1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32 ("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 loff_t len, vma_len; 135 int ret; 136 struct hstate *h = hstate_file(file); 137 138 /* 139 * vma address alignment (but not the pgoff alignment) has 140 * already been checked by prepare_hugepage_range. If you add 141 * any error returns here, do so after setting VM_HUGETLB, so 142 * is_vm_hugetlb_page tests below unmap_region go the right 143 * way when do_mmap unwinds (may be important on powerpc 144 * and ia64). 145 */ 146 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 147 vma->vm_ops = &hugetlb_vm_ops; 148 149 /* 150 * page based offset in vm_pgoff could be sufficiently large to 151 * overflow a loff_t when converted to byte offset. This can 152 * only happen on architectures where sizeof(loff_t) == 153 * sizeof(unsigned long). So, only check in those instances. 154 */ 155 if (sizeof(unsigned long) == sizeof(loff_t)) { 156 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 157 return -EINVAL; 158 } 159 160 /* must be huge page aligned */ 161 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 162 return -EINVAL; 163 164 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 165 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 166 /* check for overflow */ 167 if (len < vma_len) 168 return -EINVAL; 169 170 inode_lock(inode); 171 file_accessed(file); 172 173 ret = -ENOMEM; 174 if (hugetlb_reserve_pages(inode, 175 vma->vm_pgoff >> huge_page_order(h), 176 len >> huge_page_shift(h), vma, 177 vma->vm_flags)) 178 goto out; 179 180 ret = 0; 181 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 182 i_size_write(inode, len); 183 out: 184 inode_unlock(inode); 185 186 return ret; 187 } 188 189 /* 190 * Called under mmap_write_lock(mm). 191 */ 192 193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 194 static unsigned long 195 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 196 unsigned long len, unsigned long pgoff, unsigned long flags) 197 { 198 struct hstate *h = hstate_file(file); 199 struct vm_unmapped_area_info info; 200 201 info.flags = 0; 202 info.length = len; 203 info.low_limit = current->mm->mmap_base; 204 info.high_limit = TASK_SIZE; 205 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 206 info.align_offset = 0; 207 return vm_unmapped_area(&info); 208 } 209 210 static unsigned long 211 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 212 unsigned long len, unsigned long pgoff, unsigned long flags) 213 { 214 struct hstate *h = hstate_file(file); 215 struct vm_unmapped_area_info info; 216 217 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 218 info.length = len; 219 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 220 info.high_limit = current->mm->mmap_base; 221 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 222 info.align_offset = 0; 223 addr = vm_unmapped_area(&info); 224 225 /* 226 * A failed mmap() very likely causes application failure, 227 * so fall back to the bottom-up function here. This scenario 228 * can happen with large stack limits and large mmap() 229 * allocations. 230 */ 231 if (unlikely(offset_in_page(addr))) { 232 VM_BUG_ON(addr != -ENOMEM); 233 info.flags = 0; 234 info.low_limit = current->mm->mmap_base; 235 info.high_limit = TASK_SIZE; 236 addr = vm_unmapped_area(&info); 237 } 238 239 return addr; 240 } 241 242 static unsigned long 243 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 244 unsigned long len, unsigned long pgoff, unsigned long flags) 245 { 246 struct mm_struct *mm = current->mm; 247 struct vm_area_struct *vma; 248 struct hstate *h = hstate_file(file); 249 250 if (len & ~huge_page_mask(h)) 251 return -EINVAL; 252 if (len > TASK_SIZE) 253 return -ENOMEM; 254 255 if (flags & MAP_FIXED) { 256 if (prepare_hugepage_range(file, addr, len)) 257 return -EINVAL; 258 return addr; 259 } 260 261 if (addr) { 262 addr = ALIGN(addr, huge_page_size(h)); 263 vma = find_vma(mm, addr); 264 if (TASK_SIZE - len >= addr && 265 (!vma || addr + len <= vm_start_gap(vma))) 266 return addr; 267 } 268 269 /* 270 * Use mm->get_unmapped_area value as a hint to use topdown routine. 271 * If architectures have special needs, they should define their own 272 * version of hugetlb_get_unmapped_area. 273 */ 274 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 275 return hugetlb_get_unmapped_area_topdown(file, addr, len, 276 pgoff, flags); 277 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 278 pgoff, flags); 279 } 280 #endif 281 282 static size_t 283 hugetlbfs_read_actor(struct page *page, unsigned long offset, 284 struct iov_iter *to, unsigned long size) 285 { 286 size_t copied = 0; 287 int i, chunksize; 288 289 /* Find which 4k chunk and offset with in that chunk */ 290 i = offset >> PAGE_SHIFT; 291 offset = offset & ~PAGE_MASK; 292 293 while (size) { 294 size_t n; 295 chunksize = PAGE_SIZE; 296 if (offset) 297 chunksize -= offset; 298 if (chunksize > size) 299 chunksize = size; 300 n = copy_page_to_iter(&page[i], offset, chunksize, to); 301 copied += n; 302 if (n != chunksize) 303 return copied; 304 offset = 0; 305 size -= chunksize; 306 i++; 307 } 308 return copied; 309 } 310 311 /* 312 * Support for read() - Find the page attached to f_mapping and copy out the 313 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 314 * since it has PAGE_SIZE assumptions. 315 */ 316 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 317 { 318 struct file *file = iocb->ki_filp; 319 struct hstate *h = hstate_file(file); 320 struct address_space *mapping = file->f_mapping; 321 struct inode *inode = mapping->host; 322 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 323 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 324 unsigned long end_index; 325 loff_t isize; 326 ssize_t retval = 0; 327 328 while (iov_iter_count(to)) { 329 struct page *page; 330 size_t nr, copied; 331 332 /* nr is the maximum number of bytes to copy from this page */ 333 nr = huge_page_size(h); 334 isize = i_size_read(inode); 335 if (!isize) 336 break; 337 end_index = (isize - 1) >> huge_page_shift(h); 338 if (index > end_index) 339 break; 340 if (index == end_index) { 341 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 342 if (nr <= offset) 343 break; 344 } 345 nr = nr - offset; 346 347 /* Find the page */ 348 page = find_lock_page(mapping, index); 349 if (unlikely(page == NULL)) { 350 /* 351 * We have a HOLE, zero out the user-buffer for the 352 * length of the hole or request. 353 */ 354 copied = iov_iter_zero(nr, to); 355 } else { 356 unlock_page(page); 357 358 /* 359 * We have the page, copy it to user space buffer. 360 */ 361 copied = hugetlbfs_read_actor(page, offset, to, nr); 362 put_page(page); 363 } 364 offset += copied; 365 retval += copied; 366 if (copied != nr && iov_iter_count(to)) { 367 if (!retval) 368 retval = -EFAULT; 369 break; 370 } 371 index += offset >> huge_page_shift(h); 372 offset &= ~huge_page_mask(h); 373 } 374 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 375 return retval; 376 } 377 378 static int hugetlbfs_write_begin(struct file *file, 379 struct address_space *mapping, 380 loff_t pos, unsigned len, unsigned flags, 381 struct page **pagep, void **fsdata) 382 { 383 return -EINVAL; 384 } 385 386 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 387 loff_t pos, unsigned len, unsigned copied, 388 struct page *page, void *fsdata) 389 { 390 BUG(); 391 return -EINVAL; 392 } 393 394 static void remove_huge_page(struct page *page) 395 { 396 ClearPageDirty(page); 397 ClearPageUptodate(page); 398 delete_from_page_cache(page); 399 } 400 401 static void 402 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 403 { 404 struct vm_area_struct *vma; 405 406 /* 407 * end == 0 indicates that the entire range after 408 * start should be unmapped. 409 */ 410 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 411 unsigned long v_offset; 412 unsigned long v_end; 413 414 /* 415 * Can the expression below overflow on 32-bit arches? 416 * No, because the interval tree returns us only those vmas 417 * which overlap the truncated area starting at pgoff, 418 * and no vma on a 32-bit arch can span beyond the 4GB. 419 */ 420 if (vma->vm_pgoff < start) 421 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 422 else 423 v_offset = 0; 424 425 if (!end) 426 v_end = vma->vm_end; 427 else { 428 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 429 + vma->vm_start; 430 if (v_end > vma->vm_end) 431 v_end = vma->vm_end; 432 } 433 434 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 435 NULL); 436 } 437 } 438 439 /* 440 * remove_inode_hugepages handles two distinct cases: truncation and hole 441 * punch. There are subtle differences in operation for each case. 442 * 443 * truncation is indicated by end of range being LLONG_MAX 444 * In this case, we first scan the range and release found pages. 445 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 446 * maps and global counts. Page faults can not race with truncation 447 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 448 * page faults in the truncated range by checking i_size. i_size is 449 * modified while holding i_mmap_rwsem. 450 * hole punch is indicated if end is not LLONG_MAX 451 * In the hole punch case we scan the range and release found pages. 452 * Only when releasing a page is the associated region/reserv map 453 * deleted. The region/reserv map for ranges without associated 454 * pages are not modified. Page faults can race with hole punch. 455 * This is indicated if we find a mapped page. 456 * Note: If the passed end of range value is beyond the end of file, but 457 * not LLONG_MAX this routine still performs a hole punch operation. 458 */ 459 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 460 loff_t lend) 461 { 462 struct hstate *h = hstate_inode(inode); 463 struct address_space *mapping = &inode->i_data; 464 const pgoff_t start = lstart >> huge_page_shift(h); 465 const pgoff_t end = lend >> huge_page_shift(h); 466 struct vm_area_struct pseudo_vma; 467 struct pagevec pvec; 468 pgoff_t next, index; 469 int i, freed = 0; 470 bool truncate_op = (lend == LLONG_MAX); 471 472 vma_init(&pseudo_vma, current->mm); 473 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 474 pagevec_init(&pvec); 475 next = start; 476 while (next < end) { 477 /* 478 * When no more pages are found, we are done. 479 */ 480 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 481 break; 482 483 for (i = 0; i < pagevec_count(&pvec); ++i) { 484 struct page *page = pvec.pages[i]; 485 u32 hash; 486 487 index = page->index; 488 hash = hugetlb_fault_mutex_hash(mapping, index); 489 if (!truncate_op) { 490 /* 491 * Only need to hold the fault mutex in the 492 * hole punch case. This prevents races with 493 * page faults. Races are not possible in the 494 * case of truncation. 495 */ 496 mutex_lock(&hugetlb_fault_mutex_table[hash]); 497 } 498 499 /* 500 * If page is mapped, it was faulted in after being 501 * unmapped in caller. Unmap (again) now after taking 502 * the fault mutex. The mutex will prevent faults 503 * until we finish removing the page. 504 * 505 * This race can only happen in the hole punch case. 506 * Getting here in a truncate operation is a bug. 507 */ 508 if (unlikely(page_mapped(page))) { 509 BUG_ON(truncate_op); 510 511 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 512 i_mmap_lock_write(mapping); 513 mutex_lock(&hugetlb_fault_mutex_table[hash]); 514 hugetlb_vmdelete_list(&mapping->i_mmap, 515 index * pages_per_huge_page(h), 516 (index + 1) * pages_per_huge_page(h)); 517 i_mmap_unlock_write(mapping); 518 } 519 520 lock_page(page); 521 /* 522 * We must free the huge page and remove from page 523 * cache (remove_huge_page) BEFORE removing the 524 * region/reserve map (hugetlb_unreserve_pages). In 525 * rare out of memory conditions, removal of the 526 * region/reserve map could fail. Correspondingly, 527 * the subpool and global reserve usage count can need 528 * to be adjusted. 529 */ 530 VM_BUG_ON(PagePrivate(page)); 531 remove_huge_page(page); 532 freed++; 533 if (!truncate_op) { 534 if (unlikely(hugetlb_unreserve_pages(inode, 535 index, index + 1, 1))) 536 hugetlb_fix_reserve_counts(inode); 537 } 538 539 unlock_page(page); 540 if (!truncate_op) 541 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 542 } 543 huge_pagevec_release(&pvec); 544 cond_resched(); 545 } 546 547 if (truncate_op) 548 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 549 } 550 551 static void hugetlbfs_evict_inode(struct inode *inode) 552 { 553 struct resv_map *resv_map; 554 555 remove_inode_hugepages(inode, 0, LLONG_MAX); 556 557 /* 558 * Get the resv_map from the address space embedded in the inode. 559 * This is the address space which points to any resv_map allocated 560 * at inode creation time. If this is a device special inode, 561 * i_mapping may not point to the original address space. 562 */ 563 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 564 /* Only regular and link inodes have associated reserve maps */ 565 if (resv_map) 566 resv_map_release(&resv_map->refs); 567 clear_inode(inode); 568 } 569 570 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 571 { 572 pgoff_t pgoff; 573 struct address_space *mapping = inode->i_mapping; 574 struct hstate *h = hstate_inode(inode); 575 576 BUG_ON(offset & ~huge_page_mask(h)); 577 pgoff = offset >> PAGE_SHIFT; 578 579 i_mmap_lock_write(mapping); 580 i_size_write(inode, offset); 581 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 582 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 583 i_mmap_unlock_write(mapping); 584 remove_inode_hugepages(inode, offset, LLONG_MAX); 585 return 0; 586 } 587 588 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 589 { 590 struct hstate *h = hstate_inode(inode); 591 loff_t hpage_size = huge_page_size(h); 592 loff_t hole_start, hole_end; 593 594 /* 595 * For hole punch round up the beginning offset of the hole and 596 * round down the end. 597 */ 598 hole_start = round_up(offset, hpage_size); 599 hole_end = round_down(offset + len, hpage_size); 600 601 if (hole_end > hole_start) { 602 struct address_space *mapping = inode->i_mapping; 603 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 604 605 inode_lock(inode); 606 607 /* protected by i_mutex */ 608 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 609 inode_unlock(inode); 610 return -EPERM; 611 } 612 613 i_mmap_lock_write(mapping); 614 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 615 hugetlb_vmdelete_list(&mapping->i_mmap, 616 hole_start >> PAGE_SHIFT, 617 hole_end >> PAGE_SHIFT); 618 i_mmap_unlock_write(mapping); 619 remove_inode_hugepages(inode, hole_start, hole_end); 620 inode_unlock(inode); 621 } 622 623 return 0; 624 } 625 626 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 627 loff_t len) 628 { 629 struct inode *inode = file_inode(file); 630 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 631 struct address_space *mapping = inode->i_mapping; 632 struct hstate *h = hstate_inode(inode); 633 struct vm_area_struct pseudo_vma; 634 struct mm_struct *mm = current->mm; 635 loff_t hpage_size = huge_page_size(h); 636 unsigned long hpage_shift = huge_page_shift(h); 637 pgoff_t start, index, end; 638 int error; 639 u32 hash; 640 641 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 642 return -EOPNOTSUPP; 643 644 if (mode & FALLOC_FL_PUNCH_HOLE) 645 return hugetlbfs_punch_hole(inode, offset, len); 646 647 /* 648 * Default preallocate case. 649 * For this range, start is rounded down and end is rounded up 650 * as well as being converted to page offsets. 651 */ 652 start = offset >> hpage_shift; 653 end = (offset + len + hpage_size - 1) >> hpage_shift; 654 655 inode_lock(inode); 656 657 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 658 error = inode_newsize_ok(inode, offset + len); 659 if (error) 660 goto out; 661 662 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 663 error = -EPERM; 664 goto out; 665 } 666 667 /* 668 * Initialize a pseudo vma as this is required by the huge page 669 * allocation routines. If NUMA is configured, use page index 670 * as input to create an allocation policy. 671 */ 672 vma_init(&pseudo_vma, mm); 673 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 674 pseudo_vma.vm_file = file; 675 676 for (index = start; index < end; index++) { 677 /* 678 * This is supposed to be the vaddr where the page is being 679 * faulted in, but we have no vaddr here. 680 */ 681 struct page *page; 682 unsigned long addr; 683 int avoid_reserve = 0; 684 685 cond_resched(); 686 687 /* 688 * fallocate(2) manpage permits EINTR; we may have been 689 * interrupted because we are using up too much memory. 690 */ 691 if (signal_pending(current)) { 692 error = -EINTR; 693 break; 694 } 695 696 /* Set numa allocation policy based on index */ 697 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 698 699 /* addr is the offset within the file (zero based) */ 700 addr = index * hpage_size; 701 702 /* 703 * fault mutex taken here, protects against fault path 704 * and hole punch. inode_lock previously taken protects 705 * against truncation. 706 */ 707 hash = hugetlb_fault_mutex_hash(mapping, index); 708 mutex_lock(&hugetlb_fault_mutex_table[hash]); 709 710 /* See if already present in mapping to avoid alloc/free */ 711 page = find_get_page(mapping, index); 712 if (page) { 713 put_page(page); 714 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 715 hugetlb_drop_vma_policy(&pseudo_vma); 716 continue; 717 } 718 719 /* Allocate page and add to page cache */ 720 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 721 hugetlb_drop_vma_policy(&pseudo_vma); 722 if (IS_ERR(page)) { 723 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 724 error = PTR_ERR(page); 725 goto out; 726 } 727 clear_huge_page(page, addr, pages_per_huge_page(h)); 728 __SetPageUptodate(page); 729 error = huge_add_to_page_cache(page, mapping, index); 730 if (unlikely(error)) { 731 put_page(page); 732 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 733 goto out; 734 } 735 736 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 737 738 set_page_huge_active(page); 739 /* 740 * unlock_page because locked by add_to_page_cache() 741 * put_page() due to reference from alloc_huge_page() 742 */ 743 unlock_page(page); 744 put_page(page); 745 } 746 747 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 748 i_size_write(inode, offset + len); 749 inode->i_ctime = current_time(inode); 750 out: 751 inode_unlock(inode); 752 return error; 753 } 754 755 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 756 { 757 struct inode *inode = d_inode(dentry); 758 struct hstate *h = hstate_inode(inode); 759 int error; 760 unsigned int ia_valid = attr->ia_valid; 761 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 762 763 BUG_ON(!inode); 764 765 error = setattr_prepare(dentry, attr); 766 if (error) 767 return error; 768 769 if (ia_valid & ATTR_SIZE) { 770 loff_t oldsize = inode->i_size; 771 loff_t newsize = attr->ia_size; 772 773 if (newsize & ~huge_page_mask(h)) 774 return -EINVAL; 775 /* protected by i_mutex */ 776 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 777 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 778 return -EPERM; 779 error = hugetlb_vmtruncate(inode, newsize); 780 if (error) 781 return error; 782 } 783 784 setattr_copy(inode, attr); 785 mark_inode_dirty(inode); 786 return 0; 787 } 788 789 static struct inode *hugetlbfs_get_root(struct super_block *sb, 790 struct hugetlbfs_fs_context *ctx) 791 { 792 struct inode *inode; 793 794 inode = new_inode(sb); 795 if (inode) { 796 inode->i_ino = get_next_ino(); 797 inode->i_mode = S_IFDIR | ctx->mode; 798 inode->i_uid = ctx->uid; 799 inode->i_gid = ctx->gid; 800 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 801 inode->i_op = &hugetlbfs_dir_inode_operations; 802 inode->i_fop = &simple_dir_operations; 803 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 804 inc_nlink(inode); 805 lockdep_annotate_inode_mutex_key(inode); 806 } 807 return inode; 808 } 809 810 /* 811 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 812 * be taken from reclaim -- unlike regular filesystems. This needs an 813 * annotation because huge_pmd_share() does an allocation under hugetlb's 814 * i_mmap_rwsem. 815 */ 816 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 817 818 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 819 struct inode *dir, 820 umode_t mode, dev_t dev) 821 { 822 struct inode *inode; 823 struct resv_map *resv_map = NULL; 824 825 /* 826 * Reserve maps are only needed for inodes that can have associated 827 * page allocations. 828 */ 829 if (S_ISREG(mode) || S_ISLNK(mode)) { 830 resv_map = resv_map_alloc(); 831 if (!resv_map) 832 return NULL; 833 } 834 835 inode = new_inode(sb); 836 if (inode) { 837 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 838 839 inode->i_ino = get_next_ino(); 840 inode_init_owner(inode, dir, mode); 841 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 842 &hugetlbfs_i_mmap_rwsem_key); 843 inode->i_mapping->a_ops = &hugetlbfs_aops; 844 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 845 inode->i_mapping->private_data = resv_map; 846 info->seals = F_SEAL_SEAL; 847 switch (mode & S_IFMT) { 848 default: 849 init_special_inode(inode, mode, dev); 850 break; 851 case S_IFREG: 852 inode->i_op = &hugetlbfs_inode_operations; 853 inode->i_fop = &hugetlbfs_file_operations; 854 break; 855 case S_IFDIR: 856 inode->i_op = &hugetlbfs_dir_inode_operations; 857 inode->i_fop = &simple_dir_operations; 858 859 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 860 inc_nlink(inode); 861 break; 862 case S_IFLNK: 863 inode->i_op = &page_symlink_inode_operations; 864 inode_nohighmem(inode); 865 break; 866 } 867 lockdep_annotate_inode_mutex_key(inode); 868 } else { 869 if (resv_map) 870 kref_put(&resv_map->refs, resv_map_release); 871 } 872 873 return inode; 874 } 875 876 /* 877 * File creation. Allocate an inode, and we're done.. 878 */ 879 static int do_hugetlbfs_mknod(struct inode *dir, 880 struct dentry *dentry, 881 umode_t mode, 882 dev_t dev, 883 bool tmpfile) 884 { 885 struct inode *inode; 886 int error = -ENOSPC; 887 888 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 889 if (inode) { 890 dir->i_ctime = dir->i_mtime = current_time(dir); 891 if (tmpfile) { 892 d_tmpfile(dentry, inode); 893 } else { 894 d_instantiate(dentry, inode); 895 dget(dentry);/* Extra count - pin the dentry in core */ 896 } 897 error = 0; 898 } 899 return error; 900 } 901 902 static int hugetlbfs_mknod(struct inode *dir, 903 struct dentry *dentry, umode_t mode, dev_t dev) 904 { 905 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 906 } 907 908 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 909 { 910 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 911 if (!retval) 912 inc_nlink(dir); 913 return retval; 914 } 915 916 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 917 { 918 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 919 } 920 921 static int hugetlbfs_tmpfile(struct inode *dir, 922 struct dentry *dentry, umode_t mode) 923 { 924 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 925 } 926 927 static int hugetlbfs_symlink(struct inode *dir, 928 struct dentry *dentry, const char *symname) 929 { 930 struct inode *inode; 931 int error = -ENOSPC; 932 933 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 934 if (inode) { 935 int l = strlen(symname)+1; 936 error = page_symlink(inode, symname, l); 937 if (!error) { 938 d_instantiate(dentry, inode); 939 dget(dentry); 940 } else 941 iput(inode); 942 } 943 dir->i_ctime = dir->i_mtime = current_time(dir); 944 945 return error; 946 } 947 948 /* 949 * mark the head page dirty 950 */ 951 static int hugetlbfs_set_page_dirty(struct page *page) 952 { 953 struct page *head = compound_head(page); 954 955 SetPageDirty(head); 956 return 0; 957 } 958 959 static int hugetlbfs_migrate_page(struct address_space *mapping, 960 struct page *newpage, struct page *page, 961 enum migrate_mode mode) 962 { 963 int rc; 964 965 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 966 if (rc != MIGRATEPAGE_SUCCESS) 967 return rc; 968 969 /* 970 * page_private is subpool pointer in hugetlb pages. Transfer to 971 * new page. PagePrivate is not associated with page_private for 972 * hugetlb pages and can not be set here as only page_huge_active 973 * pages can be migrated. 974 */ 975 if (page_private(page)) { 976 set_page_private(newpage, page_private(page)); 977 set_page_private(page, 0); 978 } 979 980 if (mode != MIGRATE_SYNC_NO_COPY) 981 migrate_page_copy(newpage, page); 982 else 983 migrate_page_states(newpage, page); 984 985 return MIGRATEPAGE_SUCCESS; 986 } 987 988 static int hugetlbfs_error_remove_page(struct address_space *mapping, 989 struct page *page) 990 { 991 struct inode *inode = mapping->host; 992 pgoff_t index = page->index; 993 994 remove_huge_page(page); 995 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 996 hugetlb_fix_reserve_counts(inode); 997 998 return 0; 999 } 1000 1001 /* 1002 * Display the mount options in /proc/mounts. 1003 */ 1004 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1005 { 1006 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1007 struct hugepage_subpool *spool = sbinfo->spool; 1008 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1009 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1010 char mod; 1011 1012 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1013 seq_printf(m, ",uid=%u", 1014 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1015 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1016 seq_printf(m, ",gid=%u", 1017 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1018 if (sbinfo->mode != 0755) 1019 seq_printf(m, ",mode=%o", sbinfo->mode); 1020 if (sbinfo->max_inodes != -1) 1021 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1022 1023 hpage_size /= 1024; 1024 mod = 'K'; 1025 if (hpage_size >= 1024) { 1026 hpage_size /= 1024; 1027 mod = 'M'; 1028 } 1029 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1030 if (spool) { 1031 if (spool->max_hpages != -1) 1032 seq_printf(m, ",size=%llu", 1033 (unsigned long long)spool->max_hpages << hpage_shift); 1034 if (spool->min_hpages != -1) 1035 seq_printf(m, ",min_size=%llu", 1036 (unsigned long long)spool->min_hpages << hpage_shift); 1037 } 1038 return 0; 1039 } 1040 1041 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1042 { 1043 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1044 struct hstate *h = hstate_inode(d_inode(dentry)); 1045 1046 buf->f_type = HUGETLBFS_MAGIC; 1047 buf->f_bsize = huge_page_size(h); 1048 if (sbinfo) { 1049 spin_lock(&sbinfo->stat_lock); 1050 /* If no limits set, just report 0 for max/free/used 1051 * blocks, like simple_statfs() */ 1052 if (sbinfo->spool) { 1053 long free_pages; 1054 1055 spin_lock(&sbinfo->spool->lock); 1056 buf->f_blocks = sbinfo->spool->max_hpages; 1057 free_pages = sbinfo->spool->max_hpages 1058 - sbinfo->spool->used_hpages; 1059 buf->f_bavail = buf->f_bfree = free_pages; 1060 spin_unlock(&sbinfo->spool->lock); 1061 buf->f_files = sbinfo->max_inodes; 1062 buf->f_ffree = sbinfo->free_inodes; 1063 } 1064 spin_unlock(&sbinfo->stat_lock); 1065 } 1066 buf->f_namelen = NAME_MAX; 1067 return 0; 1068 } 1069 1070 static void hugetlbfs_put_super(struct super_block *sb) 1071 { 1072 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1073 1074 if (sbi) { 1075 sb->s_fs_info = NULL; 1076 1077 if (sbi->spool) 1078 hugepage_put_subpool(sbi->spool); 1079 1080 kfree(sbi); 1081 } 1082 } 1083 1084 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1085 { 1086 if (sbinfo->free_inodes >= 0) { 1087 spin_lock(&sbinfo->stat_lock); 1088 if (unlikely(!sbinfo->free_inodes)) { 1089 spin_unlock(&sbinfo->stat_lock); 1090 return 0; 1091 } 1092 sbinfo->free_inodes--; 1093 spin_unlock(&sbinfo->stat_lock); 1094 } 1095 1096 return 1; 1097 } 1098 1099 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1100 { 1101 if (sbinfo->free_inodes >= 0) { 1102 spin_lock(&sbinfo->stat_lock); 1103 sbinfo->free_inodes++; 1104 spin_unlock(&sbinfo->stat_lock); 1105 } 1106 } 1107 1108 1109 static struct kmem_cache *hugetlbfs_inode_cachep; 1110 1111 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1112 { 1113 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1114 struct hugetlbfs_inode_info *p; 1115 1116 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1117 return NULL; 1118 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1119 if (unlikely(!p)) { 1120 hugetlbfs_inc_free_inodes(sbinfo); 1121 return NULL; 1122 } 1123 1124 /* 1125 * Any time after allocation, hugetlbfs_destroy_inode can be called 1126 * for the inode. mpol_free_shared_policy is unconditionally called 1127 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1128 * in case of a quick call to destroy. 1129 * 1130 * Note that the policy is initialized even if we are creating a 1131 * private inode. This simplifies hugetlbfs_destroy_inode. 1132 */ 1133 mpol_shared_policy_init(&p->policy, NULL); 1134 1135 return &p->vfs_inode; 1136 } 1137 1138 static void hugetlbfs_free_inode(struct inode *inode) 1139 { 1140 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1141 } 1142 1143 static void hugetlbfs_destroy_inode(struct inode *inode) 1144 { 1145 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1146 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1147 } 1148 1149 static const struct address_space_operations hugetlbfs_aops = { 1150 .write_begin = hugetlbfs_write_begin, 1151 .write_end = hugetlbfs_write_end, 1152 .set_page_dirty = hugetlbfs_set_page_dirty, 1153 .migratepage = hugetlbfs_migrate_page, 1154 .error_remove_page = hugetlbfs_error_remove_page, 1155 }; 1156 1157 1158 static void init_once(void *foo) 1159 { 1160 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1161 1162 inode_init_once(&ei->vfs_inode); 1163 } 1164 1165 const struct file_operations hugetlbfs_file_operations = { 1166 .read_iter = hugetlbfs_read_iter, 1167 .mmap = hugetlbfs_file_mmap, 1168 .fsync = noop_fsync, 1169 .get_unmapped_area = hugetlb_get_unmapped_area, 1170 .llseek = default_llseek, 1171 .fallocate = hugetlbfs_fallocate, 1172 }; 1173 1174 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1175 .create = hugetlbfs_create, 1176 .lookup = simple_lookup, 1177 .link = simple_link, 1178 .unlink = simple_unlink, 1179 .symlink = hugetlbfs_symlink, 1180 .mkdir = hugetlbfs_mkdir, 1181 .rmdir = simple_rmdir, 1182 .mknod = hugetlbfs_mknod, 1183 .rename = simple_rename, 1184 .setattr = hugetlbfs_setattr, 1185 .tmpfile = hugetlbfs_tmpfile, 1186 }; 1187 1188 static const struct inode_operations hugetlbfs_inode_operations = { 1189 .setattr = hugetlbfs_setattr, 1190 }; 1191 1192 static const struct super_operations hugetlbfs_ops = { 1193 .alloc_inode = hugetlbfs_alloc_inode, 1194 .free_inode = hugetlbfs_free_inode, 1195 .destroy_inode = hugetlbfs_destroy_inode, 1196 .evict_inode = hugetlbfs_evict_inode, 1197 .statfs = hugetlbfs_statfs, 1198 .put_super = hugetlbfs_put_super, 1199 .show_options = hugetlbfs_show_options, 1200 }; 1201 1202 /* 1203 * Convert size option passed from command line to number of huge pages 1204 * in the pool specified by hstate. Size option could be in bytes 1205 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1206 */ 1207 static long 1208 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1209 enum hugetlbfs_size_type val_type) 1210 { 1211 if (val_type == NO_SIZE) 1212 return -1; 1213 1214 if (val_type == SIZE_PERCENT) { 1215 size_opt <<= huge_page_shift(h); 1216 size_opt *= h->max_huge_pages; 1217 do_div(size_opt, 100); 1218 } 1219 1220 size_opt >>= huge_page_shift(h); 1221 return size_opt; 1222 } 1223 1224 /* 1225 * Parse one mount parameter. 1226 */ 1227 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1228 { 1229 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1230 struct fs_parse_result result; 1231 char *rest; 1232 unsigned long ps; 1233 int opt; 1234 1235 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1236 if (opt < 0) 1237 return opt; 1238 1239 switch (opt) { 1240 case Opt_uid: 1241 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1242 if (!uid_valid(ctx->uid)) 1243 goto bad_val; 1244 return 0; 1245 1246 case Opt_gid: 1247 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1248 if (!gid_valid(ctx->gid)) 1249 goto bad_val; 1250 return 0; 1251 1252 case Opt_mode: 1253 ctx->mode = result.uint_32 & 01777U; 1254 return 0; 1255 1256 case Opt_size: 1257 /* memparse() will accept a K/M/G without a digit */ 1258 if (!isdigit(param->string[0])) 1259 goto bad_val; 1260 ctx->max_size_opt = memparse(param->string, &rest); 1261 ctx->max_val_type = SIZE_STD; 1262 if (*rest == '%') 1263 ctx->max_val_type = SIZE_PERCENT; 1264 return 0; 1265 1266 case Opt_nr_inodes: 1267 /* memparse() will accept a K/M/G without a digit */ 1268 if (!isdigit(param->string[0])) 1269 goto bad_val; 1270 ctx->nr_inodes = memparse(param->string, &rest); 1271 return 0; 1272 1273 case Opt_pagesize: 1274 ps = memparse(param->string, &rest); 1275 ctx->hstate = size_to_hstate(ps); 1276 if (!ctx->hstate) { 1277 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1278 return -EINVAL; 1279 } 1280 return 0; 1281 1282 case Opt_min_size: 1283 /* memparse() will accept a K/M/G without a digit */ 1284 if (!isdigit(param->string[0])) 1285 goto bad_val; 1286 ctx->min_size_opt = memparse(param->string, &rest); 1287 ctx->min_val_type = SIZE_STD; 1288 if (*rest == '%') 1289 ctx->min_val_type = SIZE_PERCENT; 1290 return 0; 1291 1292 default: 1293 return -EINVAL; 1294 } 1295 1296 bad_val: 1297 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1298 param->string, param->key); 1299 } 1300 1301 /* 1302 * Validate the parsed options. 1303 */ 1304 static int hugetlbfs_validate(struct fs_context *fc) 1305 { 1306 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1307 1308 /* 1309 * Use huge page pool size (in hstate) to convert the size 1310 * options to number of huge pages. If NO_SIZE, -1 is returned. 1311 */ 1312 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1313 ctx->max_size_opt, 1314 ctx->max_val_type); 1315 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1316 ctx->min_size_opt, 1317 ctx->min_val_type); 1318 1319 /* 1320 * If max_size was specified, then min_size must be smaller 1321 */ 1322 if (ctx->max_val_type > NO_SIZE && 1323 ctx->min_hpages > ctx->max_hpages) { 1324 pr_err("Minimum size can not be greater than maximum size\n"); 1325 return -EINVAL; 1326 } 1327 1328 return 0; 1329 } 1330 1331 static int 1332 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1333 { 1334 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1335 struct hugetlbfs_sb_info *sbinfo; 1336 1337 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1338 if (!sbinfo) 1339 return -ENOMEM; 1340 sb->s_fs_info = sbinfo; 1341 spin_lock_init(&sbinfo->stat_lock); 1342 sbinfo->hstate = ctx->hstate; 1343 sbinfo->max_inodes = ctx->nr_inodes; 1344 sbinfo->free_inodes = ctx->nr_inodes; 1345 sbinfo->spool = NULL; 1346 sbinfo->uid = ctx->uid; 1347 sbinfo->gid = ctx->gid; 1348 sbinfo->mode = ctx->mode; 1349 1350 /* 1351 * Allocate and initialize subpool if maximum or minimum size is 1352 * specified. Any needed reservations (for minimim size) are taken 1353 * taken when the subpool is created. 1354 */ 1355 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1356 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1357 ctx->max_hpages, 1358 ctx->min_hpages); 1359 if (!sbinfo->spool) 1360 goto out_free; 1361 } 1362 sb->s_maxbytes = MAX_LFS_FILESIZE; 1363 sb->s_blocksize = huge_page_size(ctx->hstate); 1364 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1365 sb->s_magic = HUGETLBFS_MAGIC; 1366 sb->s_op = &hugetlbfs_ops; 1367 sb->s_time_gran = 1; 1368 1369 /* 1370 * Due to the special and limited functionality of hugetlbfs, it does 1371 * not work well as a stacking filesystem. 1372 */ 1373 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1374 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1375 if (!sb->s_root) 1376 goto out_free; 1377 return 0; 1378 out_free: 1379 kfree(sbinfo->spool); 1380 kfree(sbinfo); 1381 return -ENOMEM; 1382 } 1383 1384 static int hugetlbfs_get_tree(struct fs_context *fc) 1385 { 1386 int err = hugetlbfs_validate(fc); 1387 if (err) 1388 return err; 1389 return get_tree_nodev(fc, hugetlbfs_fill_super); 1390 } 1391 1392 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1393 { 1394 kfree(fc->fs_private); 1395 } 1396 1397 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1398 .free = hugetlbfs_fs_context_free, 1399 .parse_param = hugetlbfs_parse_param, 1400 .get_tree = hugetlbfs_get_tree, 1401 }; 1402 1403 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1404 { 1405 struct hugetlbfs_fs_context *ctx; 1406 1407 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1408 if (!ctx) 1409 return -ENOMEM; 1410 1411 ctx->max_hpages = -1; /* No limit on size by default */ 1412 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1413 ctx->uid = current_fsuid(); 1414 ctx->gid = current_fsgid(); 1415 ctx->mode = 0755; 1416 ctx->hstate = &default_hstate; 1417 ctx->min_hpages = -1; /* No default minimum size */ 1418 ctx->max_val_type = NO_SIZE; 1419 ctx->min_val_type = NO_SIZE; 1420 fc->fs_private = ctx; 1421 fc->ops = &hugetlbfs_fs_context_ops; 1422 return 0; 1423 } 1424 1425 static struct file_system_type hugetlbfs_fs_type = { 1426 .name = "hugetlbfs", 1427 .init_fs_context = hugetlbfs_init_fs_context, 1428 .parameters = hugetlb_fs_parameters, 1429 .kill_sb = kill_litter_super, 1430 }; 1431 1432 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1433 1434 static int can_do_hugetlb_shm(void) 1435 { 1436 kgid_t shm_group; 1437 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1438 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1439 } 1440 1441 static int get_hstate_idx(int page_size_log) 1442 { 1443 struct hstate *h = hstate_sizelog(page_size_log); 1444 1445 if (!h) 1446 return -1; 1447 return h - hstates; 1448 } 1449 1450 /* 1451 * Note that size should be aligned to proper hugepage size in caller side, 1452 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1453 */ 1454 struct file *hugetlb_file_setup(const char *name, size_t size, 1455 vm_flags_t acctflag, struct user_struct **user, 1456 int creat_flags, int page_size_log) 1457 { 1458 struct inode *inode; 1459 struct vfsmount *mnt; 1460 int hstate_idx; 1461 struct file *file; 1462 1463 hstate_idx = get_hstate_idx(page_size_log); 1464 if (hstate_idx < 0) 1465 return ERR_PTR(-ENODEV); 1466 1467 *user = NULL; 1468 mnt = hugetlbfs_vfsmount[hstate_idx]; 1469 if (!mnt) 1470 return ERR_PTR(-ENOENT); 1471 1472 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1473 *user = current_user(); 1474 if (user_shm_lock(size, *user)) { 1475 task_lock(current); 1476 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1477 current->comm, current->pid); 1478 task_unlock(current); 1479 } else { 1480 *user = NULL; 1481 return ERR_PTR(-EPERM); 1482 } 1483 } 1484 1485 file = ERR_PTR(-ENOSPC); 1486 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1487 if (!inode) 1488 goto out; 1489 if (creat_flags == HUGETLB_SHMFS_INODE) 1490 inode->i_flags |= S_PRIVATE; 1491 1492 inode->i_size = size; 1493 clear_nlink(inode); 1494 1495 if (hugetlb_reserve_pages(inode, 0, 1496 size >> huge_page_shift(hstate_inode(inode)), NULL, 1497 acctflag)) 1498 file = ERR_PTR(-ENOMEM); 1499 else 1500 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1501 &hugetlbfs_file_operations); 1502 if (!IS_ERR(file)) 1503 return file; 1504 1505 iput(inode); 1506 out: 1507 if (*user) { 1508 user_shm_unlock(size, *user); 1509 *user = NULL; 1510 } 1511 return file; 1512 } 1513 1514 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1515 { 1516 struct fs_context *fc; 1517 struct vfsmount *mnt; 1518 1519 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1520 if (IS_ERR(fc)) { 1521 mnt = ERR_CAST(fc); 1522 } else { 1523 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1524 ctx->hstate = h; 1525 mnt = fc_mount(fc); 1526 put_fs_context(fc); 1527 } 1528 if (IS_ERR(mnt)) 1529 pr_err("Cannot mount internal hugetlbfs for page size %uK", 1530 1U << (h->order + PAGE_SHIFT - 10)); 1531 return mnt; 1532 } 1533 1534 static int __init init_hugetlbfs_fs(void) 1535 { 1536 struct vfsmount *mnt; 1537 struct hstate *h; 1538 int error; 1539 int i; 1540 1541 if (!hugepages_supported()) { 1542 pr_info("disabling because there are no supported hugepage sizes\n"); 1543 return -ENOTSUPP; 1544 } 1545 1546 error = -ENOMEM; 1547 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1548 sizeof(struct hugetlbfs_inode_info), 1549 0, SLAB_ACCOUNT, init_once); 1550 if (hugetlbfs_inode_cachep == NULL) 1551 goto out; 1552 1553 error = register_filesystem(&hugetlbfs_fs_type); 1554 if (error) 1555 goto out_free; 1556 1557 /* default hstate mount is required */ 1558 mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]); 1559 if (IS_ERR(mnt)) { 1560 error = PTR_ERR(mnt); 1561 goto out_unreg; 1562 } 1563 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1564 1565 /* other hstates are optional */ 1566 i = 0; 1567 for_each_hstate(h) { 1568 if (i == default_hstate_idx) { 1569 i++; 1570 continue; 1571 } 1572 1573 mnt = mount_one_hugetlbfs(h); 1574 if (IS_ERR(mnt)) 1575 hugetlbfs_vfsmount[i] = NULL; 1576 else 1577 hugetlbfs_vfsmount[i] = mnt; 1578 i++; 1579 } 1580 1581 return 0; 1582 1583 out_unreg: 1584 (void)unregister_filesystem(&hugetlbfs_fs_type); 1585 out_free: 1586 kmem_cache_destroy(hugetlbfs_inode_cachep); 1587 out: 1588 return error; 1589 } 1590 fs_initcall(init_hugetlbfs_fs) 1591