xref: /linux/fs/inode.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72 
73 static struct kmem_cache *inode_cachep __read_mostly;
74 
75 static long get_nr_inodes(void)
76 {
77 	int i;
78 	long sum = 0;
79 	for_each_possible_cpu(i)
80 		sum += per_cpu(nr_inodes, i);
81 	return sum < 0 ? 0 : sum;
82 }
83 
84 static inline long get_nr_inodes_unused(void)
85 {
86 	int i;
87 	long sum = 0;
88 	for_each_possible_cpu(i)
89 		sum += per_cpu(nr_unused, i);
90 	return sum < 0 ? 0 : sum;
91 }
92 
93 long get_nr_dirty_inodes(void)
94 {
95 	/* not actually dirty inodes, but a wild approximation */
96 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 	return nr_dirty > 0 ? nr_dirty : 0;
98 }
99 
100 /*
101  * Handle nr_inode sysctl
102  */
103 #ifdef CONFIG_SYSCTL
104 /*
105  * Statistics gathering..
106  */
107 static struct inodes_stat_t inodes_stat;
108 
109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 			  size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 
117 static struct ctl_table inodes_sysctls[] = {
118 	{
119 		.procname	= "inode-nr",
120 		.data		= &inodes_stat,
121 		.maxlen		= 2*sizeof(long),
122 		.mode		= 0444,
123 		.proc_handler	= proc_nr_inodes,
124 	},
125 	{
126 		.procname	= "inode-state",
127 		.data		= &inodes_stat,
128 		.maxlen		= 7*sizeof(long),
129 		.mode		= 0444,
130 		.proc_handler	= proc_nr_inodes,
131 	},
132 	{ }
133 };
134 
135 static int __init init_fs_inode_sysctls(void)
136 {
137 	register_sysctl_init("fs", inodes_sysctls);
138 	return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142 
143 static int no_open(struct inode *inode, struct file *file)
144 {
145 	return -ENXIO;
146 }
147 
148 /**
149  * inode_init_always - perform inode structure initialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 	static const struct inode_operations empty_iops;
159 	static const struct file_operations no_open_fops = {.open = no_open};
160 	struct address_space *const mapping = &inode->i_data;
161 
162 	inode->i_sb = sb;
163 	inode->i_blkbits = sb->s_blocksize_bits;
164 	inode->i_flags = 0;
165 	atomic64_set(&inode->i_sequence, 0);
166 	atomic_set(&inode->i_count, 1);
167 	inode->i_op = &empty_iops;
168 	inode->i_fop = &no_open_fops;
169 	inode->i_ino = 0;
170 	inode->__i_nlink = 1;
171 	inode->i_opflags = 0;
172 	if (sb->s_xattr)
173 		inode->i_opflags |= IOP_XATTR;
174 	i_uid_write(inode, 0);
175 	i_gid_write(inode, 0);
176 	atomic_set(&inode->i_writecount, 0);
177 	inode->i_size = 0;
178 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 	inode->i_blocks = 0;
180 	inode->i_bytes = 0;
181 	inode->i_generation = 0;
182 	inode->i_pipe = NULL;
183 	inode->i_cdev = NULL;
184 	inode->i_link = NULL;
185 	inode->i_dir_seq = 0;
186 	inode->i_rdev = 0;
187 	inode->dirtied_when = 0;
188 
189 #ifdef CONFIG_CGROUP_WRITEBACK
190 	inode->i_wb_frn_winner = 0;
191 	inode->i_wb_frn_avg_time = 0;
192 	inode->i_wb_frn_history = 0;
193 #endif
194 
195 	spin_lock_init(&inode->i_lock);
196 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197 
198 	init_rwsem(&inode->i_rwsem);
199 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200 
201 	atomic_set(&inode->i_dio_count, 0);
202 
203 	mapping->a_ops = &empty_aops;
204 	mapping->host = inode;
205 	mapping->flags = 0;
206 	mapping->wb_err = 0;
207 	atomic_set(&mapping->i_mmap_writable, 0);
208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 	atomic_set(&mapping->nr_thps, 0);
210 #endif
211 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 	mapping->private_data = NULL;
213 	mapping->writeback_index = 0;
214 	init_rwsem(&mapping->invalidate_lock);
215 	lockdep_set_class_and_name(&mapping->invalidate_lock,
216 				   &sb->s_type->invalidate_lock_key,
217 				   "mapping.invalidate_lock");
218 	inode->i_private = NULL;
219 	inode->i_mapping = mapping;
220 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
221 #ifdef CONFIG_FS_POSIX_ACL
222 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223 #endif
224 
225 #ifdef CONFIG_FSNOTIFY
226 	inode->i_fsnotify_mask = 0;
227 #endif
228 	inode->i_flctx = NULL;
229 
230 	if (unlikely(security_inode_alloc(inode)))
231 		return -ENOMEM;
232 	this_cpu_inc(nr_inodes);
233 
234 	return 0;
235 }
236 EXPORT_SYMBOL(inode_init_always);
237 
238 void free_inode_nonrcu(struct inode *inode)
239 {
240 	kmem_cache_free(inode_cachep, inode);
241 }
242 EXPORT_SYMBOL(free_inode_nonrcu);
243 
244 static void i_callback(struct rcu_head *head)
245 {
246 	struct inode *inode = container_of(head, struct inode, i_rcu);
247 	if (inode->free_inode)
248 		inode->free_inode(inode);
249 	else
250 		free_inode_nonrcu(inode);
251 }
252 
253 static struct inode *alloc_inode(struct super_block *sb)
254 {
255 	const struct super_operations *ops = sb->s_op;
256 	struct inode *inode;
257 
258 	if (ops->alloc_inode)
259 		inode = ops->alloc_inode(sb);
260 	else
261 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
262 
263 	if (!inode)
264 		return NULL;
265 
266 	if (unlikely(inode_init_always(sb, inode))) {
267 		if (ops->destroy_inode) {
268 			ops->destroy_inode(inode);
269 			if (!ops->free_inode)
270 				return NULL;
271 		}
272 		inode->free_inode = ops->free_inode;
273 		i_callback(&inode->i_rcu);
274 		return NULL;
275 	}
276 
277 	return inode;
278 }
279 
280 void __destroy_inode(struct inode *inode)
281 {
282 	BUG_ON(inode_has_buffers(inode));
283 	inode_detach_wb(inode);
284 	security_inode_free(inode);
285 	fsnotify_inode_delete(inode);
286 	locks_free_lock_context(inode);
287 	if (!inode->i_nlink) {
288 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
289 		atomic_long_dec(&inode->i_sb->s_remove_count);
290 	}
291 
292 #ifdef CONFIG_FS_POSIX_ACL
293 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
294 		posix_acl_release(inode->i_acl);
295 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
296 		posix_acl_release(inode->i_default_acl);
297 #endif
298 	this_cpu_dec(nr_inodes);
299 }
300 EXPORT_SYMBOL(__destroy_inode);
301 
302 static void destroy_inode(struct inode *inode)
303 {
304 	const struct super_operations *ops = inode->i_sb->s_op;
305 
306 	BUG_ON(!list_empty(&inode->i_lru));
307 	__destroy_inode(inode);
308 	if (ops->destroy_inode) {
309 		ops->destroy_inode(inode);
310 		if (!ops->free_inode)
311 			return;
312 	}
313 	inode->free_inode = ops->free_inode;
314 	call_rcu(&inode->i_rcu, i_callback);
315 }
316 
317 /**
318  * drop_nlink - directly drop an inode's link count
319  * @inode: inode
320  *
321  * This is a low-level filesystem helper to replace any
322  * direct filesystem manipulation of i_nlink.  In cases
323  * where we are attempting to track writes to the
324  * filesystem, a decrement to zero means an imminent
325  * write when the file is truncated and actually unlinked
326  * on the filesystem.
327  */
328 void drop_nlink(struct inode *inode)
329 {
330 	WARN_ON(inode->i_nlink == 0);
331 	inode->__i_nlink--;
332 	if (!inode->i_nlink)
333 		atomic_long_inc(&inode->i_sb->s_remove_count);
334 }
335 EXPORT_SYMBOL(drop_nlink);
336 
337 /**
338  * clear_nlink - directly zero an inode's link count
339  * @inode: inode
340  *
341  * This is a low-level filesystem helper to replace any
342  * direct filesystem manipulation of i_nlink.  See
343  * drop_nlink() for why we care about i_nlink hitting zero.
344  */
345 void clear_nlink(struct inode *inode)
346 {
347 	if (inode->i_nlink) {
348 		inode->__i_nlink = 0;
349 		atomic_long_inc(&inode->i_sb->s_remove_count);
350 	}
351 }
352 EXPORT_SYMBOL(clear_nlink);
353 
354 /**
355  * set_nlink - directly set an inode's link count
356  * @inode: inode
357  * @nlink: new nlink (should be non-zero)
358  *
359  * This is a low-level filesystem helper to replace any
360  * direct filesystem manipulation of i_nlink.
361  */
362 void set_nlink(struct inode *inode, unsigned int nlink)
363 {
364 	if (!nlink) {
365 		clear_nlink(inode);
366 	} else {
367 		/* Yes, some filesystems do change nlink from zero to one */
368 		if (inode->i_nlink == 0)
369 			atomic_long_dec(&inode->i_sb->s_remove_count);
370 
371 		inode->__i_nlink = nlink;
372 	}
373 }
374 EXPORT_SYMBOL(set_nlink);
375 
376 /**
377  * inc_nlink - directly increment an inode's link count
378  * @inode: inode
379  *
380  * This is a low-level filesystem helper to replace any
381  * direct filesystem manipulation of i_nlink.  Currently,
382  * it is only here for parity with dec_nlink().
383  */
384 void inc_nlink(struct inode *inode)
385 {
386 	if (unlikely(inode->i_nlink == 0)) {
387 		WARN_ON(!(inode->i_state & I_LINKABLE));
388 		atomic_long_dec(&inode->i_sb->s_remove_count);
389 	}
390 
391 	inode->__i_nlink++;
392 }
393 EXPORT_SYMBOL(inc_nlink);
394 
395 static void __address_space_init_once(struct address_space *mapping)
396 {
397 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
398 	init_rwsem(&mapping->i_mmap_rwsem);
399 	INIT_LIST_HEAD(&mapping->private_list);
400 	spin_lock_init(&mapping->private_lock);
401 	mapping->i_mmap = RB_ROOT_CACHED;
402 }
403 
404 void address_space_init_once(struct address_space *mapping)
405 {
406 	memset(mapping, 0, sizeof(*mapping));
407 	__address_space_init_once(mapping);
408 }
409 EXPORT_SYMBOL(address_space_init_once);
410 
411 /*
412  * These are initializations that only need to be done
413  * once, because the fields are idempotent across use
414  * of the inode, so let the slab aware of that.
415  */
416 void inode_init_once(struct inode *inode)
417 {
418 	memset(inode, 0, sizeof(*inode));
419 	INIT_HLIST_NODE(&inode->i_hash);
420 	INIT_LIST_HEAD(&inode->i_devices);
421 	INIT_LIST_HEAD(&inode->i_io_list);
422 	INIT_LIST_HEAD(&inode->i_wb_list);
423 	INIT_LIST_HEAD(&inode->i_lru);
424 	INIT_LIST_HEAD(&inode->i_sb_list);
425 	__address_space_init_once(&inode->i_data);
426 	i_size_ordered_init(inode);
427 }
428 EXPORT_SYMBOL(inode_init_once);
429 
430 static void init_once(void *foo)
431 {
432 	struct inode *inode = (struct inode *) foo;
433 
434 	inode_init_once(inode);
435 }
436 
437 /*
438  * inode->i_lock must be held
439  */
440 void __iget(struct inode *inode)
441 {
442 	atomic_inc(&inode->i_count);
443 }
444 
445 /*
446  * get additional reference to inode; caller must already hold one.
447  */
448 void ihold(struct inode *inode)
449 {
450 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
451 }
452 EXPORT_SYMBOL(ihold);
453 
454 static void __inode_add_lru(struct inode *inode, bool rotate)
455 {
456 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
457 		return;
458 	if (atomic_read(&inode->i_count))
459 		return;
460 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
461 		return;
462 	if (!mapping_shrinkable(&inode->i_data))
463 		return;
464 
465 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
466 		this_cpu_inc(nr_unused);
467 	else if (rotate)
468 		inode->i_state |= I_REFERENCED;
469 }
470 
471 /*
472  * Add inode to LRU if needed (inode is unused and clean).
473  *
474  * Needs inode->i_lock held.
475  */
476 void inode_add_lru(struct inode *inode)
477 {
478 	__inode_add_lru(inode, false);
479 }
480 
481 static void inode_lru_list_del(struct inode *inode)
482 {
483 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
484 		this_cpu_dec(nr_unused);
485 }
486 
487 /**
488  * inode_sb_list_add - add inode to the superblock list of inodes
489  * @inode: inode to add
490  */
491 void inode_sb_list_add(struct inode *inode)
492 {
493 	spin_lock(&inode->i_sb->s_inode_list_lock);
494 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
495 	spin_unlock(&inode->i_sb->s_inode_list_lock);
496 }
497 EXPORT_SYMBOL_GPL(inode_sb_list_add);
498 
499 static inline void inode_sb_list_del(struct inode *inode)
500 {
501 	if (!list_empty(&inode->i_sb_list)) {
502 		spin_lock(&inode->i_sb->s_inode_list_lock);
503 		list_del_init(&inode->i_sb_list);
504 		spin_unlock(&inode->i_sb->s_inode_list_lock);
505 	}
506 }
507 
508 static unsigned long hash(struct super_block *sb, unsigned long hashval)
509 {
510 	unsigned long tmp;
511 
512 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
513 			L1_CACHE_BYTES;
514 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
515 	return tmp & i_hash_mask;
516 }
517 
518 /**
519  *	__insert_inode_hash - hash an inode
520  *	@inode: unhashed inode
521  *	@hashval: unsigned long value used to locate this object in the
522  *		inode_hashtable.
523  *
524  *	Add an inode to the inode hash for this superblock.
525  */
526 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
527 {
528 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
529 
530 	spin_lock(&inode_hash_lock);
531 	spin_lock(&inode->i_lock);
532 	hlist_add_head_rcu(&inode->i_hash, b);
533 	spin_unlock(&inode->i_lock);
534 	spin_unlock(&inode_hash_lock);
535 }
536 EXPORT_SYMBOL(__insert_inode_hash);
537 
538 /**
539  *	__remove_inode_hash - remove an inode from the hash
540  *	@inode: inode to unhash
541  *
542  *	Remove an inode from the superblock.
543  */
544 void __remove_inode_hash(struct inode *inode)
545 {
546 	spin_lock(&inode_hash_lock);
547 	spin_lock(&inode->i_lock);
548 	hlist_del_init_rcu(&inode->i_hash);
549 	spin_unlock(&inode->i_lock);
550 	spin_unlock(&inode_hash_lock);
551 }
552 EXPORT_SYMBOL(__remove_inode_hash);
553 
554 void dump_mapping(const struct address_space *mapping)
555 {
556 	struct inode *host;
557 	const struct address_space_operations *a_ops;
558 	struct hlist_node *dentry_first;
559 	struct dentry *dentry_ptr;
560 	struct dentry dentry;
561 	unsigned long ino;
562 
563 	/*
564 	 * If mapping is an invalid pointer, we don't want to crash
565 	 * accessing it, so probe everything depending on it carefully.
566 	 */
567 	if (get_kernel_nofault(host, &mapping->host) ||
568 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
569 		pr_warn("invalid mapping:%px\n", mapping);
570 		return;
571 	}
572 
573 	if (!host) {
574 		pr_warn("aops:%ps\n", a_ops);
575 		return;
576 	}
577 
578 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
579 	    get_kernel_nofault(ino, &host->i_ino)) {
580 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
581 		return;
582 	}
583 
584 	if (!dentry_first) {
585 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
586 		return;
587 	}
588 
589 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
590 	if (get_kernel_nofault(dentry, dentry_ptr)) {
591 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
592 				a_ops, ino, dentry_ptr);
593 		return;
594 	}
595 
596 	/*
597 	 * if dentry is corrupted, the %pd handler may still crash,
598 	 * but it's unlikely that we reach here with a corrupt mapping
599 	 */
600 	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
601 }
602 
603 void clear_inode(struct inode *inode)
604 {
605 	/*
606 	 * We have to cycle the i_pages lock here because reclaim can be in the
607 	 * process of removing the last page (in __filemap_remove_folio())
608 	 * and we must not free the mapping under it.
609 	 */
610 	xa_lock_irq(&inode->i_data.i_pages);
611 	BUG_ON(inode->i_data.nrpages);
612 	/*
613 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
614 	 * two known and long-standing ways in which nodes may get left behind
615 	 * (when deep radix-tree node allocation failed partway; or when THP
616 	 * collapse_file() failed). Until those two known cases are cleaned up,
617 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
618 	 * nor even WARN_ON(!mapping_empty).
619 	 */
620 	xa_unlock_irq(&inode->i_data.i_pages);
621 	BUG_ON(!list_empty(&inode->i_data.private_list));
622 	BUG_ON(!(inode->i_state & I_FREEING));
623 	BUG_ON(inode->i_state & I_CLEAR);
624 	BUG_ON(!list_empty(&inode->i_wb_list));
625 	/* don't need i_lock here, no concurrent mods to i_state */
626 	inode->i_state = I_FREEING | I_CLEAR;
627 }
628 EXPORT_SYMBOL(clear_inode);
629 
630 /*
631  * Free the inode passed in, removing it from the lists it is still connected
632  * to. We remove any pages still attached to the inode and wait for any IO that
633  * is still in progress before finally destroying the inode.
634  *
635  * An inode must already be marked I_FREEING so that we avoid the inode being
636  * moved back onto lists if we race with other code that manipulates the lists
637  * (e.g. writeback_single_inode). The caller is responsible for setting this.
638  *
639  * An inode must already be removed from the LRU list before being evicted from
640  * the cache. This should occur atomically with setting the I_FREEING state
641  * flag, so no inodes here should ever be on the LRU when being evicted.
642  */
643 static void evict(struct inode *inode)
644 {
645 	const struct super_operations *op = inode->i_sb->s_op;
646 
647 	BUG_ON(!(inode->i_state & I_FREEING));
648 	BUG_ON(!list_empty(&inode->i_lru));
649 
650 	if (!list_empty(&inode->i_io_list))
651 		inode_io_list_del(inode);
652 
653 	inode_sb_list_del(inode);
654 
655 	/*
656 	 * Wait for flusher thread to be done with the inode so that filesystem
657 	 * does not start destroying it while writeback is still running. Since
658 	 * the inode has I_FREEING set, flusher thread won't start new work on
659 	 * the inode.  We just have to wait for running writeback to finish.
660 	 */
661 	inode_wait_for_writeback(inode);
662 
663 	if (op->evict_inode) {
664 		op->evict_inode(inode);
665 	} else {
666 		truncate_inode_pages_final(&inode->i_data);
667 		clear_inode(inode);
668 	}
669 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
670 		cd_forget(inode);
671 
672 	remove_inode_hash(inode);
673 
674 	spin_lock(&inode->i_lock);
675 	wake_up_bit(&inode->i_state, __I_NEW);
676 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
677 	spin_unlock(&inode->i_lock);
678 
679 	destroy_inode(inode);
680 }
681 
682 /*
683  * dispose_list - dispose of the contents of a local list
684  * @head: the head of the list to free
685  *
686  * Dispose-list gets a local list with local inodes in it, so it doesn't
687  * need to worry about list corruption and SMP locks.
688  */
689 static void dispose_list(struct list_head *head)
690 {
691 	while (!list_empty(head)) {
692 		struct inode *inode;
693 
694 		inode = list_first_entry(head, struct inode, i_lru);
695 		list_del_init(&inode->i_lru);
696 
697 		evict(inode);
698 		cond_resched();
699 	}
700 }
701 
702 /**
703  * evict_inodes	- evict all evictable inodes for a superblock
704  * @sb:		superblock to operate on
705  *
706  * Make sure that no inodes with zero refcount are retained.  This is
707  * called by superblock shutdown after having SB_ACTIVE flag removed,
708  * so any inode reaching zero refcount during or after that call will
709  * be immediately evicted.
710  */
711 void evict_inodes(struct super_block *sb)
712 {
713 	struct inode *inode, *next;
714 	LIST_HEAD(dispose);
715 
716 again:
717 	spin_lock(&sb->s_inode_list_lock);
718 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
719 		if (atomic_read(&inode->i_count))
720 			continue;
721 
722 		spin_lock(&inode->i_lock);
723 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
724 			spin_unlock(&inode->i_lock);
725 			continue;
726 		}
727 
728 		inode->i_state |= I_FREEING;
729 		inode_lru_list_del(inode);
730 		spin_unlock(&inode->i_lock);
731 		list_add(&inode->i_lru, &dispose);
732 
733 		/*
734 		 * We can have a ton of inodes to evict at unmount time given
735 		 * enough memory, check to see if we need to go to sleep for a
736 		 * bit so we don't livelock.
737 		 */
738 		if (need_resched()) {
739 			spin_unlock(&sb->s_inode_list_lock);
740 			cond_resched();
741 			dispose_list(&dispose);
742 			goto again;
743 		}
744 	}
745 	spin_unlock(&sb->s_inode_list_lock);
746 
747 	dispose_list(&dispose);
748 }
749 EXPORT_SYMBOL_GPL(evict_inodes);
750 
751 /**
752  * invalidate_inodes	- attempt to free all inodes on a superblock
753  * @sb:		superblock to operate on
754  *
755  * Attempts to free all inodes (including dirty inodes) for a given superblock.
756  */
757 void invalidate_inodes(struct super_block *sb)
758 {
759 	struct inode *inode, *next;
760 	LIST_HEAD(dispose);
761 
762 again:
763 	spin_lock(&sb->s_inode_list_lock);
764 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
765 		spin_lock(&inode->i_lock);
766 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
767 			spin_unlock(&inode->i_lock);
768 			continue;
769 		}
770 		if (atomic_read(&inode->i_count)) {
771 			spin_unlock(&inode->i_lock);
772 			continue;
773 		}
774 
775 		inode->i_state |= I_FREEING;
776 		inode_lru_list_del(inode);
777 		spin_unlock(&inode->i_lock);
778 		list_add(&inode->i_lru, &dispose);
779 		if (need_resched()) {
780 			spin_unlock(&sb->s_inode_list_lock);
781 			cond_resched();
782 			dispose_list(&dispose);
783 			goto again;
784 		}
785 	}
786 	spin_unlock(&sb->s_inode_list_lock);
787 
788 	dispose_list(&dispose);
789 }
790 
791 /*
792  * Isolate the inode from the LRU in preparation for freeing it.
793  *
794  * If the inode has the I_REFERENCED flag set, then it means that it has been
795  * used recently - the flag is set in iput_final(). When we encounter such an
796  * inode, clear the flag and move it to the back of the LRU so it gets another
797  * pass through the LRU before it gets reclaimed. This is necessary because of
798  * the fact we are doing lazy LRU updates to minimise lock contention so the
799  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
800  * with this flag set because they are the inodes that are out of order.
801  */
802 static enum lru_status inode_lru_isolate(struct list_head *item,
803 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
804 {
805 	struct list_head *freeable = arg;
806 	struct inode	*inode = container_of(item, struct inode, i_lru);
807 
808 	/*
809 	 * We are inverting the lru lock/inode->i_lock here, so use a
810 	 * trylock. If we fail to get the lock, just skip it.
811 	 */
812 	if (!spin_trylock(&inode->i_lock))
813 		return LRU_SKIP;
814 
815 	/*
816 	 * Inodes can get referenced, redirtied, or repopulated while
817 	 * they're already on the LRU, and this can make them
818 	 * unreclaimable for a while. Remove them lazily here; iput,
819 	 * sync, or the last page cache deletion will requeue them.
820 	 */
821 	if (atomic_read(&inode->i_count) ||
822 	    (inode->i_state & ~I_REFERENCED) ||
823 	    !mapping_shrinkable(&inode->i_data)) {
824 		list_lru_isolate(lru, &inode->i_lru);
825 		spin_unlock(&inode->i_lock);
826 		this_cpu_dec(nr_unused);
827 		return LRU_REMOVED;
828 	}
829 
830 	/* Recently referenced inodes get one more pass */
831 	if (inode->i_state & I_REFERENCED) {
832 		inode->i_state &= ~I_REFERENCED;
833 		spin_unlock(&inode->i_lock);
834 		return LRU_ROTATE;
835 	}
836 
837 	/*
838 	 * On highmem systems, mapping_shrinkable() permits dropping
839 	 * page cache in order to free up struct inodes: lowmem might
840 	 * be under pressure before the cache inside the highmem zone.
841 	 */
842 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
843 		__iget(inode);
844 		spin_unlock(&inode->i_lock);
845 		spin_unlock(lru_lock);
846 		if (remove_inode_buffers(inode)) {
847 			unsigned long reap;
848 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
849 			if (current_is_kswapd())
850 				__count_vm_events(KSWAPD_INODESTEAL, reap);
851 			else
852 				__count_vm_events(PGINODESTEAL, reap);
853 			mm_account_reclaimed_pages(reap);
854 		}
855 		iput(inode);
856 		spin_lock(lru_lock);
857 		return LRU_RETRY;
858 	}
859 
860 	WARN_ON(inode->i_state & I_NEW);
861 	inode->i_state |= I_FREEING;
862 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
863 	spin_unlock(&inode->i_lock);
864 
865 	this_cpu_dec(nr_unused);
866 	return LRU_REMOVED;
867 }
868 
869 /*
870  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
871  * This is called from the superblock shrinker function with a number of inodes
872  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
873  * then are freed outside inode_lock by dispose_list().
874  */
875 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
876 {
877 	LIST_HEAD(freeable);
878 	long freed;
879 
880 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
881 				     inode_lru_isolate, &freeable);
882 	dispose_list(&freeable);
883 	return freed;
884 }
885 
886 static void __wait_on_freeing_inode(struct inode *inode);
887 /*
888  * Called with the inode lock held.
889  */
890 static struct inode *find_inode(struct super_block *sb,
891 				struct hlist_head *head,
892 				int (*test)(struct inode *, void *),
893 				void *data)
894 {
895 	struct inode *inode = NULL;
896 
897 repeat:
898 	hlist_for_each_entry(inode, head, i_hash) {
899 		if (inode->i_sb != sb)
900 			continue;
901 		if (!test(inode, data))
902 			continue;
903 		spin_lock(&inode->i_lock);
904 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
905 			__wait_on_freeing_inode(inode);
906 			goto repeat;
907 		}
908 		if (unlikely(inode->i_state & I_CREATING)) {
909 			spin_unlock(&inode->i_lock);
910 			return ERR_PTR(-ESTALE);
911 		}
912 		__iget(inode);
913 		spin_unlock(&inode->i_lock);
914 		return inode;
915 	}
916 	return NULL;
917 }
918 
919 /*
920  * find_inode_fast is the fast path version of find_inode, see the comment at
921  * iget_locked for details.
922  */
923 static struct inode *find_inode_fast(struct super_block *sb,
924 				struct hlist_head *head, unsigned long ino)
925 {
926 	struct inode *inode = NULL;
927 
928 repeat:
929 	hlist_for_each_entry(inode, head, i_hash) {
930 		if (inode->i_ino != ino)
931 			continue;
932 		if (inode->i_sb != sb)
933 			continue;
934 		spin_lock(&inode->i_lock);
935 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
936 			__wait_on_freeing_inode(inode);
937 			goto repeat;
938 		}
939 		if (unlikely(inode->i_state & I_CREATING)) {
940 			spin_unlock(&inode->i_lock);
941 			return ERR_PTR(-ESTALE);
942 		}
943 		__iget(inode);
944 		spin_unlock(&inode->i_lock);
945 		return inode;
946 	}
947 	return NULL;
948 }
949 
950 /*
951  * Each cpu owns a range of LAST_INO_BATCH numbers.
952  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
953  * to renew the exhausted range.
954  *
955  * This does not significantly increase overflow rate because every CPU can
956  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
957  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
958  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
959  * overflow rate by 2x, which does not seem too significant.
960  *
961  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
962  * error if st_ino won't fit in target struct field. Use 32bit counter
963  * here to attempt to avoid that.
964  */
965 #define LAST_INO_BATCH 1024
966 static DEFINE_PER_CPU(unsigned int, last_ino);
967 
968 unsigned int get_next_ino(void)
969 {
970 	unsigned int *p = &get_cpu_var(last_ino);
971 	unsigned int res = *p;
972 
973 #ifdef CONFIG_SMP
974 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
975 		static atomic_t shared_last_ino;
976 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
977 
978 		res = next - LAST_INO_BATCH;
979 	}
980 #endif
981 
982 	res++;
983 	/* get_next_ino should not provide a 0 inode number */
984 	if (unlikely(!res))
985 		res++;
986 	*p = res;
987 	put_cpu_var(last_ino);
988 	return res;
989 }
990 EXPORT_SYMBOL(get_next_ino);
991 
992 /**
993  *	new_inode_pseudo 	- obtain an inode
994  *	@sb: superblock
995  *
996  *	Allocates a new inode for given superblock.
997  *	Inode wont be chained in superblock s_inodes list
998  *	This means :
999  *	- fs can't be unmount
1000  *	- quotas, fsnotify, writeback can't work
1001  */
1002 struct inode *new_inode_pseudo(struct super_block *sb)
1003 {
1004 	struct inode *inode = alloc_inode(sb);
1005 
1006 	if (inode) {
1007 		spin_lock(&inode->i_lock);
1008 		inode->i_state = 0;
1009 		spin_unlock(&inode->i_lock);
1010 	}
1011 	return inode;
1012 }
1013 
1014 /**
1015  *	new_inode 	- obtain an inode
1016  *	@sb: superblock
1017  *
1018  *	Allocates a new inode for given superblock. The default gfp_mask
1019  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1020  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1021  *	for the page cache are not reclaimable or migratable,
1022  *	mapping_set_gfp_mask() must be called with suitable flags on the
1023  *	newly created inode's mapping
1024  *
1025  */
1026 struct inode *new_inode(struct super_block *sb)
1027 {
1028 	struct inode *inode;
1029 
1030 	inode = new_inode_pseudo(sb);
1031 	if (inode)
1032 		inode_sb_list_add(inode);
1033 	return inode;
1034 }
1035 EXPORT_SYMBOL(new_inode);
1036 
1037 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1038 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1039 {
1040 	if (S_ISDIR(inode->i_mode)) {
1041 		struct file_system_type *type = inode->i_sb->s_type;
1042 
1043 		/* Set new key only if filesystem hasn't already changed it */
1044 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1045 			/*
1046 			 * ensure nobody is actually holding i_mutex
1047 			 */
1048 			// mutex_destroy(&inode->i_mutex);
1049 			init_rwsem(&inode->i_rwsem);
1050 			lockdep_set_class(&inode->i_rwsem,
1051 					  &type->i_mutex_dir_key);
1052 		}
1053 	}
1054 }
1055 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1056 #endif
1057 
1058 /**
1059  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1060  * @inode:	new inode to unlock
1061  *
1062  * Called when the inode is fully initialised to clear the new state of the
1063  * inode and wake up anyone waiting for the inode to finish initialisation.
1064  */
1065 void unlock_new_inode(struct inode *inode)
1066 {
1067 	lockdep_annotate_inode_mutex_key(inode);
1068 	spin_lock(&inode->i_lock);
1069 	WARN_ON(!(inode->i_state & I_NEW));
1070 	inode->i_state &= ~I_NEW & ~I_CREATING;
1071 	smp_mb();
1072 	wake_up_bit(&inode->i_state, __I_NEW);
1073 	spin_unlock(&inode->i_lock);
1074 }
1075 EXPORT_SYMBOL(unlock_new_inode);
1076 
1077 void discard_new_inode(struct inode *inode)
1078 {
1079 	lockdep_annotate_inode_mutex_key(inode);
1080 	spin_lock(&inode->i_lock);
1081 	WARN_ON(!(inode->i_state & I_NEW));
1082 	inode->i_state &= ~I_NEW;
1083 	smp_mb();
1084 	wake_up_bit(&inode->i_state, __I_NEW);
1085 	spin_unlock(&inode->i_lock);
1086 	iput(inode);
1087 }
1088 EXPORT_SYMBOL(discard_new_inode);
1089 
1090 /**
1091  * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1092  *
1093  * Lock any non-NULL argument. The caller must make sure that if he is passing
1094  * in two directories, one is not ancestor of the other.  Zero, one or two
1095  * objects may be locked by this function.
1096  *
1097  * @inode1: first inode to lock
1098  * @inode2: second inode to lock
1099  * @subclass1: inode lock subclass for the first lock obtained
1100  * @subclass2: inode lock subclass for the second lock obtained
1101  */
1102 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1103 		     unsigned subclass1, unsigned subclass2)
1104 {
1105 	if (!inode1 || !inode2) {
1106 		/*
1107 		 * Make sure @subclass1 will be used for the acquired lock.
1108 		 * This is not strictly necessary (no current caller cares) but
1109 		 * let's keep things consistent.
1110 		 */
1111 		if (!inode1)
1112 			swap(inode1, inode2);
1113 		goto lock;
1114 	}
1115 
1116 	/*
1117 	 * If one object is directory and the other is not, we must make sure
1118 	 * to lock directory first as the other object may be its child.
1119 	 */
1120 	if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1121 		if (inode1 > inode2)
1122 			swap(inode1, inode2);
1123 	} else if (!S_ISDIR(inode1->i_mode))
1124 		swap(inode1, inode2);
1125 lock:
1126 	if (inode1)
1127 		inode_lock_nested(inode1, subclass1);
1128 	if (inode2 && inode2 != inode1)
1129 		inode_lock_nested(inode2, subclass2);
1130 }
1131 
1132 /**
1133  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1134  *
1135  * Lock any non-NULL argument. Passed objects must not be directories.
1136  * Zero, one or two objects may be locked by this function.
1137  *
1138  * @inode1: first inode to lock
1139  * @inode2: second inode to lock
1140  */
1141 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1142 {
1143 	if (inode1)
1144 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1145 	if (inode2)
1146 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1147 	lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
1148 }
1149 EXPORT_SYMBOL(lock_two_nondirectories);
1150 
1151 /**
1152  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1153  * @inode1: first inode to unlock
1154  * @inode2: second inode to unlock
1155  */
1156 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1157 {
1158 	if (inode1) {
1159 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1160 		inode_unlock(inode1);
1161 	}
1162 	if (inode2 && inode2 != inode1) {
1163 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1164 		inode_unlock(inode2);
1165 	}
1166 }
1167 EXPORT_SYMBOL(unlock_two_nondirectories);
1168 
1169 /**
1170  * inode_insert5 - obtain an inode from a mounted file system
1171  * @inode:	pre-allocated inode to use for insert to cache
1172  * @hashval:	hash value (usually inode number) to get
1173  * @test:	callback used for comparisons between inodes
1174  * @set:	callback used to initialize a new struct inode
1175  * @data:	opaque data pointer to pass to @test and @set
1176  *
1177  * Search for the inode specified by @hashval and @data in the inode cache,
1178  * and if present it is return it with an increased reference count. This is
1179  * a variant of iget5_locked() for callers that don't want to fail on memory
1180  * allocation of inode.
1181  *
1182  * If the inode is not in cache, insert the pre-allocated inode to cache and
1183  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1184  * to fill it in before unlocking it via unlock_new_inode().
1185  *
1186  * Note both @test and @set are called with the inode_hash_lock held, so can't
1187  * sleep.
1188  */
1189 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1190 			    int (*test)(struct inode *, void *),
1191 			    int (*set)(struct inode *, void *), void *data)
1192 {
1193 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1194 	struct inode *old;
1195 
1196 again:
1197 	spin_lock(&inode_hash_lock);
1198 	old = find_inode(inode->i_sb, head, test, data);
1199 	if (unlikely(old)) {
1200 		/*
1201 		 * Uhhuh, somebody else created the same inode under us.
1202 		 * Use the old inode instead of the preallocated one.
1203 		 */
1204 		spin_unlock(&inode_hash_lock);
1205 		if (IS_ERR(old))
1206 			return NULL;
1207 		wait_on_inode(old);
1208 		if (unlikely(inode_unhashed(old))) {
1209 			iput(old);
1210 			goto again;
1211 		}
1212 		return old;
1213 	}
1214 
1215 	if (set && unlikely(set(inode, data))) {
1216 		inode = NULL;
1217 		goto unlock;
1218 	}
1219 
1220 	/*
1221 	 * Return the locked inode with I_NEW set, the
1222 	 * caller is responsible for filling in the contents
1223 	 */
1224 	spin_lock(&inode->i_lock);
1225 	inode->i_state |= I_NEW;
1226 	hlist_add_head_rcu(&inode->i_hash, head);
1227 	spin_unlock(&inode->i_lock);
1228 
1229 	/*
1230 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1231 	 * point, so it should be safe to test i_sb_list locklessly.
1232 	 */
1233 	if (list_empty(&inode->i_sb_list))
1234 		inode_sb_list_add(inode);
1235 unlock:
1236 	spin_unlock(&inode_hash_lock);
1237 
1238 	return inode;
1239 }
1240 EXPORT_SYMBOL(inode_insert5);
1241 
1242 /**
1243  * iget5_locked - obtain an inode from a mounted file system
1244  * @sb:		super block of file system
1245  * @hashval:	hash value (usually inode number) to get
1246  * @test:	callback used for comparisons between inodes
1247  * @set:	callback used to initialize a new struct inode
1248  * @data:	opaque data pointer to pass to @test and @set
1249  *
1250  * Search for the inode specified by @hashval and @data in the inode cache,
1251  * and if present it is return it with an increased reference count. This is
1252  * a generalized version of iget_locked() for file systems where the inode
1253  * number is not sufficient for unique identification of an inode.
1254  *
1255  * If the inode is not in cache, allocate a new inode and return it locked,
1256  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1257  * before unlocking it via unlock_new_inode().
1258  *
1259  * Note both @test and @set are called with the inode_hash_lock held, so can't
1260  * sleep.
1261  */
1262 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1263 		int (*test)(struct inode *, void *),
1264 		int (*set)(struct inode *, void *), void *data)
1265 {
1266 	struct inode *inode = ilookup5(sb, hashval, test, data);
1267 
1268 	if (!inode) {
1269 		struct inode *new = alloc_inode(sb);
1270 
1271 		if (new) {
1272 			new->i_state = 0;
1273 			inode = inode_insert5(new, hashval, test, set, data);
1274 			if (unlikely(inode != new))
1275 				destroy_inode(new);
1276 		}
1277 	}
1278 	return inode;
1279 }
1280 EXPORT_SYMBOL(iget5_locked);
1281 
1282 /**
1283  * iget_locked - obtain an inode from a mounted file system
1284  * @sb:		super block of file system
1285  * @ino:	inode number to get
1286  *
1287  * Search for the inode specified by @ino in the inode cache and if present
1288  * return it with an increased reference count. This is for file systems
1289  * where the inode number is sufficient for unique identification of an inode.
1290  *
1291  * If the inode is not in cache, allocate a new inode and return it locked,
1292  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1293  * before unlocking it via unlock_new_inode().
1294  */
1295 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1296 {
1297 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1298 	struct inode *inode;
1299 again:
1300 	spin_lock(&inode_hash_lock);
1301 	inode = find_inode_fast(sb, head, ino);
1302 	spin_unlock(&inode_hash_lock);
1303 	if (inode) {
1304 		if (IS_ERR(inode))
1305 			return NULL;
1306 		wait_on_inode(inode);
1307 		if (unlikely(inode_unhashed(inode))) {
1308 			iput(inode);
1309 			goto again;
1310 		}
1311 		return inode;
1312 	}
1313 
1314 	inode = alloc_inode(sb);
1315 	if (inode) {
1316 		struct inode *old;
1317 
1318 		spin_lock(&inode_hash_lock);
1319 		/* We released the lock, so.. */
1320 		old = find_inode_fast(sb, head, ino);
1321 		if (!old) {
1322 			inode->i_ino = ino;
1323 			spin_lock(&inode->i_lock);
1324 			inode->i_state = I_NEW;
1325 			hlist_add_head_rcu(&inode->i_hash, head);
1326 			spin_unlock(&inode->i_lock);
1327 			inode_sb_list_add(inode);
1328 			spin_unlock(&inode_hash_lock);
1329 
1330 			/* Return the locked inode with I_NEW set, the
1331 			 * caller is responsible for filling in the contents
1332 			 */
1333 			return inode;
1334 		}
1335 
1336 		/*
1337 		 * Uhhuh, somebody else created the same inode under
1338 		 * us. Use the old inode instead of the one we just
1339 		 * allocated.
1340 		 */
1341 		spin_unlock(&inode_hash_lock);
1342 		destroy_inode(inode);
1343 		if (IS_ERR(old))
1344 			return NULL;
1345 		inode = old;
1346 		wait_on_inode(inode);
1347 		if (unlikely(inode_unhashed(inode))) {
1348 			iput(inode);
1349 			goto again;
1350 		}
1351 	}
1352 	return inode;
1353 }
1354 EXPORT_SYMBOL(iget_locked);
1355 
1356 /*
1357  * search the inode cache for a matching inode number.
1358  * If we find one, then the inode number we are trying to
1359  * allocate is not unique and so we should not use it.
1360  *
1361  * Returns 1 if the inode number is unique, 0 if it is not.
1362  */
1363 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1364 {
1365 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1366 	struct inode *inode;
1367 
1368 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1369 		if (inode->i_ino == ino && inode->i_sb == sb)
1370 			return 0;
1371 	}
1372 	return 1;
1373 }
1374 
1375 /**
1376  *	iunique - get a unique inode number
1377  *	@sb: superblock
1378  *	@max_reserved: highest reserved inode number
1379  *
1380  *	Obtain an inode number that is unique on the system for a given
1381  *	superblock. This is used by file systems that have no natural
1382  *	permanent inode numbering system. An inode number is returned that
1383  *	is higher than the reserved limit but unique.
1384  *
1385  *	BUGS:
1386  *	With a large number of inodes live on the file system this function
1387  *	currently becomes quite slow.
1388  */
1389 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1390 {
1391 	/*
1392 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1393 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1394 	 * here to attempt to avoid that.
1395 	 */
1396 	static DEFINE_SPINLOCK(iunique_lock);
1397 	static unsigned int counter;
1398 	ino_t res;
1399 
1400 	rcu_read_lock();
1401 	spin_lock(&iunique_lock);
1402 	do {
1403 		if (counter <= max_reserved)
1404 			counter = max_reserved + 1;
1405 		res = counter++;
1406 	} while (!test_inode_iunique(sb, res));
1407 	spin_unlock(&iunique_lock);
1408 	rcu_read_unlock();
1409 
1410 	return res;
1411 }
1412 EXPORT_SYMBOL(iunique);
1413 
1414 struct inode *igrab(struct inode *inode)
1415 {
1416 	spin_lock(&inode->i_lock);
1417 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1418 		__iget(inode);
1419 		spin_unlock(&inode->i_lock);
1420 	} else {
1421 		spin_unlock(&inode->i_lock);
1422 		/*
1423 		 * Handle the case where s_op->clear_inode is not been
1424 		 * called yet, and somebody is calling igrab
1425 		 * while the inode is getting freed.
1426 		 */
1427 		inode = NULL;
1428 	}
1429 	return inode;
1430 }
1431 EXPORT_SYMBOL(igrab);
1432 
1433 /**
1434  * ilookup5_nowait - search for an inode in the inode cache
1435  * @sb:		super block of file system to search
1436  * @hashval:	hash value (usually inode number) to search for
1437  * @test:	callback used for comparisons between inodes
1438  * @data:	opaque data pointer to pass to @test
1439  *
1440  * Search for the inode specified by @hashval and @data in the inode cache.
1441  * If the inode is in the cache, the inode is returned with an incremented
1442  * reference count.
1443  *
1444  * Note: I_NEW is not waited upon so you have to be very careful what you do
1445  * with the returned inode.  You probably should be using ilookup5() instead.
1446  *
1447  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1448  */
1449 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1450 		int (*test)(struct inode *, void *), void *data)
1451 {
1452 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1453 	struct inode *inode;
1454 
1455 	spin_lock(&inode_hash_lock);
1456 	inode = find_inode(sb, head, test, data);
1457 	spin_unlock(&inode_hash_lock);
1458 
1459 	return IS_ERR(inode) ? NULL : inode;
1460 }
1461 EXPORT_SYMBOL(ilookup5_nowait);
1462 
1463 /**
1464  * ilookup5 - search for an inode in the inode cache
1465  * @sb:		super block of file system to search
1466  * @hashval:	hash value (usually inode number) to search for
1467  * @test:	callback used for comparisons between inodes
1468  * @data:	opaque data pointer to pass to @test
1469  *
1470  * Search for the inode specified by @hashval and @data in the inode cache,
1471  * and if the inode is in the cache, return the inode with an incremented
1472  * reference count.  Waits on I_NEW before returning the inode.
1473  * returned with an incremented reference count.
1474  *
1475  * This is a generalized version of ilookup() for file systems where the
1476  * inode number is not sufficient for unique identification of an inode.
1477  *
1478  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1479  */
1480 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1481 		int (*test)(struct inode *, void *), void *data)
1482 {
1483 	struct inode *inode;
1484 again:
1485 	inode = ilookup5_nowait(sb, hashval, test, data);
1486 	if (inode) {
1487 		wait_on_inode(inode);
1488 		if (unlikely(inode_unhashed(inode))) {
1489 			iput(inode);
1490 			goto again;
1491 		}
1492 	}
1493 	return inode;
1494 }
1495 EXPORT_SYMBOL(ilookup5);
1496 
1497 /**
1498  * ilookup - search for an inode in the inode cache
1499  * @sb:		super block of file system to search
1500  * @ino:	inode number to search for
1501  *
1502  * Search for the inode @ino in the inode cache, and if the inode is in the
1503  * cache, the inode is returned with an incremented reference count.
1504  */
1505 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1506 {
1507 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1508 	struct inode *inode;
1509 again:
1510 	spin_lock(&inode_hash_lock);
1511 	inode = find_inode_fast(sb, head, ino);
1512 	spin_unlock(&inode_hash_lock);
1513 
1514 	if (inode) {
1515 		if (IS_ERR(inode))
1516 			return NULL;
1517 		wait_on_inode(inode);
1518 		if (unlikely(inode_unhashed(inode))) {
1519 			iput(inode);
1520 			goto again;
1521 		}
1522 	}
1523 	return inode;
1524 }
1525 EXPORT_SYMBOL(ilookup);
1526 
1527 /**
1528  * find_inode_nowait - find an inode in the inode cache
1529  * @sb:		super block of file system to search
1530  * @hashval:	hash value (usually inode number) to search for
1531  * @match:	callback used for comparisons between inodes
1532  * @data:	opaque data pointer to pass to @match
1533  *
1534  * Search for the inode specified by @hashval and @data in the inode
1535  * cache, where the helper function @match will return 0 if the inode
1536  * does not match, 1 if the inode does match, and -1 if the search
1537  * should be stopped.  The @match function must be responsible for
1538  * taking the i_lock spin_lock and checking i_state for an inode being
1539  * freed or being initialized, and incrementing the reference count
1540  * before returning 1.  It also must not sleep, since it is called with
1541  * the inode_hash_lock spinlock held.
1542  *
1543  * This is a even more generalized version of ilookup5() when the
1544  * function must never block --- find_inode() can block in
1545  * __wait_on_freeing_inode() --- or when the caller can not increment
1546  * the reference count because the resulting iput() might cause an
1547  * inode eviction.  The tradeoff is that the @match funtion must be
1548  * very carefully implemented.
1549  */
1550 struct inode *find_inode_nowait(struct super_block *sb,
1551 				unsigned long hashval,
1552 				int (*match)(struct inode *, unsigned long,
1553 					     void *),
1554 				void *data)
1555 {
1556 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1557 	struct inode *inode, *ret_inode = NULL;
1558 	int mval;
1559 
1560 	spin_lock(&inode_hash_lock);
1561 	hlist_for_each_entry(inode, head, i_hash) {
1562 		if (inode->i_sb != sb)
1563 			continue;
1564 		mval = match(inode, hashval, data);
1565 		if (mval == 0)
1566 			continue;
1567 		if (mval == 1)
1568 			ret_inode = inode;
1569 		goto out;
1570 	}
1571 out:
1572 	spin_unlock(&inode_hash_lock);
1573 	return ret_inode;
1574 }
1575 EXPORT_SYMBOL(find_inode_nowait);
1576 
1577 /**
1578  * find_inode_rcu - find an inode in the inode cache
1579  * @sb:		Super block of file system to search
1580  * @hashval:	Key to hash
1581  * @test:	Function to test match on an inode
1582  * @data:	Data for test function
1583  *
1584  * Search for the inode specified by @hashval and @data in the inode cache,
1585  * where the helper function @test will return 0 if the inode does not match
1586  * and 1 if it does.  The @test function must be responsible for taking the
1587  * i_lock spin_lock and checking i_state for an inode being freed or being
1588  * initialized.
1589  *
1590  * If successful, this will return the inode for which the @test function
1591  * returned 1 and NULL otherwise.
1592  *
1593  * The @test function is not permitted to take a ref on any inode presented.
1594  * It is also not permitted to sleep.
1595  *
1596  * The caller must hold the RCU read lock.
1597  */
1598 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1599 			     int (*test)(struct inode *, void *), void *data)
1600 {
1601 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1602 	struct inode *inode;
1603 
1604 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1605 			 "suspicious find_inode_rcu() usage");
1606 
1607 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1608 		if (inode->i_sb == sb &&
1609 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1610 		    test(inode, data))
1611 			return inode;
1612 	}
1613 	return NULL;
1614 }
1615 EXPORT_SYMBOL(find_inode_rcu);
1616 
1617 /**
1618  * find_inode_by_ino_rcu - Find an inode in the inode cache
1619  * @sb:		Super block of file system to search
1620  * @ino:	The inode number to match
1621  *
1622  * Search for the inode specified by @hashval and @data in the inode cache,
1623  * where the helper function @test will return 0 if the inode does not match
1624  * and 1 if it does.  The @test function must be responsible for taking the
1625  * i_lock spin_lock and checking i_state for an inode being freed or being
1626  * initialized.
1627  *
1628  * If successful, this will return the inode for which the @test function
1629  * returned 1 and NULL otherwise.
1630  *
1631  * The @test function is not permitted to take a ref on any inode presented.
1632  * It is also not permitted to sleep.
1633  *
1634  * The caller must hold the RCU read lock.
1635  */
1636 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1637 				    unsigned long ino)
1638 {
1639 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1640 	struct inode *inode;
1641 
1642 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1643 			 "suspicious find_inode_by_ino_rcu() usage");
1644 
1645 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1646 		if (inode->i_ino == ino &&
1647 		    inode->i_sb == sb &&
1648 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1649 		    return inode;
1650 	}
1651 	return NULL;
1652 }
1653 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1654 
1655 int insert_inode_locked(struct inode *inode)
1656 {
1657 	struct super_block *sb = inode->i_sb;
1658 	ino_t ino = inode->i_ino;
1659 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1660 
1661 	while (1) {
1662 		struct inode *old = NULL;
1663 		spin_lock(&inode_hash_lock);
1664 		hlist_for_each_entry(old, head, i_hash) {
1665 			if (old->i_ino != ino)
1666 				continue;
1667 			if (old->i_sb != sb)
1668 				continue;
1669 			spin_lock(&old->i_lock);
1670 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1671 				spin_unlock(&old->i_lock);
1672 				continue;
1673 			}
1674 			break;
1675 		}
1676 		if (likely(!old)) {
1677 			spin_lock(&inode->i_lock);
1678 			inode->i_state |= I_NEW | I_CREATING;
1679 			hlist_add_head_rcu(&inode->i_hash, head);
1680 			spin_unlock(&inode->i_lock);
1681 			spin_unlock(&inode_hash_lock);
1682 			return 0;
1683 		}
1684 		if (unlikely(old->i_state & I_CREATING)) {
1685 			spin_unlock(&old->i_lock);
1686 			spin_unlock(&inode_hash_lock);
1687 			return -EBUSY;
1688 		}
1689 		__iget(old);
1690 		spin_unlock(&old->i_lock);
1691 		spin_unlock(&inode_hash_lock);
1692 		wait_on_inode(old);
1693 		if (unlikely(!inode_unhashed(old))) {
1694 			iput(old);
1695 			return -EBUSY;
1696 		}
1697 		iput(old);
1698 	}
1699 }
1700 EXPORT_SYMBOL(insert_inode_locked);
1701 
1702 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1703 		int (*test)(struct inode *, void *), void *data)
1704 {
1705 	struct inode *old;
1706 
1707 	inode->i_state |= I_CREATING;
1708 	old = inode_insert5(inode, hashval, test, NULL, data);
1709 
1710 	if (old != inode) {
1711 		iput(old);
1712 		return -EBUSY;
1713 	}
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL(insert_inode_locked4);
1717 
1718 
1719 int generic_delete_inode(struct inode *inode)
1720 {
1721 	return 1;
1722 }
1723 EXPORT_SYMBOL(generic_delete_inode);
1724 
1725 /*
1726  * Called when we're dropping the last reference
1727  * to an inode.
1728  *
1729  * Call the FS "drop_inode()" function, defaulting to
1730  * the legacy UNIX filesystem behaviour.  If it tells
1731  * us to evict inode, do so.  Otherwise, retain inode
1732  * in cache if fs is alive, sync and evict if fs is
1733  * shutting down.
1734  */
1735 static void iput_final(struct inode *inode)
1736 {
1737 	struct super_block *sb = inode->i_sb;
1738 	const struct super_operations *op = inode->i_sb->s_op;
1739 	unsigned long state;
1740 	int drop;
1741 
1742 	WARN_ON(inode->i_state & I_NEW);
1743 
1744 	if (op->drop_inode)
1745 		drop = op->drop_inode(inode);
1746 	else
1747 		drop = generic_drop_inode(inode);
1748 
1749 	if (!drop &&
1750 	    !(inode->i_state & I_DONTCACHE) &&
1751 	    (sb->s_flags & SB_ACTIVE)) {
1752 		__inode_add_lru(inode, true);
1753 		spin_unlock(&inode->i_lock);
1754 		return;
1755 	}
1756 
1757 	state = inode->i_state;
1758 	if (!drop) {
1759 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1760 		spin_unlock(&inode->i_lock);
1761 
1762 		write_inode_now(inode, 1);
1763 
1764 		spin_lock(&inode->i_lock);
1765 		state = inode->i_state;
1766 		WARN_ON(state & I_NEW);
1767 		state &= ~I_WILL_FREE;
1768 	}
1769 
1770 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1771 	if (!list_empty(&inode->i_lru))
1772 		inode_lru_list_del(inode);
1773 	spin_unlock(&inode->i_lock);
1774 
1775 	evict(inode);
1776 }
1777 
1778 /**
1779  *	iput	- put an inode
1780  *	@inode: inode to put
1781  *
1782  *	Puts an inode, dropping its usage count. If the inode use count hits
1783  *	zero, the inode is then freed and may also be destroyed.
1784  *
1785  *	Consequently, iput() can sleep.
1786  */
1787 void iput(struct inode *inode)
1788 {
1789 	if (!inode)
1790 		return;
1791 	BUG_ON(inode->i_state & I_CLEAR);
1792 retry:
1793 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1794 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1795 			atomic_inc(&inode->i_count);
1796 			spin_unlock(&inode->i_lock);
1797 			trace_writeback_lazytime_iput(inode);
1798 			mark_inode_dirty_sync(inode);
1799 			goto retry;
1800 		}
1801 		iput_final(inode);
1802 	}
1803 }
1804 EXPORT_SYMBOL(iput);
1805 
1806 #ifdef CONFIG_BLOCK
1807 /**
1808  *	bmap	- find a block number in a file
1809  *	@inode:  inode owning the block number being requested
1810  *	@block: pointer containing the block to find
1811  *
1812  *	Replaces the value in ``*block`` with the block number on the device holding
1813  *	corresponding to the requested block number in the file.
1814  *	That is, asked for block 4 of inode 1 the function will replace the
1815  *	4 in ``*block``, with disk block relative to the disk start that holds that
1816  *	block of the file.
1817  *
1818  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1819  *	hole, returns 0 and ``*block`` is also set to 0.
1820  */
1821 int bmap(struct inode *inode, sector_t *block)
1822 {
1823 	if (!inode->i_mapping->a_ops->bmap)
1824 		return -EINVAL;
1825 
1826 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1827 	return 0;
1828 }
1829 EXPORT_SYMBOL(bmap);
1830 #endif
1831 
1832 /*
1833  * With relative atime, only update atime if the previous atime is
1834  * earlier than or equal to either the ctime or mtime,
1835  * or if at least a day has passed since the last atime update.
1836  */
1837 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1838 			     struct timespec64 now)
1839 {
1840 	struct timespec64 ctime;
1841 
1842 	if (!(mnt->mnt_flags & MNT_RELATIME))
1843 		return 1;
1844 	/*
1845 	 * Is mtime younger than or equal to atime? If yes, update atime:
1846 	 */
1847 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1848 		return 1;
1849 	/*
1850 	 * Is ctime younger than or equal to atime? If yes, update atime:
1851 	 */
1852 	ctime = inode_get_ctime(inode);
1853 	if (timespec64_compare(&ctime, &inode->i_atime) >= 0)
1854 		return 1;
1855 
1856 	/*
1857 	 * Is the previous atime value older than a day? If yes,
1858 	 * update atime:
1859 	 */
1860 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1861 		return 1;
1862 	/*
1863 	 * Good, we can skip the atime update:
1864 	 */
1865 	return 0;
1866 }
1867 
1868 /**
1869  * inode_update_timestamps - update the timestamps on the inode
1870  * @inode: inode to be updated
1871  * @flags: S_* flags that needed to be updated
1872  *
1873  * The update_time function is called when an inode's timestamps need to be
1874  * updated for a read or write operation. This function handles updating the
1875  * actual timestamps. It's up to the caller to ensure that the inode is marked
1876  * dirty appropriately.
1877  *
1878  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1879  * attempt to update all three of them. S_ATIME updates can be handled
1880  * independently of the rest.
1881  *
1882  * Returns a set of S_* flags indicating which values changed.
1883  */
1884 int inode_update_timestamps(struct inode *inode, int flags)
1885 {
1886 	int updated = 0;
1887 	struct timespec64 now;
1888 
1889 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1890 		struct timespec64 ctime = inode_get_ctime(inode);
1891 
1892 		now = inode_set_ctime_current(inode);
1893 		if (!timespec64_equal(&now, &ctime))
1894 			updated |= S_CTIME;
1895 		if (!timespec64_equal(&now, &inode->i_mtime)) {
1896 			inode->i_mtime = now;
1897 			updated |= S_MTIME;
1898 		}
1899 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1900 			updated |= S_VERSION;
1901 	} else {
1902 		now = current_time(inode);
1903 	}
1904 
1905 	if (flags & S_ATIME) {
1906 		if (!timespec64_equal(&now, &inode->i_atime)) {
1907 			inode->i_atime = now;
1908 			updated |= S_ATIME;
1909 		}
1910 	}
1911 	return updated;
1912 }
1913 EXPORT_SYMBOL(inode_update_timestamps);
1914 
1915 /**
1916  * generic_update_time - update the timestamps on the inode
1917  * @inode: inode to be updated
1918  * @flags: S_* flags that needed to be updated
1919  *
1920  * The update_time function is called when an inode's timestamps need to be
1921  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1922  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1923  * updates can be handled done independently of the rest.
1924  *
1925  * Returns a S_* mask indicating which fields were updated.
1926  */
1927 int generic_update_time(struct inode *inode, int flags)
1928 {
1929 	int updated = inode_update_timestamps(inode, flags);
1930 	int dirty_flags = 0;
1931 
1932 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1933 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1934 	if (updated & S_VERSION)
1935 		dirty_flags |= I_DIRTY_SYNC;
1936 	__mark_inode_dirty(inode, dirty_flags);
1937 	return updated;
1938 }
1939 EXPORT_SYMBOL(generic_update_time);
1940 
1941 /*
1942  * This does the actual work of updating an inodes time or version.  Must have
1943  * had called mnt_want_write() before calling this.
1944  */
1945 int inode_update_time(struct inode *inode, int flags)
1946 {
1947 	if (inode->i_op->update_time)
1948 		return inode->i_op->update_time(inode, flags);
1949 	generic_update_time(inode, flags);
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL(inode_update_time);
1953 
1954 /**
1955  *	atime_needs_update	-	update the access time
1956  *	@path: the &struct path to update
1957  *	@inode: inode to update
1958  *
1959  *	Update the accessed time on an inode and mark it for writeback.
1960  *	This function automatically handles read only file systems and media,
1961  *	as well as the "noatime" flag and inode specific "noatime" markers.
1962  */
1963 bool atime_needs_update(const struct path *path, struct inode *inode)
1964 {
1965 	struct vfsmount *mnt = path->mnt;
1966 	struct timespec64 now;
1967 
1968 	if (inode->i_flags & S_NOATIME)
1969 		return false;
1970 
1971 	/* Atime updates will likely cause i_uid and i_gid to be written
1972 	 * back improprely if their true value is unknown to the vfs.
1973 	 */
1974 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1975 		return false;
1976 
1977 	if (IS_NOATIME(inode))
1978 		return false;
1979 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1980 		return false;
1981 
1982 	if (mnt->mnt_flags & MNT_NOATIME)
1983 		return false;
1984 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1985 		return false;
1986 
1987 	now = current_time(inode);
1988 
1989 	if (!relatime_need_update(mnt, inode, now))
1990 		return false;
1991 
1992 	if (timespec64_equal(&inode->i_atime, &now))
1993 		return false;
1994 
1995 	return true;
1996 }
1997 
1998 void touch_atime(const struct path *path)
1999 {
2000 	struct vfsmount *mnt = path->mnt;
2001 	struct inode *inode = d_inode(path->dentry);
2002 
2003 	if (!atime_needs_update(path, inode))
2004 		return;
2005 
2006 	if (!sb_start_write_trylock(inode->i_sb))
2007 		return;
2008 
2009 	if (__mnt_want_write(mnt) != 0)
2010 		goto skip_update;
2011 	/*
2012 	 * File systems can error out when updating inodes if they need to
2013 	 * allocate new space to modify an inode (such is the case for
2014 	 * Btrfs), but since we touch atime while walking down the path we
2015 	 * really don't care if we failed to update the atime of the file,
2016 	 * so just ignore the return value.
2017 	 * We may also fail on filesystems that have the ability to make parts
2018 	 * of the fs read only, e.g. subvolumes in Btrfs.
2019 	 */
2020 	inode_update_time(inode, S_ATIME);
2021 	__mnt_drop_write(mnt);
2022 skip_update:
2023 	sb_end_write(inode->i_sb);
2024 }
2025 EXPORT_SYMBOL(touch_atime);
2026 
2027 /*
2028  * Return mask of changes for notify_change() that need to be done as a
2029  * response to write or truncate. Return 0 if nothing has to be changed.
2030  * Negative value on error (change should be denied).
2031  */
2032 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2033 			      struct dentry *dentry)
2034 {
2035 	struct inode *inode = d_inode(dentry);
2036 	int mask = 0;
2037 	int ret;
2038 
2039 	if (IS_NOSEC(inode))
2040 		return 0;
2041 
2042 	mask = setattr_should_drop_suidgid(idmap, inode);
2043 	ret = security_inode_need_killpriv(dentry);
2044 	if (ret < 0)
2045 		return ret;
2046 	if (ret)
2047 		mask |= ATTR_KILL_PRIV;
2048 	return mask;
2049 }
2050 
2051 static int __remove_privs(struct mnt_idmap *idmap,
2052 			  struct dentry *dentry, int kill)
2053 {
2054 	struct iattr newattrs;
2055 
2056 	newattrs.ia_valid = ATTR_FORCE | kill;
2057 	/*
2058 	 * Note we call this on write, so notify_change will not
2059 	 * encounter any conflicting delegations:
2060 	 */
2061 	return notify_change(idmap, dentry, &newattrs, NULL);
2062 }
2063 
2064 static int __file_remove_privs(struct file *file, unsigned int flags)
2065 {
2066 	struct dentry *dentry = file_dentry(file);
2067 	struct inode *inode = file_inode(file);
2068 	int error = 0;
2069 	int kill;
2070 
2071 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2072 		return 0;
2073 
2074 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2075 	if (kill < 0)
2076 		return kill;
2077 
2078 	if (kill) {
2079 		if (flags & IOCB_NOWAIT)
2080 			return -EAGAIN;
2081 
2082 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2083 	}
2084 
2085 	if (!error)
2086 		inode_has_no_xattr(inode);
2087 	return error;
2088 }
2089 
2090 /**
2091  * file_remove_privs - remove special file privileges (suid, capabilities)
2092  * @file: file to remove privileges from
2093  *
2094  * When file is modified by a write or truncation ensure that special
2095  * file privileges are removed.
2096  *
2097  * Return: 0 on success, negative errno on failure.
2098  */
2099 int file_remove_privs(struct file *file)
2100 {
2101 	return __file_remove_privs(file, 0);
2102 }
2103 EXPORT_SYMBOL(file_remove_privs);
2104 
2105 /**
2106  * current_mgtime - Return FS time (possibly fine-grained)
2107  * @inode: inode.
2108  *
2109  * Return the current time truncated to the time granularity supported by
2110  * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2111  * as having been QUERIED, get a fine-grained timestamp.
2112  */
2113 struct timespec64 current_mgtime(struct inode *inode)
2114 {
2115 	struct timespec64 now, ctime;
2116 	atomic_long_t *pnsec = (atomic_long_t *)&inode->__i_ctime.tv_nsec;
2117 	long nsec = atomic_long_read(pnsec);
2118 
2119 	if (nsec & I_CTIME_QUERIED) {
2120 		ktime_get_real_ts64(&now);
2121 		return timestamp_truncate(now, inode);
2122 	}
2123 
2124 	ktime_get_coarse_real_ts64(&now);
2125 	now = timestamp_truncate(now, inode);
2126 
2127 	/*
2128 	 * If we've recently fetched a fine-grained timestamp
2129 	 * then the coarse-grained one may still be earlier than the
2130 	 * existing ctime. Just keep the existing value if so.
2131 	 */
2132 	ctime = inode_get_ctime(inode);
2133 	if (timespec64_compare(&ctime, &now) > 0)
2134 		now = ctime;
2135 
2136 	return now;
2137 }
2138 EXPORT_SYMBOL(current_mgtime);
2139 
2140 static struct timespec64 current_ctime(struct inode *inode)
2141 {
2142 	if (is_mgtime(inode))
2143 		return current_mgtime(inode);
2144 	return current_time(inode);
2145 }
2146 
2147 static int inode_needs_update_time(struct inode *inode)
2148 {
2149 	int sync_it = 0;
2150 	struct timespec64 now = current_ctime(inode);
2151 	struct timespec64 ctime;
2152 
2153 	/* First try to exhaust all avenues to not sync */
2154 	if (IS_NOCMTIME(inode))
2155 		return 0;
2156 
2157 	if (!timespec64_equal(&inode->i_mtime, &now))
2158 		sync_it = S_MTIME;
2159 
2160 	ctime = inode_get_ctime(inode);
2161 	if (!timespec64_equal(&ctime, &now))
2162 		sync_it |= S_CTIME;
2163 
2164 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2165 		sync_it |= S_VERSION;
2166 
2167 	return sync_it;
2168 }
2169 
2170 static int __file_update_time(struct file *file, int sync_mode)
2171 {
2172 	int ret = 0;
2173 	struct inode *inode = file_inode(file);
2174 
2175 	/* try to update time settings */
2176 	if (!__mnt_want_write_file(file)) {
2177 		ret = inode_update_time(inode, sync_mode);
2178 		__mnt_drop_write_file(file);
2179 	}
2180 
2181 	return ret;
2182 }
2183 
2184 /**
2185  * file_update_time - update mtime and ctime time
2186  * @file: file accessed
2187  *
2188  * Update the mtime and ctime members of an inode and mark the inode for
2189  * writeback. Note that this function is meant exclusively for usage in
2190  * the file write path of filesystems, and filesystems may choose to
2191  * explicitly ignore updates via this function with the _NOCMTIME inode
2192  * flag, e.g. for network filesystem where these imestamps are handled
2193  * by the server. This can return an error for file systems who need to
2194  * allocate space in order to update an inode.
2195  *
2196  * Return: 0 on success, negative errno on failure.
2197  */
2198 int file_update_time(struct file *file)
2199 {
2200 	int ret;
2201 	struct inode *inode = file_inode(file);
2202 
2203 	ret = inode_needs_update_time(inode);
2204 	if (ret <= 0)
2205 		return ret;
2206 
2207 	return __file_update_time(file, ret);
2208 }
2209 EXPORT_SYMBOL(file_update_time);
2210 
2211 /**
2212  * file_modified_flags - handle mandated vfs changes when modifying a file
2213  * @file: file that was modified
2214  * @flags: kiocb flags
2215  *
2216  * When file has been modified ensure that special
2217  * file privileges are removed and time settings are updated.
2218  *
2219  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2220  * time settings will not be updated. It will return -EAGAIN.
2221  *
2222  * Context: Caller must hold the file's inode lock.
2223  *
2224  * Return: 0 on success, negative errno on failure.
2225  */
2226 static int file_modified_flags(struct file *file, int flags)
2227 {
2228 	int ret;
2229 	struct inode *inode = file_inode(file);
2230 
2231 	/*
2232 	 * Clear the security bits if the process is not being run by root.
2233 	 * This keeps people from modifying setuid and setgid binaries.
2234 	 */
2235 	ret = __file_remove_privs(file, flags);
2236 	if (ret)
2237 		return ret;
2238 
2239 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2240 		return 0;
2241 
2242 	ret = inode_needs_update_time(inode);
2243 	if (ret <= 0)
2244 		return ret;
2245 	if (flags & IOCB_NOWAIT)
2246 		return -EAGAIN;
2247 
2248 	return __file_update_time(file, ret);
2249 }
2250 
2251 /**
2252  * file_modified - handle mandated vfs changes when modifying a file
2253  * @file: file that was modified
2254  *
2255  * When file has been modified ensure that special
2256  * file privileges are removed and time settings are updated.
2257  *
2258  * Context: Caller must hold the file's inode lock.
2259  *
2260  * Return: 0 on success, negative errno on failure.
2261  */
2262 int file_modified(struct file *file)
2263 {
2264 	return file_modified_flags(file, 0);
2265 }
2266 EXPORT_SYMBOL(file_modified);
2267 
2268 /**
2269  * kiocb_modified - handle mandated vfs changes when modifying a file
2270  * @iocb: iocb that was modified
2271  *
2272  * When file has been modified ensure that special
2273  * file privileges are removed and time settings are updated.
2274  *
2275  * Context: Caller must hold the file's inode lock.
2276  *
2277  * Return: 0 on success, negative errno on failure.
2278  */
2279 int kiocb_modified(struct kiocb *iocb)
2280 {
2281 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2282 }
2283 EXPORT_SYMBOL_GPL(kiocb_modified);
2284 
2285 int inode_needs_sync(struct inode *inode)
2286 {
2287 	if (IS_SYNC(inode))
2288 		return 1;
2289 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2290 		return 1;
2291 	return 0;
2292 }
2293 EXPORT_SYMBOL(inode_needs_sync);
2294 
2295 /*
2296  * If we try to find an inode in the inode hash while it is being
2297  * deleted, we have to wait until the filesystem completes its
2298  * deletion before reporting that it isn't found.  This function waits
2299  * until the deletion _might_ have completed.  Callers are responsible
2300  * to recheck inode state.
2301  *
2302  * It doesn't matter if I_NEW is not set initially, a call to
2303  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2304  * will DTRT.
2305  */
2306 static void __wait_on_freeing_inode(struct inode *inode)
2307 {
2308 	wait_queue_head_t *wq;
2309 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2310 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2311 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2312 	spin_unlock(&inode->i_lock);
2313 	spin_unlock(&inode_hash_lock);
2314 	schedule();
2315 	finish_wait(wq, &wait.wq_entry);
2316 	spin_lock(&inode_hash_lock);
2317 }
2318 
2319 static __initdata unsigned long ihash_entries;
2320 static int __init set_ihash_entries(char *str)
2321 {
2322 	if (!str)
2323 		return 0;
2324 	ihash_entries = simple_strtoul(str, &str, 0);
2325 	return 1;
2326 }
2327 __setup("ihash_entries=", set_ihash_entries);
2328 
2329 /*
2330  * Initialize the waitqueues and inode hash table.
2331  */
2332 void __init inode_init_early(void)
2333 {
2334 	/* If hashes are distributed across NUMA nodes, defer
2335 	 * hash allocation until vmalloc space is available.
2336 	 */
2337 	if (hashdist)
2338 		return;
2339 
2340 	inode_hashtable =
2341 		alloc_large_system_hash("Inode-cache",
2342 					sizeof(struct hlist_head),
2343 					ihash_entries,
2344 					14,
2345 					HASH_EARLY | HASH_ZERO,
2346 					&i_hash_shift,
2347 					&i_hash_mask,
2348 					0,
2349 					0);
2350 }
2351 
2352 void __init inode_init(void)
2353 {
2354 	/* inode slab cache */
2355 	inode_cachep = kmem_cache_create("inode_cache",
2356 					 sizeof(struct inode),
2357 					 0,
2358 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2359 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2360 					 init_once);
2361 
2362 	/* Hash may have been set up in inode_init_early */
2363 	if (!hashdist)
2364 		return;
2365 
2366 	inode_hashtable =
2367 		alloc_large_system_hash("Inode-cache",
2368 					sizeof(struct hlist_head),
2369 					ihash_entries,
2370 					14,
2371 					HASH_ZERO,
2372 					&i_hash_shift,
2373 					&i_hash_mask,
2374 					0,
2375 					0);
2376 }
2377 
2378 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2379 {
2380 	inode->i_mode = mode;
2381 	if (S_ISCHR(mode)) {
2382 		inode->i_fop = &def_chr_fops;
2383 		inode->i_rdev = rdev;
2384 	} else if (S_ISBLK(mode)) {
2385 		if (IS_ENABLED(CONFIG_BLOCK))
2386 			inode->i_fop = &def_blk_fops;
2387 		inode->i_rdev = rdev;
2388 	} else if (S_ISFIFO(mode))
2389 		inode->i_fop = &pipefifo_fops;
2390 	else if (S_ISSOCK(mode))
2391 		;	/* leave it no_open_fops */
2392 	else
2393 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2394 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2395 				  inode->i_ino);
2396 }
2397 EXPORT_SYMBOL(init_special_inode);
2398 
2399 /**
2400  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2401  * @idmap: idmap of the mount the inode was created from
2402  * @inode: New inode
2403  * @dir: Directory inode
2404  * @mode: mode of the new inode
2405  *
2406  * If the inode has been created through an idmapped mount the idmap of
2407  * the vfsmount must be passed through @idmap. This function will then take
2408  * care to map the inode according to @idmap before checking permissions
2409  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2410  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2411  */
2412 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2413 		      const struct inode *dir, umode_t mode)
2414 {
2415 	inode_fsuid_set(inode, idmap);
2416 	if (dir && dir->i_mode & S_ISGID) {
2417 		inode->i_gid = dir->i_gid;
2418 
2419 		/* Directories are special, and always inherit S_ISGID */
2420 		if (S_ISDIR(mode))
2421 			mode |= S_ISGID;
2422 	} else
2423 		inode_fsgid_set(inode, idmap);
2424 	inode->i_mode = mode;
2425 }
2426 EXPORT_SYMBOL(inode_init_owner);
2427 
2428 /**
2429  * inode_owner_or_capable - check current task permissions to inode
2430  * @idmap: idmap of the mount the inode was found from
2431  * @inode: inode being checked
2432  *
2433  * Return true if current either has CAP_FOWNER in a namespace with the
2434  * inode owner uid mapped, or owns the file.
2435  *
2436  * If the inode has been found through an idmapped mount the idmap of
2437  * the vfsmount must be passed through @idmap. This function will then take
2438  * care to map the inode according to @idmap before checking permissions.
2439  * On non-idmapped mounts or if permission checking is to be performed on the
2440  * raw inode simply passs @nop_mnt_idmap.
2441  */
2442 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2443 			    const struct inode *inode)
2444 {
2445 	vfsuid_t vfsuid;
2446 	struct user_namespace *ns;
2447 
2448 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2449 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2450 		return true;
2451 
2452 	ns = current_user_ns();
2453 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2454 		return true;
2455 	return false;
2456 }
2457 EXPORT_SYMBOL(inode_owner_or_capable);
2458 
2459 /*
2460  * Direct i/o helper functions
2461  */
2462 static void __inode_dio_wait(struct inode *inode)
2463 {
2464 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2465 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2466 
2467 	do {
2468 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2469 		if (atomic_read(&inode->i_dio_count))
2470 			schedule();
2471 	} while (atomic_read(&inode->i_dio_count));
2472 	finish_wait(wq, &q.wq_entry);
2473 }
2474 
2475 /**
2476  * inode_dio_wait - wait for outstanding DIO requests to finish
2477  * @inode: inode to wait for
2478  *
2479  * Waits for all pending direct I/O requests to finish so that we can
2480  * proceed with a truncate or equivalent operation.
2481  *
2482  * Must be called under a lock that serializes taking new references
2483  * to i_dio_count, usually by inode->i_mutex.
2484  */
2485 void inode_dio_wait(struct inode *inode)
2486 {
2487 	if (atomic_read(&inode->i_dio_count))
2488 		__inode_dio_wait(inode);
2489 }
2490 EXPORT_SYMBOL(inode_dio_wait);
2491 
2492 /*
2493  * inode_set_flags - atomically set some inode flags
2494  *
2495  * Note: the caller should be holding i_mutex, or else be sure that
2496  * they have exclusive access to the inode structure (i.e., while the
2497  * inode is being instantiated).  The reason for the cmpxchg() loop
2498  * --- which wouldn't be necessary if all code paths which modify
2499  * i_flags actually followed this rule, is that there is at least one
2500  * code path which doesn't today so we use cmpxchg() out of an abundance
2501  * of caution.
2502  *
2503  * In the long run, i_mutex is overkill, and we should probably look
2504  * at using the i_lock spinlock to protect i_flags, and then make sure
2505  * it is so documented in include/linux/fs.h and that all code follows
2506  * the locking convention!!
2507  */
2508 void inode_set_flags(struct inode *inode, unsigned int flags,
2509 		     unsigned int mask)
2510 {
2511 	WARN_ON_ONCE(flags & ~mask);
2512 	set_mask_bits(&inode->i_flags, mask, flags);
2513 }
2514 EXPORT_SYMBOL(inode_set_flags);
2515 
2516 void inode_nohighmem(struct inode *inode)
2517 {
2518 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2519 }
2520 EXPORT_SYMBOL(inode_nohighmem);
2521 
2522 /**
2523  * timestamp_truncate - Truncate timespec to a granularity
2524  * @t: Timespec
2525  * @inode: inode being updated
2526  *
2527  * Truncate a timespec to the granularity supported by the fs
2528  * containing the inode. Always rounds down. gran must
2529  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2530  */
2531 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2532 {
2533 	struct super_block *sb = inode->i_sb;
2534 	unsigned int gran = sb->s_time_gran;
2535 
2536 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2537 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2538 		t.tv_nsec = 0;
2539 
2540 	/* Avoid division in the common cases 1 ns and 1 s. */
2541 	if (gran == 1)
2542 		; /* nothing */
2543 	else if (gran == NSEC_PER_SEC)
2544 		t.tv_nsec = 0;
2545 	else if (gran > 1 && gran < NSEC_PER_SEC)
2546 		t.tv_nsec -= t.tv_nsec % gran;
2547 	else
2548 		WARN(1, "invalid file time granularity: %u", gran);
2549 	return t;
2550 }
2551 EXPORT_SYMBOL(timestamp_truncate);
2552 
2553 /**
2554  * current_time - Return FS time
2555  * @inode: inode.
2556  *
2557  * Return the current time truncated to the time granularity supported by
2558  * the fs.
2559  *
2560  * Note that inode and inode->sb cannot be NULL.
2561  * Otherwise, the function warns and returns time without truncation.
2562  */
2563 struct timespec64 current_time(struct inode *inode)
2564 {
2565 	struct timespec64 now;
2566 
2567 	ktime_get_coarse_real_ts64(&now);
2568 	return timestamp_truncate(now, inode);
2569 }
2570 EXPORT_SYMBOL(current_time);
2571 
2572 /**
2573  * inode_set_ctime_current - set the ctime to current_time
2574  * @inode: inode
2575  *
2576  * Set the inode->i_ctime to the current value for the inode. Returns
2577  * the current value that was assigned to i_ctime.
2578  */
2579 struct timespec64 inode_set_ctime_current(struct inode *inode)
2580 {
2581 	struct timespec64 now;
2582 	struct timespec64 ctime;
2583 
2584 	ctime.tv_nsec = READ_ONCE(inode->__i_ctime.tv_nsec);
2585 	if (!(ctime.tv_nsec & I_CTIME_QUERIED)) {
2586 		now = current_time(inode);
2587 
2588 		/* Just copy it into place if it's not multigrain */
2589 		if (!is_mgtime(inode)) {
2590 			inode_set_ctime_to_ts(inode, now);
2591 			return now;
2592 		}
2593 
2594 		/*
2595 		 * If we've recently updated with a fine-grained timestamp,
2596 		 * then the coarse-grained one may still be earlier than the
2597 		 * existing ctime. Just keep the existing value if so.
2598 		 */
2599 		ctime.tv_sec = inode->__i_ctime.tv_sec;
2600 		if (timespec64_compare(&ctime, &now) > 0)
2601 			return ctime;
2602 
2603 		/*
2604 		 * Ctime updates are usually protected by the inode_lock, but
2605 		 * we can still race with someone setting the QUERIED flag.
2606 		 * Try to swap the new nsec value into place. If it's changed
2607 		 * in the interim, then just go with a fine-grained timestamp.
2608 		 */
2609 		if (cmpxchg(&inode->__i_ctime.tv_nsec, ctime.tv_nsec,
2610 			    now.tv_nsec) != ctime.tv_nsec)
2611 			goto fine_grained;
2612 		inode->__i_ctime.tv_sec = now.tv_sec;
2613 		return now;
2614 	}
2615 fine_grained:
2616 	ktime_get_real_ts64(&now);
2617 	inode_set_ctime_to_ts(inode, timestamp_truncate(now, inode));
2618 	return now;
2619 }
2620 EXPORT_SYMBOL(inode_set_ctime_current);
2621 
2622 /**
2623  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2624  * @idmap:	idmap of the mount @inode was found from
2625  * @inode:	inode to check
2626  * @vfsgid:	the new/current vfsgid of @inode
2627  *
2628  * Check wether @vfsgid is in the caller's group list or if the caller is
2629  * privileged with CAP_FSETID over @inode. This can be used to determine
2630  * whether the setgid bit can be kept or must be dropped.
2631  *
2632  * Return: true if the caller is sufficiently privileged, false if not.
2633  */
2634 bool in_group_or_capable(struct mnt_idmap *idmap,
2635 			 const struct inode *inode, vfsgid_t vfsgid)
2636 {
2637 	if (vfsgid_in_group_p(vfsgid))
2638 		return true;
2639 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2640 		return true;
2641 	return false;
2642 }
2643 
2644 /**
2645  * mode_strip_sgid - handle the sgid bit for non-directories
2646  * @idmap: idmap of the mount the inode was created from
2647  * @dir: parent directory inode
2648  * @mode: mode of the file to be created in @dir
2649  *
2650  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2651  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2652  * either in the group of the parent directory or they have CAP_FSETID
2653  * in their user namespace and are privileged over the parent directory.
2654  * In all other cases, strip the S_ISGID bit from @mode.
2655  *
2656  * Return: the new mode to use for the file
2657  */
2658 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2659 			const struct inode *dir, umode_t mode)
2660 {
2661 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2662 		return mode;
2663 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2664 		return mode;
2665 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2666 		return mode;
2667 	return mode & ~S_ISGID;
2668 }
2669 EXPORT_SYMBOL(mode_strip_sgid);
2670