range of LAST_INO_BATCH numbers. 1089 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 1090 * to renew the exhausted range. 1091 * 1092 * This does not significantly increase overflow rate because every CPU can 1093 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1094 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1095 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1096 * overflow rate by 2x, which does not seem too significant. 1097 * 1098 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1099 * error if st_ino won't fit in target struct field. Use 32bit counter 1100 * here to attempt to avoid that. 1101 */ 1102 #define LAST_INO_BATCH 1024 1103 static DEFINE_PER_CPU(unsigned int, last_ino); 1104 1105 unsigned int get_next_ino(void) 1106 { 1107 unsigned int *p = &get_cpu_var(last_ino); 1108 unsigned int res = *p; 1109 1110 #ifdef CONFIG_SMP 1111 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1112 static atomic_t shared_last_ino; 1113 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1114 1115 res = next - LAST_INO_BATCH; 1116 } 1117 #endif 1118 1119 res++; 1120 /* get_next_ino should not provide a 0 inode number */ 1121 if (unlikely(!res)) 1122 res++; 1123 *p = res; 1124 put_cpu_var(last_ino); 1125 return res; 1126 } 1127 EXPORT_SYMBOL(get_next_ino); 1128 1129 /** 1130 * new_inode - obtain an inode 1131 * @sb: superblock 1132 * 1133 * Allocates a new inode for given superblock. The default gfp_mask 1134 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1135 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1136 * for the page cache are not reclaimable or migratable, 1137 * mapping_set_gfp_mask() must be called with suitable flags on the 1138 * newly created inode's mapping 1139 * 1140 */ 1141 struct inode *new_inode(struct super_block *sb) 1142 { 1143 struct inode *inode; 1144 1145 inode = alloc_inode(sb); 1146 if (inode) 1147 inode_sb_list_add(inode); 1148 return inode; 1149 } 1150 EXPORT_SYMBOL(new_inode); 1151 1152 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1153 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1154 { 1155 if (S_ISDIR(inode->i_mode)) { 1156 struct file_system_type *type = inode->i_sb->s_type; 1157 1158 /* Set new key only if filesystem hasn't already changed it */ 1159 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1160 /* 1161 * ensure nobody is actually holding i_rwsem 1162 */ 1163 init_rwsem(&inode->i_rwsem); 1164 lockdep_set_class(&inode->i_rwsem, 1165 &type->i_mutex_dir_key); 1166 } 1167 } 1168 } 1169 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1170 #endif 1171 1172 /** 1173 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1174 * @inode: new inode to unlock 1175 * 1176 * Called when the inode is fully initialised to clear the new state of the 1177 * inode and wake up anyone waiting for the inode to finish initialisation. 1178 */ 1179 void unlock_new_inode(struct inode *inode) 1180 { 1181 lockdep_annotate_inode_mutex_key(inode); 1182 spin_lock(&inode->i_lock); 1183 WARN_ON(!(inode->i_state & I_NEW)); 1184 inode->i_state &= ~I_NEW & ~I_CREATING; 1185 /* 1186 * Pairs with the barrier in prepare_to_wait_event() to make sure 1187 * ___wait_var_event() either sees the bit cleared or 1188 * waitqueue_active() check in wake_up_var() sees the waiter. 1189 */ 1190 smp_mb(); 1191 inode_wake_up_bit(inode, __I_NEW); 1192 spin_unlock(&inode->i_lock); 1193 } 1194 EXPORT_SYMBOL(unlock_new_inode); 1195 1196 void discard_new_inode(struct inode *inode) 1197 { 1198 lockdep_annotate_inode_mutex_key(inode); 1199 spin_lock(&inode->i_lock); 1200 WARN_ON(!(inode->i_state & I_NEW)); 1201 inode->i_state &= ~I_NEW; 1202 /* 1203 * Pairs with the barrier in prepare_to_wait_event() to make sure 1204 * ___wait_var_event() either sees the bit cleared or 1205 * waitqueue_active() check in wake_up_var() sees the waiter. 1206 */ 1207 smp_mb(); 1208 inode_wake_up_bit(inode, __I_NEW); 1209 spin_unlock(&inode->i_lock); 1210 iput(inode); 1211 } 1212 EXPORT_SYMBOL(discard_new_inode); 1213 1214 /** 1215 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1216 * 1217 * Lock any non-NULL argument. Passed objects must not be directories. 1218 * Zero, one or two objects may be locked by this function. 1219 * 1220 * @inode1: first inode to lock 1221 * @inode2: second inode to lock 1222 */ 1223 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1224 { 1225 if (inode1) 1226 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1227 if (inode2) 1228 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1229 if (inode1 > inode2) 1230 swap(inode1, inode2); 1231 if (inode1) 1232 inode_lock(inode1); 1233 if (inode2 && inode2 != inode1) 1234 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1235 } 1236 EXPORT_SYMBOL(lock_two_nondirectories); 1237 1238 /** 1239 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1240 * @inode1: first inode to unlock 1241 * @inode2: second inode to unlock 1242 */ 1243 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1244 { 1245 if (inode1) { 1246 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1247 inode_unlock(inode1); 1248 } 1249 if (inode2 && inode2 != inode1) { 1250 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1251 inode_unlock(inode2); 1252 } 1253 } 1254 EXPORT_SYMBOL(unlock_two_nondirectories); 1255 1256 /** 1257 * inode_insert5 - obtain an inode from a mounted file system 1258 * @inode: pre-allocated inode to use for insert to cache 1259 * @hashval: hash value (usually inode number) to get 1260 * @test: callback used for comparisons between inodes 1261 * @set: callback used to initialize a new struct inode 1262 * @data: opaque data pointer to pass to @test and @set 1263 * 1264 * Search for the inode specified by @hashval and @data in the inode cache, 1265 * and if present return it with an increased reference count. This is a 1266 * variant of iget5_locked() that doesn't allocate an inode. 1267 * 1268 * If the inode is not present in the cache, insert the pre-allocated inode and 1269 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1270 * to fill it in before unlocking it via unlock_new_inode(). 1271 * 1272 * Note that both @test and @set are called with the inode_hash_lock held, so 1273 * they can't sleep. 1274 */ 1275 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1276 int (*test)(struct inode *, void *), 1277 int (*set)(struct inode *, void *), void *data) 1278 { 1279 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1280 struct inode *old; 1281 1282 might_sleep(); 1283 1284 again: 1285 spin_lock(&inode_hash_lock); 1286 old = find_inode(inode->i_sb, head, test, data, true); 1287 if (unlikely(old)) { 1288 /* 1289 * Uhhuh, somebody else created the same inode under us. 1290 * Use the old inode instead of the preallocated one. 1291 */ 1292 spin_unlock(&inode_hash_lock); 1293 if (IS_ERR(old)) 1294 return NULL; 1295 wait_on_inode(old); 1296 if (unlikely(inode_unhashed(old))) { 1297 iput(old); 1298 goto again; 1299 } 1300 return old; 1301 } 1302 1303 if (set && unlikely(set(inode, data))) { 1304 spin_unlock(&inode_hash_lock); 1305 return NULL; 1306 } 1307 1308 /* 1309 * Return the locked inode with I_NEW set, the 1310 * caller is responsible for filling in the contents 1311 */ 1312 spin_lock(&inode->i_lock); 1313 inode->i_state |= I_NEW; 1314 hlist_add_head_rcu(&inode->i_hash, head); 1315 spin_unlock(&inode->i_lock); 1316 1317 spin_unlock(&inode_hash_lock); 1318 1319 /* 1320 * Add inode to the sb list if it's not already. It has I_NEW at this 1321 * point, so it should be safe to test i_sb_list locklessly. 1322 */ 1323 if (list_empty(&inode->i_sb_list)) 1324 inode_sb_list_add(inode); 1325 1326 return inode; 1327 } 1328 EXPORT_SYMBOL(inode_insert5); 1329 1330 /** 1331 * iget5_locked - obtain an inode from a mounted file system 1332 * @sb: super block of file system 1333 * @hashval: hash value (usually inode number) to get 1334 * @test: callback used for comparisons between inodes 1335 * @set: callback used to initialize a new struct inode 1336 * @data: opaque data pointer to pass to @test and @set 1337 * 1338 * Search for the inode specified by @hashval and @data in the inode cache, 1339 * and if present return it with an increased reference count. This is a 1340 * generalized version of iget_locked() for file systems where the inode 1341 * number is not sufficient for unique identification of an inode. 1342 * 1343 * If the inode is not present in the cache, allocate and insert a new inode 1344 * and return it locked, hashed, and with the I_NEW flag set. The file system 1345 * gets to fill it in before unlocking it via unlock_new_inode(). 1346 * 1347 * Note that both @test and @set are called with the inode_hash_lock held, so 1348 * they can't sleep. 1349 */ 1350 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1351 int (*test)(struct inode *, void *), 1352 int (*set)(struct inode *, void *), void *data) 1353 { 1354 struct inode *inode = ilookup5(sb, hashval, test, data); 1355 1356 if (!inode) { 1357 struct inode *new = alloc_inode(sb); 1358 1359 if (new) { 1360 inode = inode_insert5(new, hashval, test, set, data); 1361 if (unlikely(inode != new)) 1362 destroy_inode(new); 1363 } 1364 } 1365 return inode; 1366 } 1367 EXPORT_SYMBOL(iget5_locked); 1368 1369 /** 1370 * iget5_locked_rcu - obtain an inode from a mounted file system 1371 * @sb: super block of file system 1372 * @hashval: hash value (usually inode number) to get 1373 * @test: callback used for comparisons between inodes 1374 * @set: callback used to initialize a new struct inode 1375 * @data: opaque data pointer to pass to @test and @set 1376 * 1377 * This is equivalent to iget5_locked, except the @test callback must 1378 * tolerate the inode not being stable, including being mid-teardown. 1379 */ 1380 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval, 1381 int (*test)(struct inode *, void *), 1382 int (*set)(struct inode *, void *), void *data) 1383 { 1384 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1385 struct inode *inode, *new; 1386 1387 might_sleep(); 1388 1389 again: 1390 inode = find_inode(sb, head, test, data, false); 1391 if (inode) { 1392 if (IS_ERR(inode)) 1393 return NULL; 1394 wait_on_inode(inode); 1395 if (unlikely(inode_unhashed(inode))) { 1396 iput(inode); 1397 goto again; 1398 } 1399 return inode; 1400 } 1401 1402 new = alloc_inode(sb); 1403 if (new) { 1404 inode = inode_insert5(new, hashval, test, set, data); 1405 if (unlikely(inode != new)) 1406 destroy_inode(new); 1407 } 1408 return inode; 1409 } 1410 EXPORT_SYMBOL_GPL(iget5_locked_rcu); 1411 1412 /** 1413 * iget_locked - obtain an inode from a mounted file system 1414 * @sb: super block of file system 1415 * @ino: inode number to get 1416 * 1417 * Search for the inode specified by @ino in the inode cache and if present 1418 * return it with an increased reference count. This is for file systems 1419 * where the inode number is sufficient for unique identification of an inode. 1420 * 1421 * If the inode is not in cache, allocate a new inode and return it locked, 1422 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1423 * before unlocking it via unlock_new_inode(). 1424 */ 1425 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1426 { 1427 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1428 struct inode *inode; 1429 1430 might_sleep(); 1431 1432 again: 1433 inode = find_inode_fast(sb, head, ino, false); 1434 if (inode) { 1435 if (IS_ERR(inode)) 1436 return NULL; 1437 wait_on_inode(inode); 1438 if (unlikely(inode_unhashed(inode))) { 1439 iput(inode); 1440 goto again; 1441 } 1442 return inode; 1443 } 1444 1445 inode = alloc_inode(sb); 1446 if (inode) { 1447 struct inode *old; 1448 1449 spin_lock(&inode_hash_lock); 1450 /* We released the lock, so.. */ 1451 old = find_inode_fast(sb, head, ino, true); 1452 if (!old) { 1453 inode->i_ino = ino; 1454 spin_lock(&inode->i_lock); 1455 inode->i_state = I_NEW; 1456 hlist_add_head_rcu(&inode->i_hash, head); 1457 spin_unlock(&inode->i_lock); 1458 spin_unlock(&inode_hash_lock); 1459 inode_sb_list_add(inode); 1460 1461 /* Return the locked inode with I_NEW set, the 1462 * caller is responsible for filling in the contents 1463 */ 1464 return inode; 1465 } 1466 1467 /* 1468 * Uhhuh, somebody else created the same inode under 1469 * us. Use the old inode instead of the one we just 1470 * allocated. 1471 */ 1472 spin_unlock(&inode_hash_lock); 1473 destroy_inode(inode); 1474 if (IS_ERR(old)) 1475 return NULL; 1476 inode = old; 1477 wait_on_inode(inode); 1478 if (unlikely(inode_unhashed(inode))) { 1479 iput(inode); 1480 goto again; 1481 } 1482 } 1483 return inode; 1484 } 1485 EXPORT_SYMBOL(iget_locked); 1486 1487 /* 1488 * search the inode cache for a matching inode number. 1489 * If we find one, then the inode number we are trying to 1490 * allocate is not unique and so we should not use it. 1491 * 1492 * Returns 1 if the inode number is unique, 0 if it is not. 1493 */ 1494 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1495 { 1496 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1497 struct inode *inode; 1498 1499 hlist_for_each_entry_rcu(inode, b, i_hash) { 1500 if (inode->i_ino == ino && inode->i_sb == sb) 1501 return 0; 1502 } 1503 return 1; 1504 } 1505 1506 /** 1507 * iunique - get a unique inode number 1508 * @sb: superblock 1509 * @max_reserved: highest reserved inode number 1510 * 1511 * Obtain an inode number that is unique on the system for a given 1512 * superblock. This is used by file systems that have no natural 1513 * permanent inode numbering system. An inode number is returned that 1514 * is higher than the reserved limit but unique. 1515 * 1516 * BUGS: 1517 * With a large number of inodes live on the file system this function 1518 * currently becomes quite slow. 1519 */ 1520 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1521 { 1522 /* 1523 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1524 * error if st_ino won't fit in target struct field. Use 32bit counter 1525 * here to attempt to avoid that. 1526 */ 1527 static DEFINE_SPINLOCK(iunique_lock); 1528 static unsigned int counter; 1529 ino_t res; 1530 1531 rcu_read_lock(); 1532 spin_lock(&iunique_lock); 1533 do { 1534 if (counter <= max_reserved) 1535 counter = max_reserved + 1; 1536 res = counter++; 1537 } while (!test_inode_iunique(sb, res)); 1538 spin_unlock(&iunique_lock); 1539 rcu_read_unlock(); 1540 1541 return res; 1542 } 1543 EXPORT_SYMBOL(iunique); 1544 1545 struct inode *igrab(struct inode *inode) 1546 { 1547 spin_lock(&inode->i_lock); 1548 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1549 __iget(inode); 1550 spin_unlock(&inode->i_lock); 1551 } else { 1552 spin_unlock(&inode->i_lock); 1553 /* 1554 * Handle the case where s_op->clear_inode is not been 1555 * called yet, and somebody is calling igrab 1556 * while the inode is getting freed. 1557 */ 1558 inode = NULL; 1559 } 1560 return inode; 1561 } 1562 EXPORT_SYMBOL(igrab); 1563 1564 /** 1565 * ilookup5_nowait - search for an inode in the inode cache 1566 * @sb: super block of file system to search 1567 * @hashval: hash value (usually inode number) to search for 1568 * @test: callback used for comparisons between inodes 1569 * @data: opaque data pointer to pass to @test 1570 * 1571 * Search for the inode specified by @hashval and @data in the inode cache. 1572 * If the inode is in the cache, the inode is returned with an incremented 1573 * reference count. 1574 * 1575 * Note: I_NEW is not waited upon so you have to be very careful what you do 1576 * with the returned inode. You probably should be using ilookup5() instead. 1577 * 1578 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1579 */ 1580 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1581 int (*test)(struct inode *, void *), void *data) 1582 { 1583 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1584 struct inode *inode; 1585 1586 spin_lock(&inode_hash_lock); 1587 inode = find_inode(sb, head, test, data, true); 1588 spin_unlock(&inode_hash_lock); 1589 1590 return IS_ERR(inode) ? NULL : inode; 1591 } 1592 EXPORT_SYMBOL(ilookup5_nowait); 1593 1594 /** 1595 * ilookup5 - search for an inode in the inode cache 1596 * @sb: super block of file system to search 1597 * @hashval: hash value (usually inode number) to search for 1598 * @test: callback used for comparisons between inodes 1599 * @data: opaque data pointer to pass to @test 1600 * 1601 * Search for the inode specified by @hashval and @data in the inode cache, 1602 * and if the inode is in the cache, return the inode with an incremented 1603 * reference count. Waits on I_NEW before returning the inode. 1604 * returned with an incremented reference count. 1605 * 1606 * This is a generalized version of ilookup() for file systems where the 1607 * inode number is not sufficient for unique identification of an inode. 1608 * 1609 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1610 */ 1611 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1612 int (*test)(struct inode *, void *), void *data) 1613 { 1614 struct inode *inode; 1615 1616 might_sleep(); 1617 1618 again: 1619 inode = ilookup5_nowait(sb, hashval, test, data); 1620 if (inode) { 1621 wait_on_inode(inode); 1622 if (unlikely(inode_unhashed(inode))) { 1623 iput(inode); 1624 goto again; 1625 } 1626 } 1627 return inode; 1628 } 1629 EXPORT_SYMBOL(ilookup5); 1630 1631 /** 1632 * ilookup - search for an inode in the inode cache 1633 * @sb: super block of file system to search 1634 * @ino: inode number to search for 1635 * 1636 * Search for the inode @ino in the inode cache, and if the inode is in the 1637 * cache, the inode is returned with an incremented reference count. 1638 */ 1639 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1640 { 1641 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1642 struct inode *inode; 1643 1644 might_sleep(); 1645 1646 again: 1647 inode = find_inode_fast(sb, head, ino, false); 1648 1649 if (inode) { 1650 if (IS_ERR(inode)) 1651 return NULL; 1652 wait_on_inode(inode); 1653 if (unlikely(inode_unhashed(inode))) { 1654 iput(inode); 1655 goto again; 1656 } 1657 } 1658 return inode; 1659 } 1660 EXPORT_SYMBOL(ilookup); 1661 1662 /** 1663 * find_inode_nowait - find an inode in the inode cache 1664 * @sb: super block of file system to search 1665 * @hashval: hash value (usually inode number) to search for 1666 * @match: callback used for comparisons between inodes 1667 * @data: opaque data pointer to pass to @match 1668 * 1669 * Search for the inode specified by @hashval and @data in the inode 1670 * cache, where the helper function @match will return 0 if the inode 1671 * does not match, 1 if the inode does match, and -1 if the search 1672 * should be stopped. The @match function must be responsible for 1673 * taking the i_lock spin_lock and checking i_state for an inode being 1674 * freed or being initialized, and incrementing the reference count 1675 * before returning 1. It also must not sleep, since it is called with 1676 * the inode_hash_lock spinlock held. 1677 * 1678 * This is a even more generalized version of ilookup5() when the 1679 * function must never block --- find_inode() can block in 1680 * __wait_on_freeing_inode() --- or when the caller can not increment 1681 * the reference count because the resulting iput() might cause an 1682 * inode eviction. The tradeoff is that the @match funtion must be 1683 * very carefully implemented. 1684 */ 1685 struct inode *find_inode_nowait(struct super_block *sb, 1686 unsigned long hashval, 1687 int (*match)(struct inode *, unsigned long, 1688 void *), 1689 void *data) 1690 { 1691 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1692 struct inode *inode, *ret_inode = NULL; 1693 int mval; 1694 1695 spin_lock(&inode_hash_lock); 1696 hlist_for_each_entry(inode, head, i_hash) { 1697 if (inode->i_sb != sb) 1698 continue; 1699 mval = match(inode, hashval, data); 1700 if (mval == 0) 1701 continue; 1702 if (mval == 1) 1703 ret_inode = inode; 1704 goto out; 1705 } 1706 out: 1707 spin_unlock(&inode_hash_lock); 1708 return ret_inode; 1709 } 1710 EXPORT_SYMBOL(find_inode_nowait); 1711 1712 /** 1713 * find_inode_rcu - find an inode in the inode cache 1714 * @sb: Super block of file system to search 1715 * @hashval: Key to hash 1716 * @test: Function to test match on an inode 1717 * @data: Data for test function 1718 * 1719 * Search for the inode specified by @hashval and @data in the inode cache, 1720 * where the helper function @test will return 0 if the inode does not match 1721 * and 1 if it does. The @test function must be responsible for taking the 1722 * i_lock spin_lock and checking i_state for an inode being freed or being 1723 * initialized. 1724 * 1725 * If successful, this will return the inode for which the @test function 1726 * returned 1 and NULL otherwise. 1727 * 1728 * The @test function is not permitted to take a ref on any inode presented. 1729 * It is also not permitted to sleep. 1730 * 1731 * The caller must hold the RCU read lock. 1732 */ 1733 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1734 int (*test)(struct inode *, void *), void *data) 1735 { 1736 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1737 struct inode *inode; 1738 1739 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1740 "suspicious find_inode_rcu() usage"); 1741 1742 hlist_for_each_entry_rcu(inode, head, i_hash) { 1743 if (inode->i_sb == sb && 1744 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1745 test(inode, data)) 1746 return inode; 1747 } 1748 return NULL; 1749 } 1750 EXPORT_SYMBOL(find_inode_rcu); 1751 1752 /** 1753 * find_inode_by_ino_rcu - Find an inode in the inode cache 1754 * @sb: Super block of file system to search 1755 * @ino: The inode number to match 1756 * 1757 * Search for the inode specified by @hashval and @data in the inode cache, 1758 * where the helper function @test will return 0 if the inode does not match 1759 * and 1 if it does. The @test function must be responsible for taking the 1760 * i_lock spin_lock and checking i_state for an inode being freed or being 1761 * initialized. 1762 * 1763 * If successful, this will return the inode for which the @test function 1764 * returned 1 and NULL otherwise. 1765 * 1766 * The @test function is not permitted to take a ref on any inode presented. 1767 * It is also not permitted to sleep. 1768 * 1769 * The caller must hold the RCU read lock. 1770 */ 1771 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1772 unsigned long ino) 1773 { 1774 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1775 struct inode *inode; 1776 1777 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1778 "suspicious find_inode_by_ino_rcu() usage"); 1779 1780 hlist_for_each_entry_rcu(inode, head, i_hash) { 1781 if (inode->i_ino == ino && 1782 inode->i_sb == sb && 1783 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1784 return inode; 1785 } 1786 return NULL; 1787 } 1788 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1789 1790 int insert_inode_locked(struct inode *inode) 1791 { 1792 struct super_block *sb = inode->i_sb; 1793 ino_t ino = inode->i_ino; 1794 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1795 1796 might_sleep(); 1797 1798 while (1) { 1799 struct inode *old = NULL; 1800 spin_lock(&inode_hash_lock); 1801 hlist_for_each_entry(old, head, i_hash) { 1802 if (old->i_ino != ino) 1803 continue; 1804 if (old->i_sb != sb) 1805 continue; 1806 spin_lock(&old->i_lock); 1807 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1808 spin_unlock(&old->i_lock); 1809 continue; 1810 } 1811 break; 1812 } 1813 if (likely(!old)) { 1814 spin_lock(&inode->i_lock); 1815 inode->i_state |= I_NEW | I_CREATING; 1816 hlist_add_head_rcu(&inode->i_hash, head); 1817 spin_unlock(&inode->i_lock); 1818 spin_unlock(&inode_hash_lock); 1819 return 0; 1820 } 1821 if (unlikely(old->i_state & I_CREATING)) { 1822 spin_unlock(&old->i_lock); 1823 spin_unlock(&inode_hash_lock); 1824 return -EBUSY; 1825 } 1826 __iget(old); 1827 spin_unlock(&old->i_lock); 1828 spin_unlock(&inode_hash_lock); 1829 wait_on_inode(old); 1830 if (unlikely(!inode_unhashed(old))) { 1831 iput(old); 1832 return -EBUSY; 1833 } 1834 iput(old); 1835 } 1836 } 1837 EXPORT_SYMBOL(insert_inode_locked); 1838 1839 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1840 int (*test)(struct inode *, void *), void *data) 1841 { 1842 struct inode *old; 1843 1844 might_sleep(); 1845 1846 inode->i_state |= I_CREATING; 1847 old = inode_insert5(inode, hashval, test, NULL, data); 1848 1849 if (old != inode) { 1850 iput(old); 1851 return -EBUSY; 1852 } 1853 return 0; 1854 } 1855 EXPORT_SYMBOL(insert_inode_locked4); 1856 1857 1858 int inode_just_drop(struct inode *inode) 1859 { 1860 return 1; 1861 } 1862 EXPORT_SYMBOL(inode_just_drop); 1863 1864 /* 1865 * Called when we're dropping the last reference 1866 * to an inode. 1867 * 1868 * Call the FS "drop_inode()" function, defaulting to 1869 * the legacy UNIX filesystem behaviour. If it tells 1870 * us to evict inode, do so. Otherwise, retain inode 1871 * in cache if fs is alive, sync and evict if fs is 1872 * shutting down. 1873 */ 1874 static void iput_final(struct inode *inode) 1875 { 1876 struct super_block *sb = inode->i_sb; 1877 const struct super_operations *op = inode->i_sb->s_op; 1878 unsigned long state; 1879 int drop; 1880 1881 WARN_ON(inode->i_state & I_NEW); 1882 1883 if (op->drop_inode) 1884 drop = op->drop_inode(inode); 1885 else 1886 drop = inode_generic_drop(inode); 1887 1888 if (!drop && 1889 !(inode->i_state & I_DONTCACHE) && 1890 (sb->s_flags & SB_ACTIVE)) { 1891 __inode_add_lru(inode, true); 1892 spin_unlock(&inode->i_lock); 1893 return; 1894 } 1895 1896 state = inode->i_state; 1897 if (!drop) { 1898 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1899 spin_unlock(&inode->i_lock); 1900 1901 write_inode_now(inode, 1); 1902 1903 spin_lock(&inode->i_lock); 1904 state = inode->i_state; 1905 WARN_ON(state & I_NEW); 1906 state &= ~I_WILL_FREE; 1907 } 1908 1909 WRITE_ONCE(inode->i_state, state | I_FREEING); 1910 if (!list_empty(&inode->i_lru)) 1911 inode_lru_list_del(inode); 1912 spin_unlock(&inode->i_lock); 1913 1914 evict(inode); 1915 } 1916 1917 /** 1918 * iput - put an inode 1919 * @inode: inode to put 1920 * 1921 * Puts an inode, dropping its usage count. If the inode use count hits 1922 * zero, the inode is then freed and may also be destroyed. 1923 * 1924 * Consequently, iput() can sleep. 1925 */ 1926 void iput(struct inode *inode) 1927 { 1928 might_sleep(); 1929 if (unlikely(!inode)) 1930 return; 1931 1932 retry: 1933 lockdep_assert_not_held(&inode->i_lock); 1934 VFS_BUG_ON_INODE(inode->i_state & I_CLEAR, inode); 1935 /* 1936 * Note this assert is technically racy as if the count is bogusly 1937 * equal to one, then two CPUs racing to further drop it can both 1938 * conclude it's fine. 1939 */ 1940 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 1, inode); 1941 1942 if (atomic_add_unless(&inode->i_count, -1, 1)) 1943 return; 1944 1945 if ((inode->i_state & I_DIRTY_TIME) && inode->i_nlink) { 1946 trace_writeback_lazytime_iput(inode); 1947 mark_inode_dirty_sync(inode); 1948 goto retry; 1949 } 1950 1951 spin_lock(&inode->i_lock); 1952 if (unlikely((inode->i_state & I_DIRTY_TIME) && inode->i_nlink)) { 1953 spin_unlock(&inode->i_lock); 1954 goto retry; 1955 } 1956 1957 if (!atomic_dec_and_test(&inode->i_count)) { 1958 spin_unlock(&inode->i_lock); 1959 return; 1960 } 1961 1962 /* 1963 * iput_final() drops ->i_lock, we can't assert on it as the inode may 1964 * be deallocated by the time the call returns. 1965 */ 1966 iput_final(inode); 1967 } 1968 EXPORT_SYMBOL(iput); 1969 1970 #ifdef CONFIG_BLOCK 1971 /** 1972 * bmap - find a block number in a file 1973 * @inode: inode owning the block number being requested 1974 * @block: pointer containing the block to find 1975 * 1976 * Replaces the value in ``*block`` with the block number on the device holding 1977 * corresponding to the requested block number in the file. 1978 * That is, asked for block 4 of inode 1 the function will replace the 1979 * 4 in ``*block``, with disk block relative to the disk start that holds that 1980 * block of the file. 1981 * 1982 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1983 * hole, returns 0 and ``*block`` is also set to 0. 1984 */ 1985 int bmap(struct inode *inode, sector_t *block) 1986 { 1987 if (!inode->i_mapping->a_ops->bmap) 1988 return -EINVAL; 1989 1990 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1991 return 0; 1992 } 1993 EXPORT_SYMBOL(bmap); 1994 #endif 1995 1996 /* 1997 * With relative atime, only update atime if the previous atime is 1998 * earlier than or equal to either the ctime or mtime, 1999 * or if at least a day has passed since the last atime update. 2000 */ 2001 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode, 2002 struct timespec64 now) 2003 { 2004 struct timespec64 atime, mtime, ctime; 2005 2006 if (!(mnt->mnt_flags & MNT_RELATIME)) 2007 return true; 2008 /* 2009 * Is mtime younger than or equal to atime? If yes, update atime: 2010 */ 2011 atime = inode_get_atime(inode); 2012 mtime = inode_get_mtime(inode); 2013 if (timespec64_compare(&mtime, &atime) >= 0) 2014 return true; 2015 /* 2016 * Is ctime younger than or equal to atime? If yes, update atime: 2017 */ 2018 ctime = inode_get_ctime(inode); 2019 if (timespec64_compare(&ctime, &atime) >= 0) 2020 return true; 2021 2022 /* 2023 * Is the previous atime value older than a day? If yes, 2024 * update atime: 2025 */ 2026 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60) 2027 return true; 2028 /* 2029 * Good, we can skip the atime update: 2030 */ 2031 return false; 2032 } 2033 2034 /** 2035 * inode_update_timestamps - update the timestamps on the inode 2036 * @inode: inode to be updated 2037 * @flags: S_* flags that needed to be updated 2038 * 2039 * The update_time function is called when an inode's timestamps need to be 2040 * updated for a read or write operation. This function handles updating the 2041 * actual timestamps. It's up to the caller to ensure that the inode is marked 2042 * dirty appropriately. 2043 * 2044 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 2045 * attempt to update all three of them. S_ATIME updates can be handled 2046 * independently of the rest. 2047 * 2048 * Returns a set of S_* flags indicating which values changed. 2049 */ 2050 int inode_update_timestamps(struct inode *inode, int flags) 2051 { 2052 int updated = 0; 2053 struct timespec64 now; 2054 2055 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 2056 struct timespec64 ctime = inode_get_ctime(inode); 2057 struct timespec64 mtime = inode_get_mtime(inode); 2058 2059 now = inode_set_ctime_current(inode); 2060 if (!timespec64_equal(&now, &ctime)) 2061 updated |= S_CTIME; 2062 if (!timespec64_equal(&now, &mtime)) { 2063 inode_set_mtime_to_ts(inode, now); 2064 updated |= S_MTIME; 2065 } 2066 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 2067 updated |= S_VERSION; 2068 } else { 2069 now = current_time(inode); 2070 } 2071 2072 if (flags & S_ATIME) { 2073 struct timespec64 atime = inode_get_atime(inode); 2074 2075 if (!timespec64_equal(&now, &atime)) { 2076 inode_set_atime_to_ts(inode, now); 2077 updated |= S_ATIME; 2078 } 2079 } 2080 return updated; 2081 } 2082 EXPORT_SYMBOL(inode_update_timestamps); 2083 2084 /** 2085 * generic_update_time - update the timestamps on the inode 2086 * @inode: inode to be updated 2087 * @flags: S_* flags that needed to be updated 2088 * 2089 * The update_time function is called when an inode's timestamps need to be 2090 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 2091 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 2092 * updates can be handled done independently of the rest. 2093 * 2094 * Returns a S_* mask indicating which fields were updated. 2095 */ 2096 int generic_update_time(struct inode *inode, int flags) 2097 { 2098 int updated = inode_update_timestamps(inode, flags); 2099 int dirty_flags = 0; 2100 2101 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 2102 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 2103 if (updated & S_VERSION) 2104 dirty_flags |= I_DIRTY_SYNC; 2105 __mark_inode_dirty(inode, dirty_flags); 2106 return updated; 2107 } 2108 EXPORT_SYMBOL(generic_update_time); 2109 2110 /* 2111 * This does the actual work of updating an inodes time or version. Must have 2112 * had called mnt_want_write() before calling this. 2113 */ 2114 int inode_update_time(struct inode *inode, int flags) 2115 { 2116 if (inode->i_op->update_time) 2117 return inode->i_op->update_time(inode, flags); 2118 generic_update_time(inode, flags); 2119 return 0; 2120 } 2121 EXPORT_SYMBOL(inode_update_time); 2122 2123 /** 2124 * atime_needs_update - update the access time 2125 * @path: the &struct path to update 2126 * @inode: inode to update 2127 * 2128 * Update the accessed time on an inode and mark it for writeback. 2129 * This function automatically handles read only file systems and media, 2130 * as well as the "noatime" flag and inode specific "noatime" markers. 2131 */ 2132 bool atime_needs_update(const struct path *path, struct inode *inode) 2133 { 2134 struct vfsmount *mnt = path->mnt; 2135 struct timespec64 now, atime; 2136 2137 if (inode->i_flags & S_NOATIME) 2138 return false; 2139 2140 /* Atime updates will likely cause i_uid and i_gid to be written 2141 * back improprely if their true value is unknown to the vfs. 2142 */ 2143 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2144 return false; 2145 2146 if (IS_NOATIME(inode)) 2147 return false; 2148 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2149 return false; 2150 2151 if (mnt->mnt_flags & MNT_NOATIME) 2152 return false; 2153 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2154 return false; 2155 2156 now = current_time(inode); 2157 2158 if (!relatime_need_update(mnt, inode, now)) 2159 return false; 2160 2161 atime = inode_get_atime(inode); 2162 if (timespec64_equal(&atime, &now)) 2163 return false; 2164 2165 return true; 2166 } 2167 2168 void touch_atime(const struct path *path) 2169 { 2170 struct vfsmount *mnt = path->mnt; 2171 struct inode *inode = d_inode(path->dentry); 2172 2173 if (!atime_needs_update(path, inode)) 2174 return; 2175 2176 if (!sb_start_write_trylock(inode->i_sb)) 2177 return; 2178 2179 if (mnt_get_write_access(mnt) != 0) 2180 goto skip_update; 2181 /* 2182 * File systems can error out when updating inodes if they need to 2183 * allocate new space to modify an inode (such is the case for 2184 * Btrfs), but since we touch atime while walking down the path we 2185 * really don't care if we failed to update the atime of the file, 2186 * so just ignore the return value. 2187 * We may also fail on filesystems that have the ability to make parts 2188 * of the fs read only, e.g. subvolumes in Btrfs. 2189 */ 2190 inode_update_time(inode, S_ATIME); 2191 mnt_put_write_access(mnt); 2192 skip_update: 2193 sb_end_write(inode->i_sb); 2194 } 2195 EXPORT_SYMBOL(touch_atime); 2196 2197 /* 2198 * Return mask of changes for notify_change() that need to be done as a 2199 * response to write or truncate. Return 0 if nothing has to be changed. 2200 * Negative value on error (change should be denied). 2201 */ 2202 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2203 struct dentry *dentry) 2204 { 2205 struct inode *inode = d_inode(dentry); 2206 int mask = 0; 2207 int ret; 2208 2209 if (IS_NOSEC(inode)) 2210 return 0; 2211 2212 mask = setattr_should_drop_suidgid(idmap, inode); 2213 ret = security_inode_need_killpriv(dentry); 2214 if (ret < 0) 2215 return ret; 2216 if (ret) 2217 mask |= ATTR_KILL_PRIV; 2218 return mask; 2219 } 2220 2221 static int __remove_privs(struct mnt_idmap *idmap, 2222 struct dentry *dentry, int kill) 2223 { 2224 struct iattr newattrs; 2225 2226 newattrs.ia_valid = ATTR_FORCE | kill; 2227 /* 2228 * Note we call this on write, so notify_change will not 2229 * encounter any conflicting delegations: 2230 */ 2231 return notify_change(idmap, dentry, &newattrs, NULL); 2232 } 2233 2234 static int file_remove_privs_flags(struct file *file, unsigned int flags) 2235 { 2236 struct dentry *dentry = file_dentry(file); 2237 struct inode *inode = file_inode(file); 2238 int error = 0; 2239 int kill; 2240 2241 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2242 return 0; 2243 2244 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2245 if (kill < 0) 2246 return kill; 2247 2248 if (kill) { 2249 if (flags & IOCB_NOWAIT) 2250 return -EAGAIN; 2251 2252 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2253 } 2254 2255 if (!error) 2256 inode_has_no_xattr(inode); 2257 return error; 2258 } 2259 2260 /** 2261 * file_remove_privs - remove special file privileges (suid, capabilities) 2262 * @file: file to remove privileges from 2263 * 2264 * When file is modified by a write or truncation ensure that special 2265 * file privileges are removed. 2266 * 2267 * Return: 0 on success, negative errno on failure. 2268 */ 2269 int file_remove_privs(struct file *file) 2270 { 2271 return file_remove_privs_flags(file, 0); 2272 } 2273 EXPORT_SYMBOL(file_remove_privs); 2274 2275 /** 2276 * current_time - Return FS time (possibly fine-grained) 2277 * @inode: inode. 2278 * 2279 * Return the current time truncated to the time granularity supported by 2280 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged 2281 * as having been QUERIED, get a fine-grained timestamp, but don't update 2282 * the floor. 2283 * 2284 * For a multigrain inode, this is effectively an estimate of the timestamp 2285 * that a file would receive. An actual update must go through 2286 * inode_set_ctime_current(). 2287 */ 2288 struct timespec64 current_time(struct inode *inode) 2289 { 2290 struct timespec64 now; 2291 u32 cns; 2292 2293 ktime_get_coarse_real_ts64_mg(&now); 2294 2295 if (!is_mgtime(inode)) 2296 goto out; 2297 2298 /* If nothing has queried it, then coarse time is fine */ 2299 cns = smp_load_acquire(&inode->i_ctime_nsec); 2300 if (cns & I_CTIME_QUERIED) { 2301 /* 2302 * If there is no apparent change, then get a fine-grained 2303 * timestamp. 2304 */ 2305 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED)) 2306 ktime_get_real_ts64(&now); 2307 } 2308 out: 2309 return timestamp_truncate(now, inode); 2310 } 2311 EXPORT_SYMBOL(current_time); 2312 2313 static int inode_needs_update_time(struct inode *inode) 2314 { 2315 struct timespec64 now, ts; 2316 int sync_it = 0; 2317 2318 /* First try to exhaust all avenues to not sync */ 2319 if (IS_NOCMTIME(inode)) 2320 return 0; 2321 2322 now = current_time(inode); 2323 2324 ts = inode_get_mtime(inode); 2325 if (!timespec64_equal(&ts, &now)) 2326 sync_it |= S_MTIME; 2327 2328 ts = inode_get_ctime(inode); 2329 if (!timespec64_equal(&ts, &now)) 2330 sync_it |= S_CTIME; 2331 2332 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2333 sync_it |= S_VERSION; 2334 2335 return sync_it; 2336 } 2337 2338 static int __file_update_time(struct file *file, int sync_mode) 2339 { 2340 int ret = 0; 2341 struct inode *inode = file_inode(file); 2342 2343 /* try to update time settings */ 2344 if (!mnt_get_write_access_file(file)) { 2345 ret = inode_update_time(inode, sync_mode); 2346 mnt_put_write_access_file(file); 2347 } 2348 2349 return ret; 2350 } 2351 2352 /** 2353 * file_update_time - update mtime and ctime time 2354 * @file: file accessed 2355 * 2356 * Update the mtime and ctime members of an inode and mark the inode for 2357 * writeback. Note that this function is meant exclusively for usage in 2358 * the file write path of filesystems, and filesystems may choose to 2359 * explicitly ignore updates via this function with the _NOCMTIME inode 2360 * flag, e.g. for network filesystem where these imestamps are handled 2361 * by the server. This can return an error for file systems who need to 2362 * allocate space in order to update an inode. 2363 * 2364 * Return: 0 on success, negative errno on failure. 2365 */ 2366 int file_update_time(struct file *file) 2367 { 2368 int ret; 2369 struct inode *inode = file_inode(file); 2370 2371 ret = inode_needs_update_time(inode); 2372 if (ret <= 0) 2373 return ret; 2374 2375 return __file_update_time(file, ret); 2376 } 2377 EXPORT_SYMBOL(file_update_time); 2378 2379 /** 2380 * file_modified_flags - handle mandated vfs changes when modifying a file 2381 * @file: file that was modified 2382 * @flags: kiocb flags 2383 * 2384 * When file has been modified ensure that special 2385 * file privileges are removed and time settings are updated. 2386 * 2387 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2388 * time settings will not be updated. It will return -EAGAIN. 2389 * 2390 * Context: Caller must hold the file's inode lock. 2391 * 2392 * Return: 0 on success, negative errno on failure. 2393 */ 2394 static int file_modified_flags(struct file *file, int flags) 2395 { 2396 int ret; 2397 struct inode *inode = file_inode(file); 2398 2399 /* 2400 * Clear the security bits if the process is not being run by root. 2401 * This keeps people from modifying setuid and setgid binaries. 2402 */ 2403 ret = file_remove_privs_flags(file, flags); 2404 if (ret) 2405 return ret; 2406 2407 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2408 return 0; 2409 2410 ret = inode_needs_update_time(inode); 2411 if (ret <= 0) 2412 return ret; 2413 if (flags & IOCB_NOWAIT) 2414 return -EAGAIN; 2415 2416 return __file_update_time(file, ret); 2417 } 2418 2419 /** 2420 * file_modified - handle mandated vfs changes when modifying a file 2421 * @file: file that was modified 2422 * 2423 * When file has been modified ensure that special 2424 * file privileges are removed and time settings are updated. 2425 * 2426 * Context: Caller must hold the file's inode lock. 2427 * 2428 * Return: 0 on success, negative errno on failure. 2429 */ 2430 int file_modified(struct file *file) 2431 { 2432 return file_modified_flags(file, 0); 2433 } 2434 EXPORT_SYMBOL(file_modified); 2435 2436 /** 2437 * kiocb_modified - handle mandated vfs changes when modifying a file 2438 * @iocb: iocb that was modified 2439 * 2440 * When file has been modified ensure that special 2441 * file privileges are removed and time settings are updated. 2442 * 2443 * Context: Caller must hold the file's inode lock. 2444 * 2445 * Return: 0 on success, negative errno on failure. 2446 */ 2447 int kiocb_modified(struct kiocb *iocb) 2448 { 2449 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2450 } 2451 EXPORT_SYMBOL_GPL(kiocb_modified); 2452 2453 int inode_needs_sync(struct inode *inode) 2454 { 2455 if (IS_SYNC(inode)) 2456 return 1; 2457 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2458 return 1; 2459 return 0; 2460 } 2461 EXPORT_SYMBOL(inode_needs_sync); 2462 2463 /* 2464 * If we try to find an inode in the inode hash while it is being 2465 * deleted, we have to wait until the filesystem completes its 2466 * deletion before reporting that it isn't found. This function waits 2467 * until the deletion _might_ have completed. Callers are responsible 2468 * to recheck inode state. 2469 * 2470 * It doesn't matter if I_NEW is not set initially, a call to 2471 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2472 * will DTRT. 2473 */ 2474 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked) 2475 { 2476 struct wait_bit_queue_entry wqe; 2477 struct wait_queue_head *wq_head; 2478 2479 /* 2480 * Handle racing against evict(), see that routine for more details. 2481 */ 2482 if (unlikely(inode_unhashed(inode))) { 2483 WARN_ON(is_inode_hash_locked); 2484 spin_unlock(&inode->i_lock); 2485 return; 2486 } 2487 2488 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW); 2489 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 2490 spin_unlock(&inode->i_lock); 2491 rcu_read_unlock(); 2492 if (is_inode_hash_locked) 2493 spin_unlock(&inode_hash_lock); 2494 schedule(); 2495 finish_wait(wq_head, &wqe.wq_entry); 2496 if (is_inode_hash_locked) 2497 spin_lock(&inode_hash_lock); 2498 rcu_read_lock(); 2499 } 2500 2501 static __initdata unsigned long ihash_entries; 2502 static int __init set_ihash_entries(char *str) 2503 { 2504 if (!str) 2505 return 0; 2506 ihash_entries = simple_strtoul(str, &str, 0); 2507 return 1; 2508 } 2509 __setup("ihash_entries=", set_ihash_entries); 2510 2511 /* 2512 * Initialize the waitqueues and inode hash table. 2513 */ 2514 void __init inode_init_early(void) 2515 { 2516 /* If hashes are distributed across NUMA nodes, defer 2517 * hash allocation until vmalloc space is available. 2518 */ 2519 if (hashdist) 2520 return; 2521 2522 inode_hashtable = 2523 alloc_large_system_hash("Inode-cache", 2524 sizeof(struct hlist_head), 2525 ihash_entries, 2526 14, 2527 HASH_EARLY | HASH_ZERO, 2528 &i_hash_shift, 2529 &i_hash_mask, 2530 0, 2531 0); 2532 } 2533 2534 void __init inode_init(void) 2535 { 2536 /* inode slab cache */ 2537 inode_cachep = kmem_cache_create("inode_cache", 2538 sizeof(struct inode), 2539 0, 2540 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2541 SLAB_ACCOUNT), 2542 init_once); 2543 2544 /* Hash may have been set up in inode_init_early */ 2545 if (!hashdist) 2546 return; 2547 2548 inode_hashtable = 2549 alloc_large_system_hash("Inode-cache", 2550 sizeof(struct hlist_head), 2551 ihash_entries, 2552 14, 2553 HASH_ZERO, 2554 &i_hash_shift, 2555 &i_hash_mask, 2556 0, 2557 0); 2558 } 2559 2560 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2561 { 2562 inode->i_mode = mode; 2563 switch (inode->i_mode & S_IFMT) { 2564 case S_IFCHR: 2565 inode->i_fop = &def_chr_fops; 2566 inode->i_rdev = rdev; 2567 break; 2568 case S_IFBLK: 2569 if (IS_ENABLED(CONFIG_BLOCK)) 2570 inode->i_fop = &def_blk_fops; 2571 inode->i_rdev = rdev; 2572 break; 2573 case S_IFIFO: 2574 inode->i_fop = &pipefifo_fops; 2575 break; 2576 case S_IFSOCK: 2577 /* leave it no_open_fops */ 2578 break; 2579 default: 2580 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2581 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2582 inode->i_ino); 2583 break; 2584 } 2585 } 2586 EXPORT_SYMBOL(init_special_inode); 2587 2588 /** 2589 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2590 * @idmap: idmap of the mount the inode was created from 2591 * @inode: New inode 2592 * @dir: Directory inode 2593 * @mode: mode of the new inode 2594 * 2595 * If the inode has been created through an idmapped mount the idmap of 2596 * the vfsmount must be passed through @idmap. This function will then take 2597 * care to map the inode according to @idmap before checking permissions 2598 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2599 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2600 */ 2601 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2602 const struct inode *dir, umode_t mode) 2603 { 2604 inode_fsuid_set(inode, idmap); 2605 if (dir && dir->i_mode & S_ISGID) { 2606 inode->i_gid = dir->i_gid; 2607 2608 /* Directories are special, and always inherit S_ISGID */ 2609 if (S_ISDIR(mode)) 2610 mode |= S_ISGID; 2611 } else 2612 inode_fsgid_set(inode, idmap); 2613 inode->i_mode = mode; 2614 } 2615 EXPORT_SYMBOL(inode_init_owner); 2616 2617 /** 2618 * inode_owner_or_capable - check current task permissions to inode 2619 * @idmap: idmap of the mount the inode was found from 2620 * @inode: inode being checked 2621 * 2622 * Return true if current either has CAP_FOWNER in a namespace with the 2623 * inode owner uid mapped, or owns the file. 2624 * 2625 * If the inode has been found through an idmapped mount the idmap of 2626 * the vfsmount must be passed through @idmap. This function will then take 2627 * care to map the inode according to @idmap before checking permissions. 2628 * On non-idmapped mounts or if permission checking is to be performed on the 2629 * raw inode simply pass @nop_mnt_idmap. 2630 */ 2631 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2632 const struct inode *inode) 2633 { 2634 vfsuid_t vfsuid; 2635 struct user_namespace *ns; 2636 2637 vfsuid = i_uid_into_vfsuid(idmap, inode); 2638 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2639 return true; 2640 2641 ns = current_user_ns(); 2642 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2643 return true; 2644 return false; 2645 } 2646 EXPORT_SYMBOL(inode_owner_or_capable); 2647 2648 /* 2649 * Direct i/o helper functions 2650 */ 2651 bool inode_dio_finished(const struct inode *inode) 2652 { 2653 return atomic_read(&inode->i_dio_count) == 0; 2654 } 2655 EXPORT_SYMBOL(inode_dio_finished); 2656 2657 /** 2658 * inode_dio_wait - wait for outstanding DIO requests to finish 2659 * @inode: inode to wait for 2660 * 2661 * Waits for all pending direct I/O requests to finish so that we can 2662 * proceed with a truncate or equivalent operation. 2663 * 2664 * Must be called under a lock that serializes taking new references 2665 * to i_dio_count, usually by inode->i_rwsem. 2666 */ 2667 void inode_dio_wait(struct inode *inode) 2668 { 2669 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode)); 2670 } 2671 EXPORT_SYMBOL(inode_dio_wait); 2672 2673 void inode_dio_wait_interruptible(struct inode *inode) 2674 { 2675 wait_var_event_interruptible(&inode->i_dio_count, 2676 inode_dio_finished(inode)); 2677 } 2678 EXPORT_SYMBOL(inode_dio_wait_interruptible); 2679 2680 /* 2681 * inode_set_flags - atomically set some inode flags 2682 * 2683 * Note: the caller should be holding i_rwsem exclusively, or else be sure that 2684 * they have exclusive access to the inode structure (i.e., while the 2685 * inode is being instantiated). The reason for the cmpxchg() loop 2686 * --- which wouldn't be necessary if all code paths which modify 2687 * i_flags actually followed this rule, is that there is at least one 2688 * code path which doesn't today so we use cmpxchg() out of an abundance 2689 * of caution. 2690 * 2691 * In the long run, i_rwsem is overkill, and we should probably look 2692 * at using the i_lock spinlock to protect i_flags, and then make sure 2693 * it is so documented in include/linux/fs.h and that all code follows 2694 * the locking convention!! 2695 */ 2696 void inode_set_flags(struct inode *inode, unsigned int flags, 2697 unsigned int mask) 2698 { 2699 WARN_ON_ONCE(flags & ~mask); 2700 set_mask_bits(&inode->i_flags, mask, flags); 2701 } 2702 EXPORT_SYMBOL(inode_set_flags); 2703 2704 void inode_nohighmem(struct inode *inode) 2705 { 2706 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2707 } 2708 EXPORT_SYMBOL(inode_nohighmem); 2709 2710 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts) 2711 { 2712 trace_inode_set_ctime_to_ts(inode, &ts); 2713 set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec); 2714 inode->i_ctime_sec = ts.tv_sec; 2715 inode->i_ctime_nsec = ts.tv_nsec; 2716 return ts; 2717 } 2718 EXPORT_SYMBOL(inode_set_ctime_to_ts); 2719 2720 /** 2721 * timestamp_truncate - Truncate timespec to a granularity 2722 * @t: Timespec 2723 * @inode: inode being updated 2724 * 2725 * Truncate a timespec to the granularity supported by the fs 2726 * containing the inode. Always rounds down. gran must 2727 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2728 */ 2729 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2730 { 2731 struct super_block *sb = inode->i_sb; 2732 unsigned int gran = sb->s_time_gran; 2733 2734 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2735 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2736 t.tv_nsec = 0; 2737 2738 /* Avoid division in the common cases 1 ns and 1 s. */ 2739 if (gran == 1) 2740 ; /* nothing */ 2741 else if (gran == NSEC_PER_SEC) 2742 t.tv_nsec = 0; 2743 else if (gran > 1 && gran < NSEC_PER_SEC) 2744 t.tv_nsec -= t.tv_nsec % gran; 2745 else 2746 WARN(1, "invalid file time granularity: %u", gran); 2747 return t; 2748 } 2749 EXPORT_SYMBOL(timestamp_truncate); 2750 2751 /** 2752 * inode_set_ctime_current - set the ctime to current_time 2753 * @inode: inode 2754 * 2755 * Set the inode's ctime to the current value for the inode. Returns the 2756 * current value that was assigned. If this is not a multigrain inode, then we 2757 * set it to the later of the coarse time and floor value. 2758 * 2759 * If it is multigrain, then we first see if the coarse-grained timestamp is 2760 * distinct from what is already there. If so, then use that. Otherwise, get a 2761 * fine-grained timestamp. 2762 * 2763 * After that, try to swap the new value into i_ctime_nsec. Accept the 2764 * resulting ctime, regardless of the outcome of the swap. If it has 2765 * already been replaced, then that timestamp is later than the earlier 2766 * unacceptable one, and is thus acceptable. 2767 */ 2768 struct timespec64 inode_set_ctime_current(struct inode *inode) 2769 { 2770 struct timespec64 now; 2771 u32 cns, cur; 2772 2773 ktime_get_coarse_real_ts64_mg(&now); 2774 now = timestamp_truncate(now, inode); 2775 2776 /* Just return that if this is not a multigrain fs */ 2777 if (!is_mgtime(inode)) { 2778 inode_set_ctime_to_ts(inode, now); 2779 goto out; 2780 } 2781 2782 /* 2783 * A fine-grained time is only needed if someone has queried 2784 * for timestamps, and the current coarse grained time isn't 2785 * later than what's already there. 2786 */ 2787 cns = smp_load_acquire(&inode->i_ctime_nsec); 2788 if (cns & I_CTIME_QUERIED) { 2789 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec, 2790 .tv_nsec = cns & ~I_CTIME_QUERIED }; 2791 2792 if (timespec64_compare(&now, &ctime) <= 0) { 2793 ktime_get_real_ts64_mg(&now); 2794 now = timestamp_truncate(now, inode); 2795 mgtime_counter_inc(mg_fine_stamps); 2796 } 2797 } 2798 mgtime_counter_inc(mg_ctime_updates); 2799 2800 /* No need to cmpxchg if it's exactly the same */ 2801 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) { 2802 trace_ctime_xchg_skip(inode, &now); 2803 goto out; 2804 } 2805 cur = cns; 2806 retry: 2807 /* Try to swap the nsec value into place. */ 2808 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) { 2809 /* If swap occurred, then we're (mostly) done */ 2810 inode->i_ctime_sec = now.tv_sec; 2811 trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur); 2812 mgtime_counter_inc(mg_ctime_swaps); 2813 } else { 2814 /* 2815 * Was the change due to someone marking the old ctime QUERIED? 2816 * If so then retry the swap. This can only happen once since 2817 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2818 * with a new ctime. 2819 */ 2820 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) { 2821 cns = cur; 2822 goto retry; 2823 } 2824 /* Otherwise, keep the existing ctime */ 2825 now.tv_sec = inode->i_ctime_sec; 2826 now.tv_nsec = cur & ~I_CTIME_QUERIED; 2827 } 2828 out: 2829 return now; 2830 } 2831 EXPORT_SYMBOL(inode_set_ctime_current); 2832 2833 /** 2834 * inode_set_ctime_deleg - try to update the ctime on a delegated inode 2835 * @inode: inode to update 2836 * @update: timespec64 to set the ctime 2837 * 2838 * Attempt to atomically update the ctime on behalf of a delegation holder. 2839 * 2840 * The nfs server can call back the holder of a delegation to get updated 2841 * inode attributes, including the mtime. When updating the mtime, update 2842 * the ctime to a value at least equal to that. 2843 * 2844 * This can race with concurrent updates to the inode, in which 2845 * case the update is skipped. 2846 * 2847 * Note that this works even when multigrain timestamps are not enabled, 2848 * so it is used in either case. 2849 */ 2850 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update) 2851 { 2852 struct timespec64 now, cur_ts; 2853 u32 cur, old; 2854 2855 /* pairs with try_cmpxchg below */ 2856 cur = smp_load_acquire(&inode->i_ctime_nsec); 2857 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2858 cur_ts.tv_sec = inode->i_ctime_sec; 2859 2860 /* If the update is older than the existing value, skip it. */ 2861 if (timespec64_compare(&update, &cur_ts) <= 0) 2862 return cur_ts; 2863 2864 ktime_get_coarse_real_ts64_mg(&now); 2865 2866 /* Clamp the update to "now" if it's in the future */ 2867 if (timespec64_compare(&update, &now) > 0) 2868 update = now; 2869 2870 update = timestamp_truncate(update, inode); 2871 2872 /* No need to update if the values are already the same */ 2873 if (timespec64_equal(&update, &cur_ts)) 2874 return cur_ts; 2875 2876 /* 2877 * Try to swap the nsec value into place. If it fails, that means 2878 * it raced with an update due to a write or similar activity. That 2879 * stamp takes precedence, so just skip the update. 2880 */ 2881 retry: 2882 old = cur; 2883 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) { 2884 inode->i_ctime_sec = update.tv_sec; 2885 mgtime_counter_inc(mg_ctime_swaps); 2886 return update; 2887 } 2888 2889 /* 2890 * Was the change due to another task marking the old ctime QUERIED? 2891 * 2892 * If so, then retry the swap. This can only happen once since 2893 * the only way to clear I_CTIME_QUERIED is to stamp the inode 2894 * with a new ctime. 2895 */ 2896 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED))) 2897 goto retry; 2898 2899 /* Otherwise, it was a new timestamp. */ 2900 cur_ts.tv_sec = inode->i_ctime_sec; 2901 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED; 2902 return cur_ts; 2903 } 2904 EXPORT_SYMBOL(inode_set_ctime_deleg); 2905 2906 /** 2907 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2908 * @idmap: idmap of the mount @inode was found from 2909 * @inode: inode to check 2910 * @vfsgid: the new/current vfsgid of @inode 2911 * 2912 * Check whether @vfsgid is in the caller's group list or if the caller is 2913 * privileged with CAP_FSETID over @inode. This can be used to determine 2914 * whether the setgid bit can be kept or must be dropped. 2915 * 2916 * Return: true if the caller is sufficiently privileged, false if not. 2917 */ 2918 bool in_group_or_capable(struct mnt_idmap *idmap, 2919 const struct inode *inode, vfsgid_t vfsgid) 2920 { 2921 if (vfsgid_in_group_p(vfsgid)) 2922 return true; 2923 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2924 return true; 2925 return false; 2926 } 2927 EXPORT_SYMBOL(in_group_or_capable); 2928 2929 /** 2930 * mode_strip_sgid - handle the sgid bit for non-directories 2931 * @idmap: idmap of the mount the inode was created from 2932 * @dir: parent directory inode 2933 * @mode: mode of the file to be created in @dir 2934 * 2935 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2936 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2937 * either in the group of the parent directory or they have CAP_FSETID 2938 * in their user namespace and are privileged over the parent directory. 2939 * In all other cases, strip the S_ISGID bit from @mode. 2940 * 2941 * Return: the new mode to use for the file 2942 */ 2943 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2944 const struct inode *dir, umode_t mode) 2945 { 2946 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2947 return mode; 2948 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2949 return mode; 2950 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2951 return mode; 2952 return mode & ~S_ISGID; 2953 } 2954 EXPORT_SYMBOL(mode_strip_sgid); 2955 2956 #ifdef CONFIG_DEBUG_VFS 2957 /* 2958 * Dump an inode. 2959 * 2960 * TODO: add a proper inode dumping routine, this is a stub to get debug off the 2961 * ground. 2962 * 2963 * TODO: handle getting to fs type with get_kernel_nofault()? 2964 * See dump_mapping() above. 2965 */ 2966 void dump_inode(struct inode *inode, const char *reason) 2967 { 2968 struct super_block *sb = inode->i_sb; 2969 2970 pr_warn("%s encountered for inode %px\n" 2971 "fs %s mode %ho opflags 0x%hx flags 0x%x state 0x%x count %d\n", 2972 reason, inode, sb->s_type->name, inode->i_mode, inode->i_opflags, 2973 inode->i_flags, inode->i_state, atomic_read(&inode->i_count)); 2974 } 2975 2976 EXPORT_SYMBOL(dump_inode); 2977 #endif 2978