1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_u32 ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_u32 ("uid", Opt_uid), 83 {} 84 }; 85 86 #ifdef CONFIG_NUMA 87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 88 struct inode *inode, pgoff_t index) 89 { 90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 91 index); 92 } 93 94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 95 { 96 mpol_cond_put(vma->vm_policy); 97 } 98 #else 99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 100 struct inode *inode, pgoff_t index) 101 { 102 } 103 104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 105 { 106 } 107 #endif 108 109 /* 110 * Mask used when checking the page offset value passed in via system 111 * calls. This value will be converted to a loff_t which is signed. 112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 113 * value. The extra bit (- 1 in the shift value) is to take the sign 114 * bit into account. 115 */ 116 #define PGOFF_LOFFT_MAX \ 117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 118 119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 120 { 121 struct inode *inode = file_inode(file); 122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 123 loff_t len, vma_len; 124 int ret; 125 struct hstate *h = hstate_file(file); 126 127 /* 128 * vma address alignment (but not the pgoff alignment) has 129 * already been checked by prepare_hugepage_range. If you add 130 * any error returns here, do so after setting VM_HUGETLB, so 131 * is_vm_hugetlb_page tests below unmap_region go the right 132 * way when do_mmap unwinds (may be important on powerpc 133 * and ia64). 134 */ 135 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 136 vma->vm_ops = &hugetlb_vm_ops; 137 138 ret = seal_check_future_write(info->seals, vma); 139 if (ret) 140 return ret; 141 142 /* 143 * page based offset in vm_pgoff could be sufficiently large to 144 * overflow a loff_t when converted to byte offset. This can 145 * only happen on architectures where sizeof(loff_t) == 146 * sizeof(unsigned long). So, only check in those instances. 147 */ 148 if (sizeof(unsigned long) == sizeof(loff_t)) { 149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 150 return -EINVAL; 151 } 152 153 /* must be huge page aligned */ 154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 155 return -EINVAL; 156 157 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 159 /* check for overflow */ 160 if (len < vma_len) 161 return -EINVAL; 162 163 inode_lock(inode); 164 file_accessed(file); 165 166 ret = -ENOMEM; 167 if (!hugetlb_reserve_pages(inode, 168 vma->vm_pgoff >> huge_page_order(h), 169 len >> huge_page_shift(h), vma, 170 vma->vm_flags)) 171 goto out; 172 173 ret = 0; 174 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 175 i_size_write(inode, len); 176 out: 177 inode_unlock(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called under mmap_write_lock(mm). 184 */ 185 186 static unsigned long 187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 188 unsigned long len, unsigned long pgoff, unsigned long flags) 189 { 190 struct hstate *h = hstate_file(file); 191 struct vm_unmapped_area_info info; 192 193 info.flags = 0; 194 info.length = len; 195 info.low_limit = current->mm->mmap_base; 196 info.high_limit = arch_get_mmap_end(addr, len, flags); 197 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 198 info.align_offset = 0; 199 return vm_unmapped_area(&info); 200 } 201 202 static unsigned long 203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 204 unsigned long len, unsigned long pgoff, unsigned long flags) 205 { 206 struct hstate *h = hstate_file(file); 207 struct vm_unmapped_area_info info; 208 209 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 210 info.length = len; 211 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 213 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 214 info.align_offset = 0; 215 addr = vm_unmapped_area(&info); 216 217 /* 218 * A failed mmap() very likely causes application failure, 219 * so fall back to the bottom-up function here. This scenario 220 * can happen with large stack limits and large mmap() 221 * allocations. 222 */ 223 if (unlikely(offset_in_page(addr))) { 224 VM_BUG_ON(addr != -ENOMEM); 225 info.flags = 0; 226 info.low_limit = current->mm->mmap_base; 227 info.high_limit = arch_get_mmap_end(addr, len, flags); 228 addr = vm_unmapped_area(&info); 229 } 230 231 return addr; 232 } 233 234 unsigned long 235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 236 unsigned long len, unsigned long pgoff, 237 unsigned long flags) 238 { 239 struct mm_struct *mm = current->mm; 240 struct vm_area_struct *vma; 241 struct hstate *h = hstate_file(file); 242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 243 244 if (len & ~huge_page_mask(h)) 245 return -EINVAL; 246 if (len > TASK_SIZE) 247 return -ENOMEM; 248 249 if (flags & MAP_FIXED) { 250 if (prepare_hugepage_range(file, addr, len)) 251 return -EINVAL; 252 return addr; 253 } 254 255 if (addr) { 256 addr = ALIGN(addr, huge_page_size(h)); 257 vma = find_vma(mm, addr); 258 if (mmap_end - len >= addr && 259 (!vma || addr + len <= vm_start_gap(vma))) 260 return addr; 261 } 262 263 /* 264 * Use mm->get_unmapped_area value as a hint to use topdown routine. 265 * If architectures have special needs, they should define their own 266 * version of hugetlb_get_unmapped_area. 267 */ 268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 269 return hugetlb_get_unmapped_area_topdown(file, addr, len, 270 pgoff, flags); 271 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 272 pgoff, flags); 273 } 274 275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 276 static unsigned long 277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 278 unsigned long len, unsigned long pgoff, 279 unsigned long flags) 280 { 281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 282 } 283 #endif 284 285 /* 286 * Support for read() - Find the page attached to f_mapping and copy out the 287 * data. This provides functionality similar to filemap_read(). 288 */ 289 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 290 { 291 struct file *file = iocb->ki_filp; 292 struct hstate *h = hstate_file(file); 293 struct address_space *mapping = file->f_mapping; 294 struct inode *inode = mapping->host; 295 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 296 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 297 unsigned long end_index; 298 loff_t isize; 299 ssize_t retval = 0; 300 301 while (iov_iter_count(to)) { 302 struct page *page; 303 size_t nr, copied; 304 305 /* nr is the maximum number of bytes to copy from this page */ 306 nr = huge_page_size(h); 307 isize = i_size_read(inode); 308 if (!isize) 309 break; 310 end_index = (isize - 1) >> huge_page_shift(h); 311 if (index > end_index) 312 break; 313 if (index == end_index) { 314 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 315 if (nr <= offset) 316 break; 317 } 318 nr = nr - offset; 319 320 /* Find the page */ 321 page = find_lock_page(mapping, index); 322 if (unlikely(page == NULL)) { 323 /* 324 * We have a HOLE, zero out the user-buffer for the 325 * length of the hole or request. 326 */ 327 copied = iov_iter_zero(nr, to); 328 } else { 329 unlock_page(page); 330 331 /* 332 * We have the page, copy it to user space buffer. 333 */ 334 copied = copy_page_to_iter(page, offset, nr, to); 335 put_page(page); 336 } 337 offset += copied; 338 retval += copied; 339 if (copied != nr && iov_iter_count(to)) { 340 if (!retval) 341 retval = -EFAULT; 342 break; 343 } 344 index += offset >> huge_page_shift(h); 345 offset &= ~huge_page_mask(h); 346 } 347 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 348 return retval; 349 } 350 351 static int hugetlbfs_write_begin(struct file *file, 352 struct address_space *mapping, 353 loff_t pos, unsigned len, 354 struct page **pagep, void **fsdata) 355 { 356 return -EINVAL; 357 } 358 359 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 360 loff_t pos, unsigned len, unsigned copied, 361 struct page *page, void *fsdata) 362 { 363 BUG(); 364 return -EINVAL; 365 } 366 367 static void remove_huge_page(struct page *page) 368 { 369 ClearPageDirty(page); 370 ClearPageUptodate(page); 371 delete_from_page_cache(page); 372 } 373 374 static void 375 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 376 zap_flags_t zap_flags) 377 { 378 struct vm_area_struct *vma; 379 380 /* 381 * end == 0 indicates that the entire range after start should be 382 * unmapped. Note, end is exclusive, whereas the interval tree takes 383 * an inclusive "last". 384 */ 385 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 386 unsigned long v_offset; 387 unsigned long v_end; 388 389 /* 390 * Can the expression below overflow on 32-bit arches? 391 * No, because the interval tree returns us only those vmas 392 * which overlap the truncated area starting at pgoff, 393 * and no vma on a 32-bit arch can span beyond the 4GB. 394 */ 395 if (vma->vm_pgoff < start) 396 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 397 else 398 v_offset = 0; 399 400 if (!end) 401 v_end = vma->vm_end; 402 else { 403 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 404 + vma->vm_start; 405 if (v_end > vma->vm_end) 406 v_end = vma->vm_end; 407 } 408 409 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 410 NULL, zap_flags); 411 } 412 } 413 414 /* 415 * remove_inode_hugepages handles two distinct cases: truncation and hole 416 * punch. There are subtle differences in operation for each case. 417 * 418 * truncation is indicated by end of range being LLONG_MAX 419 * In this case, we first scan the range and release found pages. 420 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 421 * maps and global counts. Page faults can not race with truncation 422 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 423 * page faults in the truncated range by checking i_size. i_size is 424 * modified while holding i_mmap_rwsem. 425 * hole punch is indicated if end is not LLONG_MAX 426 * In the hole punch case we scan the range and release found pages. 427 * Only when releasing a page is the associated region/reserve map 428 * deleted. The region/reserve map for ranges without associated 429 * pages are not modified. Page faults can race with hole punch. 430 * This is indicated if we find a mapped page. 431 * Note: If the passed end of range value is beyond the end of file, but 432 * not LLONG_MAX this routine still performs a hole punch operation. 433 */ 434 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 435 loff_t lend) 436 { 437 struct hstate *h = hstate_inode(inode); 438 struct address_space *mapping = &inode->i_data; 439 const pgoff_t start = lstart >> huge_page_shift(h); 440 const pgoff_t end = lend >> huge_page_shift(h); 441 struct folio_batch fbatch; 442 pgoff_t next, index; 443 int i, freed = 0; 444 bool truncate_op = (lend == LLONG_MAX); 445 446 folio_batch_init(&fbatch); 447 next = start; 448 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 449 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 450 struct folio *folio = fbatch.folios[i]; 451 u32 hash = 0; 452 453 index = folio->index; 454 if (!truncate_op) { 455 /* 456 * Only need to hold the fault mutex in the 457 * hole punch case. This prevents races with 458 * page faults. Races are not possible in the 459 * case of truncation. 460 */ 461 hash = hugetlb_fault_mutex_hash(mapping, index); 462 mutex_lock(&hugetlb_fault_mutex_table[hash]); 463 } 464 465 /* 466 * If folio is mapped, it was faulted in after being 467 * unmapped in caller. Unmap (again) now after taking 468 * the fault mutex. The mutex will prevent faults 469 * until we finish removing the folio. 470 * 471 * This race can only happen in the hole punch case. 472 * Getting here in a truncate operation is a bug. 473 */ 474 if (unlikely(folio_mapped(folio))) { 475 BUG_ON(truncate_op); 476 477 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 478 i_mmap_lock_write(mapping); 479 mutex_lock(&hugetlb_fault_mutex_table[hash]); 480 hugetlb_vmdelete_list(&mapping->i_mmap, 481 index * pages_per_huge_page(h), 482 (index + 1) * pages_per_huge_page(h), 483 ZAP_FLAG_DROP_MARKER); 484 i_mmap_unlock_write(mapping); 485 } 486 487 folio_lock(folio); 488 /* 489 * We must free the huge page and remove from page 490 * cache (remove_huge_page) BEFORE removing the 491 * region/reserve map (hugetlb_unreserve_pages). In 492 * rare out of memory conditions, removal of the 493 * region/reserve map could fail. Correspondingly, 494 * the subpool and global reserve usage count can need 495 * to be adjusted. 496 */ 497 VM_BUG_ON(HPageRestoreReserve(&folio->page)); 498 remove_huge_page(&folio->page); 499 freed++; 500 if (!truncate_op) { 501 if (unlikely(hugetlb_unreserve_pages(inode, 502 index, index + 1, 1))) 503 hugetlb_fix_reserve_counts(inode); 504 } 505 506 folio_unlock(folio); 507 if (!truncate_op) 508 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 509 } 510 folio_batch_release(&fbatch); 511 cond_resched(); 512 } 513 514 if (truncate_op) 515 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 516 } 517 518 static void hugetlbfs_evict_inode(struct inode *inode) 519 { 520 struct resv_map *resv_map; 521 522 remove_inode_hugepages(inode, 0, LLONG_MAX); 523 524 /* 525 * Get the resv_map from the address space embedded in the inode. 526 * This is the address space which points to any resv_map allocated 527 * at inode creation time. If this is a device special inode, 528 * i_mapping may not point to the original address space. 529 */ 530 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 531 /* Only regular and link inodes have associated reserve maps */ 532 if (resv_map) 533 resv_map_release(&resv_map->refs); 534 clear_inode(inode); 535 } 536 537 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 538 { 539 pgoff_t pgoff; 540 struct address_space *mapping = inode->i_mapping; 541 struct hstate *h = hstate_inode(inode); 542 543 BUG_ON(offset & ~huge_page_mask(h)); 544 pgoff = offset >> PAGE_SHIFT; 545 546 i_mmap_lock_write(mapping); 547 i_size_write(inode, offset); 548 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 549 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 550 ZAP_FLAG_DROP_MARKER); 551 i_mmap_unlock_write(mapping); 552 remove_inode_hugepages(inode, offset, LLONG_MAX); 553 } 554 555 static void hugetlbfs_zero_partial_page(struct hstate *h, 556 struct address_space *mapping, 557 loff_t start, 558 loff_t end) 559 { 560 pgoff_t idx = start >> huge_page_shift(h); 561 struct folio *folio; 562 563 folio = filemap_lock_folio(mapping, idx); 564 if (!folio) 565 return; 566 567 start = start & ~huge_page_mask(h); 568 end = end & ~huge_page_mask(h); 569 if (!end) 570 end = huge_page_size(h); 571 572 folio_zero_segment(folio, (size_t)start, (size_t)end); 573 574 folio_unlock(folio); 575 folio_put(folio); 576 } 577 578 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 579 { 580 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 581 struct address_space *mapping = inode->i_mapping; 582 struct hstate *h = hstate_inode(inode); 583 loff_t hpage_size = huge_page_size(h); 584 loff_t hole_start, hole_end; 585 586 /* 587 * hole_start and hole_end indicate the full pages within the hole. 588 */ 589 hole_start = round_up(offset, hpage_size); 590 hole_end = round_down(offset + len, hpage_size); 591 592 inode_lock(inode); 593 594 /* protected by i_rwsem */ 595 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 596 inode_unlock(inode); 597 return -EPERM; 598 } 599 600 i_mmap_lock_write(mapping); 601 602 /* If range starts before first full page, zero partial page. */ 603 if (offset < hole_start) 604 hugetlbfs_zero_partial_page(h, mapping, 605 offset, min(offset + len, hole_start)); 606 607 /* Unmap users of full pages in the hole. */ 608 if (hole_end > hole_start) { 609 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 610 hugetlb_vmdelete_list(&mapping->i_mmap, 611 hole_start >> PAGE_SHIFT, 612 hole_end >> PAGE_SHIFT, 0); 613 } 614 615 /* If range extends beyond last full page, zero partial page. */ 616 if ((offset + len) > hole_end && (offset + len) > hole_start) 617 hugetlbfs_zero_partial_page(h, mapping, 618 hole_end, offset + len); 619 620 i_mmap_unlock_write(mapping); 621 622 /* Remove full pages from the file. */ 623 if (hole_end > hole_start) 624 remove_inode_hugepages(inode, hole_start, hole_end); 625 626 inode_unlock(inode); 627 628 return 0; 629 } 630 631 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 632 loff_t len) 633 { 634 struct inode *inode = file_inode(file); 635 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 636 struct address_space *mapping = inode->i_mapping; 637 struct hstate *h = hstate_inode(inode); 638 struct vm_area_struct pseudo_vma; 639 struct mm_struct *mm = current->mm; 640 loff_t hpage_size = huge_page_size(h); 641 unsigned long hpage_shift = huge_page_shift(h); 642 pgoff_t start, index, end; 643 int error; 644 u32 hash; 645 646 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 647 return -EOPNOTSUPP; 648 649 if (mode & FALLOC_FL_PUNCH_HOLE) 650 return hugetlbfs_punch_hole(inode, offset, len); 651 652 /* 653 * Default preallocate case. 654 * For this range, start is rounded down and end is rounded up 655 * as well as being converted to page offsets. 656 */ 657 start = offset >> hpage_shift; 658 end = (offset + len + hpage_size - 1) >> hpage_shift; 659 660 inode_lock(inode); 661 662 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 663 error = inode_newsize_ok(inode, offset + len); 664 if (error) 665 goto out; 666 667 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 668 error = -EPERM; 669 goto out; 670 } 671 672 /* 673 * Initialize a pseudo vma as this is required by the huge page 674 * allocation routines. If NUMA is configured, use page index 675 * as input to create an allocation policy. 676 */ 677 vma_init(&pseudo_vma, mm); 678 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 679 pseudo_vma.vm_file = file; 680 681 for (index = start; index < end; index++) { 682 /* 683 * This is supposed to be the vaddr where the page is being 684 * faulted in, but we have no vaddr here. 685 */ 686 struct page *page; 687 unsigned long addr; 688 689 cond_resched(); 690 691 /* 692 * fallocate(2) manpage permits EINTR; we may have been 693 * interrupted because we are using up too much memory. 694 */ 695 if (signal_pending(current)) { 696 error = -EINTR; 697 break; 698 } 699 700 /* Set numa allocation policy based on index */ 701 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 702 703 /* addr is the offset within the file (zero based) */ 704 addr = index * hpage_size; 705 706 /* 707 * fault mutex taken here, protects against fault path 708 * and hole punch. inode_lock previously taken protects 709 * against truncation. 710 */ 711 hash = hugetlb_fault_mutex_hash(mapping, index); 712 mutex_lock(&hugetlb_fault_mutex_table[hash]); 713 714 /* See if already present in mapping to avoid alloc/free */ 715 page = find_get_page(mapping, index); 716 if (page) { 717 put_page(page); 718 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 719 hugetlb_drop_vma_policy(&pseudo_vma); 720 continue; 721 } 722 723 /* 724 * Allocate page without setting the avoid_reserve argument. 725 * There certainly are no reserves associated with the 726 * pseudo_vma. However, there could be shared mappings with 727 * reserves for the file at the inode level. If we fallocate 728 * pages in these areas, we need to consume the reserves 729 * to keep reservation accounting consistent. 730 */ 731 page = alloc_huge_page(&pseudo_vma, addr, 0); 732 hugetlb_drop_vma_policy(&pseudo_vma); 733 if (IS_ERR(page)) { 734 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 735 error = PTR_ERR(page); 736 goto out; 737 } 738 clear_huge_page(page, addr, pages_per_huge_page(h)); 739 __SetPageUptodate(page); 740 error = huge_add_to_page_cache(page, mapping, index); 741 if (unlikely(error)) { 742 restore_reserve_on_error(h, &pseudo_vma, addr, page); 743 put_page(page); 744 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 745 goto out; 746 } 747 748 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 749 750 SetHPageMigratable(page); 751 /* 752 * unlock_page because locked by huge_add_to_page_cache() 753 * put_page() due to reference from alloc_huge_page() 754 */ 755 unlock_page(page); 756 put_page(page); 757 } 758 759 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 760 i_size_write(inode, offset + len); 761 inode->i_ctime = current_time(inode); 762 out: 763 inode_unlock(inode); 764 return error; 765 } 766 767 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 768 struct dentry *dentry, struct iattr *attr) 769 { 770 struct inode *inode = d_inode(dentry); 771 struct hstate *h = hstate_inode(inode); 772 int error; 773 unsigned int ia_valid = attr->ia_valid; 774 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 775 776 error = setattr_prepare(&init_user_ns, dentry, attr); 777 if (error) 778 return error; 779 780 if (ia_valid & ATTR_SIZE) { 781 loff_t oldsize = inode->i_size; 782 loff_t newsize = attr->ia_size; 783 784 if (newsize & ~huge_page_mask(h)) 785 return -EINVAL; 786 /* protected by i_rwsem */ 787 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 788 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 789 return -EPERM; 790 hugetlb_vmtruncate(inode, newsize); 791 } 792 793 setattr_copy(&init_user_ns, inode, attr); 794 mark_inode_dirty(inode); 795 return 0; 796 } 797 798 static struct inode *hugetlbfs_get_root(struct super_block *sb, 799 struct hugetlbfs_fs_context *ctx) 800 { 801 struct inode *inode; 802 803 inode = new_inode(sb); 804 if (inode) { 805 inode->i_ino = get_next_ino(); 806 inode->i_mode = S_IFDIR | ctx->mode; 807 inode->i_uid = ctx->uid; 808 inode->i_gid = ctx->gid; 809 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 810 inode->i_op = &hugetlbfs_dir_inode_operations; 811 inode->i_fop = &simple_dir_operations; 812 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 813 inc_nlink(inode); 814 lockdep_annotate_inode_mutex_key(inode); 815 } 816 return inode; 817 } 818 819 /* 820 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 821 * be taken from reclaim -- unlike regular filesystems. This needs an 822 * annotation because huge_pmd_share() does an allocation under hugetlb's 823 * i_mmap_rwsem. 824 */ 825 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 826 827 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 828 struct inode *dir, 829 umode_t mode, dev_t dev) 830 { 831 struct inode *inode; 832 struct resv_map *resv_map = NULL; 833 834 /* 835 * Reserve maps are only needed for inodes that can have associated 836 * page allocations. 837 */ 838 if (S_ISREG(mode) || S_ISLNK(mode)) { 839 resv_map = resv_map_alloc(); 840 if (!resv_map) 841 return NULL; 842 } 843 844 inode = new_inode(sb); 845 if (inode) { 846 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 847 848 inode->i_ino = get_next_ino(); 849 inode_init_owner(&init_user_ns, inode, dir, mode); 850 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 851 &hugetlbfs_i_mmap_rwsem_key); 852 inode->i_mapping->a_ops = &hugetlbfs_aops; 853 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 854 inode->i_mapping->private_data = resv_map; 855 info->seals = F_SEAL_SEAL; 856 switch (mode & S_IFMT) { 857 default: 858 init_special_inode(inode, mode, dev); 859 break; 860 case S_IFREG: 861 inode->i_op = &hugetlbfs_inode_operations; 862 inode->i_fop = &hugetlbfs_file_operations; 863 break; 864 case S_IFDIR: 865 inode->i_op = &hugetlbfs_dir_inode_operations; 866 inode->i_fop = &simple_dir_operations; 867 868 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 869 inc_nlink(inode); 870 break; 871 case S_IFLNK: 872 inode->i_op = &page_symlink_inode_operations; 873 inode_nohighmem(inode); 874 break; 875 } 876 lockdep_annotate_inode_mutex_key(inode); 877 } else { 878 if (resv_map) 879 kref_put(&resv_map->refs, resv_map_release); 880 } 881 882 return inode; 883 } 884 885 /* 886 * File creation. Allocate an inode, and we're done.. 887 */ 888 static int do_hugetlbfs_mknod(struct inode *dir, 889 struct dentry *dentry, 890 umode_t mode, 891 dev_t dev, 892 bool tmpfile) 893 { 894 struct inode *inode; 895 int error = -ENOSPC; 896 897 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 898 if (inode) { 899 dir->i_ctime = dir->i_mtime = current_time(dir); 900 if (tmpfile) { 901 d_tmpfile(dentry, inode); 902 } else { 903 d_instantiate(dentry, inode); 904 dget(dentry);/* Extra count - pin the dentry in core */ 905 } 906 error = 0; 907 } 908 return error; 909 } 910 911 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 912 struct dentry *dentry, umode_t mode, dev_t dev) 913 { 914 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 915 } 916 917 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 918 struct dentry *dentry, umode_t mode) 919 { 920 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 921 mode | S_IFDIR, 0); 922 if (!retval) 923 inc_nlink(dir); 924 return retval; 925 } 926 927 static int hugetlbfs_create(struct user_namespace *mnt_userns, 928 struct inode *dir, struct dentry *dentry, 929 umode_t mode, bool excl) 930 { 931 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 932 } 933 934 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 935 struct inode *dir, struct dentry *dentry, 936 umode_t mode) 937 { 938 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 939 } 940 941 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 942 struct inode *dir, struct dentry *dentry, 943 const char *symname) 944 { 945 struct inode *inode; 946 int error = -ENOSPC; 947 948 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 949 if (inode) { 950 int l = strlen(symname)+1; 951 error = page_symlink(inode, symname, l); 952 if (!error) { 953 d_instantiate(dentry, inode); 954 dget(dentry); 955 } else 956 iput(inode); 957 } 958 dir->i_ctime = dir->i_mtime = current_time(dir); 959 960 return error; 961 } 962 963 #ifdef CONFIG_MIGRATION 964 static int hugetlbfs_migrate_folio(struct address_space *mapping, 965 struct folio *dst, struct folio *src, 966 enum migrate_mode mode) 967 { 968 int rc; 969 970 rc = migrate_huge_page_move_mapping(mapping, dst, src); 971 if (rc != MIGRATEPAGE_SUCCESS) 972 return rc; 973 974 if (hugetlb_page_subpool(&src->page)) { 975 hugetlb_set_page_subpool(&dst->page, 976 hugetlb_page_subpool(&src->page)); 977 hugetlb_set_page_subpool(&src->page, NULL); 978 } 979 980 if (mode != MIGRATE_SYNC_NO_COPY) 981 folio_migrate_copy(dst, src); 982 else 983 folio_migrate_flags(dst, src); 984 985 return MIGRATEPAGE_SUCCESS; 986 } 987 #else 988 #define hugetlbfs_migrate_folio NULL 989 #endif 990 991 static int hugetlbfs_error_remove_page(struct address_space *mapping, 992 struct page *page) 993 { 994 struct inode *inode = mapping->host; 995 pgoff_t index = page->index; 996 997 remove_huge_page(page); 998 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 999 hugetlb_fix_reserve_counts(inode); 1000 1001 return 0; 1002 } 1003 1004 /* 1005 * Display the mount options in /proc/mounts. 1006 */ 1007 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1008 { 1009 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1010 struct hugepage_subpool *spool = sbinfo->spool; 1011 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1012 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1013 char mod; 1014 1015 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1016 seq_printf(m, ",uid=%u", 1017 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1018 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1019 seq_printf(m, ",gid=%u", 1020 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1021 if (sbinfo->mode != 0755) 1022 seq_printf(m, ",mode=%o", sbinfo->mode); 1023 if (sbinfo->max_inodes != -1) 1024 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1025 1026 hpage_size /= 1024; 1027 mod = 'K'; 1028 if (hpage_size >= 1024) { 1029 hpage_size /= 1024; 1030 mod = 'M'; 1031 } 1032 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1033 if (spool) { 1034 if (spool->max_hpages != -1) 1035 seq_printf(m, ",size=%llu", 1036 (unsigned long long)spool->max_hpages << hpage_shift); 1037 if (spool->min_hpages != -1) 1038 seq_printf(m, ",min_size=%llu", 1039 (unsigned long long)spool->min_hpages << hpage_shift); 1040 } 1041 return 0; 1042 } 1043 1044 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1045 { 1046 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1047 struct hstate *h = hstate_inode(d_inode(dentry)); 1048 1049 buf->f_type = HUGETLBFS_MAGIC; 1050 buf->f_bsize = huge_page_size(h); 1051 if (sbinfo) { 1052 spin_lock(&sbinfo->stat_lock); 1053 /* If no limits set, just report 0 or -1 for max/free/used 1054 * blocks, like simple_statfs() */ 1055 if (sbinfo->spool) { 1056 long free_pages; 1057 1058 spin_lock_irq(&sbinfo->spool->lock); 1059 buf->f_blocks = sbinfo->spool->max_hpages; 1060 free_pages = sbinfo->spool->max_hpages 1061 - sbinfo->spool->used_hpages; 1062 buf->f_bavail = buf->f_bfree = free_pages; 1063 spin_unlock_irq(&sbinfo->spool->lock); 1064 buf->f_files = sbinfo->max_inodes; 1065 buf->f_ffree = sbinfo->free_inodes; 1066 } 1067 spin_unlock(&sbinfo->stat_lock); 1068 } 1069 buf->f_namelen = NAME_MAX; 1070 return 0; 1071 } 1072 1073 static void hugetlbfs_put_super(struct super_block *sb) 1074 { 1075 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1076 1077 if (sbi) { 1078 sb->s_fs_info = NULL; 1079 1080 if (sbi->spool) 1081 hugepage_put_subpool(sbi->spool); 1082 1083 kfree(sbi); 1084 } 1085 } 1086 1087 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1088 { 1089 if (sbinfo->free_inodes >= 0) { 1090 spin_lock(&sbinfo->stat_lock); 1091 if (unlikely(!sbinfo->free_inodes)) { 1092 spin_unlock(&sbinfo->stat_lock); 1093 return 0; 1094 } 1095 sbinfo->free_inodes--; 1096 spin_unlock(&sbinfo->stat_lock); 1097 } 1098 1099 return 1; 1100 } 1101 1102 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1103 { 1104 if (sbinfo->free_inodes >= 0) { 1105 spin_lock(&sbinfo->stat_lock); 1106 sbinfo->free_inodes++; 1107 spin_unlock(&sbinfo->stat_lock); 1108 } 1109 } 1110 1111 1112 static struct kmem_cache *hugetlbfs_inode_cachep; 1113 1114 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1115 { 1116 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1117 struct hugetlbfs_inode_info *p; 1118 1119 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1120 return NULL; 1121 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1122 if (unlikely(!p)) { 1123 hugetlbfs_inc_free_inodes(sbinfo); 1124 return NULL; 1125 } 1126 1127 /* 1128 * Any time after allocation, hugetlbfs_destroy_inode can be called 1129 * for the inode. mpol_free_shared_policy is unconditionally called 1130 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1131 * in case of a quick call to destroy. 1132 * 1133 * Note that the policy is initialized even if we are creating a 1134 * private inode. This simplifies hugetlbfs_destroy_inode. 1135 */ 1136 mpol_shared_policy_init(&p->policy, NULL); 1137 1138 return &p->vfs_inode; 1139 } 1140 1141 static void hugetlbfs_free_inode(struct inode *inode) 1142 { 1143 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1144 } 1145 1146 static void hugetlbfs_destroy_inode(struct inode *inode) 1147 { 1148 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1149 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1150 } 1151 1152 static const struct address_space_operations hugetlbfs_aops = { 1153 .write_begin = hugetlbfs_write_begin, 1154 .write_end = hugetlbfs_write_end, 1155 .dirty_folio = noop_dirty_folio, 1156 .migrate_folio = hugetlbfs_migrate_folio, 1157 .error_remove_page = hugetlbfs_error_remove_page, 1158 }; 1159 1160 1161 static void init_once(void *foo) 1162 { 1163 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1164 1165 inode_init_once(&ei->vfs_inode); 1166 } 1167 1168 const struct file_operations hugetlbfs_file_operations = { 1169 .read_iter = hugetlbfs_read_iter, 1170 .mmap = hugetlbfs_file_mmap, 1171 .fsync = noop_fsync, 1172 .get_unmapped_area = hugetlb_get_unmapped_area, 1173 .llseek = default_llseek, 1174 .fallocate = hugetlbfs_fallocate, 1175 }; 1176 1177 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1178 .create = hugetlbfs_create, 1179 .lookup = simple_lookup, 1180 .link = simple_link, 1181 .unlink = simple_unlink, 1182 .symlink = hugetlbfs_symlink, 1183 .mkdir = hugetlbfs_mkdir, 1184 .rmdir = simple_rmdir, 1185 .mknod = hugetlbfs_mknod, 1186 .rename = simple_rename, 1187 .setattr = hugetlbfs_setattr, 1188 .tmpfile = hugetlbfs_tmpfile, 1189 }; 1190 1191 static const struct inode_operations hugetlbfs_inode_operations = { 1192 .setattr = hugetlbfs_setattr, 1193 }; 1194 1195 static const struct super_operations hugetlbfs_ops = { 1196 .alloc_inode = hugetlbfs_alloc_inode, 1197 .free_inode = hugetlbfs_free_inode, 1198 .destroy_inode = hugetlbfs_destroy_inode, 1199 .evict_inode = hugetlbfs_evict_inode, 1200 .statfs = hugetlbfs_statfs, 1201 .put_super = hugetlbfs_put_super, 1202 .show_options = hugetlbfs_show_options, 1203 }; 1204 1205 /* 1206 * Convert size option passed from command line to number of huge pages 1207 * in the pool specified by hstate. Size option could be in bytes 1208 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1209 */ 1210 static long 1211 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1212 enum hugetlbfs_size_type val_type) 1213 { 1214 if (val_type == NO_SIZE) 1215 return -1; 1216 1217 if (val_type == SIZE_PERCENT) { 1218 size_opt <<= huge_page_shift(h); 1219 size_opt *= h->max_huge_pages; 1220 do_div(size_opt, 100); 1221 } 1222 1223 size_opt >>= huge_page_shift(h); 1224 return size_opt; 1225 } 1226 1227 /* 1228 * Parse one mount parameter. 1229 */ 1230 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1231 { 1232 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1233 struct fs_parse_result result; 1234 char *rest; 1235 unsigned long ps; 1236 int opt; 1237 1238 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1239 if (opt < 0) 1240 return opt; 1241 1242 switch (opt) { 1243 case Opt_uid: 1244 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1245 if (!uid_valid(ctx->uid)) 1246 goto bad_val; 1247 return 0; 1248 1249 case Opt_gid: 1250 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1251 if (!gid_valid(ctx->gid)) 1252 goto bad_val; 1253 return 0; 1254 1255 case Opt_mode: 1256 ctx->mode = result.uint_32 & 01777U; 1257 return 0; 1258 1259 case Opt_size: 1260 /* memparse() will accept a K/M/G without a digit */ 1261 if (!isdigit(param->string[0])) 1262 goto bad_val; 1263 ctx->max_size_opt = memparse(param->string, &rest); 1264 ctx->max_val_type = SIZE_STD; 1265 if (*rest == '%') 1266 ctx->max_val_type = SIZE_PERCENT; 1267 return 0; 1268 1269 case Opt_nr_inodes: 1270 /* memparse() will accept a K/M/G without a digit */ 1271 if (!isdigit(param->string[0])) 1272 goto bad_val; 1273 ctx->nr_inodes = memparse(param->string, &rest); 1274 return 0; 1275 1276 case Opt_pagesize: 1277 ps = memparse(param->string, &rest); 1278 ctx->hstate = size_to_hstate(ps); 1279 if (!ctx->hstate) { 1280 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1281 return -EINVAL; 1282 } 1283 return 0; 1284 1285 case Opt_min_size: 1286 /* memparse() will accept a K/M/G without a digit */ 1287 if (!isdigit(param->string[0])) 1288 goto bad_val; 1289 ctx->min_size_opt = memparse(param->string, &rest); 1290 ctx->min_val_type = SIZE_STD; 1291 if (*rest == '%') 1292 ctx->min_val_type = SIZE_PERCENT; 1293 return 0; 1294 1295 default: 1296 return -EINVAL; 1297 } 1298 1299 bad_val: 1300 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1301 param->string, param->key); 1302 } 1303 1304 /* 1305 * Validate the parsed options. 1306 */ 1307 static int hugetlbfs_validate(struct fs_context *fc) 1308 { 1309 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1310 1311 /* 1312 * Use huge page pool size (in hstate) to convert the size 1313 * options to number of huge pages. If NO_SIZE, -1 is returned. 1314 */ 1315 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1316 ctx->max_size_opt, 1317 ctx->max_val_type); 1318 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1319 ctx->min_size_opt, 1320 ctx->min_val_type); 1321 1322 /* 1323 * If max_size was specified, then min_size must be smaller 1324 */ 1325 if (ctx->max_val_type > NO_SIZE && 1326 ctx->min_hpages > ctx->max_hpages) { 1327 pr_err("Minimum size can not be greater than maximum size\n"); 1328 return -EINVAL; 1329 } 1330 1331 return 0; 1332 } 1333 1334 static int 1335 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1336 { 1337 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1338 struct hugetlbfs_sb_info *sbinfo; 1339 1340 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1341 if (!sbinfo) 1342 return -ENOMEM; 1343 sb->s_fs_info = sbinfo; 1344 spin_lock_init(&sbinfo->stat_lock); 1345 sbinfo->hstate = ctx->hstate; 1346 sbinfo->max_inodes = ctx->nr_inodes; 1347 sbinfo->free_inodes = ctx->nr_inodes; 1348 sbinfo->spool = NULL; 1349 sbinfo->uid = ctx->uid; 1350 sbinfo->gid = ctx->gid; 1351 sbinfo->mode = ctx->mode; 1352 1353 /* 1354 * Allocate and initialize subpool if maximum or minimum size is 1355 * specified. Any needed reservations (for minimum size) are taken 1356 * when the subpool is created. 1357 */ 1358 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1359 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1360 ctx->max_hpages, 1361 ctx->min_hpages); 1362 if (!sbinfo->spool) 1363 goto out_free; 1364 } 1365 sb->s_maxbytes = MAX_LFS_FILESIZE; 1366 sb->s_blocksize = huge_page_size(ctx->hstate); 1367 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1368 sb->s_magic = HUGETLBFS_MAGIC; 1369 sb->s_op = &hugetlbfs_ops; 1370 sb->s_time_gran = 1; 1371 1372 /* 1373 * Due to the special and limited functionality of hugetlbfs, it does 1374 * not work well as a stacking filesystem. 1375 */ 1376 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1377 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1378 if (!sb->s_root) 1379 goto out_free; 1380 return 0; 1381 out_free: 1382 kfree(sbinfo->spool); 1383 kfree(sbinfo); 1384 return -ENOMEM; 1385 } 1386 1387 static int hugetlbfs_get_tree(struct fs_context *fc) 1388 { 1389 int err = hugetlbfs_validate(fc); 1390 if (err) 1391 return err; 1392 return get_tree_nodev(fc, hugetlbfs_fill_super); 1393 } 1394 1395 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1396 { 1397 kfree(fc->fs_private); 1398 } 1399 1400 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1401 .free = hugetlbfs_fs_context_free, 1402 .parse_param = hugetlbfs_parse_param, 1403 .get_tree = hugetlbfs_get_tree, 1404 }; 1405 1406 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1407 { 1408 struct hugetlbfs_fs_context *ctx; 1409 1410 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1411 if (!ctx) 1412 return -ENOMEM; 1413 1414 ctx->max_hpages = -1; /* No limit on size by default */ 1415 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1416 ctx->uid = current_fsuid(); 1417 ctx->gid = current_fsgid(); 1418 ctx->mode = 0755; 1419 ctx->hstate = &default_hstate; 1420 ctx->min_hpages = -1; /* No default minimum size */ 1421 ctx->max_val_type = NO_SIZE; 1422 ctx->min_val_type = NO_SIZE; 1423 fc->fs_private = ctx; 1424 fc->ops = &hugetlbfs_fs_context_ops; 1425 return 0; 1426 } 1427 1428 static struct file_system_type hugetlbfs_fs_type = { 1429 .name = "hugetlbfs", 1430 .init_fs_context = hugetlbfs_init_fs_context, 1431 .parameters = hugetlb_fs_parameters, 1432 .kill_sb = kill_litter_super, 1433 }; 1434 1435 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1436 1437 static int can_do_hugetlb_shm(void) 1438 { 1439 kgid_t shm_group; 1440 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1441 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1442 } 1443 1444 static int get_hstate_idx(int page_size_log) 1445 { 1446 struct hstate *h = hstate_sizelog(page_size_log); 1447 1448 if (!h) 1449 return -1; 1450 return hstate_index(h); 1451 } 1452 1453 /* 1454 * Note that size should be aligned to proper hugepage size in caller side, 1455 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1456 */ 1457 struct file *hugetlb_file_setup(const char *name, size_t size, 1458 vm_flags_t acctflag, int creat_flags, 1459 int page_size_log) 1460 { 1461 struct inode *inode; 1462 struct vfsmount *mnt; 1463 int hstate_idx; 1464 struct file *file; 1465 1466 hstate_idx = get_hstate_idx(page_size_log); 1467 if (hstate_idx < 0) 1468 return ERR_PTR(-ENODEV); 1469 1470 mnt = hugetlbfs_vfsmount[hstate_idx]; 1471 if (!mnt) 1472 return ERR_PTR(-ENOENT); 1473 1474 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1475 struct ucounts *ucounts = current_ucounts(); 1476 1477 if (user_shm_lock(size, ucounts)) { 1478 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1479 current->comm, current->pid); 1480 user_shm_unlock(size, ucounts); 1481 } 1482 return ERR_PTR(-EPERM); 1483 } 1484 1485 file = ERR_PTR(-ENOSPC); 1486 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1487 if (!inode) 1488 goto out; 1489 if (creat_flags == HUGETLB_SHMFS_INODE) 1490 inode->i_flags |= S_PRIVATE; 1491 1492 inode->i_size = size; 1493 clear_nlink(inode); 1494 1495 if (!hugetlb_reserve_pages(inode, 0, 1496 size >> huge_page_shift(hstate_inode(inode)), NULL, 1497 acctflag)) 1498 file = ERR_PTR(-ENOMEM); 1499 else 1500 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1501 &hugetlbfs_file_operations); 1502 if (!IS_ERR(file)) 1503 return file; 1504 1505 iput(inode); 1506 out: 1507 return file; 1508 } 1509 1510 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1511 { 1512 struct fs_context *fc; 1513 struct vfsmount *mnt; 1514 1515 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1516 if (IS_ERR(fc)) { 1517 mnt = ERR_CAST(fc); 1518 } else { 1519 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1520 ctx->hstate = h; 1521 mnt = fc_mount(fc); 1522 put_fs_context(fc); 1523 } 1524 if (IS_ERR(mnt)) 1525 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1526 huge_page_size(h) / SZ_1K); 1527 return mnt; 1528 } 1529 1530 static int __init init_hugetlbfs_fs(void) 1531 { 1532 struct vfsmount *mnt; 1533 struct hstate *h; 1534 int error; 1535 int i; 1536 1537 if (!hugepages_supported()) { 1538 pr_info("disabling because there are no supported hugepage sizes\n"); 1539 return -ENOTSUPP; 1540 } 1541 1542 error = -ENOMEM; 1543 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1544 sizeof(struct hugetlbfs_inode_info), 1545 0, SLAB_ACCOUNT, init_once); 1546 if (hugetlbfs_inode_cachep == NULL) 1547 goto out; 1548 1549 error = register_filesystem(&hugetlbfs_fs_type); 1550 if (error) 1551 goto out_free; 1552 1553 /* default hstate mount is required */ 1554 mnt = mount_one_hugetlbfs(&default_hstate); 1555 if (IS_ERR(mnt)) { 1556 error = PTR_ERR(mnt); 1557 goto out_unreg; 1558 } 1559 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1560 1561 /* other hstates are optional */ 1562 i = 0; 1563 for_each_hstate(h) { 1564 if (i == default_hstate_idx) { 1565 i++; 1566 continue; 1567 } 1568 1569 mnt = mount_one_hugetlbfs(h); 1570 if (IS_ERR(mnt)) 1571 hugetlbfs_vfsmount[i] = NULL; 1572 else 1573 hugetlbfs_vfsmount[i] = mnt; 1574 i++; 1575 } 1576 1577 return 0; 1578 1579 out_unreg: 1580 (void)unregister_filesystem(&hugetlbfs_fs_type); 1581 out_free: 1582 kmem_cache_destroy(hugetlbfs_inode_cachep); 1583 out: 1584 return error; 1585 } 1586 fs_initcall(init_hugetlbfs_fs) 1587