xref: /linux/fs/inode.c (revision 063246641d4a9e9de84a2466fbad50112faf88dc)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode->i_sb->s_inode_list_lock protects:
32  *   inode->i_sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode->i_sb->s_inode_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static long get_nr_inodes(void)
79 {
80 	int i;
81 	long sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline long get_nr_inodes_unused(void)
88 {
89 	int i;
90 	long sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 long get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 	return -ENXIO;
119 }
120 
121 /**
122  * inode_init_always - perform inode structure initialisation
123  * @sb: superblock inode belongs to
124  * @inode: inode to initialise
125  *
126  * These are initializations that need to be done on every inode
127  * allocation as the fields are not initialised by slab allocation.
128  */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 	static const struct inode_operations empty_iops;
132 	static const struct file_operations no_open_fops = {.open = no_open};
133 	struct address_space *const mapping = &inode->i_data;
134 
135 	inode->i_sb = sb;
136 	inode->i_blkbits = sb->s_blocksize_bits;
137 	inode->i_flags = 0;
138 	atomic_set(&inode->i_count, 1);
139 	inode->i_op = &empty_iops;
140 	inode->i_fop = &no_open_fops;
141 	inode->__i_nlink = 1;
142 	inode->i_opflags = 0;
143 	if (sb->s_xattr)
144 		inode->i_opflags |= IOP_XATTR;
145 	i_uid_write(inode, 0);
146 	i_gid_write(inode, 0);
147 	atomic_set(&inode->i_writecount, 0);
148 	inode->i_size = 0;
149 	inode->i_blocks = 0;
150 	inode->i_bytes = 0;
151 	inode->i_generation = 0;
152 	inode->i_pipe = NULL;
153 	inode->i_bdev = NULL;
154 	inode->i_cdev = NULL;
155 	inode->i_link = NULL;
156 	inode->i_dir_seq = 0;
157 	inode->i_rdev = 0;
158 	inode->dirtied_when = 0;
159 
160 #ifdef CONFIG_CGROUP_WRITEBACK
161 	inode->i_wb_frn_winner = 0;
162 	inode->i_wb_frn_avg_time = 0;
163 	inode->i_wb_frn_history = 0;
164 #endif
165 
166 	if (security_inode_alloc(inode))
167 		goto out;
168 	spin_lock_init(&inode->i_lock);
169 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
170 
171 	init_rwsem(&inode->i_rwsem);
172 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
173 
174 	atomic_set(&inode->i_dio_count, 0);
175 
176 	mapping->a_ops = &empty_aops;
177 	mapping->host = inode;
178 	mapping->flags = 0;
179 	atomic_set(&mapping->i_mmap_writable, 0);
180 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
181 	mapping->private_data = NULL;
182 	mapping->writeback_index = 0;
183 	inode->i_private = NULL;
184 	inode->i_mapping = mapping;
185 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189 
190 #ifdef CONFIG_FSNOTIFY
191 	inode->i_fsnotify_mask = 0;
192 #endif
193 	inode->i_flctx = NULL;
194 	this_cpu_inc(nr_inodes);
195 
196 	return 0;
197 out:
198 	return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201 
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 	struct inode *inode;
205 
206 	if (sb->s_op->alloc_inode)
207 		inode = sb->s_op->alloc_inode(sb);
208 	else
209 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210 
211 	if (!inode)
212 		return NULL;
213 
214 	if (unlikely(inode_init_always(sb, inode))) {
215 		if (inode->i_sb->s_op->destroy_inode)
216 			inode->i_sb->s_op->destroy_inode(inode);
217 		else
218 			kmem_cache_free(inode_cachep, inode);
219 		return NULL;
220 	}
221 
222 	return inode;
223 }
224 
225 void free_inode_nonrcu(struct inode *inode)
226 {
227 	kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230 
231 void __destroy_inode(struct inode *inode)
232 {
233 	BUG_ON(inode_has_buffers(inode));
234 	inode_detach_wb(inode);
235 	security_inode_free(inode);
236 	fsnotify_inode_delete(inode);
237 	locks_free_lock_context(inode);
238 	if (!inode->i_nlink) {
239 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
240 		atomic_long_dec(&inode->i_sb->s_remove_count);
241 	}
242 
243 #ifdef CONFIG_FS_POSIX_ACL
244 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
245 		posix_acl_release(inode->i_acl);
246 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
247 		posix_acl_release(inode->i_default_acl);
248 #endif
249 	this_cpu_dec(nr_inodes);
250 }
251 EXPORT_SYMBOL(__destroy_inode);
252 
253 static void i_callback(struct rcu_head *head)
254 {
255 	struct inode *inode = container_of(head, struct inode, i_rcu);
256 	kmem_cache_free(inode_cachep, inode);
257 }
258 
259 static void destroy_inode(struct inode *inode)
260 {
261 	BUG_ON(!list_empty(&inode->i_lru));
262 	__destroy_inode(inode);
263 	if (inode->i_sb->s_op->destroy_inode)
264 		inode->i_sb->s_op->destroy_inode(inode);
265 	else
266 		call_rcu(&inode->i_rcu, i_callback);
267 }
268 
269 /**
270  * drop_nlink - directly drop an inode's link count
271  * @inode: inode
272  *
273  * This is a low-level filesystem helper to replace any
274  * direct filesystem manipulation of i_nlink.  In cases
275  * where we are attempting to track writes to the
276  * filesystem, a decrement to zero means an imminent
277  * write when the file is truncated and actually unlinked
278  * on the filesystem.
279  */
280 void drop_nlink(struct inode *inode)
281 {
282 	WARN_ON(inode->i_nlink == 0);
283 	inode->__i_nlink--;
284 	if (!inode->i_nlink)
285 		atomic_long_inc(&inode->i_sb->s_remove_count);
286 }
287 EXPORT_SYMBOL(drop_nlink);
288 
289 /**
290  * clear_nlink - directly zero an inode's link count
291  * @inode: inode
292  *
293  * This is a low-level filesystem helper to replace any
294  * direct filesystem manipulation of i_nlink.  See
295  * drop_nlink() for why we care about i_nlink hitting zero.
296  */
297 void clear_nlink(struct inode *inode)
298 {
299 	if (inode->i_nlink) {
300 		inode->__i_nlink = 0;
301 		atomic_long_inc(&inode->i_sb->s_remove_count);
302 	}
303 }
304 EXPORT_SYMBOL(clear_nlink);
305 
306 /**
307  * set_nlink - directly set an inode's link count
308  * @inode: inode
309  * @nlink: new nlink (should be non-zero)
310  *
311  * This is a low-level filesystem helper to replace any
312  * direct filesystem manipulation of i_nlink.
313  */
314 void set_nlink(struct inode *inode, unsigned int nlink)
315 {
316 	if (!nlink) {
317 		clear_nlink(inode);
318 	} else {
319 		/* Yes, some filesystems do change nlink from zero to one */
320 		if (inode->i_nlink == 0)
321 			atomic_long_dec(&inode->i_sb->s_remove_count);
322 
323 		inode->__i_nlink = nlink;
324 	}
325 }
326 EXPORT_SYMBOL(set_nlink);
327 
328 /**
329  * inc_nlink - directly increment an inode's link count
330  * @inode: inode
331  *
332  * This is a low-level filesystem helper to replace any
333  * direct filesystem manipulation of i_nlink.  Currently,
334  * it is only here for parity with dec_nlink().
335  */
336 void inc_nlink(struct inode *inode)
337 {
338 	if (unlikely(inode->i_nlink == 0)) {
339 		WARN_ON(!(inode->i_state & I_LINKABLE));
340 		atomic_long_dec(&inode->i_sb->s_remove_count);
341 	}
342 
343 	inode->__i_nlink++;
344 }
345 EXPORT_SYMBOL(inc_nlink);
346 
347 void address_space_init_once(struct address_space *mapping)
348 {
349 	memset(mapping, 0, sizeof(*mapping));
350 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
351 	spin_lock_init(&mapping->tree_lock);
352 	init_rwsem(&mapping->i_mmap_rwsem);
353 	INIT_LIST_HEAD(&mapping->private_list);
354 	spin_lock_init(&mapping->private_lock);
355 	mapping->i_mmap = RB_ROOT;
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358 
359 /*
360  * These are initializations that only need to be done
361  * once, because the fields are idempotent across use
362  * of the inode, so let the slab aware of that.
363  */
364 void inode_init_once(struct inode *inode)
365 {
366 	memset(inode, 0, sizeof(*inode));
367 	INIT_HLIST_NODE(&inode->i_hash);
368 	INIT_LIST_HEAD(&inode->i_devices);
369 	INIT_LIST_HEAD(&inode->i_io_list);
370 	INIT_LIST_HEAD(&inode->i_wb_list);
371 	INIT_LIST_HEAD(&inode->i_lru);
372 	address_space_init_once(&inode->i_data);
373 	i_size_ordered_init(inode);
374 }
375 EXPORT_SYMBOL(inode_init_once);
376 
377 static void init_once(void *foo)
378 {
379 	struct inode *inode = (struct inode *) foo;
380 
381 	inode_init_once(inode);
382 }
383 
384 /*
385  * inode->i_lock must be held
386  */
387 void __iget(struct inode *inode)
388 {
389 	atomic_inc(&inode->i_count);
390 }
391 
392 /*
393  * get additional reference to inode; caller must already hold one.
394  */
395 void ihold(struct inode *inode)
396 {
397 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
398 }
399 EXPORT_SYMBOL(ihold);
400 
401 static void inode_lru_list_add(struct inode *inode)
402 {
403 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
404 		this_cpu_inc(nr_unused);
405 }
406 
407 /*
408  * Add inode to LRU if needed (inode is unused and clean).
409  *
410  * Needs inode->i_lock held.
411  */
412 void inode_add_lru(struct inode *inode)
413 {
414 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
415 				I_FREEING | I_WILL_FREE)) &&
416 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
417 		inode_lru_list_add(inode);
418 }
419 
420 
421 static void inode_lru_list_del(struct inode *inode)
422 {
423 
424 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
425 		this_cpu_dec(nr_unused);
426 }
427 
428 /**
429  * inode_sb_list_add - add inode to the superblock list of inodes
430  * @inode: inode to add
431  */
432 void inode_sb_list_add(struct inode *inode)
433 {
434 	spin_lock(&inode->i_sb->s_inode_list_lock);
435 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
436 	spin_unlock(&inode->i_sb->s_inode_list_lock);
437 }
438 EXPORT_SYMBOL_GPL(inode_sb_list_add);
439 
440 static inline void inode_sb_list_del(struct inode *inode)
441 {
442 	if (!list_empty(&inode->i_sb_list)) {
443 		spin_lock(&inode->i_sb->s_inode_list_lock);
444 		list_del_init(&inode->i_sb_list);
445 		spin_unlock(&inode->i_sb->s_inode_list_lock);
446 	}
447 }
448 
449 static unsigned long hash(struct super_block *sb, unsigned long hashval)
450 {
451 	unsigned long tmp;
452 
453 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
454 			L1_CACHE_BYTES;
455 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
456 	return tmp & i_hash_mask;
457 }
458 
459 /**
460  *	__insert_inode_hash - hash an inode
461  *	@inode: unhashed inode
462  *	@hashval: unsigned long value used to locate this object in the
463  *		inode_hashtable.
464  *
465  *	Add an inode to the inode hash for this superblock.
466  */
467 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
468 {
469 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
470 
471 	spin_lock(&inode_hash_lock);
472 	spin_lock(&inode->i_lock);
473 	hlist_add_head(&inode->i_hash, b);
474 	spin_unlock(&inode->i_lock);
475 	spin_unlock(&inode_hash_lock);
476 }
477 EXPORT_SYMBOL(__insert_inode_hash);
478 
479 /**
480  *	__remove_inode_hash - remove an inode from the hash
481  *	@inode: inode to unhash
482  *
483  *	Remove an inode from the superblock.
484  */
485 void __remove_inode_hash(struct inode *inode)
486 {
487 	spin_lock(&inode_hash_lock);
488 	spin_lock(&inode->i_lock);
489 	hlist_del_init(&inode->i_hash);
490 	spin_unlock(&inode->i_lock);
491 	spin_unlock(&inode_hash_lock);
492 }
493 EXPORT_SYMBOL(__remove_inode_hash);
494 
495 void clear_inode(struct inode *inode)
496 {
497 	might_sleep();
498 	/*
499 	 * We have to cycle tree_lock here because reclaim can be still in the
500 	 * process of removing the last page (in __delete_from_page_cache())
501 	 * and we must not free mapping under it.
502 	 */
503 	spin_lock_irq(&inode->i_data.tree_lock);
504 	BUG_ON(inode->i_data.nrpages);
505 	BUG_ON(inode->i_data.nrexceptional);
506 	spin_unlock_irq(&inode->i_data.tree_lock);
507 	BUG_ON(!list_empty(&inode->i_data.private_list));
508 	BUG_ON(!(inode->i_state & I_FREEING));
509 	BUG_ON(inode->i_state & I_CLEAR);
510 	BUG_ON(!list_empty(&inode->i_wb_list));
511 	/* don't need i_lock here, no concurrent mods to i_state */
512 	inode->i_state = I_FREEING | I_CLEAR;
513 }
514 EXPORT_SYMBOL(clear_inode);
515 
516 /*
517  * Free the inode passed in, removing it from the lists it is still connected
518  * to. We remove any pages still attached to the inode and wait for any IO that
519  * is still in progress before finally destroying the inode.
520  *
521  * An inode must already be marked I_FREEING so that we avoid the inode being
522  * moved back onto lists if we race with other code that manipulates the lists
523  * (e.g. writeback_single_inode). The caller is responsible for setting this.
524  *
525  * An inode must already be removed from the LRU list before being evicted from
526  * the cache. This should occur atomically with setting the I_FREEING state
527  * flag, so no inodes here should ever be on the LRU when being evicted.
528  */
529 static void evict(struct inode *inode)
530 {
531 	const struct super_operations *op = inode->i_sb->s_op;
532 
533 	BUG_ON(!(inode->i_state & I_FREEING));
534 	BUG_ON(!list_empty(&inode->i_lru));
535 
536 	if (!list_empty(&inode->i_io_list))
537 		inode_io_list_del(inode);
538 
539 	inode_sb_list_del(inode);
540 
541 	/*
542 	 * Wait for flusher thread to be done with the inode so that filesystem
543 	 * does not start destroying it while writeback is still running. Since
544 	 * the inode has I_FREEING set, flusher thread won't start new work on
545 	 * the inode.  We just have to wait for running writeback to finish.
546 	 */
547 	inode_wait_for_writeback(inode);
548 
549 	if (op->evict_inode) {
550 		op->evict_inode(inode);
551 	} else {
552 		truncate_inode_pages_final(&inode->i_data);
553 		clear_inode(inode);
554 	}
555 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
556 		bd_forget(inode);
557 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
558 		cd_forget(inode);
559 
560 	remove_inode_hash(inode);
561 
562 	spin_lock(&inode->i_lock);
563 	wake_up_bit(&inode->i_state, __I_NEW);
564 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 	spin_unlock(&inode->i_lock);
566 
567 	destroy_inode(inode);
568 }
569 
570 /*
571  * dispose_list - dispose of the contents of a local list
572  * @head: the head of the list to free
573  *
574  * Dispose-list gets a local list with local inodes in it, so it doesn't
575  * need to worry about list corruption and SMP locks.
576  */
577 static void dispose_list(struct list_head *head)
578 {
579 	while (!list_empty(head)) {
580 		struct inode *inode;
581 
582 		inode = list_first_entry(head, struct inode, i_lru);
583 		list_del_init(&inode->i_lru);
584 
585 		evict(inode);
586 		cond_resched();
587 	}
588 }
589 
590 /**
591  * evict_inodes	- evict all evictable inodes for a superblock
592  * @sb:		superblock to operate on
593  *
594  * Make sure that no inodes with zero refcount are retained.  This is
595  * called by superblock shutdown after having MS_ACTIVE flag removed,
596  * so any inode reaching zero refcount during or after that call will
597  * be immediately evicted.
598  */
599 void evict_inodes(struct super_block *sb)
600 {
601 	struct inode *inode, *next;
602 	LIST_HEAD(dispose);
603 
604 again:
605 	spin_lock(&sb->s_inode_list_lock);
606 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
607 		if (atomic_read(&inode->i_count))
608 			continue;
609 
610 		spin_lock(&inode->i_lock);
611 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
612 			spin_unlock(&inode->i_lock);
613 			continue;
614 		}
615 
616 		inode->i_state |= I_FREEING;
617 		inode_lru_list_del(inode);
618 		spin_unlock(&inode->i_lock);
619 		list_add(&inode->i_lru, &dispose);
620 
621 		/*
622 		 * We can have a ton of inodes to evict at unmount time given
623 		 * enough memory, check to see if we need to go to sleep for a
624 		 * bit so we don't livelock.
625 		 */
626 		if (need_resched()) {
627 			spin_unlock(&sb->s_inode_list_lock);
628 			cond_resched();
629 			dispose_list(&dispose);
630 			goto again;
631 		}
632 	}
633 	spin_unlock(&sb->s_inode_list_lock);
634 
635 	dispose_list(&dispose);
636 }
637 
638 /**
639  * invalidate_inodes	- attempt to free all inodes on a superblock
640  * @sb:		superblock to operate on
641  * @kill_dirty: flag to guide handling of dirty inodes
642  *
643  * Attempts to free all inodes for a given superblock.  If there were any
644  * busy inodes return a non-zero value, else zero.
645  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
646  * them as busy.
647  */
648 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
649 {
650 	int busy = 0;
651 	struct inode *inode, *next;
652 	LIST_HEAD(dispose);
653 
654 	spin_lock(&sb->s_inode_list_lock);
655 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
656 		spin_lock(&inode->i_lock);
657 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
658 			spin_unlock(&inode->i_lock);
659 			continue;
660 		}
661 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
662 			spin_unlock(&inode->i_lock);
663 			busy = 1;
664 			continue;
665 		}
666 		if (atomic_read(&inode->i_count)) {
667 			spin_unlock(&inode->i_lock);
668 			busy = 1;
669 			continue;
670 		}
671 
672 		inode->i_state |= I_FREEING;
673 		inode_lru_list_del(inode);
674 		spin_unlock(&inode->i_lock);
675 		list_add(&inode->i_lru, &dispose);
676 	}
677 	spin_unlock(&sb->s_inode_list_lock);
678 
679 	dispose_list(&dispose);
680 
681 	return busy;
682 }
683 
684 /*
685  * Isolate the inode from the LRU in preparation for freeing it.
686  *
687  * Any inodes which are pinned purely because of attached pagecache have their
688  * pagecache removed.  If the inode has metadata buffers attached to
689  * mapping->private_list then try to remove them.
690  *
691  * If the inode has the I_REFERENCED flag set, then it means that it has been
692  * used recently - the flag is set in iput_final(). When we encounter such an
693  * inode, clear the flag and move it to the back of the LRU so it gets another
694  * pass through the LRU before it gets reclaimed. This is necessary because of
695  * the fact we are doing lazy LRU updates to minimise lock contention so the
696  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
697  * with this flag set because they are the inodes that are out of order.
698  */
699 static enum lru_status inode_lru_isolate(struct list_head *item,
700 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
701 {
702 	struct list_head *freeable = arg;
703 	struct inode	*inode = container_of(item, struct inode, i_lru);
704 
705 	/*
706 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
707 	 * If we fail to get the lock, just skip it.
708 	 */
709 	if (!spin_trylock(&inode->i_lock))
710 		return LRU_SKIP;
711 
712 	/*
713 	 * Referenced or dirty inodes are still in use. Give them another pass
714 	 * through the LRU as we canot reclaim them now.
715 	 */
716 	if (atomic_read(&inode->i_count) ||
717 	    (inode->i_state & ~I_REFERENCED)) {
718 		list_lru_isolate(lru, &inode->i_lru);
719 		spin_unlock(&inode->i_lock);
720 		this_cpu_dec(nr_unused);
721 		return LRU_REMOVED;
722 	}
723 
724 	/* recently referenced inodes get one more pass */
725 	if (inode->i_state & I_REFERENCED) {
726 		inode->i_state &= ~I_REFERENCED;
727 		spin_unlock(&inode->i_lock);
728 		return LRU_ROTATE;
729 	}
730 
731 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
732 		__iget(inode);
733 		spin_unlock(&inode->i_lock);
734 		spin_unlock(lru_lock);
735 		if (remove_inode_buffers(inode)) {
736 			unsigned long reap;
737 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
738 			if (current_is_kswapd())
739 				__count_vm_events(KSWAPD_INODESTEAL, reap);
740 			else
741 				__count_vm_events(PGINODESTEAL, reap);
742 			if (current->reclaim_state)
743 				current->reclaim_state->reclaimed_slab += reap;
744 		}
745 		iput(inode);
746 		spin_lock(lru_lock);
747 		return LRU_RETRY;
748 	}
749 
750 	WARN_ON(inode->i_state & I_NEW);
751 	inode->i_state |= I_FREEING;
752 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
753 	spin_unlock(&inode->i_lock);
754 
755 	this_cpu_dec(nr_unused);
756 	return LRU_REMOVED;
757 }
758 
759 /*
760  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
761  * This is called from the superblock shrinker function with a number of inodes
762  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
763  * then are freed outside inode_lock by dispose_list().
764  */
765 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
766 {
767 	LIST_HEAD(freeable);
768 	long freed;
769 
770 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
771 				     inode_lru_isolate, &freeable);
772 	dispose_list(&freeable);
773 	return freed;
774 }
775 
776 static void __wait_on_freeing_inode(struct inode *inode);
777 /*
778  * Called with the inode lock held.
779  */
780 static struct inode *find_inode(struct super_block *sb,
781 				struct hlist_head *head,
782 				int (*test)(struct inode *, void *),
783 				void *data)
784 {
785 	struct inode *inode = NULL;
786 
787 repeat:
788 	hlist_for_each_entry(inode, head, i_hash) {
789 		if (inode->i_sb != sb)
790 			continue;
791 		if (!test(inode, data))
792 			continue;
793 		spin_lock(&inode->i_lock);
794 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
795 			__wait_on_freeing_inode(inode);
796 			goto repeat;
797 		}
798 		__iget(inode);
799 		spin_unlock(&inode->i_lock);
800 		return inode;
801 	}
802 	return NULL;
803 }
804 
805 /*
806  * find_inode_fast is the fast path version of find_inode, see the comment at
807  * iget_locked for details.
808  */
809 static struct inode *find_inode_fast(struct super_block *sb,
810 				struct hlist_head *head, unsigned long ino)
811 {
812 	struct inode *inode = NULL;
813 
814 repeat:
815 	hlist_for_each_entry(inode, head, i_hash) {
816 		if (inode->i_ino != ino)
817 			continue;
818 		if (inode->i_sb != sb)
819 			continue;
820 		spin_lock(&inode->i_lock);
821 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
822 			__wait_on_freeing_inode(inode);
823 			goto repeat;
824 		}
825 		__iget(inode);
826 		spin_unlock(&inode->i_lock);
827 		return inode;
828 	}
829 	return NULL;
830 }
831 
832 /*
833  * Each cpu owns a range of LAST_INO_BATCH numbers.
834  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
835  * to renew the exhausted range.
836  *
837  * This does not significantly increase overflow rate because every CPU can
838  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
839  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
840  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
841  * overflow rate by 2x, which does not seem too significant.
842  *
843  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
844  * error if st_ino won't fit in target struct field. Use 32bit counter
845  * here to attempt to avoid that.
846  */
847 #define LAST_INO_BATCH 1024
848 static DEFINE_PER_CPU(unsigned int, last_ino);
849 
850 unsigned int get_next_ino(void)
851 {
852 	unsigned int *p = &get_cpu_var(last_ino);
853 	unsigned int res = *p;
854 
855 #ifdef CONFIG_SMP
856 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
857 		static atomic_t shared_last_ino;
858 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
859 
860 		res = next - LAST_INO_BATCH;
861 	}
862 #endif
863 
864 	res++;
865 	/* get_next_ino should not provide a 0 inode number */
866 	if (unlikely(!res))
867 		res++;
868 	*p = res;
869 	put_cpu_var(last_ino);
870 	return res;
871 }
872 EXPORT_SYMBOL(get_next_ino);
873 
874 /**
875  *	new_inode_pseudo 	- obtain an inode
876  *	@sb: superblock
877  *
878  *	Allocates a new inode for given superblock.
879  *	Inode wont be chained in superblock s_inodes list
880  *	This means :
881  *	- fs can't be unmount
882  *	- quotas, fsnotify, writeback can't work
883  */
884 struct inode *new_inode_pseudo(struct super_block *sb)
885 {
886 	struct inode *inode = alloc_inode(sb);
887 
888 	if (inode) {
889 		spin_lock(&inode->i_lock);
890 		inode->i_state = 0;
891 		spin_unlock(&inode->i_lock);
892 		INIT_LIST_HEAD(&inode->i_sb_list);
893 	}
894 	return inode;
895 }
896 
897 /**
898  *	new_inode 	- obtain an inode
899  *	@sb: superblock
900  *
901  *	Allocates a new inode for given superblock. The default gfp_mask
902  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
903  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
904  *	for the page cache are not reclaimable or migratable,
905  *	mapping_set_gfp_mask() must be called with suitable flags on the
906  *	newly created inode's mapping
907  *
908  */
909 struct inode *new_inode(struct super_block *sb)
910 {
911 	struct inode *inode;
912 
913 	spin_lock_prefetch(&sb->s_inode_list_lock);
914 
915 	inode = new_inode_pseudo(sb);
916 	if (inode)
917 		inode_sb_list_add(inode);
918 	return inode;
919 }
920 EXPORT_SYMBOL(new_inode);
921 
922 #ifdef CONFIG_DEBUG_LOCK_ALLOC
923 void lockdep_annotate_inode_mutex_key(struct inode *inode)
924 {
925 	if (S_ISDIR(inode->i_mode)) {
926 		struct file_system_type *type = inode->i_sb->s_type;
927 
928 		/* Set new key only if filesystem hasn't already changed it */
929 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
930 			/*
931 			 * ensure nobody is actually holding i_mutex
932 			 */
933 			// mutex_destroy(&inode->i_mutex);
934 			init_rwsem(&inode->i_rwsem);
935 			lockdep_set_class(&inode->i_rwsem,
936 					  &type->i_mutex_dir_key);
937 		}
938 	}
939 }
940 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
941 #endif
942 
943 /**
944  * unlock_new_inode - clear the I_NEW state and wake up any waiters
945  * @inode:	new inode to unlock
946  *
947  * Called when the inode is fully initialised to clear the new state of the
948  * inode and wake up anyone waiting for the inode to finish initialisation.
949  */
950 void unlock_new_inode(struct inode *inode)
951 {
952 	lockdep_annotate_inode_mutex_key(inode);
953 	spin_lock(&inode->i_lock);
954 	WARN_ON(!(inode->i_state & I_NEW));
955 	inode->i_state &= ~I_NEW;
956 	smp_mb();
957 	wake_up_bit(&inode->i_state, __I_NEW);
958 	spin_unlock(&inode->i_lock);
959 }
960 EXPORT_SYMBOL(unlock_new_inode);
961 
962 /**
963  * lock_two_nondirectories - take two i_mutexes on non-directory objects
964  *
965  * Lock any non-NULL argument that is not a directory.
966  * Zero, one or two objects may be locked by this function.
967  *
968  * @inode1: first inode to lock
969  * @inode2: second inode to lock
970  */
971 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
972 {
973 	if (inode1 > inode2)
974 		swap(inode1, inode2);
975 
976 	if (inode1 && !S_ISDIR(inode1->i_mode))
977 		inode_lock(inode1);
978 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
979 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
980 }
981 EXPORT_SYMBOL(lock_two_nondirectories);
982 
983 /**
984  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
985  * @inode1: first inode to unlock
986  * @inode2: second inode to unlock
987  */
988 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
989 {
990 	if (inode1 && !S_ISDIR(inode1->i_mode))
991 		inode_unlock(inode1);
992 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
993 		inode_unlock(inode2);
994 }
995 EXPORT_SYMBOL(unlock_two_nondirectories);
996 
997 /**
998  * iget5_locked - obtain an inode from a mounted file system
999  * @sb:		super block of file system
1000  * @hashval:	hash value (usually inode number) to get
1001  * @test:	callback used for comparisons between inodes
1002  * @set:	callback used to initialize a new struct inode
1003  * @data:	opaque data pointer to pass to @test and @set
1004  *
1005  * Search for the inode specified by @hashval and @data in the inode cache,
1006  * and if present it is return it with an increased reference count. This is
1007  * a generalized version of iget_locked() for file systems where the inode
1008  * number is not sufficient for unique identification of an inode.
1009  *
1010  * If the inode is not in cache, allocate a new inode and return it locked,
1011  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1012  * before unlocking it via unlock_new_inode().
1013  *
1014  * Note both @test and @set are called with the inode_hash_lock held, so can't
1015  * sleep.
1016  */
1017 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1018 		int (*test)(struct inode *, void *),
1019 		int (*set)(struct inode *, void *), void *data)
1020 {
1021 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1022 	struct inode *inode;
1023 again:
1024 	spin_lock(&inode_hash_lock);
1025 	inode = find_inode(sb, head, test, data);
1026 	spin_unlock(&inode_hash_lock);
1027 
1028 	if (inode) {
1029 		wait_on_inode(inode);
1030 		if (unlikely(inode_unhashed(inode))) {
1031 			iput(inode);
1032 			goto again;
1033 		}
1034 		return inode;
1035 	}
1036 
1037 	inode = alloc_inode(sb);
1038 	if (inode) {
1039 		struct inode *old;
1040 
1041 		spin_lock(&inode_hash_lock);
1042 		/* We released the lock, so.. */
1043 		old = find_inode(sb, head, test, data);
1044 		if (!old) {
1045 			if (set(inode, data))
1046 				goto set_failed;
1047 
1048 			spin_lock(&inode->i_lock);
1049 			inode->i_state = I_NEW;
1050 			hlist_add_head(&inode->i_hash, head);
1051 			spin_unlock(&inode->i_lock);
1052 			inode_sb_list_add(inode);
1053 			spin_unlock(&inode_hash_lock);
1054 
1055 			/* Return the locked inode with I_NEW set, the
1056 			 * caller is responsible for filling in the contents
1057 			 */
1058 			return inode;
1059 		}
1060 
1061 		/*
1062 		 * Uhhuh, somebody else created the same inode under
1063 		 * us. Use the old inode instead of the one we just
1064 		 * allocated.
1065 		 */
1066 		spin_unlock(&inode_hash_lock);
1067 		destroy_inode(inode);
1068 		inode = old;
1069 		wait_on_inode(inode);
1070 		if (unlikely(inode_unhashed(inode))) {
1071 			iput(inode);
1072 			goto again;
1073 		}
1074 	}
1075 	return inode;
1076 
1077 set_failed:
1078 	spin_unlock(&inode_hash_lock);
1079 	destroy_inode(inode);
1080 	return NULL;
1081 }
1082 EXPORT_SYMBOL(iget5_locked);
1083 
1084 /**
1085  * iget_locked - obtain an inode from a mounted file system
1086  * @sb:		super block of file system
1087  * @ino:	inode number to get
1088  *
1089  * Search for the inode specified by @ino in the inode cache and if present
1090  * return it with an increased reference count. This is for file systems
1091  * where the inode number is sufficient for unique identification of an inode.
1092  *
1093  * If the inode is not in cache, allocate a new inode and return it locked,
1094  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1095  * before unlocking it via unlock_new_inode().
1096  */
1097 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1098 {
1099 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1100 	struct inode *inode;
1101 again:
1102 	spin_lock(&inode_hash_lock);
1103 	inode = find_inode_fast(sb, head, ino);
1104 	spin_unlock(&inode_hash_lock);
1105 	if (inode) {
1106 		wait_on_inode(inode);
1107 		if (unlikely(inode_unhashed(inode))) {
1108 			iput(inode);
1109 			goto again;
1110 		}
1111 		return inode;
1112 	}
1113 
1114 	inode = alloc_inode(sb);
1115 	if (inode) {
1116 		struct inode *old;
1117 
1118 		spin_lock(&inode_hash_lock);
1119 		/* We released the lock, so.. */
1120 		old = find_inode_fast(sb, head, ino);
1121 		if (!old) {
1122 			inode->i_ino = ino;
1123 			spin_lock(&inode->i_lock);
1124 			inode->i_state = I_NEW;
1125 			hlist_add_head(&inode->i_hash, head);
1126 			spin_unlock(&inode->i_lock);
1127 			inode_sb_list_add(inode);
1128 			spin_unlock(&inode_hash_lock);
1129 
1130 			/* Return the locked inode with I_NEW set, the
1131 			 * caller is responsible for filling in the contents
1132 			 */
1133 			return inode;
1134 		}
1135 
1136 		/*
1137 		 * Uhhuh, somebody else created the same inode under
1138 		 * us. Use the old inode instead of the one we just
1139 		 * allocated.
1140 		 */
1141 		spin_unlock(&inode_hash_lock);
1142 		destroy_inode(inode);
1143 		inode = old;
1144 		wait_on_inode(inode);
1145 		if (unlikely(inode_unhashed(inode))) {
1146 			iput(inode);
1147 			goto again;
1148 		}
1149 	}
1150 	return inode;
1151 }
1152 EXPORT_SYMBOL(iget_locked);
1153 
1154 /*
1155  * search the inode cache for a matching inode number.
1156  * If we find one, then the inode number we are trying to
1157  * allocate is not unique and so we should not use it.
1158  *
1159  * Returns 1 if the inode number is unique, 0 if it is not.
1160  */
1161 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1162 {
1163 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1164 	struct inode *inode;
1165 
1166 	spin_lock(&inode_hash_lock);
1167 	hlist_for_each_entry(inode, b, i_hash) {
1168 		if (inode->i_ino == ino && inode->i_sb == sb) {
1169 			spin_unlock(&inode_hash_lock);
1170 			return 0;
1171 		}
1172 	}
1173 	spin_unlock(&inode_hash_lock);
1174 
1175 	return 1;
1176 }
1177 
1178 /**
1179  *	iunique - get a unique inode number
1180  *	@sb: superblock
1181  *	@max_reserved: highest reserved inode number
1182  *
1183  *	Obtain an inode number that is unique on the system for a given
1184  *	superblock. This is used by file systems that have no natural
1185  *	permanent inode numbering system. An inode number is returned that
1186  *	is higher than the reserved limit but unique.
1187  *
1188  *	BUGS:
1189  *	With a large number of inodes live on the file system this function
1190  *	currently becomes quite slow.
1191  */
1192 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1193 {
1194 	/*
1195 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1196 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1197 	 * here to attempt to avoid that.
1198 	 */
1199 	static DEFINE_SPINLOCK(iunique_lock);
1200 	static unsigned int counter;
1201 	ino_t res;
1202 
1203 	spin_lock(&iunique_lock);
1204 	do {
1205 		if (counter <= max_reserved)
1206 			counter = max_reserved + 1;
1207 		res = counter++;
1208 	} while (!test_inode_iunique(sb, res));
1209 	spin_unlock(&iunique_lock);
1210 
1211 	return res;
1212 }
1213 EXPORT_SYMBOL(iunique);
1214 
1215 struct inode *igrab(struct inode *inode)
1216 {
1217 	spin_lock(&inode->i_lock);
1218 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1219 		__iget(inode);
1220 		spin_unlock(&inode->i_lock);
1221 	} else {
1222 		spin_unlock(&inode->i_lock);
1223 		/*
1224 		 * Handle the case where s_op->clear_inode is not been
1225 		 * called yet, and somebody is calling igrab
1226 		 * while the inode is getting freed.
1227 		 */
1228 		inode = NULL;
1229 	}
1230 	return inode;
1231 }
1232 EXPORT_SYMBOL(igrab);
1233 
1234 /**
1235  * ilookup5_nowait - search for an inode in the inode cache
1236  * @sb:		super block of file system to search
1237  * @hashval:	hash value (usually inode number) to search for
1238  * @test:	callback used for comparisons between inodes
1239  * @data:	opaque data pointer to pass to @test
1240  *
1241  * Search for the inode specified by @hashval and @data in the inode cache.
1242  * If the inode is in the cache, the inode is returned with an incremented
1243  * reference count.
1244  *
1245  * Note: I_NEW is not waited upon so you have to be very careful what you do
1246  * with the returned inode.  You probably should be using ilookup5() instead.
1247  *
1248  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1249  */
1250 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1251 		int (*test)(struct inode *, void *), void *data)
1252 {
1253 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1254 	struct inode *inode;
1255 
1256 	spin_lock(&inode_hash_lock);
1257 	inode = find_inode(sb, head, test, data);
1258 	spin_unlock(&inode_hash_lock);
1259 
1260 	return inode;
1261 }
1262 EXPORT_SYMBOL(ilookup5_nowait);
1263 
1264 /**
1265  * ilookup5 - search for an inode in the inode cache
1266  * @sb:		super block of file system to search
1267  * @hashval:	hash value (usually inode number) to search for
1268  * @test:	callback used for comparisons between inodes
1269  * @data:	opaque data pointer to pass to @test
1270  *
1271  * Search for the inode specified by @hashval and @data in the inode cache,
1272  * and if the inode is in the cache, return the inode with an incremented
1273  * reference count.  Waits on I_NEW before returning the inode.
1274  * returned with an incremented reference count.
1275  *
1276  * This is a generalized version of ilookup() for file systems where the
1277  * inode number is not sufficient for unique identification of an inode.
1278  *
1279  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1280  */
1281 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1282 		int (*test)(struct inode *, void *), void *data)
1283 {
1284 	struct inode *inode;
1285 again:
1286 	inode = ilookup5_nowait(sb, hashval, test, data);
1287 	if (inode) {
1288 		wait_on_inode(inode);
1289 		if (unlikely(inode_unhashed(inode))) {
1290 			iput(inode);
1291 			goto again;
1292 		}
1293 	}
1294 	return inode;
1295 }
1296 EXPORT_SYMBOL(ilookup5);
1297 
1298 /**
1299  * ilookup - search for an inode in the inode cache
1300  * @sb:		super block of file system to search
1301  * @ino:	inode number to search for
1302  *
1303  * Search for the inode @ino in the inode cache, and if the inode is in the
1304  * cache, the inode is returned with an incremented reference count.
1305  */
1306 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1307 {
1308 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1309 	struct inode *inode;
1310 again:
1311 	spin_lock(&inode_hash_lock);
1312 	inode = find_inode_fast(sb, head, ino);
1313 	spin_unlock(&inode_hash_lock);
1314 
1315 	if (inode) {
1316 		wait_on_inode(inode);
1317 		if (unlikely(inode_unhashed(inode))) {
1318 			iput(inode);
1319 			goto again;
1320 		}
1321 	}
1322 	return inode;
1323 }
1324 EXPORT_SYMBOL(ilookup);
1325 
1326 /**
1327  * find_inode_nowait - find an inode in the inode cache
1328  * @sb:		super block of file system to search
1329  * @hashval:	hash value (usually inode number) to search for
1330  * @match:	callback used for comparisons between inodes
1331  * @data:	opaque data pointer to pass to @match
1332  *
1333  * Search for the inode specified by @hashval and @data in the inode
1334  * cache, where the helper function @match will return 0 if the inode
1335  * does not match, 1 if the inode does match, and -1 if the search
1336  * should be stopped.  The @match function must be responsible for
1337  * taking the i_lock spin_lock and checking i_state for an inode being
1338  * freed or being initialized, and incrementing the reference count
1339  * before returning 1.  It also must not sleep, since it is called with
1340  * the inode_hash_lock spinlock held.
1341  *
1342  * This is a even more generalized version of ilookup5() when the
1343  * function must never block --- find_inode() can block in
1344  * __wait_on_freeing_inode() --- or when the caller can not increment
1345  * the reference count because the resulting iput() might cause an
1346  * inode eviction.  The tradeoff is that the @match funtion must be
1347  * very carefully implemented.
1348  */
1349 struct inode *find_inode_nowait(struct super_block *sb,
1350 				unsigned long hashval,
1351 				int (*match)(struct inode *, unsigned long,
1352 					     void *),
1353 				void *data)
1354 {
1355 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1356 	struct inode *inode, *ret_inode = NULL;
1357 	int mval;
1358 
1359 	spin_lock(&inode_hash_lock);
1360 	hlist_for_each_entry(inode, head, i_hash) {
1361 		if (inode->i_sb != sb)
1362 			continue;
1363 		mval = match(inode, hashval, data);
1364 		if (mval == 0)
1365 			continue;
1366 		if (mval == 1)
1367 			ret_inode = inode;
1368 		goto out;
1369 	}
1370 out:
1371 	spin_unlock(&inode_hash_lock);
1372 	return ret_inode;
1373 }
1374 EXPORT_SYMBOL(find_inode_nowait);
1375 
1376 int insert_inode_locked(struct inode *inode)
1377 {
1378 	struct super_block *sb = inode->i_sb;
1379 	ino_t ino = inode->i_ino;
1380 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1381 
1382 	while (1) {
1383 		struct inode *old = NULL;
1384 		spin_lock(&inode_hash_lock);
1385 		hlist_for_each_entry(old, head, i_hash) {
1386 			if (old->i_ino != ino)
1387 				continue;
1388 			if (old->i_sb != sb)
1389 				continue;
1390 			spin_lock(&old->i_lock);
1391 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1392 				spin_unlock(&old->i_lock);
1393 				continue;
1394 			}
1395 			break;
1396 		}
1397 		if (likely(!old)) {
1398 			spin_lock(&inode->i_lock);
1399 			inode->i_state |= I_NEW;
1400 			hlist_add_head(&inode->i_hash, head);
1401 			spin_unlock(&inode->i_lock);
1402 			spin_unlock(&inode_hash_lock);
1403 			return 0;
1404 		}
1405 		__iget(old);
1406 		spin_unlock(&old->i_lock);
1407 		spin_unlock(&inode_hash_lock);
1408 		wait_on_inode(old);
1409 		if (unlikely(!inode_unhashed(old))) {
1410 			iput(old);
1411 			return -EBUSY;
1412 		}
1413 		iput(old);
1414 	}
1415 }
1416 EXPORT_SYMBOL(insert_inode_locked);
1417 
1418 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1419 		int (*test)(struct inode *, void *), void *data)
1420 {
1421 	struct super_block *sb = inode->i_sb;
1422 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1423 
1424 	while (1) {
1425 		struct inode *old = NULL;
1426 
1427 		spin_lock(&inode_hash_lock);
1428 		hlist_for_each_entry(old, head, i_hash) {
1429 			if (old->i_sb != sb)
1430 				continue;
1431 			if (!test(old, data))
1432 				continue;
1433 			spin_lock(&old->i_lock);
1434 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1435 				spin_unlock(&old->i_lock);
1436 				continue;
1437 			}
1438 			break;
1439 		}
1440 		if (likely(!old)) {
1441 			spin_lock(&inode->i_lock);
1442 			inode->i_state |= I_NEW;
1443 			hlist_add_head(&inode->i_hash, head);
1444 			spin_unlock(&inode->i_lock);
1445 			spin_unlock(&inode_hash_lock);
1446 			return 0;
1447 		}
1448 		__iget(old);
1449 		spin_unlock(&old->i_lock);
1450 		spin_unlock(&inode_hash_lock);
1451 		wait_on_inode(old);
1452 		if (unlikely(!inode_unhashed(old))) {
1453 			iput(old);
1454 			return -EBUSY;
1455 		}
1456 		iput(old);
1457 	}
1458 }
1459 EXPORT_SYMBOL(insert_inode_locked4);
1460 
1461 
1462 int generic_delete_inode(struct inode *inode)
1463 {
1464 	return 1;
1465 }
1466 EXPORT_SYMBOL(generic_delete_inode);
1467 
1468 /*
1469  * Called when we're dropping the last reference
1470  * to an inode.
1471  *
1472  * Call the FS "drop_inode()" function, defaulting to
1473  * the legacy UNIX filesystem behaviour.  If it tells
1474  * us to evict inode, do so.  Otherwise, retain inode
1475  * in cache if fs is alive, sync and evict if fs is
1476  * shutting down.
1477  */
1478 static void iput_final(struct inode *inode)
1479 {
1480 	struct super_block *sb = inode->i_sb;
1481 	const struct super_operations *op = inode->i_sb->s_op;
1482 	int drop;
1483 
1484 	WARN_ON(inode->i_state & I_NEW);
1485 
1486 	if (op->drop_inode)
1487 		drop = op->drop_inode(inode);
1488 	else
1489 		drop = generic_drop_inode(inode);
1490 
1491 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1492 		inode->i_state |= I_REFERENCED;
1493 		inode_add_lru(inode);
1494 		spin_unlock(&inode->i_lock);
1495 		return;
1496 	}
1497 
1498 	if (!drop) {
1499 		inode->i_state |= I_WILL_FREE;
1500 		spin_unlock(&inode->i_lock);
1501 		write_inode_now(inode, 1);
1502 		spin_lock(&inode->i_lock);
1503 		WARN_ON(inode->i_state & I_NEW);
1504 		inode->i_state &= ~I_WILL_FREE;
1505 	}
1506 
1507 	inode->i_state |= I_FREEING;
1508 	if (!list_empty(&inode->i_lru))
1509 		inode_lru_list_del(inode);
1510 	spin_unlock(&inode->i_lock);
1511 
1512 	evict(inode);
1513 }
1514 
1515 /**
1516  *	iput	- put an inode
1517  *	@inode: inode to put
1518  *
1519  *	Puts an inode, dropping its usage count. If the inode use count hits
1520  *	zero, the inode is then freed and may also be destroyed.
1521  *
1522  *	Consequently, iput() can sleep.
1523  */
1524 void iput(struct inode *inode)
1525 {
1526 	if (!inode)
1527 		return;
1528 	BUG_ON(inode->i_state & I_CLEAR);
1529 retry:
1530 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1531 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1532 			atomic_inc(&inode->i_count);
1533 			inode->i_state &= ~I_DIRTY_TIME;
1534 			spin_unlock(&inode->i_lock);
1535 			trace_writeback_lazytime_iput(inode);
1536 			mark_inode_dirty_sync(inode);
1537 			goto retry;
1538 		}
1539 		iput_final(inode);
1540 	}
1541 }
1542 EXPORT_SYMBOL(iput);
1543 
1544 /**
1545  *	bmap	- find a block number in a file
1546  *	@inode: inode of file
1547  *	@block: block to find
1548  *
1549  *	Returns the block number on the device holding the inode that
1550  *	is the disk block number for the block of the file requested.
1551  *	That is, asked for block 4 of inode 1 the function will return the
1552  *	disk block relative to the disk start that holds that block of the
1553  *	file.
1554  */
1555 sector_t bmap(struct inode *inode, sector_t block)
1556 {
1557 	sector_t res = 0;
1558 	if (inode->i_mapping->a_ops->bmap)
1559 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1560 	return res;
1561 }
1562 EXPORT_SYMBOL(bmap);
1563 
1564 /*
1565  * Update times in overlayed inode from underlying real inode
1566  */
1567 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1568 			       bool rcu)
1569 {
1570 	if (!rcu) {
1571 		struct inode *realinode = d_real_inode(dentry);
1572 
1573 		if (unlikely(inode != realinode) &&
1574 		    (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1575 		     !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1576 			inode->i_mtime = realinode->i_mtime;
1577 			inode->i_ctime = realinode->i_ctime;
1578 		}
1579 	}
1580 }
1581 
1582 /*
1583  * With relative atime, only update atime if the previous atime is
1584  * earlier than either the ctime or mtime or if at least a day has
1585  * passed since the last atime update.
1586  */
1587 static int relatime_need_update(const struct path *path, struct inode *inode,
1588 				struct timespec now, bool rcu)
1589 {
1590 
1591 	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1592 		return 1;
1593 
1594 	update_ovl_inode_times(path->dentry, inode, rcu);
1595 	/*
1596 	 * Is mtime younger than atime? If yes, update atime:
1597 	 */
1598 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1599 		return 1;
1600 	/*
1601 	 * Is ctime younger than atime? If yes, update atime:
1602 	 */
1603 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1604 		return 1;
1605 
1606 	/*
1607 	 * Is the previous atime value older than a day? If yes,
1608 	 * update atime:
1609 	 */
1610 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1611 		return 1;
1612 	/*
1613 	 * Good, we can skip the atime update:
1614 	 */
1615 	return 0;
1616 }
1617 
1618 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1619 {
1620 	int iflags = I_DIRTY_TIME;
1621 
1622 	if (flags & S_ATIME)
1623 		inode->i_atime = *time;
1624 	if (flags & S_VERSION)
1625 		inode_inc_iversion(inode);
1626 	if (flags & S_CTIME)
1627 		inode->i_ctime = *time;
1628 	if (flags & S_MTIME)
1629 		inode->i_mtime = *time;
1630 
1631 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1632 		iflags |= I_DIRTY_SYNC;
1633 	__mark_inode_dirty(inode, iflags);
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL(generic_update_time);
1637 
1638 /*
1639  * This does the actual work of updating an inodes time or version.  Must have
1640  * had called mnt_want_write() before calling this.
1641  */
1642 static int update_time(struct inode *inode, struct timespec *time, int flags)
1643 {
1644 	int (*update_time)(struct inode *, struct timespec *, int);
1645 
1646 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1647 		generic_update_time;
1648 
1649 	return update_time(inode, time, flags);
1650 }
1651 
1652 /**
1653  *	touch_atime	-	update the access time
1654  *	@path: the &struct path to update
1655  *	@inode: inode to update
1656  *
1657  *	Update the accessed time on an inode and mark it for writeback.
1658  *	This function automatically handles read only file systems and media,
1659  *	as well as the "noatime" flag and inode specific "noatime" markers.
1660  */
1661 bool __atime_needs_update(const struct path *path, struct inode *inode,
1662 			  bool rcu)
1663 {
1664 	struct vfsmount *mnt = path->mnt;
1665 	struct timespec now;
1666 
1667 	if (inode->i_flags & S_NOATIME)
1668 		return false;
1669 
1670 	/* Atime updates will likely cause i_uid and i_gid to be written
1671 	 * back improprely if their true value is unknown to the vfs.
1672 	 */
1673 	if (HAS_UNMAPPED_ID(inode))
1674 		return false;
1675 
1676 	if (IS_NOATIME(inode))
1677 		return false;
1678 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1679 		return false;
1680 
1681 	if (mnt->mnt_flags & MNT_NOATIME)
1682 		return false;
1683 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1684 		return false;
1685 
1686 	now = current_time(inode);
1687 
1688 	if (!relatime_need_update(path, inode, now, rcu))
1689 		return false;
1690 
1691 	if (timespec_equal(&inode->i_atime, &now))
1692 		return false;
1693 
1694 	return true;
1695 }
1696 
1697 void touch_atime(const struct path *path)
1698 {
1699 	struct vfsmount *mnt = path->mnt;
1700 	struct inode *inode = d_inode(path->dentry);
1701 	struct timespec now;
1702 
1703 	if (!__atime_needs_update(path, inode, false))
1704 		return;
1705 
1706 	if (!sb_start_write_trylock(inode->i_sb))
1707 		return;
1708 
1709 	if (__mnt_want_write(mnt) != 0)
1710 		goto skip_update;
1711 	/*
1712 	 * File systems can error out when updating inodes if they need to
1713 	 * allocate new space to modify an inode (such is the case for
1714 	 * Btrfs), but since we touch atime while walking down the path we
1715 	 * really don't care if we failed to update the atime of the file,
1716 	 * so just ignore the return value.
1717 	 * We may also fail on filesystems that have the ability to make parts
1718 	 * of the fs read only, e.g. subvolumes in Btrfs.
1719 	 */
1720 	now = current_time(inode);
1721 	update_time(inode, &now, S_ATIME);
1722 	__mnt_drop_write(mnt);
1723 skip_update:
1724 	sb_end_write(inode->i_sb);
1725 }
1726 EXPORT_SYMBOL(touch_atime);
1727 
1728 /*
1729  * The logic we want is
1730  *
1731  *	if suid or (sgid and xgrp)
1732  *		remove privs
1733  */
1734 int should_remove_suid(struct dentry *dentry)
1735 {
1736 	umode_t mode = d_inode(dentry)->i_mode;
1737 	int kill = 0;
1738 
1739 	/* suid always must be killed */
1740 	if (unlikely(mode & S_ISUID))
1741 		kill = ATTR_KILL_SUID;
1742 
1743 	/*
1744 	 * sgid without any exec bits is just a mandatory locking mark; leave
1745 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1746 	 */
1747 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1748 		kill |= ATTR_KILL_SGID;
1749 
1750 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1751 		return kill;
1752 
1753 	return 0;
1754 }
1755 EXPORT_SYMBOL(should_remove_suid);
1756 
1757 /*
1758  * Return mask of changes for notify_change() that need to be done as a
1759  * response to write or truncate. Return 0 if nothing has to be changed.
1760  * Negative value on error (change should be denied).
1761  */
1762 int dentry_needs_remove_privs(struct dentry *dentry)
1763 {
1764 	struct inode *inode = d_inode(dentry);
1765 	int mask = 0;
1766 	int ret;
1767 
1768 	if (IS_NOSEC(inode))
1769 		return 0;
1770 
1771 	mask = should_remove_suid(dentry);
1772 	ret = security_inode_need_killpriv(dentry);
1773 	if (ret < 0)
1774 		return ret;
1775 	if (ret)
1776 		mask |= ATTR_KILL_PRIV;
1777 	return mask;
1778 }
1779 
1780 static int __remove_privs(struct dentry *dentry, int kill)
1781 {
1782 	struct iattr newattrs;
1783 
1784 	newattrs.ia_valid = ATTR_FORCE | kill;
1785 	/*
1786 	 * Note we call this on write, so notify_change will not
1787 	 * encounter any conflicting delegations:
1788 	 */
1789 	return notify_change(dentry, &newattrs, NULL);
1790 }
1791 
1792 /*
1793  * Remove special file priviledges (suid, capabilities) when file is written
1794  * to or truncated.
1795  */
1796 int file_remove_privs(struct file *file)
1797 {
1798 	struct dentry *dentry = file_dentry(file);
1799 	struct inode *inode = file_inode(file);
1800 	int kill;
1801 	int error = 0;
1802 
1803 	/* Fast path for nothing security related */
1804 	if (IS_NOSEC(inode))
1805 		return 0;
1806 
1807 	kill = dentry_needs_remove_privs(dentry);
1808 	if (kill < 0)
1809 		return kill;
1810 	if (kill)
1811 		error = __remove_privs(dentry, kill);
1812 	if (!error)
1813 		inode_has_no_xattr(inode);
1814 
1815 	return error;
1816 }
1817 EXPORT_SYMBOL(file_remove_privs);
1818 
1819 /**
1820  *	file_update_time	-	update mtime and ctime time
1821  *	@file: file accessed
1822  *
1823  *	Update the mtime and ctime members of an inode and mark the inode
1824  *	for writeback.  Note that this function is meant exclusively for
1825  *	usage in the file write path of filesystems, and filesystems may
1826  *	choose to explicitly ignore update via this function with the
1827  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1828  *	timestamps are handled by the server.  This can return an error for
1829  *	file systems who need to allocate space in order to update an inode.
1830  */
1831 
1832 int file_update_time(struct file *file)
1833 {
1834 	struct inode *inode = file_inode(file);
1835 	struct timespec now;
1836 	int sync_it = 0;
1837 	int ret;
1838 
1839 	/* First try to exhaust all avenues to not sync */
1840 	if (IS_NOCMTIME(inode))
1841 		return 0;
1842 
1843 	now = current_time(inode);
1844 	if (!timespec_equal(&inode->i_mtime, &now))
1845 		sync_it = S_MTIME;
1846 
1847 	if (!timespec_equal(&inode->i_ctime, &now))
1848 		sync_it |= S_CTIME;
1849 
1850 	if (IS_I_VERSION(inode))
1851 		sync_it |= S_VERSION;
1852 
1853 	if (!sync_it)
1854 		return 0;
1855 
1856 	/* Finally allowed to write? Takes lock. */
1857 	if (__mnt_want_write_file(file))
1858 		return 0;
1859 
1860 	ret = update_time(inode, &now, sync_it);
1861 	__mnt_drop_write_file(file);
1862 
1863 	return ret;
1864 }
1865 EXPORT_SYMBOL(file_update_time);
1866 
1867 int inode_needs_sync(struct inode *inode)
1868 {
1869 	if (IS_SYNC(inode))
1870 		return 1;
1871 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1872 		return 1;
1873 	return 0;
1874 }
1875 EXPORT_SYMBOL(inode_needs_sync);
1876 
1877 /*
1878  * If we try to find an inode in the inode hash while it is being
1879  * deleted, we have to wait until the filesystem completes its
1880  * deletion before reporting that it isn't found.  This function waits
1881  * until the deletion _might_ have completed.  Callers are responsible
1882  * to recheck inode state.
1883  *
1884  * It doesn't matter if I_NEW is not set initially, a call to
1885  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1886  * will DTRT.
1887  */
1888 static void __wait_on_freeing_inode(struct inode *inode)
1889 {
1890 	wait_queue_head_t *wq;
1891 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1892 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1893 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1894 	spin_unlock(&inode->i_lock);
1895 	spin_unlock(&inode_hash_lock);
1896 	schedule();
1897 	finish_wait(wq, &wait.wait);
1898 	spin_lock(&inode_hash_lock);
1899 }
1900 
1901 static __initdata unsigned long ihash_entries;
1902 static int __init set_ihash_entries(char *str)
1903 {
1904 	if (!str)
1905 		return 0;
1906 	ihash_entries = simple_strtoul(str, &str, 0);
1907 	return 1;
1908 }
1909 __setup("ihash_entries=", set_ihash_entries);
1910 
1911 /*
1912  * Initialize the waitqueues and inode hash table.
1913  */
1914 void __init inode_init_early(void)
1915 {
1916 	unsigned int loop;
1917 
1918 	/* If hashes are distributed across NUMA nodes, defer
1919 	 * hash allocation until vmalloc space is available.
1920 	 */
1921 	if (hashdist)
1922 		return;
1923 
1924 	inode_hashtable =
1925 		alloc_large_system_hash("Inode-cache",
1926 					sizeof(struct hlist_head),
1927 					ihash_entries,
1928 					14,
1929 					HASH_EARLY,
1930 					&i_hash_shift,
1931 					&i_hash_mask,
1932 					0,
1933 					0);
1934 
1935 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1936 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1937 }
1938 
1939 void __init inode_init(void)
1940 {
1941 	unsigned int loop;
1942 
1943 	/* inode slab cache */
1944 	inode_cachep = kmem_cache_create("inode_cache",
1945 					 sizeof(struct inode),
1946 					 0,
1947 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1948 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1949 					 init_once);
1950 
1951 	/* Hash may have been set up in inode_init_early */
1952 	if (!hashdist)
1953 		return;
1954 
1955 	inode_hashtable =
1956 		alloc_large_system_hash("Inode-cache",
1957 					sizeof(struct hlist_head),
1958 					ihash_entries,
1959 					14,
1960 					0,
1961 					&i_hash_shift,
1962 					&i_hash_mask,
1963 					0,
1964 					0);
1965 
1966 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1967 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1968 }
1969 
1970 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1971 {
1972 	inode->i_mode = mode;
1973 	if (S_ISCHR(mode)) {
1974 		inode->i_fop = &def_chr_fops;
1975 		inode->i_rdev = rdev;
1976 	} else if (S_ISBLK(mode)) {
1977 		inode->i_fop = &def_blk_fops;
1978 		inode->i_rdev = rdev;
1979 	} else if (S_ISFIFO(mode))
1980 		inode->i_fop = &pipefifo_fops;
1981 	else if (S_ISSOCK(mode))
1982 		;	/* leave it no_open_fops */
1983 	else
1984 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1985 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1986 				  inode->i_ino);
1987 }
1988 EXPORT_SYMBOL(init_special_inode);
1989 
1990 /**
1991  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1992  * @inode: New inode
1993  * @dir: Directory inode
1994  * @mode: mode of the new inode
1995  */
1996 void inode_init_owner(struct inode *inode, const struct inode *dir,
1997 			umode_t mode)
1998 {
1999 	inode->i_uid = current_fsuid();
2000 	if (dir && dir->i_mode & S_ISGID) {
2001 		inode->i_gid = dir->i_gid;
2002 		if (S_ISDIR(mode))
2003 			mode |= S_ISGID;
2004 	} else
2005 		inode->i_gid = current_fsgid();
2006 	inode->i_mode = mode;
2007 }
2008 EXPORT_SYMBOL(inode_init_owner);
2009 
2010 /**
2011  * inode_owner_or_capable - check current task permissions to inode
2012  * @inode: inode being checked
2013  *
2014  * Return true if current either has CAP_FOWNER in a namespace with the
2015  * inode owner uid mapped, or owns the file.
2016  */
2017 bool inode_owner_or_capable(const struct inode *inode)
2018 {
2019 	struct user_namespace *ns;
2020 
2021 	if (uid_eq(current_fsuid(), inode->i_uid))
2022 		return true;
2023 
2024 	ns = current_user_ns();
2025 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2026 		return true;
2027 	return false;
2028 }
2029 EXPORT_SYMBOL(inode_owner_or_capable);
2030 
2031 /*
2032  * Direct i/o helper functions
2033  */
2034 static void __inode_dio_wait(struct inode *inode)
2035 {
2036 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2037 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2038 
2039 	do {
2040 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2041 		if (atomic_read(&inode->i_dio_count))
2042 			schedule();
2043 	} while (atomic_read(&inode->i_dio_count));
2044 	finish_wait(wq, &q.wait);
2045 }
2046 
2047 /**
2048  * inode_dio_wait - wait for outstanding DIO requests to finish
2049  * @inode: inode to wait for
2050  *
2051  * Waits for all pending direct I/O requests to finish so that we can
2052  * proceed with a truncate or equivalent operation.
2053  *
2054  * Must be called under a lock that serializes taking new references
2055  * to i_dio_count, usually by inode->i_mutex.
2056  */
2057 void inode_dio_wait(struct inode *inode)
2058 {
2059 	if (atomic_read(&inode->i_dio_count))
2060 		__inode_dio_wait(inode);
2061 }
2062 EXPORT_SYMBOL(inode_dio_wait);
2063 
2064 /*
2065  * inode_set_flags - atomically set some inode flags
2066  *
2067  * Note: the caller should be holding i_mutex, or else be sure that
2068  * they have exclusive access to the inode structure (i.e., while the
2069  * inode is being instantiated).  The reason for the cmpxchg() loop
2070  * --- which wouldn't be necessary if all code paths which modify
2071  * i_flags actually followed this rule, is that there is at least one
2072  * code path which doesn't today so we use cmpxchg() out of an abundance
2073  * of caution.
2074  *
2075  * In the long run, i_mutex is overkill, and we should probably look
2076  * at using the i_lock spinlock to protect i_flags, and then make sure
2077  * it is so documented in include/linux/fs.h and that all code follows
2078  * the locking convention!!
2079  */
2080 void inode_set_flags(struct inode *inode, unsigned int flags,
2081 		     unsigned int mask)
2082 {
2083 	unsigned int old_flags, new_flags;
2084 
2085 	WARN_ON_ONCE(flags & ~mask);
2086 	do {
2087 		old_flags = ACCESS_ONCE(inode->i_flags);
2088 		new_flags = (old_flags & ~mask) | flags;
2089 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2090 				  new_flags) != old_flags));
2091 }
2092 EXPORT_SYMBOL(inode_set_flags);
2093 
2094 void inode_nohighmem(struct inode *inode)
2095 {
2096 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2097 }
2098 EXPORT_SYMBOL(inode_nohighmem);
2099 
2100 /**
2101  * current_time - Return FS time
2102  * @inode: inode.
2103  *
2104  * Return the current time truncated to the time granularity supported by
2105  * the fs.
2106  *
2107  * Note that inode and inode->sb cannot be NULL.
2108  * Otherwise, the function warns and returns time without truncation.
2109  */
2110 struct timespec current_time(struct inode *inode)
2111 {
2112 	struct timespec now = current_kernel_time();
2113 
2114 	if (unlikely(!inode->i_sb)) {
2115 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2116 		return now;
2117 	}
2118 
2119 	return timespec_trunc(now, inode->i_sb->s_time_gran);
2120 }
2121 EXPORT_SYMBOL(current_time);
2122