1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <trace/events/writeback.h> 22 #include "internal.h" 23 24 /* 25 * Inode locking rules: 26 * 27 * inode->i_lock protects: 28 * inode->i_state, inode->i_hash, __iget() 29 * Inode LRU list locks protect: 30 * inode->i_sb->s_inode_lru, inode->i_lru 31 * inode->i_sb->s_inode_list_lock protects: 32 * inode->i_sb->s_inodes, inode->i_sb_list 33 * bdi->wb.list_lock protects: 34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 35 * inode_hash_lock protects: 36 * inode_hashtable, inode->i_hash 37 * 38 * Lock ordering: 39 * 40 * inode->i_sb->s_inode_list_lock 41 * inode->i_lock 42 * Inode LRU list locks 43 * 44 * bdi->wb.list_lock 45 * inode->i_lock 46 * 47 * inode_hash_lock 48 * inode->i_sb->s_inode_list_lock 49 * inode->i_lock 50 * 51 * iunique_lock 52 * inode_hash_lock 53 */ 54 55 static unsigned int i_hash_mask __read_mostly; 56 static unsigned int i_hash_shift __read_mostly; 57 static struct hlist_head *inode_hashtable __read_mostly; 58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 59 60 /* 61 * Empty aops. Can be used for the cases where the user does not 62 * define any of the address_space operations. 63 */ 64 const struct address_space_operations empty_aops = { 65 }; 66 EXPORT_SYMBOL(empty_aops); 67 68 /* 69 * Statistics gathering.. 70 */ 71 struct inodes_stat_t inodes_stat; 72 73 static DEFINE_PER_CPU(unsigned long, nr_inodes); 74 static DEFINE_PER_CPU(unsigned long, nr_unused); 75 76 static struct kmem_cache *inode_cachep __read_mostly; 77 78 static long get_nr_inodes(void) 79 { 80 int i; 81 long sum = 0; 82 for_each_possible_cpu(i) 83 sum += per_cpu(nr_inodes, i); 84 return sum < 0 ? 0 : sum; 85 } 86 87 static inline long get_nr_inodes_unused(void) 88 { 89 int i; 90 long sum = 0; 91 for_each_possible_cpu(i) 92 sum += per_cpu(nr_unused, i); 93 return sum < 0 ? 0 : sum; 94 } 95 96 long get_nr_dirty_inodes(void) 97 { 98 /* not actually dirty inodes, but a wild approximation */ 99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 100 return nr_dirty > 0 ? nr_dirty : 0; 101 } 102 103 /* 104 * Handle nr_inode sysctl 105 */ 106 #ifdef CONFIG_SYSCTL 107 int proc_nr_inodes(struct ctl_table *table, int write, 108 void __user *buffer, size_t *lenp, loff_t *ppos) 109 { 110 inodes_stat.nr_inodes = get_nr_inodes(); 111 inodes_stat.nr_unused = get_nr_inodes_unused(); 112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 113 } 114 #endif 115 116 static int no_open(struct inode *inode, struct file *file) 117 { 118 return -ENXIO; 119 } 120 121 /** 122 * inode_init_always - perform inode structure initialisation 123 * @sb: superblock inode belongs to 124 * @inode: inode to initialise 125 * 126 * These are initializations that need to be done on every inode 127 * allocation as the fields are not initialised by slab allocation. 128 */ 129 int inode_init_always(struct super_block *sb, struct inode *inode) 130 { 131 static const struct inode_operations empty_iops; 132 static const struct file_operations no_open_fops = {.open = no_open}; 133 struct address_space *const mapping = &inode->i_data; 134 135 inode->i_sb = sb; 136 inode->i_blkbits = sb->s_blocksize_bits; 137 inode->i_flags = 0; 138 atomic_set(&inode->i_count, 1); 139 inode->i_op = &empty_iops; 140 inode->i_fop = &no_open_fops; 141 inode->__i_nlink = 1; 142 inode->i_opflags = 0; 143 if (sb->s_xattr) 144 inode->i_opflags |= IOP_XATTR; 145 i_uid_write(inode, 0); 146 i_gid_write(inode, 0); 147 atomic_set(&inode->i_writecount, 0); 148 inode->i_size = 0; 149 inode->i_blocks = 0; 150 inode->i_bytes = 0; 151 inode->i_generation = 0; 152 inode->i_pipe = NULL; 153 inode->i_bdev = NULL; 154 inode->i_cdev = NULL; 155 inode->i_link = NULL; 156 inode->i_dir_seq = 0; 157 inode->i_rdev = 0; 158 inode->dirtied_when = 0; 159 160 #ifdef CONFIG_CGROUP_WRITEBACK 161 inode->i_wb_frn_winner = 0; 162 inode->i_wb_frn_avg_time = 0; 163 inode->i_wb_frn_history = 0; 164 #endif 165 166 if (security_inode_alloc(inode)) 167 goto out; 168 spin_lock_init(&inode->i_lock); 169 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 170 171 init_rwsem(&inode->i_rwsem); 172 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 173 174 atomic_set(&inode->i_dio_count, 0); 175 176 mapping->a_ops = &empty_aops; 177 mapping->host = inode; 178 mapping->flags = 0; 179 atomic_set(&mapping->i_mmap_writable, 0); 180 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 181 mapping->private_data = NULL; 182 mapping->writeback_index = 0; 183 inode->i_private = NULL; 184 inode->i_mapping = mapping; 185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 186 #ifdef CONFIG_FS_POSIX_ACL 187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 188 #endif 189 190 #ifdef CONFIG_FSNOTIFY 191 inode->i_fsnotify_mask = 0; 192 #endif 193 inode->i_flctx = NULL; 194 this_cpu_inc(nr_inodes); 195 196 return 0; 197 out: 198 return -ENOMEM; 199 } 200 EXPORT_SYMBOL(inode_init_always); 201 202 static struct inode *alloc_inode(struct super_block *sb) 203 { 204 struct inode *inode; 205 206 if (sb->s_op->alloc_inode) 207 inode = sb->s_op->alloc_inode(sb); 208 else 209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 210 211 if (!inode) 212 return NULL; 213 214 if (unlikely(inode_init_always(sb, inode))) { 215 if (inode->i_sb->s_op->destroy_inode) 216 inode->i_sb->s_op->destroy_inode(inode); 217 else 218 kmem_cache_free(inode_cachep, inode); 219 return NULL; 220 } 221 222 return inode; 223 } 224 225 void free_inode_nonrcu(struct inode *inode) 226 { 227 kmem_cache_free(inode_cachep, inode); 228 } 229 EXPORT_SYMBOL(free_inode_nonrcu); 230 231 void __destroy_inode(struct inode *inode) 232 { 233 BUG_ON(inode_has_buffers(inode)); 234 inode_detach_wb(inode); 235 security_inode_free(inode); 236 fsnotify_inode_delete(inode); 237 locks_free_lock_context(inode); 238 if (!inode->i_nlink) { 239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 240 atomic_long_dec(&inode->i_sb->s_remove_count); 241 } 242 243 #ifdef CONFIG_FS_POSIX_ACL 244 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 245 posix_acl_release(inode->i_acl); 246 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 247 posix_acl_release(inode->i_default_acl); 248 #endif 249 this_cpu_dec(nr_inodes); 250 } 251 EXPORT_SYMBOL(__destroy_inode); 252 253 static void i_callback(struct rcu_head *head) 254 { 255 struct inode *inode = container_of(head, struct inode, i_rcu); 256 kmem_cache_free(inode_cachep, inode); 257 } 258 259 static void destroy_inode(struct inode *inode) 260 { 261 BUG_ON(!list_empty(&inode->i_lru)); 262 __destroy_inode(inode); 263 if (inode->i_sb->s_op->destroy_inode) 264 inode->i_sb->s_op->destroy_inode(inode); 265 else 266 call_rcu(&inode->i_rcu, i_callback); 267 } 268 269 /** 270 * drop_nlink - directly drop an inode's link count 271 * @inode: inode 272 * 273 * This is a low-level filesystem helper to replace any 274 * direct filesystem manipulation of i_nlink. In cases 275 * where we are attempting to track writes to the 276 * filesystem, a decrement to zero means an imminent 277 * write when the file is truncated and actually unlinked 278 * on the filesystem. 279 */ 280 void drop_nlink(struct inode *inode) 281 { 282 WARN_ON(inode->i_nlink == 0); 283 inode->__i_nlink--; 284 if (!inode->i_nlink) 285 atomic_long_inc(&inode->i_sb->s_remove_count); 286 } 287 EXPORT_SYMBOL(drop_nlink); 288 289 /** 290 * clear_nlink - directly zero an inode's link count 291 * @inode: inode 292 * 293 * This is a low-level filesystem helper to replace any 294 * direct filesystem manipulation of i_nlink. See 295 * drop_nlink() for why we care about i_nlink hitting zero. 296 */ 297 void clear_nlink(struct inode *inode) 298 { 299 if (inode->i_nlink) { 300 inode->__i_nlink = 0; 301 atomic_long_inc(&inode->i_sb->s_remove_count); 302 } 303 } 304 EXPORT_SYMBOL(clear_nlink); 305 306 /** 307 * set_nlink - directly set an inode's link count 308 * @inode: inode 309 * @nlink: new nlink (should be non-zero) 310 * 311 * This is a low-level filesystem helper to replace any 312 * direct filesystem manipulation of i_nlink. 313 */ 314 void set_nlink(struct inode *inode, unsigned int nlink) 315 { 316 if (!nlink) { 317 clear_nlink(inode); 318 } else { 319 /* Yes, some filesystems do change nlink from zero to one */ 320 if (inode->i_nlink == 0) 321 atomic_long_dec(&inode->i_sb->s_remove_count); 322 323 inode->__i_nlink = nlink; 324 } 325 } 326 EXPORT_SYMBOL(set_nlink); 327 328 /** 329 * inc_nlink - directly increment an inode's link count 330 * @inode: inode 331 * 332 * This is a low-level filesystem helper to replace any 333 * direct filesystem manipulation of i_nlink. Currently, 334 * it is only here for parity with dec_nlink(). 335 */ 336 void inc_nlink(struct inode *inode) 337 { 338 if (unlikely(inode->i_nlink == 0)) { 339 WARN_ON(!(inode->i_state & I_LINKABLE)); 340 atomic_long_dec(&inode->i_sb->s_remove_count); 341 } 342 343 inode->__i_nlink++; 344 } 345 EXPORT_SYMBOL(inc_nlink); 346 347 void address_space_init_once(struct address_space *mapping) 348 { 349 memset(mapping, 0, sizeof(*mapping)); 350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT); 351 spin_lock_init(&mapping->tree_lock); 352 init_rwsem(&mapping->i_mmap_rwsem); 353 INIT_LIST_HEAD(&mapping->private_list); 354 spin_lock_init(&mapping->private_lock); 355 mapping->i_mmap = RB_ROOT; 356 } 357 EXPORT_SYMBOL(address_space_init_once); 358 359 /* 360 * These are initializations that only need to be done 361 * once, because the fields are idempotent across use 362 * of the inode, so let the slab aware of that. 363 */ 364 void inode_init_once(struct inode *inode) 365 { 366 memset(inode, 0, sizeof(*inode)); 367 INIT_HLIST_NODE(&inode->i_hash); 368 INIT_LIST_HEAD(&inode->i_devices); 369 INIT_LIST_HEAD(&inode->i_io_list); 370 INIT_LIST_HEAD(&inode->i_wb_list); 371 INIT_LIST_HEAD(&inode->i_lru); 372 address_space_init_once(&inode->i_data); 373 i_size_ordered_init(inode); 374 } 375 EXPORT_SYMBOL(inode_init_once); 376 377 static void init_once(void *foo) 378 { 379 struct inode *inode = (struct inode *) foo; 380 381 inode_init_once(inode); 382 } 383 384 /* 385 * inode->i_lock must be held 386 */ 387 void __iget(struct inode *inode) 388 { 389 atomic_inc(&inode->i_count); 390 } 391 392 /* 393 * get additional reference to inode; caller must already hold one. 394 */ 395 void ihold(struct inode *inode) 396 { 397 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 398 } 399 EXPORT_SYMBOL(ihold); 400 401 static void inode_lru_list_add(struct inode *inode) 402 { 403 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 404 this_cpu_inc(nr_unused); 405 } 406 407 /* 408 * Add inode to LRU if needed (inode is unused and clean). 409 * 410 * Needs inode->i_lock held. 411 */ 412 void inode_add_lru(struct inode *inode) 413 { 414 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 415 I_FREEING | I_WILL_FREE)) && 416 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 417 inode_lru_list_add(inode); 418 } 419 420 421 static void inode_lru_list_del(struct inode *inode) 422 { 423 424 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 425 this_cpu_dec(nr_unused); 426 } 427 428 /** 429 * inode_sb_list_add - add inode to the superblock list of inodes 430 * @inode: inode to add 431 */ 432 void inode_sb_list_add(struct inode *inode) 433 { 434 spin_lock(&inode->i_sb->s_inode_list_lock); 435 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 436 spin_unlock(&inode->i_sb->s_inode_list_lock); 437 } 438 EXPORT_SYMBOL_GPL(inode_sb_list_add); 439 440 static inline void inode_sb_list_del(struct inode *inode) 441 { 442 if (!list_empty(&inode->i_sb_list)) { 443 spin_lock(&inode->i_sb->s_inode_list_lock); 444 list_del_init(&inode->i_sb_list); 445 spin_unlock(&inode->i_sb->s_inode_list_lock); 446 } 447 } 448 449 static unsigned long hash(struct super_block *sb, unsigned long hashval) 450 { 451 unsigned long tmp; 452 453 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 454 L1_CACHE_BYTES; 455 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 456 return tmp & i_hash_mask; 457 } 458 459 /** 460 * __insert_inode_hash - hash an inode 461 * @inode: unhashed inode 462 * @hashval: unsigned long value used to locate this object in the 463 * inode_hashtable. 464 * 465 * Add an inode to the inode hash for this superblock. 466 */ 467 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 468 { 469 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 470 471 spin_lock(&inode_hash_lock); 472 spin_lock(&inode->i_lock); 473 hlist_add_head(&inode->i_hash, b); 474 spin_unlock(&inode->i_lock); 475 spin_unlock(&inode_hash_lock); 476 } 477 EXPORT_SYMBOL(__insert_inode_hash); 478 479 /** 480 * __remove_inode_hash - remove an inode from the hash 481 * @inode: inode to unhash 482 * 483 * Remove an inode from the superblock. 484 */ 485 void __remove_inode_hash(struct inode *inode) 486 { 487 spin_lock(&inode_hash_lock); 488 spin_lock(&inode->i_lock); 489 hlist_del_init(&inode->i_hash); 490 spin_unlock(&inode->i_lock); 491 spin_unlock(&inode_hash_lock); 492 } 493 EXPORT_SYMBOL(__remove_inode_hash); 494 495 void clear_inode(struct inode *inode) 496 { 497 might_sleep(); 498 /* 499 * We have to cycle tree_lock here because reclaim can be still in the 500 * process of removing the last page (in __delete_from_page_cache()) 501 * and we must not free mapping under it. 502 */ 503 spin_lock_irq(&inode->i_data.tree_lock); 504 BUG_ON(inode->i_data.nrpages); 505 BUG_ON(inode->i_data.nrexceptional); 506 spin_unlock_irq(&inode->i_data.tree_lock); 507 BUG_ON(!list_empty(&inode->i_data.private_list)); 508 BUG_ON(!(inode->i_state & I_FREEING)); 509 BUG_ON(inode->i_state & I_CLEAR); 510 BUG_ON(!list_empty(&inode->i_wb_list)); 511 /* don't need i_lock here, no concurrent mods to i_state */ 512 inode->i_state = I_FREEING | I_CLEAR; 513 } 514 EXPORT_SYMBOL(clear_inode); 515 516 /* 517 * Free the inode passed in, removing it from the lists it is still connected 518 * to. We remove any pages still attached to the inode and wait for any IO that 519 * is still in progress before finally destroying the inode. 520 * 521 * An inode must already be marked I_FREEING so that we avoid the inode being 522 * moved back onto lists if we race with other code that manipulates the lists 523 * (e.g. writeback_single_inode). The caller is responsible for setting this. 524 * 525 * An inode must already be removed from the LRU list before being evicted from 526 * the cache. This should occur atomically with setting the I_FREEING state 527 * flag, so no inodes here should ever be on the LRU when being evicted. 528 */ 529 static void evict(struct inode *inode) 530 { 531 const struct super_operations *op = inode->i_sb->s_op; 532 533 BUG_ON(!(inode->i_state & I_FREEING)); 534 BUG_ON(!list_empty(&inode->i_lru)); 535 536 if (!list_empty(&inode->i_io_list)) 537 inode_io_list_del(inode); 538 539 inode_sb_list_del(inode); 540 541 /* 542 * Wait for flusher thread to be done with the inode so that filesystem 543 * does not start destroying it while writeback is still running. Since 544 * the inode has I_FREEING set, flusher thread won't start new work on 545 * the inode. We just have to wait for running writeback to finish. 546 */ 547 inode_wait_for_writeback(inode); 548 549 if (op->evict_inode) { 550 op->evict_inode(inode); 551 } else { 552 truncate_inode_pages_final(&inode->i_data); 553 clear_inode(inode); 554 } 555 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 556 bd_forget(inode); 557 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 558 cd_forget(inode); 559 560 remove_inode_hash(inode); 561 562 spin_lock(&inode->i_lock); 563 wake_up_bit(&inode->i_state, __I_NEW); 564 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 565 spin_unlock(&inode->i_lock); 566 567 destroy_inode(inode); 568 } 569 570 /* 571 * dispose_list - dispose of the contents of a local list 572 * @head: the head of the list to free 573 * 574 * Dispose-list gets a local list with local inodes in it, so it doesn't 575 * need to worry about list corruption and SMP locks. 576 */ 577 static void dispose_list(struct list_head *head) 578 { 579 while (!list_empty(head)) { 580 struct inode *inode; 581 582 inode = list_first_entry(head, struct inode, i_lru); 583 list_del_init(&inode->i_lru); 584 585 evict(inode); 586 cond_resched(); 587 } 588 } 589 590 /** 591 * evict_inodes - evict all evictable inodes for a superblock 592 * @sb: superblock to operate on 593 * 594 * Make sure that no inodes with zero refcount are retained. This is 595 * called by superblock shutdown after having MS_ACTIVE flag removed, 596 * so any inode reaching zero refcount during or after that call will 597 * be immediately evicted. 598 */ 599 void evict_inodes(struct super_block *sb) 600 { 601 struct inode *inode, *next; 602 LIST_HEAD(dispose); 603 604 again: 605 spin_lock(&sb->s_inode_list_lock); 606 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 607 if (atomic_read(&inode->i_count)) 608 continue; 609 610 spin_lock(&inode->i_lock); 611 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 612 spin_unlock(&inode->i_lock); 613 continue; 614 } 615 616 inode->i_state |= I_FREEING; 617 inode_lru_list_del(inode); 618 spin_unlock(&inode->i_lock); 619 list_add(&inode->i_lru, &dispose); 620 621 /* 622 * We can have a ton of inodes to evict at unmount time given 623 * enough memory, check to see if we need to go to sleep for a 624 * bit so we don't livelock. 625 */ 626 if (need_resched()) { 627 spin_unlock(&sb->s_inode_list_lock); 628 cond_resched(); 629 dispose_list(&dispose); 630 goto again; 631 } 632 } 633 spin_unlock(&sb->s_inode_list_lock); 634 635 dispose_list(&dispose); 636 } 637 638 /** 639 * invalidate_inodes - attempt to free all inodes on a superblock 640 * @sb: superblock to operate on 641 * @kill_dirty: flag to guide handling of dirty inodes 642 * 643 * Attempts to free all inodes for a given superblock. If there were any 644 * busy inodes return a non-zero value, else zero. 645 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 646 * them as busy. 647 */ 648 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 649 { 650 int busy = 0; 651 struct inode *inode, *next; 652 LIST_HEAD(dispose); 653 654 spin_lock(&sb->s_inode_list_lock); 655 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 656 spin_lock(&inode->i_lock); 657 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 658 spin_unlock(&inode->i_lock); 659 continue; 660 } 661 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 662 spin_unlock(&inode->i_lock); 663 busy = 1; 664 continue; 665 } 666 if (atomic_read(&inode->i_count)) { 667 spin_unlock(&inode->i_lock); 668 busy = 1; 669 continue; 670 } 671 672 inode->i_state |= I_FREEING; 673 inode_lru_list_del(inode); 674 spin_unlock(&inode->i_lock); 675 list_add(&inode->i_lru, &dispose); 676 } 677 spin_unlock(&sb->s_inode_list_lock); 678 679 dispose_list(&dispose); 680 681 return busy; 682 } 683 684 /* 685 * Isolate the inode from the LRU in preparation for freeing it. 686 * 687 * Any inodes which are pinned purely because of attached pagecache have their 688 * pagecache removed. If the inode has metadata buffers attached to 689 * mapping->private_list then try to remove them. 690 * 691 * If the inode has the I_REFERENCED flag set, then it means that it has been 692 * used recently - the flag is set in iput_final(). When we encounter such an 693 * inode, clear the flag and move it to the back of the LRU so it gets another 694 * pass through the LRU before it gets reclaimed. This is necessary because of 695 * the fact we are doing lazy LRU updates to minimise lock contention so the 696 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 697 * with this flag set because they are the inodes that are out of order. 698 */ 699 static enum lru_status inode_lru_isolate(struct list_head *item, 700 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 701 { 702 struct list_head *freeable = arg; 703 struct inode *inode = container_of(item, struct inode, i_lru); 704 705 /* 706 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 707 * If we fail to get the lock, just skip it. 708 */ 709 if (!spin_trylock(&inode->i_lock)) 710 return LRU_SKIP; 711 712 /* 713 * Referenced or dirty inodes are still in use. Give them another pass 714 * through the LRU as we canot reclaim them now. 715 */ 716 if (atomic_read(&inode->i_count) || 717 (inode->i_state & ~I_REFERENCED)) { 718 list_lru_isolate(lru, &inode->i_lru); 719 spin_unlock(&inode->i_lock); 720 this_cpu_dec(nr_unused); 721 return LRU_REMOVED; 722 } 723 724 /* recently referenced inodes get one more pass */ 725 if (inode->i_state & I_REFERENCED) { 726 inode->i_state &= ~I_REFERENCED; 727 spin_unlock(&inode->i_lock); 728 return LRU_ROTATE; 729 } 730 731 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 732 __iget(inode); 733 spin_unlock(&inode->i_lock); 734 spin_unlock(lru_lock); 735 if (remove_inode_buffers(inode)) { 736 unsigned long reap; 737 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 738 if (current_is_kswapd()) 739 __count_vm_events(KSWAPD_INODESTEAL, reap); 740 else 741 __count_vm_events(PGINODESTEAL, reap); 742 if (current->reclaim_state) 743 current->reclaim_state->reclaimed_slab += reap; 744 } 745 iput(inode); 746 spin_lock(lru_lock); 747 return LRU_RETRY; 748 } 749 750 WARN_ON(inode->i_state & I_NEW); 751 inode->i_state |= I_FREEING; 752 list_lru_isolate_move(lru, &inode->i_lru, freeable); 753 spin_unlock(&inode->i_lock); 754 755 this_cpu_dec(nr_unused); 756 return LRU_REMOVED; 757 } 758 759 /* 760 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 761 * This is called from the superblock shrinker function with a number of inodes 762 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 763 * then are freed outside inode_lock by dispose_list(). 764 */ 765 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 766 { 767 LIST_HEAD(freeable); 768 long freed; 769 770 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 771 inode_lru_isolate, &freeable); 772 dispose_list(&freeable); 773 return freed; 774 } 775 776 static void __wait_on_freeing_inode(struct inode *inode); 777 /* 778 * Called with the inode lock held. 779 */ 780 static struct inode *find_inode(struct super_block *sb, 781 struct hlist_head *head, 782 int (*test)(struct inode *, void *), 783 void *data) 784 { 785 struct inode *inode = NULL; 786 787 repeat: 788 hlist_for_each_entry(inode, head, i_hash) { 789 if (inode->i_sb != sb) 790 continue; 791 if (!test(inode, data)) 792 continue; 793 spin_lock(&inode->i_lock); 794 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 795 __wait_on_freeing_inode(inode); 796 goto repeat; 797 } 798 __iget(inode); 799 spin_unlock(&inode->i_lock); 800 return inode; 801 } 802 return NULL; 803 } 804 805 /* 806 * find_inode_fast is the fast path version of find_inode, see the comment at 807 * iget_locked for details. 808 */ 809 static struct inode *find_inode_fast(struct super_block *sb, 810 struct hlist_head *head, unsigned long ino) 811 { 812 struct inode *inode = NULL; 813 814 repeat: 815 hlist_for_each_entry(inode, head, i_hash) { 816 if (inode->i_ino != ino) 817 continue; 818 if (inode->i_sb != sb) 819 continue; 820 spin_lock(&inode->i_lock); 821 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 822 __wait_on_freeing_inode(inode); 823 goto repeat; 824 } 825 __iget(inode); 826 spin_unlock(&inode->i_lock); 827 return inode; 828 } 829 return NULL; 830 } 831 832 /* 833 * Each cpu owns a range of LAST_INO_BATCH numbers. 834 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 835 * to renew the exhausted range. 836 * 837 * This does not significantly increase overflow rate because every CPU can 838 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 839 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 840 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 841 * overflow rate by 2x, which does not seem too significant. 842 * 843 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 844 * error if st_ino won't fit in target struct field. Use 32bit counter 845 * here to attempt to avoid that. 846 */ 847 #define LAST_INO_BATCH 1024 848 static DEFINE_PER_CPU(unsigned int, last_ino); 849 850 unsigned int get_next_ino(void) 851 { 852 unsigned int *p = &get_cpu_var(last_ino); 853 unsigned int res = *p; 854 855 #ifdef CONFIG_SMP 856 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 857 static atomic_t shared_last_ino; 858 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 859 860 res = next - LAST_INO_BATCH; 861 } 862 #endif 863 864 res++; 865 /* get_next_ino should not provide a 0 inode number */ 866 if (unlikely(!res)) 867 res++; 868 *p = res; 869 put_cpu_var(last_ino); 870 return res; 871 } 872 EXPORT_SYMBOL(get_next_ino); 873 874 /** 875 * new_inode_pseudo - obtain an inode 876 * @sb: superblock 877 * 878 * Allocates a new inode for given superblock. 879 * Inode wont be chained in superblock s_inodes list 880 * This means : 881 * - fs can't be unmount 882 * - quotas, fsnotify, writeback can't work 883 */ 884 struct inode *new_inode_pseudo(struct super_block *sb) 885 { 886 struct inode *inode = alloc_inode(sb); 887 888 if (inode) { 889 spin_lock(&inode->i_lock); 890 inode->i_state = 0; 891 spin_unlock(&inode->i_lock); 892 INIT_LIST_HEAD(&inode->i_sb_list); 893 } 894 return inode; 895 } 896 897 /** 898 * new_inode - obtain an inode 899 * @sb: superblock 900 * 901 * Allocates a new inode for given superblock. The default gfp_mask 902 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 903 * If HIGHMEM pages are unsuitable or it is known that pages allocated 904 * for the page cache are not reclaimable or migratable, 905 * mapping_set_gfp_mask() must be called with suitable flags on the 906 * newly created inode's mapping 907 * 908 */ 909 struct inode *new_inode(struct super_block *sb) 910 { 911 struct inode *inode; 912 913 spin_lock_prefetch(&sb->s_inode_list_lock); 914 915 inode = new_inode_pseudo(sb); 916 if (inode) 917 inode_sb_list_add(inode); 918 return inode; 919 } 920 EXPORT_SYMBOL(new_inode); 921 922 #ifdef CONFIG_DEBUG_LOCK_ALLOC 923 void lockdep_annotate_inode_mutex_key(struct inode *inode) 924 { 925 if (S_ISDIR(inode->i_mode)) { 926 struct file_system_type *type = inode->i_sb->s_type; 927 928 /* Set new key only if filesystem hasn't already changed it */ 929 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 930 /* 931 * ensure nobody is actually holding i_mutex 932 */ 933 // mutex_destroy(&inode->i_mutex); 934 init_rwsem(&inode->i_rwsem); 935 lockdep_set_class(&inode->i_rwsem, 936 &type->i_mutex_dir_key); 937 } 938 } 939 } 940 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 941 #endif 942 943 /** 944 * unlock_new_inode - clear the I_NEW state and wake up any waiters 945 * @inode: new inode to unlock 946 * 947 * Called when the inode is fully initialised to clear the new state of the 948 * inode and wake up anyone waiting for the inode to finish initialisation. 949 */ 950 void unlock_new_inode(struct inode *inode) 951 { 952 lockdep_annotate_inode_mutex_key(inode); 953 spin_lock(&inode->i_lock); 954 WARN_ON(!(inode->i_state & I_NEW)); 955 inode->i_state &= ~I_NEW; 956 smp_mb(); 957 wake_up_bit(&inode->i_state, __I_NEW); 958 spin_unlock(&inode->i_lock); 959 } 960 EXPORT_SYMBOL(unlock_new_inode); 961 962 /** 963 * lock_two_nondirectories - take two i_mutexes on non-directory objects 964 * 965 * Lock any non-NULL argument that is not a directory. 966 * Zero, one or two objects may be locked by this function. 967 * 968 * @inode1: first inode to lock 969 * @inode2: second inode to lock 970 */ 971 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 972 { 973 if (inode1 > inode2) 974 swap(inode1, inode2); 975 976 if (inode1 && !S_ISDIR(inode1->i_mode)) 977 inode_lock(inode1); 978 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 979 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 980 } 981 EXPORT_SYMBOL(lock_two_nondirectories); 982 983 /** 984 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 985 * @inode1: first inode to unlock 986 * @inode2: second inode to unlock 987 */ 988 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 989 { 990 if (inode1 && !S_ISDIR(inode1->i_mode)) 991 inode_unlock(inode1); 992 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 993 inode_unlock(inode2); 994 } 995 EXPORT_SYMBOL(unlock_two_nondirectories); 996 997 /** 998 * iget5_locked - obtain an inode from a mounted file system 999 * @sb: super block of file system 1000 * @hashval: hash value (usually inode number) to get 1001 * @test: callback used for comparisons between inodes 1002 * @set: callback used to initialize a new struct inode 1003 * @data: opaque data pointer to pass to @test and @set 1004 * 1005 * Search for the inode specified by @hashval and @data in the inode cache, 1006 * and if present it is return it with an increased reference count. This is 1007 * a generalized version of iget_locked() for file systems where the inode 1008 * number is not sufficient for unique identification of an inode. 1009 * 1010 * If the inode is not in cache, allocate a new inode and return it locked, 1011 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1012 * before unlocking it via unlock_new_inode(). 1013 * 1014 * Note both @test and @set are called with the inode_hash_lock held, so can't 1015 * sleep. 1016 */ 1017 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1018 int (*test)(struct inode *, void *), 1019 int (*set)(struct inode *, void *), void *data) 1020 { 1021 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1022 struct inode *inode; 1023 again: 1024 spin_lock(&inode_hash_lock); 1025 inode = find_inode(sb, head, test, data); 1026 spin_unlock(&inode_hash_lock); 1027 1028 if (inode) { 1029 wait_on_inode(inode); 1030 if (unlikely(inode_unhashed(inode))) { 1031 iput(inode); 1032 goto again; 1033 } 1034 return inode; 1035 } 1036 1037 inode = alloc_inode(sb); 1038 if (inode) { 1039 struct inode *old; 1040 1041 spin_lock(&inode_hash_lock); 1042 /* We released the lock, so.. */ 1043 old = find_inode(sb, head, test, data); 1044 if (!old) { 1045 if (set(inode, data)) 1046 goto set_failed; 1047 1048 spin_lock(&inode->i_lock); 1049 inode->i_state = I_NEW; 1050 hlist_add_head(&inode->i_hash, head); 1051 spin_unlock(&inode->i_lock); 1052 inode_sb_list_add(inode); 1053 spin_unlock(&inode_hash_lock); 1054 1055 /* Return the locked inode with I_NEW set, the 1056 * caller is responsible for filling in the contents 1057 */ 1058 return inode; 1059 } 1060 1061 /* 1062 * Uhhuh, somebody else created the same inode under 1063 * us. Use the old inode instead of the one we just 1064 * allocated. 1065 */ 1066 spin_unlock(&inode_hash_lock); 1067 destroy_inode(inode); 1068 inode = old; 1069 wait_on_inode(inode); 1070 if (unlikely(inode_unhashed(inode))) { 1071 iput(inode); 1072 goto again; 1073 } 1074 } 1075 return inode; 1076 1077 set_failed: 1078 spin_unlock(&inode_hash_lock); 1079 destroy_inode(inode); 1080 return NULL; 1081 } 1082 EXPORT_SYMBOL(iget5_locked); 1083 1084 /** 1085 * iget_locked - obtain an inode from a mounted file system 1086 * @sb: super block of file system 1087 * @ino: inode number to get 1088 * 1089 * Search for the inode specified by @ino in the inode cache and if present 1090 * return it with an increased reference count. This is for file systems 1091 * where the inode number is sufficient for unique identification of an inode. 1092 * 1093 * If the inode is not in cache, allocate a new inode and return it locked, 1094 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1095 * before unlocking it via unlock_new_inode(). 1096 */ 1097 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1098 { 1099 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1100 struct inode *inode; 1101 again: 1102 spin_lock(&inode_hash_lock); 1103 inode = find_inode_fast(sb, head, ino); 1104 spin_unlock(&inode_hash_lock); 1105 if (inode) { 1106 wait_on_inode(inode); 1107 if (unlikely(inode_unhashed(inode))) { 1108 iput(inode); 1109 goto again; 1110 } 1111 return inode; 1112 } 1113 1114 inode = alloc_inode(sb); 1115 if (inode) { 1116 struct inode *old; 1117 1118 spin_lock(&inode_hash_lock); 1119 /* We released the lock, so.. */ 1120 old = find_inode_fast(sb, head, ino); 1121 if (!old) { 1122 inode->i_ino = ino; 1123 spin_lock(&inode->i_lock); 1124 inode->i_state = I_NEW; 1125 hlist_add_head(&inode->i_hash, head); 1126 spin_unlock(&inode->i_lock); 1127 inode_sb_list_add(inode); 1128 spin_unlock(&inode_hash_lock); 1129 1130 /* Return the locked inode with I_NEW set, the 1131 * caller is responsible for filling in the contents 1132 */ 1133 return inode; 1134 } 1135 1136 /* 1137 * Uhhuh, somebody else created the same inode under 1138 * us. Use the old inode instead of the one we just 1139 * allocated. 1140 */ 1141 spin_unlock(&inode_hash_lock); 1142 destroy_inode(inode); 1143 inode = old; 1144 wait_on_inode(inode); 1145 if (unlikely(inode_unhashed(inode))) { 1146 iput(inode); 1147 goto again; 1148 } 1149 } 1150 return inode; 1151 } 1152 EXPORT_SYMBOL(iget_locked); 1153 1154 /* 1155 * search the inode cache for a matching inode number. 1156 * If we find one, then the inode number we are trying to 1157 * allocate is not unique and so we should not use it. 1158 * 1159 * Returns 1 if the inode number is unique, 0 if it is not. 1160 */ 1161 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1162 { 1163 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1164 struct inode *inode; 1165 1166 spin_lock(&inode_hash_lock); 1167 hlist_for_each_entry(inode, b, i_hash) { 1168 if (inode->i_ino == ino && inode->i_sb == sb) { 1169 spin_unlock(&inode_hash_lock); 1170 return 0; 1171 } 1172 } 1173 spin_unlock(&inode_hash_lock); 1174 1175 return 1; 1176 } 1177 1178 /** 1179 * iunique - get a unique inode number 1180 * @sb: superblock 1181 * @max_reserved: highest reserved inode number 1182 * 1183 * Obtain an inode number that is unique on the system for a given 1184 * superblock. This is used by file systems that have no natural 1185 * permanent inode numbering system. An inode number is returned that 1186 * is higher than the reserved limit but unique. 1187 * 1188 * BUGS: 1189 * With a large number of inodes live on the file system this function 1190 * currently becomes quite slow. 1191 */ 1192 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1193 { 1194 /* 1195 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1196 * error if st_ino won't fit in target struct field. Use 32bit counter 1197 * here to attempt to avoid that. 1198 */ 1199 static DEFINE_SPINLOCK(iunique_lock); 1200 static unsigned int counter; 1201 ino_t res; 1202 1203 spin_lock(&iunique_lock); 1204 do { 1205 if (counter <= max_reserved) 1206 counter = max_reserved + 1; 1207 res = counter++; 1208 } while (!test_inode_iunique(sb, res)); 1209 spin_unlock(&iunique_lock); 1210 1211 return res; 1212 } 1213 EXPORT_SYMBOL(iunique); 1214 1215 struct inode *igrab(struct inode *inode) 1216 { 1217 spin_lock(&inode->i_lock); 1218 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1219 __iget(inode); 1220 spin_unlock(&inode->i_lock); 1221 } else { 1222 spin_unlock(&inode->i_lock); 1223 /* 1224 * Handle the case where s_op->clear_inode is not been 1225 * called yet, and somebody is calling igrab 1226 * while the inode is getting freed. 1227 */ 1228 inode = NULL; 1229 } 1230 return inode; 1231 } 1232 EXPORT_SYMBOL(igrab); 1233 1234 /** 1235 * ilookup5_nowait - search for an inode in the inode cache 1236 * @sb: super block of file system to search 1237 * @hashval: hash value (usually inode number) to search for 1238 * @test: callback used for comparisons between inodes 1239 * @data: opaque data pointer to pass to @test 1240 * 1241 * Search for the inode specified by @hashval and @data in the inode cache. 1242 * If the inode is in the cache, the inode is returned with an incremented 1243 * reference count. 1244 * 1245 * Note: I_NEW is not waited upon so you have to be very careful what you do 1246 * with the returned inode. You probably should be using ilookup5() instead. 1247 * 1248 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1249 */ 1250 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1251 int (*test)(struct inode *, void *), void *data) 1252 { 1253 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1254 struct inode *inode; 1255 1256 spin_lock(&inode_hash_lock); 1257 inode = find_inode(sb, head, test, data); 1258 spin_unlock(&inode_hash_lock); 1259 1260 return inode; 1261 } 1262 EXPORT_SYMBOL(ilookup5_nowait); 1263 1264 /** 1265 * ilookup5 - search for an inode in the inode cache 1266 * @sb: super block of file system to search 1267 * @hashval: hash value (usually inode number) to search for 1268 * @test: callback used for comparisons between inodes 1269 * @data: opaque data pointer to pass to @test 1270 * 1271 * Search for the inode specified by @hashval and @data in the inode cache, 1272 * and if the inode is in the cache, return the inode with an incremented 1273 * reference count. Waits on I_NEW before returning the inode. 1274 * returned with an incremented reference count. 1275 * 1276 * This is a generalized version of ilookup() for file systems where the 1277 * inode number is not sufficient for unique identification of an inode. 1278 * 1279 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1280 */ 1281 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1282 int (*test)(struct inode *, void *), void *data) 1283 { 1284 struct inode *inode; 1285 again: 1286 inode = ilookup5_nowait(sb, hashval, test, data); 1287 if (inode) { 1288 wait_on_inode(inode); 1289 if (unlikely(inode_unhashed(inode))) { 1290 iput(inode); 1291 goto again; 1292 } 1293 } 1294 return inode; 1295 } 1296 EXPORT_SYMBOL(ilookup5); 1297 1298 /** 1299 * ilookup - search for an inode in the inode cache 1300 * @sb: super block of file system to search 1301 * @ino: inode number to search for 1302 * 1303 * Search for the inode @ino in the inode cache, and if the inode is in the 1304 * cache, the inode is returned with an incremented reference count. 1305 */ 1306 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1307 { 1308 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1309 struct inode *inode; 1310 again: 1311 spin_lock(&inode_hash_lock); 1312 inode = find_inode_fast(sb, head, ino); 1313 spin_unlock(&inode_hash_lock); 1314 1315 if (inode) { 1316 wait_on_inode(inode); 1317 if (unlikely(inode_unhashed(inode))) { 1318 iput(inode); 1319 goto again; 1320 } 1321 } 1322 return inode; 1323 } 1324 EXPORT_SYMBOL(ilookup); 1325 1326 /** 1327 * find_inode_nowait - find an inode in the inode cache 1328 * @sb: super block of file system to search 1329 * @hashval: hash value (usually inode number) to search for 1330 * @match: callback used for comparisons between inodes 1331 * @data: opaque data pointer to pass to @match 1332 * 1333 * Search for the inode specified by @hashval and @data in the inode 1334 * cache, where the helper function @match will return 0 if the inode 1335 * does not match, 1 if the inode does match, and -1 if the search 1336 * should be stopped. The @match function must be responsible for 1337 * taking the i_lock spin_lock and checking i_state for an inode being 1338 * freed or being initialized, and incrementing the reference count 1339 * before returning 1. It also must not sleep, since it is called with 1340 * the inode_hash_lock spinlock held. 1341 * 1342 * This is a even more generalized version of ilookup5() when the 1343 * function must never block --- find_inode() can block in 1344 * __wait_on_freeing_inode() --- or when the caller can not increment 1345 * the reference count because the resulting iput() might cause an 1346 * inode eviction. The tradeoff is that the @match funtion must be 1347 * very carefully implemented. 1348 */ 1349 struct inode *find_inode_nowait(struct super_block *sb, 1350 unsigned long hashval, 1351 int (*match)(struct inode *, unsigned long, 1352 void *), 1353 void *data) 1354 { 1355 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1356 struct inode *inode, *ret_inode = NULL; 1357 int mval; 1358 1359 spin_lock(&inode_hash_lock); 1360 hlist_for_each_entry(inode, head, i_hash) { 1361 if (inode->i_sb != sb) 1362 continue; 1363 mval = match(inode, hashval, data); 1364 if (mval == 0) 1365 continue; 1366 if (mval == 1) 1367 ret_inode = inode; 1368 goto out; 1369 } 1370 out: 1371 spin_unlock(&inode_hash_lock); 1372 return ret_inode; 1373 } 1374 EXPORT_SYMBOL(find_inode_nowait); 1375 1376 int insert_inode_locked(struct inode *inode) 1377 { 1378 struct super_block *sb = inode->i_sb; 1379 ino_t ino = inode->i_ino; 1380 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1381 1382 while (1) { 1383 struct inode *old = NULL; 1384 spin_lock(&inode_hash_lock); 1385 hlist_for_each_entry(old, head, i_hash) { 1386 if (old->i_ino != ino) 1387 continue; 1388 if (old->i_sb != sb) 1389 continue; 1390 spin_lock(&old->i_lock); 1391 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1392 spin_unlock(&old->i_lock); 1393 continue; 1394 } 1395 break; 1396 } 1397 if (likely(!old)) { 1398 spin_lock(&inode->i_lock); 1399 inode->i_state |= I_NEW; 1400 hlist_add_head(&inode->i_hash, head); 1401 spin_unlock(&inode->i_lock); 1402 spin_unlock(&inode_hash_lock); 1403 return 0; 1404 } 1405 __iget(old); 1406 spin_unlock(&old->i_lock); 1407 spin_unlock(&inode_hash_lock); 1408 wait_on_inode(old); 1409 if (unlikely(!inode_unhashed(old))) { 1410 iput(old); 1411 return -EBUSY; 1412 } 1413 iput(old); 1414 } 1415 } 1416 EXPORT_SYMBOL(insert_inode_locked); 1417 1418 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1419 int (*test)(struct inode *, void *), void *data) 1420 { 1421 struct super_block *sb = inode->i_sb; 1422 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1423 1424 while (1) { 1425 struct inode *old = NULL; 1426 1427 spin_lock(&inode_hash_lock); 1428 hlist_for_each_entry(old, head, i_hash) { 1429 if (old->i_sb != sb) 1430 continue; 1431 if (!test(old, data)) 1432 continue; 1433 spin_lock(&old->i_lock); 1434 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1435 spin_unlock(&old->i_lock); 1436 continue; 1437 } 1438 break; 1439 } 1440 if (likely(!old)) { 1441 spin_lock(&inode->i_lock); 1442 inode->i_state |= I_NEW; 1443 hlist_add_head(&inode->i_hash, head); 1444 spin_unlock(&inode->i_lock); 1445 spin_unlock(&inode_hash_lock); 1446 return 0; 1447 } 1448 __iget(old); 1449 spin_unlock(&old->i_lock); 1450 spin_unlock(&inode_hash_lock); 1451 wait_on_inode(old); 1452 if (unlikely(!inode_unhashed(old))) { 1453 iput(old); 1454 return -EBUSY; 1455 } 1456 iput(old); 1457 } 1458 } 1459 EXPORT_SYMBOL(insert_inode_locked4); 1460 1461 1462 int generic_delete_inode(struct inode *inode) 1463 { 1464 return 1; 1465 } 1466 EXPORT_SYMBOL(generic_delete_inode); 1467 1468 /* 1469 * Called when we're dropping the last reference 1470 * to an inode. 1471 * 1472 * Call the FS "drop_inode()" function, defaulting to 1473 * the legacy UNIX filesystem behaviour. If it tells 1474 * us to evict inode, do so. Otherwise, retain inode 1475 * in cache if fs is alive, sync and evict if fs is 1476 * shutting down. 1477 */ 1478 static void iput_final(struct inode *inode) 1479 { 1480 struct super_block *sb = inode->i_sb; 1481 const struct super_operations *op = inode->i_sb->s_op; 1482 int drop; 1483 1484 WARN_ON(inode->i_state & I_NEW); 1485 1486 if (op->drop_inode) 1487 drop = op->drop_inode(inode); 1488 else 1489 drop = generic_drop_inode(inode); 1490 1491 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1492 inode->i_state |= I_REFERENCED; 1493 inode_add_lru(inode); 1494 spin_unlock(&inode->i_lock); 1495 return; 1496 } 1497 1498 if (!drop) { 1499 inode->i_state |= I_WILL_FREE; 1500 spin_unlock(&inode->i_lock); 1501 write_inode_now(inode, 1); 1502 spin_lock(&inode->i_lock); 1503 WARN_ON(inode->i_state & I_NEW); 1504 inode->i_state &= ~I_WILL_FREE; 1505 } 1506 1507 inode->i_state |= I_FREEING; 1508 if (!list_empty(&inode->i_lru)) 1509 inode_lru_list_del(inode); 1510 spin_unlock(&inode->i_lock); 1511 1512 evict(inode); 1513 } 1514 1515 /** 1516 * iput - put an inode 1517 * @inode: inode to put 1518 * 1519 * Puts an inode, dropping its usage count. If the inode use count hits 1520 * zero, the inode is then freed and may also be destroyed. 1521 * 1522 * Consequently, iput() can sleep. 1523 */ 1524 void iput(struct inode *inode) 1525 { 1526 if (!inode) 1527 return; 1528 BUG_ON(inode->i_state & I_CLEAR); 1529 retry: 1530 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1531 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1532 atomic_inc(&inode->i_count); 1533 inode->i_state &= ~I_DIRTY_TIME; 1534 spin_unlock(&inode->i_lock); 1535 trace_writeback_lazytime_iput(inode); 1536 mark_inode_dirty_sync(inode); 1537 goto retry; 1538 } 1539 iput_final(inode); 1540 } 1541 } 1542 EXPORT_SYMBOL(iput); 1543 1544 /** 1545 * bmap - find a block number in a file 1546 * @inode: inode of file 1547 * @block: block to find 1548 * 1549 * Returns the block number on the device holding the inode that 1550 * is the disk block number for the block of the file requested. 1551 * That is, asked for block 4 of inode 1 the function will return the 1552 * disk block relative to the disk start that holds that block of the 1553 * file. 1554 */ 1555 sector_t bmap(struct inode *inode, sector_t block) 1556 { 1557 sector_t res = 0; 1558 if (inode->i_mapping->a_ops->bmap) 1559 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1560 return res; 1561 } 1562 EXPORT_SYMBOL(bmap); 1563 1564 /* 1565 * Update times in overlayed inode from underlying real inode 1566 */ 1567 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode, 1568 bool rcu) 1569 { 1570 if (!rcu) { 1571 struct inode *realinode = d_real_inode(dentry); 1572 1573 if (unlikely(inode != realinode) && 1574 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) || 1575 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) { 1576 inode->i_mtime = realinode->i_mtime; 1577 inode->i_ctime = realinode->i_ctime; 1578 } 1579 } 1580 } 1581 1582 /* 1583 * With relative atime, only update atime if the previous atime is 1584 * earlier than either the ctime or mtime or if at least a day has 1585 * passed since the last atime update. 1586 */ 1587 static int relatime_need_update(const struct path *path, struct inode *inode, 1588 struct timespec now, bool rcu) 1589 { 1590 1591 if (!(path->mnt->mnt_flags & MNT_RELATIME)) 1592 return 1; 1593 1594 update_ovl_inode_times(path->dentry, inode, rcu); 1595 /* 1596 * Is mtime younger than atime? If yes, update atime: 1597 */ 1598 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1599 return 1; 1600 /* 1601 * Is ctime younger than atime? If yes, update atime: 1602 */ 1603 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1604 return 1; 1605 1606 /* 1607 * Is the previous atime value older than a day? If yes, 1608 * update atime: 1609 */ 1610 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1611 return 1; 1612 /* 1613 * Good, we can skip the atime update: 1614 */ 1615 return 0; 1616 } 1617 1618 int generic_update_time(struct inode *inode, struct timespec *time, int flags) 1619 { 1620 int iflags = I_DIRTY_TIME; 1621 1622 if (flags & S_ATIME) 1623 inode->i_atime = *time; 1624 if (flags & S_VERSION) 1625 inode_inc_iversion(inode); 1626 if (flags & S_CTIME) 1627 inode->i_ctime = *time; 1628 if (flags & S_MTIME) 1629 inode->i_mtime = *time; 1630 1631 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION)) 1632 iflags |= I_DIRTY_SYNC; 1633 __mark_inode_dirty(inode, iflags); 1634 return 0; 1635 } 1636 EXPORT_SYMBOL(generic_update_time); 1637 1638 /* 1639 * This does the actual work of updating an inodes time or version. Must have 1640 * had called mnt_want_write() before calling this. 1641 */ 1642 static int update_time(struct inode *inode, struct timespec *time, int flags) 1643 { 1644 int (*update_time)(struct inode *, struct timespec *, int); 1645 1646 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1647 generic_update_time; 1648 1649 return update_time(inode, time, flags); 1650 } 1651 1652 /** 1653 * touch_atime - update the access time 1654 * @path: the &struct path to update 1655 * @inode: inode to update 1656 * 1657 * Update the accessed time on an inode and mark it for writeback. 1658 * This function automatically handles read only file systems and media, 1659 * as well as the "noatime" flag and inode specific "noatime" markers. 1660 */ 1661 bool __atime_needs_update(const struct path *path, struct inode *inode, 1662 bool rcu) 1663 { 1664 struct vfsmount *mnt = path->mnt; 1665 struct timespec now; 1666 1667 if (inode->i_flags & S_NOATIME) 1668 return false; 1669 1670 /* Atime updates will likely cause i_uid and i_gid to be written 1671 * back improprely if their true value is unknown to the vfs. 1672 */ 1673 if (HAS_UNMAPPED_ID(inode)) 1674 return false; 1675 1676 if (IS_NOATIME(inode)) 1677 return false; 1678 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1679 return false; 1680 1681 if (mnt->mnt_flags & MNT_NOATIME) 1682 return false; 1683 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1684 return false; 1685 1686 now = current_time(inode); 1687 1688 if (!relatime_need_update(path, inode, now, rcu)) 1689 return false; 1690 1691 if (timespec_equal(&inode->i_atime, &now)) 1692 return false; 1693 1694 return true; 1695 } 1696 1697 void touch_atime(const struct path *path) 1698 { 1699 struct vfsmount *mnt = path->mnt; 1700 struct inode *inode = d_inode(path->dentry); 1701 struct timespec now; 1702 1703 if (!__atime_needs_update(path, inode, false)) 1704 return; 1705 1706 if (!sb_start_write_trylock(inode->i_sb)) 1707 return; 1708 1709 if (__mnt_want_write(mnt) != 0) 1710 goto skip_update; 1711 /* 1712 * File systems can error out when updating inodes if they need to 1713 * allocate new space to modify an inode (such is the case for 1714 * Btrfs), but since we touch atime while walking down the path we 1715 * really don't care if we failed to update the atime of the file, 1716 * so just ignore the return value. 1717 * We may also fail on filesystems that have the ability to make parts 1718 * of the fs read only, e.g. subvolumes in Btrfs. 1719 */ 1720 now = current_time(inode); 1721 update_time(inode, &now, S_ATIME); 1722 __mnt_drop_write(mnt); 1723 skip_update: 1724 sb_end_write(inode->i_sb); 1725 } 1726 EXPORT_SYMBOL(touch_atime); 1727 1728 /* 1729 * The logic we want is 1730 * 1731 * if suid or (sgid and xgrp) 1732 * remove privs 1733 */ 1734 int should_remove_suid(struct dentry *dentry) 1735 { 1736 umode_t mode = d_inode(dentry)->i_mode; 1737 int kill = 0; 1738 1739 /* suid always must be killed */ 1740 if (unlikely(mode & S_ISUID)) 1741 kill = ATTR_KILL_SUID; 1742 1743 /* 1744 * sgid without any exec bits is just a mandatory locking mark; leave 1745 * it alone. If some exec bits are set, it's a real sgid; kill it. 1746 */ 1747 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1748 kill |= ATTR_KILL_SGID; 1749 1750 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1751 return kill; 1752 1753 return 0; 1754 } 1755 EXPORT_SYMBOL(should_remove_suid); 1756 1757 /* 1758 * Return mask of changes for notify_change() that need to be done as a 1759 * response to write or truncate. Return 0 if nothing has to be changed. 1760 * Negative value on error (change should be denied). 1761 */ 1762 int dentry_needs_remove_privs(struct dentry *dentry) 1763 { 1764 struct inode *inode = d_inode(dentry); 1765 int mask = 0; 1766 int ret; 1767 1768 if (IS_NOSEC(inode)) 1769 return 0; 1770 1771 mask = should_remove_suid(dentry); 1772 ret = security_inode_need_killpriv(dentry); 1773 if (ret < 0) 1774 return ret; 1775 if (ret) 1776 mask |= ATTR_KILL_PRIV; 1777 return mask; 1778 } 1779 1780 static int __remove_privs(struct dentry *dentry, int kill) 1781 { 1782 struct iattr newattrs; 1783 1784 newattrs.ia_valid = ATTR_FORCE | kill; 1785 /* 1786 * Note we call this on write, so notify_change will not 1787 * encounter any conflicting delegations: 1788 */ 1789 return notify_change(dentry, &newattrs, NULL); 1790 } 1791 1792 /* 1793 * Remove special file priviledges (suid, capabilities) when file is written 1794 * to or truncated. 1795 */ 1796 int file_remove_privs(struct file *file) 1797 { 1798 struct dentry *dentry = file_dentry(file); 1799 struct inode *inode = file_inode(file); 1800 int kill; 1801 int error = 0; 1802 1803 /* Fast path for nothing security related */ 1804 if (IS_NOSEC(inode)) 1805 return 0; 1806 1807 kill = dentry_needs_remove_privs(dentry); 1808 if (kill < 0) 1809 return kill; 1810 if (kill) 1811 error = __remove_privs(dentry, kill); 1812 if (!error) 1813 inode_has_no_xattr(inode); 1814 1815 return error; 1816 } 1817 EXPORT_SYMBOL(file_remove_privs); 1818 1819 /** 1820 * file_update_time - update mtime and ctime time 1821 * @file: file accessed 1822 * 1823 * Update the mtime and ctime members of an inode and mark the inode 1824 * for writeback. Note that this function is meant exclusively for 1825 * usage in the file write path of filesystems, and filesystems may 1826 * choose to explicitly ignore update via this function with the 1827 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1828 * timestamps are handled by the server. This can return an error for 1829 * file systems who need to allocate space in order to update an inode. 1830 */ 1831 1832 int file_update_time(struct file *file) 1833 { 1834 struct inode *inode = file_inode(file); 1835 struct timespec now; 1836 int sync_it = 0; 1837 int ret; 1838 1839 /* First try to exhaust all avenues to not sync */ 1840 if (IS_NOCMTIME(inode)) 1841 return 0; 1842 1843 now = current_time(inode); 1844 if (!timespec_equal(&inode->i_mtime, &now)) 1845 sync_it = S_MTIME; 1846 1847 if (!timespec_equal(&inode->i_ctime, &now)) 1848 sync_it |= S_CTIME; 1849 1850 if (IS_I_VERSION(inode)) 1851 sync_it |= S_VERSION; 1852 1853 if (!sync_it) 1854 return 0; 1855 1856 /* Finally allowed to write? Takes lock. */ 1857 if (__mnt_want_write_file(file)) 1858 return 0; 1859 1860 ret = update_time(inode, &now, sync_it); 1861 __mnt_drop_write_file(file); 1862 1863 return ret; 1864 } 1865 EXPORT_SYMBOL(file_update_time); 1866 1867 int inode_needs_sync(struct inode *inode) 1868 { 1869 if (IS_SYNC(inode)) 1870 return 1; 1871 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1872 return 1; 1873 return 0; 1874 } 1875 EXPORT_SYMBOL(inode_needs_sync); 1876 1877 /* 1878 * If we try to find an inode in the inode hash while it is being 1879 * deleted, we have to wait until the filesystem completes its 1880 * deletion before reporting that it isn't found. This function waits 1881 * until the deletion _might_ have completed. Callers are responsible 1882 * to recheck inode state. 1883 * 1884 * It doesn't matter if I_NEW is not set initially, a call to 1885 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1886 * will DTRT. 1887 */ 1888 static void __wait_on_freeing_inode(struct inode *inode) 1889 { 1890 wait_queue_head_t *wq; 1891 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1892 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1893 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1894 spin_unlock(&inode->i_lock); 1895 spin_unlock(&inode_hash_lock); 1896 schedule(); 1897 finish_wait(wq, &wait.wait); 1898 spin_lock(&inode_hash_lock); 1899 } 1900 1901 static __initdata unsigned long ihash_entries; 1902 static int __init set_ihash_entries(char *str) 1903 { 1904 if (!str) 1905 return 0; 1906 ihash_entries = simple_strtoul(str, &str, 0); 1907 return 1; 1908 } 1909 __setup("ihash_entries=", set_ihash_entries); 1910 1911 /* 1912 * Initialize the waitqueues and inode hash table. 1913 */ 1914 void __init inode_init_early(void) 1915 { 1916 unsigned int loop; 1917 1918 /* If hashes are distributed across NUMA nodes, defer 1919 * hash allocation until vmalloc space is available. 1920 */ 1921 if (hashdist) 1922 return; 1923 1924 inode_hashtable = 1925 alloc_large_system_hash("Inode-cache", 1926 sizeof(struct hlist_head), 1927 ihash_entries, 1928 14, 1929 HASH_EARLY, 1930 &i_hash_shift, 1931 &i_hash_mask, 1932 0, 1933 0); 1934 1935 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1936 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1937 } 1938 1939 void __init inode_init(void) 1940 { 1941 unsigned int loop; 1942 1943 /* inode slab cache */ 1944 inode_cachep = kmem_cache_create("inode_cache", 1945 sizeof(struct inode), 1946 0, 1947 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1948 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1949 init_once); 1950 1951 /* Hash may have been set up in inode_init_early */ 1952 if (!hashdist) 1953 return; 1954 1955 inode_hashtable = 1956 alloc_large_system_hash("Inode-cache", 1957 sizeof(struct hlist_head), 1958 ihash_entries, 1959 14, 1960 0, 1961 &i_hash_shift, 1962 &i_hash_mask, 1963 0, 1964 0); 1965 1966 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1967 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1968 } 1969 1970 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1971 { 1972 inode->i_mode = mode; 1973 if (S_ISCHR(mode)) { 1974 inode->i_fop = &def_chr_fops; 1975 inode->i_rdev = rdev; 1976 } else if (S_ISBLK(mode)) { 1977 inode->i_fop = &def_blk_fops; 1978 inode->i_rdev = rdev; 1979 } else if (S_ISFIFO(mode)) 1980 inode->i_fop = &pipefifo_fops; 1981 else if (S_ISSOCK(mode)) 1982 ; /* leave it no_open_fops */ 1983 else 1984 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1985 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1986 inode->i_ino); 1987 } 1988 EXPORT_SYMBOL(init_special_inode); 1989 1990 /** 1991 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1992 * @inode: New inode 1993 * @dir: Directory inode 1994 * @mode: mode of the new inode 1995 */ 1996 void inode_init_owner(struct inode *inode, const struct inode *dir, 1997 umode_t mode) 1998 { 1999 inode->i_uid = current_fsuid(); 2000 if (dir && dir->i_mode & S_ISGID) { 2001 inode->i_gid = dir->i_gid; 2002 if (S_ISDIR(mode)) 2003 mode |= S_ISGID; 2004 } else 2005 inode->i_gid = current_fsgid(); 2006 inode->i_mode = mode; 2007 } 2008 EXPORT_SYMBOL(inode_init_owner); 2009 2010 /** 2011 * inode_owner_or_capable - check current task permissions to inode 2012 * @inode: inode being checked 2013 * 2014 * Return true if current either has CAP_FOWNER in a namespace with the 2015 * inode owner uid mapped, or owns the file. 2016 */ 2017 bool inode_owner_or_capable(const struct inode *inode) 2018 { 2019 struct user_namespace *ns; 2020 2021 if (uid_eq(current_fsuid(), inode->i_uid)) 2022 return true; 2023 2024 ns = current_user_ns(); 2025 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid)) 2026 return true; 2027 return false; 2028 } 2029 EXPORT_SYMBOL(inode_owner_or_capable); 2030 2031 /* 2032 * Direct i/o helper functions 2033 */ 2034 static void __inode_dio_wait(struct inode *inode) 2035 { 2036 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2037 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2038 2039 do { 2040 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 2041 if (atomic_read(&inode->i_dio_count)) 2042 schedule(); 2043 } while (atomic_read(&inode->i_dio_count)); 2044 finish_wait(wq, &q.wait); 2045 } 2046 2047 /** 2048 * inode_dio_wait - wait for outstanding DIO requests to finish 2049 * @inode: inode to wait for 2050 * 2051 * Waits for all pending direct I/O requests to finish so that we can 2052 * proceed with a truncate or equivalent operation. 2053 * 2054 * Must be called under a lock that serializes taking new references 2055 * to i_dio_count, usually by inode->i_mutex. 2056 */ 2057 void inode_dio_wait(struct inode *inode) 2058 { 2059 if (atomic_read(&inode->i_dio_count)) 2060 __inode_dio_wait(inode); 2061 } 2062 EXPORT_SYMBOL(inode_dio_wait); 2063 2064 /* 2065 * inode_set_flags - atomically set some inode flags 2066 * 2067 * Note: the caller should be holding i_mutex, or else be sure that 2068 * they have exclusive access to the inode structure (i.e., while the 2069 * inode is being instantiated). The reason for the cmpxchg() loop 2070 * --- which wouldn't be necessary if all code paths which modify 2071 * i_flags actually followed this rule, is that there is at least one 2072 * code path which doesn't today so we use cmpxchg() out of an abundance 2073 * of caution. 2074 * 2075 * In the long run, i_mutex is overkill, and we should probably look 2076 * at using the i_lock spinlock to protect i_flags, and then make sure 2077 * it is so documented in include/linux/fs.h and that all code follows 2078 * the locking convention!! 2079 */ 2080 void inode_set_flags(struct inode *inode, unsigned int flags, 2081 unsigned int mask) 2082 { 2083 unsigned int old_flags, new_flags; 2084 2085 WARN_ON_ONCE(flags & ~mask); 2086 do { 2087 old_flags = ACCESS_ONCE(inode->i_flags); 2088 new_flags = (old_flags & ~mask) | flags; 2089 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2090 new_flags) != old_flags)); 2091 } 2092 EXPORT_SYMBOL(inode_set_flags); 2093 2094 void inode_nohighmem(struct inode *inode) 2095 { 2096 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2097 } 2098 EXPORT_SYMBOL(inode_nohighmem); 2099 2100 /** 2101 * current_time - Return FS time 2102 * @inode: inode. 2103 * 2104 * Return the current time truncated to the time granularity supported by 2105 * the fs. 2106 * 2107 * Note that inode and inode->sb cannot be NULL. 2108 * Otherwise, the function warns and returns time without truncation. 2109 */ 2110 struct timespec current_time(struct inode *inode) 2111 { 2112 struct timespec now = current_kernel_time(); 2113 2114 if (unlikely(!inode->i_sb)) { 2115 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2116 return now; 2117 } 2118 2119 return timespec_trunc(now, inode->i_sb->s_time_gran); 2120 } 2121 EXPORT_SYMBOL(current_time); 2122