xref: /linux/fs/hugetlbfs/inode.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 /*
87  * Mask used when checking the page offset value passed in via system
88  * calls.  This value will be converted to a loff_t which is signed.
89  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90  * value.  The extra bit (- 1 in the shift value) is to take the sign
91  * bit into account.
92  */
93 #define PGOFF_LOFFT_MAX \
94 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95 
96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97 {
98 	struct inode *inode = file_inode(file);
99 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
100 	loff_t len, vma_len;
101 	int ret;
102 	struct hstate *h = hstate_file(file);
103 	vm_flags_t vm_flags;
104 
105 	/*
106 	 * vma address alignment (but not the pgoff alignment) has
107 	 * already been checked by prepare_hugepage_range.  If you add
108 	 * any error returns here, do so after setting VM_HUGETLB, so
109 	 * is_vm_hugetlb_page tests below unmap_region go the right
110 	 * way when do_mmap unwinds (may be important on powerpc
111 	 * and ia64).
112 	 */
113 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
114 	vma->vm_ops = &hugetlb_vm_ops;
115 
116 	ret = seal_check_write(info->seals, vma);
117 	if (ret)
118 		return ret;
119 
120 	/*
121 	 * page based offset in vm_pgoff could be sufficiently large to
122 	 * overflow a loff_t when converted to byte offset.  This can
123 	 * only happen on architectures where sizeof(loff_t) ==
124 	 * sizeof(unsigned long).  So, only check in those instances.
125 	 */
126 	if (sizeof(unsigned long) == sizeof(loff_t)) {
127 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
128 			return -EINVAL;
129 	}
130 
131 	/* must be huge page aligned */
132 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
133 		return -EINVAL;
134 
135 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
136 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
137 	/* check for overflow */
138 	if (len < vma_len)
139 		return -EINVAL;
140 
141 	inode_lock(inode);
142 	file_accessed(file);
143 
144 	ret = -ENOMEM;
145 
146 	vm_flags = vma->vm_flags;
147 	/*
148 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
149 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
150 	 * flag S_PRIVATE is set.
151 	 */
152 	if (inode->i_flags & S_PRIVATE)
153 		vm_flags |= VM_NORESERVE;
154 
155 	if (!hugetlb_reserve_pages(inode,
156 				vma->vm_pgoff >> huge_page_order(h),
157 				len >> huge_page_shift(h), vma,
158 				vm_flags))
159 		goto out;
160 
161 	ret = 0;
162 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
163 		i_size_write(inode, len);
164 out:
165 	inode_unlock(inode);
166 
167 	return ret;
168 }
169 
170 /*
171  * Called under mmap_write_lock(mm).
172  */
173 
174 static unsigned long
175 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
176 		unsigned long len, unsigned long pgoff, unsigned long flags)
177 {
178 	struct hstate *h = hstate_file(file);
179 	struct vm_unmapped_area_info info;
180 
181 	info.flags = 0;
182 	info.length = len;
183 	info.low_limit = current->mm->mmap_base;
184 	info.high_limit = arch_get_mmap_end(addr, len, flags);
185 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
186 	info.align_offset = 0;
187 	return vm_unmapped_area(&info);
188 }
189 
190 static unsigned long
191 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
192 		unsigned long len, unsigned long pgoff, unsigned long flags)
193 {
194 	struct hstate *h = hstate_file(file);
195 	struct vm_unmapped_area_info info;
196 
197 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
198 	info.length = len;
199 	info.low_limit = PAGE_SIZE;
200 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
201 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
202 	info.align_offset = 0;
203 	addr = vm_unmapped_area(&info);
204 
205 	/*
206 	 * A failed mmap() very likely causes application failure,
207 	 * so fall back to the bottom-up function here. This scenario
208 	 * can happen with large stack limits and large mmap()
209 	 * allocations.
210 	 */
211 	if (unlikely(offset_in_page(addr))) {
212 		VM_BUG_ON(addr != -ENOMEM);
213 		info.flags = 0;
214 		info.low_limit = current->mm->mmap_base;
215 		info.high_limit = arch_get_mmap_end(addr, len, flags);
216 		addr = vm_unmapped_area(&info);
217 	}
218 
219 	return addr;
220 }
221 
222 unsigned long
223 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
224 				  unsigned long len, unsigned long pgoff,
225 				  unsigned long flags)
226 {
227 	struct mm_struct *mm = current->mm;
228 	struct vm_area_struct *vma;
229 	struct hstate *h = hstate_file(file);
230 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
231 
232 	if (len & ~huge_page_mask(h))
233 		return -EINVAL;
234 	if (len > TASK_SIZE)
235 		return -ENOMEM;
236 
237 	if (flags & MAP_FIXED) {
238 		if (prepare_hugepage_range(file, addr, len))
239 			return -EINVAL;
240 		return addr;
241 	}
242 
243 	if (addr) {
244 		addr = ALIGN(addr, huge_page_size(h));
245 		vma = find_vma(mm, addr);
246 		if (mmap_end - len >= addr &&
247 		    (!vma || addr + len <= vm_start_gap(vma)))
248 			return addr;
249 	}
250 
251 	/*
252 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
253 	 * If architectures have special needs, they should define their own
254 	 * version of hugetlb_get_unmapped_area.
255 	 */
256 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
257 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
258 				pgoff, flags);
259 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
260 			pgoff, flags);
261 }
262 
263 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
264 static unsigned long
265 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
266 			  unsigned long len, unsigned long pgoff,
267 			  unsigned long flags)
268 {
269 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
270 }
271 #endif
272 
273 /*
274  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
275  * Returns the maximum number of bytes one can read without touching the 1st raw
276  * HWPOISON subpage.
277  *
278  * The implementation borrows the iteration logic from copy_page_to_iter*.
279  */
280 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
281 {
282 	size_t n = 0;
283 	size_t res = 0;
284 
285 	/* First subpage to start the loop. */
286 	page = nth_page(page, offset / PAGE_SIZE);
287 	offset %= PAGE_SIZE;
288 	while (1) {
289 		if (is_raw_hwpoison_page_in_hugepage(page))
290 			break;
291 
292 		/* Safe to read n bytes without touching HWPOISON subpage. */
293 		n = min(bytes, (size_t)PAGE_SIZE - offset);
294 		res += n;
295 		bytes -= n;
296 		if (!bytes || !n)
297 			break;
298 		offset += n;
299 		if (offset == PAGE_SIZE) {
300 			page = nth_page(page, 1);
301 			offset = 0;
302 		}
303 	}
304 
305 	return res;
306 }
307 
308 /*
309  * Support for read() - Find the page attached to f_mapping and copy out the
310  * data. This provides functionality similar to filemap_read().
311  */
312 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
313 {
314 	struct file *file = iocb->ki_filp;
315 	struct hstate *h = hstate_file(file);
316 	struct address_space *mapping = file->f_mapping;
317 	struct inode *inode = mapping->host;
318 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
319 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
320 	unsigned long end_index;
321 	loff_t isize;
322 	ssize_t retval = 0;
323 
324 	while (iov_iter_count(to)) {
325 		struct folio *folio;
326 		size_t nr, copied, want;
327 
328 		/* nr is the maximum number of bytes to copy from this page */
329 		nr = huge_page_size(h);
330 		isize = i_size_read(inode);
331 		if (!isize)
332 			break;
333 		end_index = (isize - 1) >> huge_page_shift(h);
334 		if (index > end_index)
335 			break;
336 		if (index == end_index) {
337 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
338 			if (nr <= offset)
339 				break;
340 		}
341 		nr = nr - offset;
342 
343 		/* Find the folio */
344 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
345 		if (IS_ERR(folio)) {
346 			/*
347 			 * We have a HOLE, zero out the user-buffer for the
348 			 * length of the hole or request.
349 			 */
350 			copied = iov_iter_zero(nr, to);
351 		} else {
352 			folio_unlock(folio);
353 
354 			if (!folio_test_hwpoison(folio))
355 				want = nr;
356 			else {
357 				/*
358 				 * Adjust how many bytes safe to read without
359 				 * touching the 1st raw HWPOISON subpage after
360 				 * offset.
361 				 */
362 				want = adjust_range_hwpoison(&folio->page, offset, nr);
363 				if (want == 0) {
364 					folio_put(folio);
365 					retval = -EIO;
366 					break;
367 				}
368 			}
369 
370 			/*
371 			 * We have the folio, copy it to user space buffer.
372 			 */
373 			copied = copy_folio_to_iter(folio, offset, want, to);
374 			folio_put(folio);
375 		}
376 		offset += copied;
377 		retval += copied;
378 		if (copied != nr && iov_iter_count(to)) {
379 			if (!retval)
380 				retval = -EFAULT;
381 			break;
382 		}
383 		index += offset >> huge_page_shift(h);
384 		offset &= ~huge_page_mask(h);
385 	}
386 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
387 	return retval;
388 }
389 
390 static int hugetlbfs_write_begin(struct file *file,
391 			struct address_space *mapping,
392 			loff_t pos, unsigned len,
393 			struct page **pagep, void **fsdata)
394 {
395 	return -EINVAL;
396 }
397 
398 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
399 			loff_t pos, unsigned len, unsigned copied,
400 			struct page *page, void *fsdata)
401 {
402 	BUG();
403 	return -EINVAL;
404 }
405 
406 static void hugetlb_delete_from_page_cache(struct folio *folio)
407 {
408 	folio_clear_dirty(folio);
409 	folio_clear_uptodate(folio);
410 	filemap_remove_folio(folio);
411 }
412 
413 /*
414  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
415  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
416  * mutex for the page in the mapping.  So, we can not race with page being
417  * faulted into the vma.
418  */
419 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
420 				unsigned long addr, struct page *page)
421 {
422 	pte_t *ptep, pte;
423 
424 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
425 	if (!ptep)
426 		return false;
427 
428 	pte = huge_ptep_get(ptep);
429 	if (huge_pte_none(pte) || !pte_present(pte))
430 		return false;
431 
432 	if (pte_page(pte) == page)
433 		return true;
434 
435 	return false;
436 }
437 
438 /*
439  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
440  * No, because the interval tree returns us only those vmas
441  * which overlap the truncated area starting at pgoff,
442  * and no vma on a 32-bit arch can span beyond the 4GB.
443  */
444 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
445 {
446 	unsigned long offset = 0;
447 
448 	if (vma->vm_pgoff < start)
449 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
450 
451 	return vma->vm_start + offset;
452 }
453 
454 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
455 {
456 	unsigned long t_end;
457 
458 	if (!end)
459 		return vma->vm_end;
460 
461 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
462 	if (t_end > vma->vm_end)
463 		t_end = vma->vm_end;
464 	return t_end;
465 }
466 
467 /*
468  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
469  * this folio can be created while executing the routine.
470  */
471 static void hugetlb_unmap_file_folio(struct hstate *h,
472 					struct address_space *mapping,
473 					struct folio *folio, pgoff_t index)
474 {
475 	struct rb_root_cached *root = &mapping->i_mmap;
476 	struct hugetlb_vma_lock *vma_lock;
477 	struct page *page = &folio->page;
478 	struct vm_area_struct *vma;
479 	unsigned long v_start;
480 	unsigned long v_end;
481 	pgoff_t start, end;
482 
483 	start = index * pages_per_huge_page(h);
484 	end = (index + 1) * pages_per_huge_page(h);
485 
486 	i_mmap_lock_write(mapping);
487 retry:
488 	vma_lock = NULL;
489 	vma_interval_tree_foreach(vma, root, start, end - 1) {
490 		v_start = vma_offset_start(vma, start);
491 		v_end = vma_offset_end(vma, end);
492 
493 		if (!hugetlb_vma_maps_page(vma, v_start, page))
494 			continue;
495 
496 		if (!hugetlb_vma_trylock_write(vma)) {
497 			vma_lock = vma->vm_private_data;
498 			/*
499 			 * If we can not get vma lock, we need to drop
500 			 * immap_sema and take locks in order.  First,
501 			 * take a ref on the vma_lock structure so that
502 			 * we can be guaranteed it will not go away when
503 			 * dropping immap_sema.
504 			 */
505 			kref_get(&vma_lock->refs);
506 			break;
507 		}
508 
509 		unmap_hugepage_range(vma, v_start, v_end, NULL,
510 				     ZAP_FLAG_DROP_MARKER);
511 		hugetlb_vma_unlock_write(vma);
512 	}
513 
514 	i_mmap_unlock_write(mapping);
515 
516 	if (vma_lock) {
517 		/*
518 		 * Wait on vma_lock.  We know it is still valid as we have
519 		 * a reference.  We must 'open code' vma locking as we do
520 		 * not know if vma_lock is still attached to vma.
521 		 */
522 		down_write(&vma_lock->rw_sema);
523 		i_mmap_lock_write(mapping);
524 
525 		vma = vma_lock->vma;
526 		if (!vma) {
527 			/*
528 			 * If lock is no longer attached to vma, then just
529 			 * unlock, drop our reference and retry looking for
530 			 * other vmas.
531 			 */
532 			up_write(&vma_lock->rw_sema);
533 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
534 			goto retry;
535 		}
536 
537 		/*
538 		 * vma_lock is still attached to vma.  Check to see if vma
539 		 * still maps page and if so, unmap.
540 		 */
541 		v_start = vma_offset_start(vma, start);
542 		v_end = vma_offset_end(vma, end);
543 		if (hugetlb_vma_maps_page(vma, v_start, page))
544 			unmap_hugepage_range(vma, v_start, v_end, NULL,
545 					     ZAP_FLAG_DROP_MARKER);
546 
547 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
548 		hugetlb_vma_unlock_write(vma);
549 
550 		goto retry;
551 	}
552 }
553 
554 static void
555 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
556 		      zap_flags_t zap_flags)
557 {
558 	struct vm_area_struct *vma;
559 
560 	/*
561 	 * end == 0 indicates that the entire range after start should be
562 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
563 	 * an inclusive "last".
564 	 */
565 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
566 		unsigned long v_start;
567 		unsigned long v_end;
568 
569 		if (!hugetlb_vma_trylock_write(vma))
570 			continue;
571 
572 		v_start = vma_offset_start(vma, start);
573 		v_end = vma_offset_end(vma, end);
574 
575 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
576 
577 		/*
578 		 * Note that vma lock only exists for shared/non-private
579 		 * vmas.  Therefore, lock is not held when calling
580 		 * unmap_hugepage_range for private vmas.
581 		 */
582 		hugetlb_vma_unlock_write(vma);
583 	}
584 }
585 
586 /*
587  * Called with hugetlb fault mutex held.
588  * Returns true if page was actually removed, false otherwise.
589  */
590 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
591 					struct address_space *mapping,
592 					struct folio *folio, pgoff_t index,
593 					bool truncate_op)
594 {
595 	bool ret = false;
596 
597 	/*
598 	 * If folio is mapped, it was faulted in after being
599 	 * unmapped in caller.  Unmap (again) while holding
600 	 * the fault mutex.  The mutex will prevent faults
601 	 * until we finish removing the folio.
602 	 */
603 	if (unlikely(folio_mapped(folio)))
604 		hugetlb_unmap_file_folio(h, mapping, folio, index);
605 
606 	folio_lock(folio);
607 	/*
608 	 * We must remove the folio from page cache before removing
609 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
610 	 * rare out of memory conditions, removal of the region/reserve
611 	 * map could fail.  Correspondingly, the subpool and global
612 	 * reserve usage count can need to be adjusted.
613 	 */
614 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
615 	hugetlb_delete_from_page_cache(folio);
616 	ret = true;
617 	if (!truncate_op) {
618 		if (unlikely(hugetlb_unreserve_pages(inode, index,
619 							index + 1, 1)))
620 			hugetlb_fix_reserve_counts(inode);
621 	}
622 
623 	folio_unlock(folio);
624 	return ret;
625 }
626 
627 /*
628  * remove_inode_hugepages handles two distinct cases: truncation and hole
629  * punch.  There are subtle differences in operation for each case.
630  *
631  * truncation is indicated by end of range being LLONG_MAX
632  *	In this case, we first scan the range and release found pages.
633  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
634  *	maps and global counts.  Page faults can race with truncation.
635  *	During faults, hugetlb_no_page() checks i_size before page allocation,
636  *	and again after obtaining page table lock.  It will 'back out'
637  *	allocations in the truncated range.
638  * hole punch is indicated if end is not LLONG_MAX
639  *	In the hole punch case we scan the range and release found pages.
640  *	Only when releasing a page is the associated region/reserve map
641  *	deleted.  The region/reserve map for ranges without associated
642  *	pages are not modified.  Page faults can race with hole punch.
643  *	This is indicated if we find a mapped page.
644  * Note: If the passed end of range value is beyond the end of file, but
645  * not LLONG_MAX this routine still performs a hole punch operation.
646  */
647 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
648 				   loff_t lend)
649 {
650 	struct hstate *h = hstate_inode(inode);
651 	struct address_space *mapping = &inode->i_data;
652 	const pgoff_t end = lend >> PAGE_SHIFT;
653 	struct folio_batch fbatch;
654 	pgoff_t next, index;
655 	int i, freed = 0;
656 	bool truncate_op = (lend == LLONG_MAX);
657 
658 	folio_batch_init(&fbatch);
659 	next = lstart >> PAGE_SHIFT;
660 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
661 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
662 			struct folio *folio = fbatch.folios[i];
663 			u32 hash = 0;
664 
665 			index = folio->index >> huge_page_order(h);
666 			hash = hugetlb_fault_mutex_hash(mapping, index);
667 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
668 
669 			/*
670 			 * Remove folio that was part of folio_batch.
671 			 */
672 			if (remove_inode_single_folio(h, inode, mapping, folio,
673 							index, truncate_op))
674 				freed++;
675 
676 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
677 		}
678 		folio_batch_release(&fbatch);
679 		cond_resched();
680 	}
681 
682 	if (truncate_op)
683 		(void)hugetlb_unreserve_pages(inode,
684 				lstart >> huge_page_shift(h),
685 				LONG_MAX, freed);
686 }
687 
688 static void hugetlbfs_evict_inode(struct inode *inode)
689 {
690 	struct resv_map *resv_map;
691 
692 	remove_inode_hugepages(inode, 0, LLONG_MAX);
693 
694 	/*
695 	 * Get the resv_map from the address space embedded in the inode.
696 	 * This is the address space which points to any resv_map allocated
697 	 * at inode creation time.  If this is a device special inode,
698 	 * i_mapping may not point to the original address space.
699 	 */
700 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
701 	/* Only regular and link inodes have associated reserve maps */
702 	if (resv_map)
703 		resv_map_release(&resv_map->refs);
704 	clear_inode(inode);
705 }
706 
707 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
708 {
709 	pgoff_t pgoff;
710 	struct address_space *mapping = inode->i_mapping;
711 	struct hstate *h = hstate_inode(inode);
712 
713 	BUG_ON(offset & ~huge_page_mask(h));
714 	pgoff = offset >> PAGE_SHIFT;
715 
716 	i_size_write(inode, offset);
717 	i_mmap_lock_write(mapping);
718 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
719 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
720 				      ZAP_FLAG_DROP_MARKER);
721 	i_mmap_unlock_write(mapping);
722 	remove_inode_hugepages(inode, offset, LLONG_MAX);
723 }
724 
725 static void hugetlbfs_zero_partial_page(struct hstate *h,
726 					struct address_space *mapping,
727 					loff_t start,
728 					loff_t end)
729 {
730 	pgoff_t idx = start >> huge_page_shift(h);
731 	struct folio *folio;
732 
733 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
734 	if (IS_ERR(folio))
735 		return;
736 
737 	start = start & ~huge_page_mask(h);
738 	end = end & ~huge_page_mask(h);
739 	if (!end)
740 		end = huge_page_size(h);
741 
742 	folio_zero_segment(folio, (size_t)start, (size_t)end);
743 
744 	folio_unlock(folio);
745 	folio_put(folio);
746 }
747 
748 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
749 {
750 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
751 	struct address_space *mapping = inode->i_mapping;
752 	struct hstate *h = hstate_inode(inode);
753 	loff_t hpage_size = huge_page_size(h);
754 	loff_t hole_start, hole_end;
755 
756 	/*
757 	 * hole_start and hole_end indicate the full pages within the hole.
758 	 */
759 	hole_start = round_up(offset, hpage_size);
760 	hole_end = round_down(offset + len, hpage_size);
761 
762 	inode_lock(inode);
763 
764 	/* protected by i_rwsem */
765 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
766 		inode_unlock(inode);
767 		return -EPERM;
768 	}
769 
770 	i_mmap_lock_write(mapping);
771 
772 	/* If range starts before first full page, zero partial page. */
773 	if (offset < hole_start)
774 		hugetlbfs_zero_partial_page(h, mapping,
775 				offset, min(offset + len, hole_start));
776 
777 	/* Unmap users of full pages in the hole. */
778 	if (hole_end > hole_start) {
779 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
780 			hugetlb_vmdelete_list(&mapping->i_mmap,
781 					      hole_start >> PAGE_SHIFT,
782 					      hole_end >> PAGE_SHIFT, 0);
783 	}
784 
785 	/* If range extends beyond last full page, zero partial page. */
786 	if ((offset + len) > hole_end && (offset + len) > hole_start)
787 		hugetlbfs_zero_partial_page(h, mapping,
788 				hole_end, offset + len);
789 
790 	i_mmap_unlock_write(mapping);
791 
792 	/* Remove full pages from the file. */
793 	if (hole_end > hole_start)
794 		remove_inode_hugepages(inode, hole_start, hole_end);
795 
796 	inode_unlock(inode);
797 
798 	return 0;
799 }
800 
801 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
802 				loff_t len)
803 {
804 	struct inode *inode = file_inode(file);
805 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
806 	struct address_space *mapping = inode->i_mapping;
807 	struct hstate *h = hstate_inode(inode);
808 	struct vm_area_struct pseudo_vma;
809 	struct mm_struct *mm = current->mm;
810 	loff_t hpage_size = huge_page_size(h);
811 	unsigned long hpage_shift = huge_page_shift(h);
812 	pgoff_t start, index, end;
813 	int error;
814 	u32 hash;
815 
816 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
817 		return -EOPNOTSUPP;
818 
819 	if (mode & FALLOC_FL_PUNCH_HOLE)
820 		return hugetlbfs_punch_hole(inode, offset, len);
821 
822 	/*
823 	 * Default preallocate case.
824 	 * For this range, start is rounded down and end is rounded up
825 	 * as well as being converted to page offsets.
826 	 */
827 	start = offset >> hpage_shift;
828 	end = (offset + len + hpage_size - 1) >> hpage_shift;
829 
830 	inode_lock(inode);
831 
832 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
833 	error = inode_newsize_ok(inode, offset + len);
834 	if (error)
835 		goto out;
836 
837 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
838 		error = -EPERM;
839 		goto out;
840 	}
841 
842 	/*
843 	 * Initialize a pseudo vma as this is required by the huge page
844 	 * allocation routines.
845 	 */
846 	vma_init(&pseudo_vma, mm);
847 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
848 	pseudo_vma.vm_file = file;
849 
850 	for (index = start; index < end; index++) {
851 		/*
852 		 * This is supposed to be the vaddr where the page is being
853 		 * faulted in, but we have no vaddr here.
854 		 */
855 		struct folio *folio;
856 		unsigned long addr;
857 
858 		cond_resched();
859 
860 		/*
861 		 * fallocate(2) manpage permits EINTR; we may have been
862 		 * interrupted because we are using up too much memory.
863 		 */
864 		if (signal_pending(current)) {
865 			error = -EINTR;
866 			break;
867 		}
868 
869 		/* addr is the offset within the file (zero based) */
870 		addr = index * hpage_size;
871 
872 		/* mutex taken here, fault path and hole punch */
873 		hash = hugetlb_fault_mutex_hash(mapping, index);
874 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
875 
876 		/* See if already present in mapping to avoid alloc/free */
877 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
878 		if (!IS_ERR(folio)) {
879 			folio_put(folio);
880 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
881 			continue;
882 		}
883 
884 		/*
885 		 * Allocate folio without setting the avoid_reserve argument.
886 		 * There certainly are no reserves associated with the
887 		 * pseudo_vma.  However, there could be shared mappings with
888 		 * reserves for the file at the inode level.  If we fallocate
889 		 * folios in these areas, we need to consume the reserves
890 		 * to keep reservation accounting consistent.
891 		 */
892 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
893 		if (IS_ERR(folio)) {
894 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
895 			error = PTR_ERR(folio);
896 			goto out;
897 		}
898 		clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
899 		__folio_mark_uptodate(folio);
900 		error = hugetlb_add_to_page_cache(folio, mapping, index);
901 		if (unlikely(error)) {
902 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
903 			folio_put(folio);
904 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
905 			goto out;
906 		}
907 
908 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
909 
910 		folio_set_hugetlb_migratable(folio);
911 		/*
912 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
913 		 * folio_put() due to reference from alloc_hugetlb_folio()
914 		 */
915 		folio_unlock(folio);
916 		folio_put(folio);
917 	}
918 
919 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
920 		i_size_write(inode, offset + len);
921 	inode_set_ctime_current(inode);
922 out:
923 	inode_unlock(inode);
924 	return error;
925 }
926 
927 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
928 			     struct dentry *dentry, struct iattr *attr)
929 {
930 	struct inode *inode = d_inode(dentry);
931 	struct hstate *h = hstate_inode(inode);
932 	int error;
933 	unsigned int ia_valid = attr->ia_valid;
934 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
935 
936 	error = setattr_prepare(idmap, dentry, attr);
937 	if (error)
938 		return error;
939 
940 	if (ia_valid & ATTR_SIZE) {
941 		loff_t oldsize = inode->i_size;
942 		loff_t newsize = attr->ia_size;
943 
944 		if (newsize & ~huge_page_mask(h))
945 			return -EINVAL;
946 		/* protected by i_rwsem */
947 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
948 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
949 			return -EPERM;
950 		hugetlb_vmtruncate(inode, newsize);
951 	}
952 
953 	setattr_copy(idmap, inode, attr);
954 	mark_inode_dirty(inode);
955 	return 0;
956 }
957 
958 static struct inode *hugetlbfs_get_root(struct super_block *sb,
959 					struct hugetlbfs_fs_context *ctx)
960 {
961 	struct inode *inode;
962 
963 	inode = new_inode(sb);
964 	if (inode) {
965 		inode->i_ino = get_next_ino();
966 		inode->i_mode = S_IFDIR | ctx->mode;
967 		inode->i_uid = ctx->uid;
968 		inode->i_gid = ctx->gid;
969 		simple_inode_init_ts(inode);
970 		inode->i_op = &hugetlbfs_dir_inode_operations;
971 		inode->i_fop = &simple_dir_operations;
972 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
973 		inc_nlink(inode);
974 		lockdep_annotate_inode_mutex_key(inode);
975 	}
976 	return inode;
977 }
978 
979 /*
980  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
981  * be taken from reclaim -- unlike regular filesystems. This needs an
982  * annotation because huge_pmd_share() does an allocation under hugetlb's
983  * i_mmap_rwsem.
984  */
985 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
986 
987 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
988 					struct mnt_idmap *idmap,
989 					struct inode *dir,
990 					umode_t mode, dev_t dev)
991 {
992 	struct inode *inode;
993 	struct resv_map *resv_map = NULL;
994 
995 	/*
996 	 * Reserve maps are only needed for inodes that can have associated
997 	 * page allocations.
998 	 */
999 	if (S_ISREG(mode) || S_ISLNK(mode)) {
1000 		resv_map = resv_map_alloc();
1001 		if (!resv_map)
1002 			return NULL;
1003 	}
1004 
1005 	inode = new_inode(sb);
1006 	if (inode) {
1007 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1008 
1009 		inode->i_ino = get_next_ino();
1010 		inode_init_owner(idmap, inode, dir, mode);
1011 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1012 				&hugetlbfs_i_mmap_rwsem_key);
1013 		inode->i_mapping->a_ops = &hugetlbfs_aops;
1014 		simple_inode_init_ts(inode);
1015 		inode->i_mapping->i_private_data = resv_map;
1016 		info->seals = F_SEAL_SEAL;
1017 		switch (mode & S_IFMT) {
1018 		default:
1019 			init_special_inode(inode, mode, dev);
1020 			break;
1021 		case S_IFREG:
1022 			inode->i_op = &hugetlbfs_inode_operations;
1023 			inode->i_fop = &hugetlbfs_file_operations;
1024 			break;
1025 		case S_IFDIR:
1026 			inode->i_op = &hugetlbfs_dir_inode_operations;
1027 			inode->i_fop = &simple_dir_operations;
1028 
1029 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
1030 			inc_nlink(inode);
1031 			break;
1032 		case S_IFLNK:
1033 			inode->i_op = &page_symlink_inode_operations;
1034 			inode_nohighmem(inode);
1035 			break;
1036 		}
1037 		lockdep_annotate_inode_mutex_key(inode);
1038 	} else {
1039 		if (resv_map)
1040 			kref_put(&resv_map->refs, resv_map_release);
1041 	}
1042 
1043 	return inode;
1044 }
1045 
1046 /*
1047  * File creation. Allocate an inode, and we're done..
1048  */
1049 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1050 			   struct dentry *dentry, umode_t mode, dev_t dev)
1051 {
1052 	struct inode *inode;
1053 
1054 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
1055 	if (!inode)
1056 		return -ENOSPC;
1057 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1058 	d_instantiate(dentry, inode);
1059 	dget(dentry);/* Extra count - pin the dentry in core */
1060 	return 0;
1061 }
1062 
1063 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1064 			   struct dentry *dentry, umode_t mode)
1065 {
1066 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
1067 				     mode | S_IFDIR, 0);
1068 	if (!retval)
1069 		inc_nlink(dir);
1070 	return retval;
1071 }
1072 
1073 static int hugetlbfs_create(struct mnt_idmap *idmap,
1074 			    struct inode *dir, struct dentry *dentry,
1075 			    umode_t mode, bool excl)
1076 {
1077 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1078 }
1079 
1080 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1081 			     struct inode *dir, struct file *file,
1082 			     umode_t mode)
1083 {
1084 	struct inode *inode;
1085 
1086 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1087 	if (!inode)
1088 		return -ENOSPC;
1089 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1090 	d_tmpfile(file, inode);
1091 	return finish_open_simple(file, 0);
1092 }
1093 
1094 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1095 			     struct inode *dir, struct dentry *dentry,
1096 			     const char *symname)
1097 {
1098 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1099 	struct inode *inode;
1100 	int error = -ENOSPC;
1101 
1102 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1103 	if (inode) {
1104 		int l = strlen(symname)+1;
1105 		error = page_symlink(inode, symname, l);
1106 		if (!error) {
1107 			d_instantiate(dentry, inode);
1108 			dget(dentry);
1109 		} else
1110 			iput(inode);
1111 	}
1112 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1113 
1114 	return error;
1115 }
1116 
1117 #ifdef CONFIG_MIGRATION
1118 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1119 				struct folio *dst, struct folio *src,
1120 				enum migrate_mode mode)
1121 {
1122 	int rc;
1123 
1124 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1125 	if (rc != MIGRATEPAGE_SUCCESS)
1126 		return rc;
1127 
1128 	if (hugetlb_folio_subpool(src)) {
1129 		hugetlb_set_folio_subpool(dst,
1130 					hugetlb_folio_subpool(src));
1131 		hugetlb_set_folio_subpool(src, NULL);
1132 	}
1133 
1134 	if (mode != MIGRATE_SYNC_NO_COPY)
1135 		folio_migrate_copy(dst, src);
1136 	else
1137 		folio_migrate_flags(dst, src);
1138 
1139 	return MIGRATEPAGE_SUCCESS;
1140 }
1141 #else
1142 #define hugetlbfs_migrate_folio NULL
1143 #endif
1144 
1145 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1146 				struct folio *folio)
1147 {
1148 	return 0;
1149 }
1150 
1151 /*
1152  * Display the mount options in /proc/mounts.
1153  */
1154 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1155 {
1156 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1157 	struct hugepage_subpool *spool = sbinfo->spool;
1158 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1159 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1160 	char mod;
1161 
1162 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1163 		seq_printf(m, ",uid=%u",
1164 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1165 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1166 		seq_printf(m, ",gid=%u",
1167 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1168 	if (sbinfo->mode != 0755)
1169 		seq_printf(m, ",mode=%o", sbinfo->mode);
1170 	if (sbinfo->max_inodes != -1)
1171 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1172 
1173 	hpage_size /= 1024;
1174 	mod = 'K';
1175 	if (hpage_size >= 1024) {
1176 		hpage_size /= 1024;
1177 		mod = 'M';
1178 	}
1179 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1180 	if (spool) {
1181 		if (spool->max_hpages != -1)
1182 			seq_printf(m, ",size=%llu",
1183 				   (unsigned long long)spool->max_hpages << hpage_shift);
1184 		if (spool->min_hpages != -1)
1185 			seq_printf(m, ",min_size=%llu",
1186 				   (unsigned long long)spool->min_hpages << hpage_shift);
1187 	}
1188 	return 0;
1189 }
1190 
1191 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1192 {
1193 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1194 	struct hstate *h = hstate_inode(d_inode(dentry));
1195 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1196 
1197 	buf->f_fsid = u64_to_fsid(id);
1198 	buf->f_type = HUGETLBFS_MAGIC;
1199 	buf->f_bsize = huge_page_size(h);
1200 	if (sbinfo) {
1201 		spin_lock(&sbinfo->stat_lock);
1202 		/* If no limits set, just report 0 or -1 for max/free/used
1203 		 * blocks, like simple_statfs() */
1204 		if (sbinfo->spool) {
1205 			long free_pages;
1206 
1207 			spin_lock_irq(&sbinfo->spool->lock);
1208 			buf->f_blocks = sbinfo->spool->max_hpages;
1209 			free_pages = sbinfo->spool->max_hpages
1210 				- sbinfo->spool->used_hpages;
1211 			buf->f_bavail = buf->f_bfree = free_pages;
1212 			spin_unlock_irq(&sbinfo->spool->lock);
1213 			buf->f_files = sbinfo->max_inodes;
1214 			buf->f_ffree = sbinfo->free_inodes;
1215 		}
1216 		spin_unlock(&sbinfo->stat_lock);
1217 	}
1218 	buf->f_namelen = NAME_MAX;
1219 	return 0;
1220 }
1221 
1222 static void hugetlbfs_put_super(struct super_block *sb)
1223 {
1224 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1225 
1226 	if (sbi) {
1227 		sb->s_fs_info = NULL;
1228 
1229 		if (sbi->spool)
1230 			hugepage_put_subpool(sbi->spool);
1231 
1232 		kfree(sbi);
1233 	}
1234 }
1235 
1236 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1237 {
1238 	if (sbinfo->free_inodes >= 0) {
1239 		spin_lock(&sbinfo->stat_lock);
1240 		if (unlikely(!sbinfo->free_inodes)) {
1241 			spin_unlock(&sbinfo->stat_lock);
1242 			return 0;
1243 		}
1244 		sbinfo->free_inodes--;
1245 		spin_unlock(&sbinfo->stat_lock);
1246 	}
1247 
1248 	return 1;
1249 }
1250 
1251 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1252 {
1253 	if (sbinfo->free_inodes >= 0) {
1254 		spin_lock(&sbinfo->stat_lock);
1255 		sbinfo->free_inodes++;
1256 		spin_unlock(&sbinfo->stat_lock);
1257 	}
1258 }
1259 
1260 
1261 static struct kmem_cache *hugetlbfs_inode_cachep;
1262 
1263 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1264 {
1265 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1266 	struct hugetlbfs_inode_info *p;
1267 
1268 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1269 		return NULL;
1270 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1271 	if (unlikely(!p)) {
1272 		hugetlbfs_inc_free_inodes(sbinfo);
1273 		return NULL;
1274 	}
1275 	return &p->vfs_inode;
1276 }
1277 
1278 static void hugetlbfs_free_inode(struct inode *inode)
1279 {
1280 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1281 }
1282 
1283 static void hugetlbfs_destroy_inode(struct inode *inode)
1284 {
1285 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1286 }
1287 
1288 static const struct address_space_operations hugetlbfs_aops = {
1289 	.write_begin	= hugetlbfs_write_begin,
1290 	.write_end	= hugetlbfs_write_end,
1291 	.dirty_folio	= noop_dirty_folio,
1292 	.migrate_folio  = hugetlbfs_migrate_folio,
1293 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1294 };
1295 
1296 
1297 static void init_once(void *foo)
1298 {
1299 	struct hugetlbfs_inode_info *ei = foo;
1300 
1301 	inode_init_once(&ei->vfs_inode);
1302 }
1303 
1304 const struct file_operations hugetlbfs_file_operations = {
1305 	.read_iter		= hugetlbfs_read_iter,
1306 	.mmap			= hugetlbfs_file_mmap,
1307 	.fsync			= noop_fsync,
1308 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1309 	.llseek			= default_llseek,
1310 	.fallocate		= hugetlbfs_fallocate,
1311 };
1312 
1313 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1314 	.create		= hugetlbfs_create,
1315 	.lookup		= simple_lookup,
1316 	.link		= simple_link,
1317 	.unlink		= simple_unlink,
1318 	.symlink	= hugetlbfs_symlink,
1319 	.mkdir		= hugetlbfs_mkdir,
1320 	.rmdir		= simple_rmdir,
1321 	.mknod		= hugetlbfs_mknod,
1322 	.rename		= simple_rename,
1323 	.setattr	= hugetlbfs_setattr,
1324 	.tmpfile	= hugetlbfs_tmpfile,
1325 };
1326 
1327 static const struct inode_operations hugetlbfs_inode_operations = {
1328 	.setattr	= hugetlbfs_setattr,
1329 };
1330 
1331 static const struct super_operations hugetlbfs_ops = {
1332 	.alloc_inode    = hugetlbfs_alloc_inode,
1333 	.free_inode     = hugetlbfs_free_inode,
1334 	.destroy_inode  = hugetlbfs_destroy_inode,
1335 	.evict_inode	= hugetlbfs_evict_inode,
1336 	.statfs		= hugetlbfs_statfs,
1337 	.put_super	= hugetlbfs_put_super,
1338 	.show_options	= hugetlbfs_show_options,
1339 };
1340 
1341 /*
1342  * Convert size option passed from command line to number of huge pages
1343  * in the pool specified by hstate.  Size option could be in bytes
1344  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1345  */
1346 static long
1347 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1348 			 enum hugetlbfs_size_type val_type)
1349 {
1350 	if (val_type == NO_SIZE)
1351 		return -1;
1352 
1353 	if (val_type == SIZE_PERCENT) {
1354 		size_opt <<= huge_page_shift(h);
1355 		size_opt *= h->max_huge_pages;
1356 		do_div(size_opt, 100);
1357 	}
1358 
1359 	size_opt >>= huge_page_shift(h);
1360 	return size_opt;
1361 }
1362 
1363 /*
1364  * Parse one mount parameter.
1365  */
1366 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1367 {
1368 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1369 	struct fs_parse_result result;
1370 	struct hstate *h;
1371 	char *rest;
1372 	unsigned long ps;
1373 	int opt;
1374 
1375 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1376 	if (opt < 0)
1377 		return opt;
1378 
1379 	switch (opt) {
1380 	case Opt_uid:
1381 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1382 		if (!uid_valid(ctx->uid))
1383 			goto bad_val;
1384 		return 0;
1385 
1386 	case Opt_gid:
1387 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1388 		if (!gid_valid(ctx->gid))
1389 			goto bad_val;
1390 		return 0;
1391 
1392 	case Opt_mode:
1393 		ctx->mode = result.uint_32 & 01777U;
1394 		return 0;
1395 
1396 	case Opt_size:
1397 		/* memparse() will accept a K/M/G without a digit */
1398 		if (!param->string || !isdigit(param->string[0]))
1399 			goto bad_val;
1400 		ctx->max_size_opt = memparse(param->string, &rest);
1401 		ctx->max_val_type = SIZE_STD;
1402 		if (*rest == '%')
1403 			ctx->max_val_type = SIZE_PERCENT;
1404 		return 0;
1405 
1406 	case Opt_nr_inodes:
1407 		/* memparse() will accept a K/M/G without a digit */
1408 		if (!param->string || !isdigit(param->string[0]))
1409 			goto bad_val;
1410 		ctx->nr_inodes = memparse(param->string, &rest);
1411 		return 0;
1412 
1413 	case Opt_pagesize:
1414 		ps = memparse(param->string, &rest);
1415 		h = size_to_hstate(ps);
1416 		if (!h) {
1417 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1418 			return -EINVAL;
1419 		}
1420 		ctx->hstate = h;
1421 		return 0;
1422 
1423 	case Opt_min_size:
1424 		/* memparse() will accept a K/M/G without a digit */
1425 		if (!param->string || !isdigit(param->string[0]))
1426 			goto bad_val;
1427 		ctx->min_size_opt = memparse(param->string, &rest);
1428 		ctx->min_val_type = SIZE_STD;
1429 		if (*rest == '%')
1430 			ctx->min_val_type = SIZE_PERCENT;
1431 		return 0;
1432 
1433 	default:
1434 		return -EINVAL;
1435 	}
1436 
1437 bad_val:
1438 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1439 		      param->string, param->key);
1440 }
1441 
1442 /*
1443  * Validate the parsed options.
1444  */
1445 static int hugetlbfs_validate(struct fs_context *fc)
1446 {
1447 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1448 
1449 	/*
1450 	 * Use huge page pool size (in hstate) to convert the size
1451 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1452 	 */
1453 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1454 						   ctx->max_size_opt,
1455 						   ctx->max_val_type);
1456 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1457 						   ctx->min_size_opt,
1458 						   ctx->min_val_type);
1459 
1460 	/*
1461 	 * If max_size was specified, then min_size must be smaller
1462 	 */
1463 	if (ctx->max_val_type > NO_SIZE &&
1464 	    ctx->min_hpages > ctx->max_hpages) {
1465 		pr_err("Minimum size can not be greater than maximum size\n");
1466 		return -EINVAL;
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 static int
1473 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1474 {
1475 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1476 	struct hugetlbfs_sb_info *sbinfo;
1477 
1478 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1479 	if (!sbinfo)
1480 		return -ENOMEM;
1481 	sb->s_fs_info = sbinfo;
1482 	spin_lock_init(&sbinfo->stat_lock);
1483 	sbinfo->hstate		= ctx->hstate;
1484 	sbinfo->max_inodes	= ctx->nr_inodes;
1485 	sbinfo->free_inodes	= ctx->nr_inodes;
1486 	sbinfo->spool		= NULL;
1487 	sbinfo->uid		= ctx->uid;
1488 	sbinfo->gid		= ctx->gid;
1489 	sbinfo->mode		= ctx->mode;
1490 
1491 	/*
1492 	 * Allocate and initialize subpool if maximum or minimum size is
1493 	 * specified.  Any needed reservations (for minimum size) are taken
1494 	 * when the subpool is created.
1495 	 */
1496 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1497 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1498 						     ctx->max_hpages,
1499 						     ctx->min_hpages);
1500 		if (!sbinfo->spool)
1501 			goto out_free;
1502 	}
1503 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1504 	sb->s_blocksize = huge_page_size(ctx->hstate);
1505 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1506 	sb->s_magic = HUGETLBFS_MAGIC;
1507 	sb->s_op = &hugetlbfs_ops;
1508 	sb->s_time_gran = 1;
1509 
1510 	/*
1511 	 * Due to the special and limited functionality of hugetlbfs, it does
1512 	 * not work well as a stacking filesystem.
1513 	 */
1514 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1515 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1516 	if (!sb->s_root)
1517 		goto out_free;
1518 	return 0;
1519 out_free:
1520 	kfree(sbinfo->spool);
1521 	kfree(sbinfo);
1522 	return -ENOMEM;
1523 }
1524 
1525 static int hugetlbfs_get_tree(struct fs_context *fc)
1526 {
1527 	int err = hugetlbfs_validate(fc);
1528 	if (err)
1529 		return err;
1530 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1531 }
1532 
1533 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1534 {
1535 	kfree(fc->fs_private);
1536 }
1537 
1538 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1539 	.free		= hugetlbfs_fs_context_free,
1540 	.parse_param	= hugetlbfs_parse_param,
1541 	.get_tree	= hugetlbfs_get_tree,
1542 };
1543 
1544 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1545 {
1546 	struct hugetlbfs_fs_context *ctx;
1547 
1548 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1549 	if (!ctx)
1550 		return -ENOMEM;
1551 
1552 	ctx->max_hpages	= -1; /* No limit on size by default */
1553 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1554 	ctx->uid	= current_fsuid();
1555 	ctx->gid	= current_fsgid();
1556 	ctx->mode	= 0755;
1557 	ctx->hstate	= &default_hstate;
1558 	ctx->min_hpages	= -1; /* No default minimum size */
1559 	ctx->max_val_type = NO_SIZE;
1560 	ctx->min_val_type = NO_SIZE;
1561 	fc->fs_private = ctx;
1562 	fc->ops	= &hugetlbfs_fs_context_ops;
1563 	return 0;
1564 }
1565 
1566 static struct file_system_type hugetlbfs_fs_type = {
1567 	.name			= "hugetlbfs",
1568 	.init_fs_context	= hugetlbfs_init_fs_context,
1569 	.parameters		= hugetlb_fs_parameters,
1570 	.kill_sb		= kill_litter_super,
1571 	.fs_flags               = FS_ALLOW_IDMAP,
1572 };
1573 
1574 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1575 
1576 static int can_do_hugetlb_shm(void)
1577 {
1578 	kgid_t shm_group;
1579 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1580 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1581 }
1582 
1583 static int get_hstate_idx(int page_size_log)
1584 {
1585 	struct hstate *h = hstate_sizelog(page_size_log);
1586 
1587 	if (!h)
1588 		return -1;
1589 	return hstate_index(h);
1590 }
1591 
1592 /*
1593  * Note that size should be aligned to proper hugepage size in caller side,
1594  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1595  */
1596 struct file *hugetlb_file_setup(const char *name, size_t size,
1597 				vm_flags_t acctflag, int creat_flags,
1598 				int page_size_log)
1599 {
1600 	struct inode *inode;
1601 	struct vfsmount *mnt;
1602 	int hstate_idx;
1603 	struct file *file;
1604 
1605 	hstate_idx = get_hstate_idx(page_size_log);
1606 	if (hstate_idx < 0)
1607 		return ERR_PTR(-ENODEV);
1608 
1609 	mnt = hugetlbfs_vfsmount[hstate_idx];
1610 	if (!mnt)
1611 		return ERR_PTR(-ENOENT);
1612 
1613 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1614 		struct ucounts *ucounts = current_ucounts();
1615 
1616 		if (user_shm_lock(size, ucounts)) {
1617 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1618 				current->comm, current->pid);
1619 			user_shm_unlock(size, ucounts);
1620 		}
1621 		return ERR_PTR(-EPERM);
1622 	}
1623 
1624 	file = ERR_PTR(-ENOSPC);
1625 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1626 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1627 				    S_IFREG | S_IRWXUGO, 0);
1628 	if (!inode)
1629 		goto out;
1630 	if (creat_flags == HUGETLB_SHMFS_INODE)
1631 		inode->i_flags |= S_PRIVATE;
1632 
1633 	inode->i_size = size;
1634 	clear_nlink(inode);
1635 
1636 	if (!hugetlb_reserve_pages(inode, 0,
1637 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1638 			acctflag))
1639 		file = ERR_PTR(-ENOMEM);
1640 	else
1641 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1642 					&hugetlbfs_file_operations);
1643 	if (!IS_ERR(file))
1644 		return file;
1645 
1646 	iput(inode);
1647 out:
1648 	return file;
1649 }
1650 
1651 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1652 {
1653 	struct fs_context *fc;
1654 	struct vfsmount *mnt;
1655 
1656 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1657 	if (IS_ERR(fc)) {
1658 		mnt = ERR_CAST(fc);
1659 	} else {
1660 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1661 		ctx->hstate = h;
1662 		mnt = fc_mount(fc);
1663 		put_fs_context(fc);
1664 	}
1665 	if (IS_ERR(mnt))
1666 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1667 		       huge_page_size(h) / SZ_1K);
1668 	return mnt;
1669 }
1670 
1671 static int __init init_hugetlbfs_fs(void)
1672 {
1673 	struct vfsmount *mnt;
1674 	struct hstate *h;
1675 	int error;
1676 	int i;
1677 
1678 	if (!hugepages_supported()) {
1679 		pr_info("disabling because there are no supported hugepage sizes\n");
1680 		return -ENOTSUPP;
1681 	}
1682 
1683 	error = -ENOMEM;
1684 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1685 					sizeof(struct hugetlbfs_inode_info),
1686 					0, SLAB_ACCOUNT, init_once);
1687 	if (hugetlbfs_inode_cachep == NULL)
1688 		goto out;
1689 
1690 	error = register_filesystem(&hugetlbfs_fs_type);
1691 	if (error)
1692 		goto out_free;
1693 
1694 	/* default hstate mount is required */
1695 	mnt = mount_one_hugetlbfs(&default_hstate);
1696 	if (IS_ERR(mnt)) {
1697 		error = PTR_ERR(mnt);
1698 		goto out_unreg;
1699 	}
1700 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1701 
1702 	/* other hstates are optional */
1703 	i = 0;
1704 	for_each_hstate(h) {
1705 		if (i == default_hstate_idx) {
1706 			i++;
1707 			continue;
1708 		}
1709 
1710 		mnt = mount_one_hugetlbfs(h);
1711 		if (IS_ERR(mnt))
1712 			hugetlbfs_vfsmount[i] = NULL;
1713 		else
1714 			hugetlbfs_vfsmount[i] = mnt;
1715 		i++;
1716 	}
1717 
1718 	return 0;
1719 
1720  out_unreg:
1721 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1722  out_free:
1723 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1724  out:
1725 	return error;
1726 }
1727 fs_initcall(init_hugetlbfs_fs)
1728