xref: /linux/fs/hugetlbfs/inode.c (revision e3966940559d52aa1800a008dcfeec218dd31f88)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
44 
45 static const struct address_space_operations hugetlbfs_aops;
46 static const struct file_operations hugetlbfs_file_operations;
47 static const struct inode_operations hugetlbfs_dir_inode_operations;
48 static const struct inode_operations hugetlbfs_inode_operations;
49 
50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51 
52 struct hugetlbfs_fs_context {
53 	struct hstate		*hstate;
54 	unsigned long long	max_size_opt;
55 	unsigned long long	min_size_opt;
56 	long			max_hpages;
57 	long			nr_inodes;
58 	long			min_hpages;
59 	enum hugetlbfs_size_type max_val_type;
60 	enum hugetlbfs_size_type min_val_type;
61 	kuid_t			uid;
62 	kgid_t			gid;
63 	umode_t			mode;
64 };
65 
66 int sysctl_hugetlb_shm_group;
67 
68 enum hugetlb_param {
69 	Opt_gid,
70 	Opt_min_size,
71 	Opt_mode,
72 	Opt_nr_inodes,
73 	Opt_pagesize,
74 	Opt_size,
75 	Opt_uid,
76 };
77 
78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 	fsparam_gid   ("gid",		Opt_gid),
80 	fsparam_string("min_size",	Opt_min_size),
81 	fsparam_u32oct("mode",		Opt_mode),
82 	fsparam_string("nr_inodes",	Opt_nr_inodes),
83 	fsparam_string("pagesize",	Opt_pagesize),
84 	fsparam_string("size",		Opt_size),
85 	fsparam_uid   ("uid",		Opt_uid),
86 	{}
87 };
88 
89 /*
90  * Mask used when checking the page offset value passed in via system
91  * calls.  This value will be converted to a loff_t which is signed.
92  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93  * value.  The extra bit (- 1 in the shift value) is to take the sign
94  * bit into account.
95  */
96 #define PGOFF_LOFFT_MAX \
97 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98 
99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100 {
101 	struct inode *inode = file_inode(file);
102 	loff_t len, vma_len;
103 	int ret;
104 	struct hstate *h = hstate_file(file);
105 	vm_flags_t vm_flags;
106 
107 	/*
108 	 * vma address alignment (but not the pgoff alignment) has
109 	 * already been checked by prepare_hugepage_range.  If you add
110 	 * any error returns here, do so after setting VM_HUGETLB, so
111 	 * is_vm_hugetlb_page tests below unmap_region go the right
112 	 * way when do_mmap unwinds (may be important on powerpc
113 	 * and ia64).
114 	 */
115 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
116 	vma->vm_ops = &hugetlb_vm_ops;
117 
118 	/*
119 	 * page based offset in vm_pgoff could be sufficiently large to
120 	 * overflow a loff_t when converted to byte offset.  This can
121 	 * only happen on architectures where sizeof(loff_t) ==
122 	 * sizeof(unsigned long).  So, only check in those instances.
123 	 */
124 	if (sizeof(unsigned long) == sizeof(loff_t)) {
125 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
126 			return -EINVAL;
127 	}
128 
129 	/* must be huge page aligned */
130 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
131 		return -EINVAL;
132 
133 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
134 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 	/* check for overflow */
136 	if (len < vma_len)
137 		return -EINVAL;
138 
139 	inode_lock(inode);
140 	file_accessed(file);
141 
142 	ret = -ENOMEM;
143 
144 	vm_flags = vma->vm_flags;
145 	/*
146 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 	 * flag S_PRIVATE is set.
149 	 */
150 	if (inode->i_flags & S_PRIVATE)
151 		vm_flags |= VM_NORESERVE;
152 
153 	if (hugetlb_reserve_pages(inode,
154 				vma->vm_pgoff >> huge_page_order(h),
155 				len >> huge_page_shift(h), vma,
156 				vm_flags) < 0)
157 		goto out;
158 
159 	ret = 0;
160 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
161 		i_size_write(inode, len);
162 out:
163 	inode_unlock(inode);
164 
165 	return ret;
166 }
167 
168 /*
169  * Called under mmap_write_lock(mm).
170  */
171 
172 unsigned long
173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
174 			    unsigned long len, unsigned long pgoff,
175 			    unsigned long flags)
176 {
177 	unsigned long addr0 = 0;
178 	struct hstate *h = hstate_file(file);
179 
180 	if (len & ~huge_page_mask(h))
181 		return -EINVAL;
182 	if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
183 		return -EINVAL;
184 	if (addr)
185 		addr0 = ALIGN(addr, huge_page_size(h));
186 
187 	return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
188 					    flags, 0);
189 }
190 
191 /*
192  * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
193  * Returns the maximum number of bytes one can read without touching the 1st raw
194  * HWPOISON page.
195  */
196 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
197 		size_t bytes)
198 {
199 	struct page *page = folio_page(folio, offset / PAGE_SIZE);
200 	size_t safe_bytes;
201 
202 	if (is_raw_hwpoison_page_in_hugepage(page))
203 		return 0;
204 	/* Safe to read the remaining bytes in this page. */
205 	safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE);
206 	page++;
207 
208 	/* Check each remaining page as long as we are not done yet. */
209 	for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++)
210 		if (is_raw_hwpoison_page_in_hugepage(page))
211 			break;
212 
213 	return min(safe_bytes, bytes);
214 }
215 
216 /*
217  * Support for read() - Find the page attached to f_mapping and copy out the
218  * data. This provides functionality similar to filemap_read().
219  */
220 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
221 {
222 	struct file *file = iocb->ki_filp;
223 	struct hstate *h = hstate_file(file);
224 	struct address_space *mapping = file->f_mapping;
225 	struct inode *inode = mapping->host;
226 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
227 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
228 	unsigned long end_index;
229 	loff_t isize;
230 	ssize_t retval = 0;
231 
232 	while (iov_iter_count(to)) {
233 		struct folio *folio;
234 		size_t nr, copied, want;
235 
236 		/* nr is the maximum number of bytes to copy from this page */
237 		nr = huge_page_size(h);
238 		isize = i_size_read(inode);
239 		if (!isize)
240 			break;
241 		end_index = (isize - 1) >> huge_page_shift(h);
242 		if (index > end_index)
243 			break;
244 		if (index == end_index) {
245 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
246 			if (nr <= offset)
247 				break;
248 		}
249 		nr = nr - offset;
250 
251 		/* Find the folio */
252 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
253 		if (IS_ERR(folio)) {
254 			/*
255 			 * We have a HOLE, zero out the user-buffer for the
256 			 * length of the hole or request.
257 			 */
258 			copied = iov_iter_zero(nr, to);
259 		} else {
260 			folio_unlock(folio);
261 
262 			if (!folio_test_hwpoison(folio))
263 				want = nr;
264 			else {
265 				/*
266 				 * Adjust how many bytes safe to read without
267 				 * touching the 1st raw HWPOISON page after
268 				 * offset.
269 				 */
270 				want = adjust_range_hwpoison(folio, offset, nr);
271 				if (want == 0) {
272 					folio_put(folio);
273 					retval = -EIO;
274 					break;
275 				}
276 			}
277 
278 			/*
279 			 * We have the folio, copy it to user space buffer.
280 			 */
281 			copied = copy_folio_to_iter(folio, offset, want, to);
282 			folio_put(folio);
283 		}
284 		offset += copied;
285 		retval += copied;
286 		if (copied != nr && iov_iter_count(to)) {
287 			if (!retval)
288 				retval = -EFAULT;
289 			break;
290 		}
291 		index += offset >> huge_page_shift(h);
292 		offset &= ~huge_page_mask(h);
293 	}
294 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
295 	return retval;
296 }
297 
298 static int hugetlbfs_write_begin(const struct kiocb *iocb,
299 			struct address_space *mapping,
300 			loff_t pos, unsigned len,
301 			struct folio **foliop, void **fsdata)
302 {
303 	return -EINVAL;
304 }
305 
306 static int hugetlbfs_write_end(const struct kiocb *iocb,
307 			       struct address_space *mapping,
308 			       loff_t pos, unsigned len, unsigned copied,
309 			       struct folio *folio, void *fsdata)
310 {
311 	BUG();
312 	return -EINVAL;
313 }
314 
315 static void hugetlb_delete_from_page_cache(struct folio *folio)
316 {
317 	folio_clear_dirty(folio);
318 	folio_clear_uptodate(folio);
319 	filemap_remove_folio(folio);
320 }
321 
322 /*
323  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
324  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
325  * mutex for the page in the mapping.  So, we can not race with page being
326  * faulted into the vma.
327  */
328 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
329 				unsigned long addr, unsigned long pfn)
330 {
331 	pte_t *ptep, pte;
332 
333 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
334 	if (!ptep)
335 		return false;
336 
337 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
338 	if (huge_pte_none(pte) || !pte_present(pte))
339 		return false;
340 
341 	if (pte_pfn(pte) == pfn)
342 		return true;
343 
344 	return false;
345 }
346 
347 /*
348  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
349  * No, because the interval tree returns us only those vmas
350  * which overlap the truncated area starting at pgoff,
351  * and no vma on a 32-bit arch can span beyond the 4GB.
352  */
353 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
354 {
355 	unsigned long offset = 0;
356 
357 	if (vma->vm_pgoff < start)
358 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
359 
360 	return vma->vm_start + offset;
361 }
362 
363 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
364 {
365 	unsigned long t_end;
366 
367 	if (!end)
368 		return vma->vm_end;
369 
370 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
371 	if (t_end > vma->vm_end)
372 		t_end = vma->vm_end;
373 	return t_end;
374 }
375 
376 /*
377  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
378  * this folio can be created while executing the routine.
379  */
380 static void hugetlb_unmap_file_folio(struct hstate *h,
381 					struct address_space *mapping,
382 					struct folio *folio, pgoff_t index)
383 {
384 	struct rb_root_cached *root = &mapping->i_mmap;
385 	struct hugetlb_vma_lock *vma_lock;
386 	unsigned long pfn = folio_pfn(folio);
387 	struct vm_area_struct *vma;
388 	unsigned long v_start;
389 	unsigned long v_end;
390 	pgoff_t start, end;
391 
392 	start = index * pages_per_huge_page(h);
393 	end = (index + 1) * pages_per_huge_page(h);
394 
395 	i_mmap_lock_write(mapping);
396 retry:
397 	vma_lock = NULL;
398 	vma_interval_tree_foreach(vma, root, start, end - 1) {
399 		v_start = vma_offset_start(vma, start);
400 		v_end = vma_offset_end(vma, end);
401 
402 		if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
403 			continue;
404 
405 		if (!hugetlb_vma_trylock_write(vma)) {
406 			vma_lock = vma->vm_private_data;
407 			/*
408 			 * If we can not get vma lock, we need to drop
409 			 * immap_sema and take locks in order.  First,
410 			 * take a ref on the vma_lock structure so that
411 			 * we can be guaranteed it will not go away when
412 			 * dropping immap_sema.
413 			 */
414 			kref_get(&vma_lock->refs);
415 			break;
416 		}
417 
418 		unmap_hugepage_range(vma, v_start, v_end, NULL,
419 				     ZAP_FLAG_DROP_MARKER);
420 		hugetlb_vma_unlock_write(vma);
421 	}
422 
423 	i_mmap_unlock_write(mapping);
424 
425 	if (vma_lock) {
426 		/*
427 		 * Wait on vma_lock.  We know it is still valid as we have
428 		 * a reference.  We must 'open code' vma locking as we do
429 		 * not know if vma_lock is still attached to vma.
430 		 */
431 		down_write(&vma_lock->rw_sema);
432 		i_mmap_lock_write(mapping);
433 
434 		vma = vma_lock->vma;
435 		if (!vma) {
436 			/*
437 			 * If lock is no longer attached to vma, then just
438 			 * unlock, drop our reference and retry looking for
439 			 * other vmas.
440 			 */
441 			up_write(&vma_lock->rw_sema);
442 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
443 			goto retry;
444 		}
445 
446 		/*
447 		 * vma_lock is still attached to vma.  Check to see if vma
448 		 * still maps page and if so, unmap.
449 		 */
450 		v_start = vma_offset_start(vma, start);
451 		v_end = vma_offset_end(vma, end);
452 		if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
453 			unmap_hugepage_range(vma, v_start, v_end, NULL,
454 					     ZAP_FLAG_DROP_MARKER);
455 
456 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
457 		hugetlb_vma_unlock_write(vma);
458 
459 		goto retry;
460 	}
461 }
462 
463 static void
464 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
465 		      zap_flags_t zap_flags)
466 {
467 	struct vm_area_struct *vma;
468 
469 	/*
470 	 * end == 0 indicates that the entire range after start should be
471 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
472 	 * an inclusive "last".
473 	 */
474 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
475 		unsigned long v_start;
476 		unsigned long v_end;
477 
478 		if (!hugetlb_vma_trylock_write(vma))
479 			continue;
480 
481 		v_start = vma_offset_start(vma, start);
482 		v_end = vma_offset_end(vma, end);
483 
484 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
485 
486 		/*
487 		 * Note that vma lock only exists for shared/non-private
488 		 * vmas.  Therefore, lock is not held when calling
489 		 * unmap_hugepage_range for private vmas.
490 		 */
491 		hugetlb_vma_unlock_write(vma);
492 	}
493 }
494 
495 /*
496  * Called with hugetlb fault mutex held.
497  * Returns true if page was actually removed, false otherwise.
498  */
499 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
500 					struct address_space *mapping,
501 					struct folio *folio, pgoff_t index,
502 					bool truncate_op)
503 {
504 	bool ret = false;
505 
506 	/*
507 	 * If folio is mapped, it was faulted in after being
508 	 * unmapped in caller or hugetlb_vmdelete_list() skips
509 	 * unmapping it due to fail to grab lock.  Unmap (again)
510 	 * while holding the fault mutex.  The mutex will prevent
511 	 * faults until we finish removing the folio.  Hold folio
512 	 * lock to guarantee no concurrent migration.
513 	 */
514 	folio_lock(folio);
515 	if (unlikely(folio_mapped(folio)))
516 		hugetlb_unmap_file_folio(h, mapping, folio, index);
517 
518 	/*
519 	 * We must remove the folio from page cache before removing
520 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
521 	 * rare out of memory conditions, removal of the region/reserve
522 	 * map could fail.  Correspondingly, the subpool and global
523 	 * reserve usage count can need to be adjusted.
524 	 */
525 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
526 	hugetlb_delete_from_page_cache(folio);
527 	ret = true;
528 	if (!truncate_op) {
529 		if (unlikely(hugetlb_unreserve_pages(inode, index,
530 							index + 1, 1)))
531 			hugetlb_fix_reserve_counts(inode);
532 	}
533 
534 	folio_unlock(folio);
535 	return ret;
536 }
537 
538 /*
539  * remove_inode_hugepages handles two distinct cases: truncation and hole
540  * punch.  There are subtle differences in operation for each case.
541  *
542  * truncation is indicated by end of range being LLONG_MAX
543  *	In this case, we first scan the range and release found pages.
544  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
545  *	maps and global counts.  Page faults can race with truncation.
546  *	During faults, hugetlb_no_page() checks i_size before page allocation,
547  *	and again after obtaining page table lock.  It will 'back out'
548  *	allocations in the truncated range.
549  * hole punch is indicated if end is not LLONG_MAX
550  *	In the hole punch case we scan the range and release found pages.
551  *	Only when releasing a page is the associated region/reserve map
552  *	deleted.  The region/reserve map for ranges without associated
553  *	pages are not modified.  Page faults can race with hole punch.
554  *	This is indicated if we find a mapped page.
555  * Note: If the passed end of range value is beyond the end of file, but
556  * not LLONG_MAX this routine still performs a hole punch operation.
557  */
558 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
559 				   loff_t lend)
560 {
561 	struct hstate *h = hstate_inode(inode);
562 	struct address_space *mapping = &inode->i_data;
563 	const pgoff_t end = lend >> PAGE_SHIFT;
564 	struct folio_batch fbatch;
565 	pgoff_t next, index;
566 	int i, freed = 0;
567 	bool truncate_op = (lend == LLONG_MAX);
568 
569 	folio_batch_init(&fbatch);
570 	next = lstart >> PAGE_SHIFT;
571 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
572 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
573 			struct folio *folio = fbatch.folios[i];
574 			u32 hash = 0;
575 
576 			index = folio->index >> huge_page_order(h);
577 			hash = hugetlb_fault_mutex_hash(mapping, index);
578 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
579 
580 			/*
581 			 * Remove folio that was part of folio_batch.
582 			 */
583 			if (remove_inode_single_folio(h, inode, mapping, folio,
584 							index, truncate_op))
585 				freed++;
586 
587 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
588 		}
589 		folio_batch_release(&fbatch);
590 		cond_resched();
591 	}
592 
593 	if (truncate_op)
594 		(void)hugetlb_unreserve_pages(inode,
595 				lstart >> huge_page_shift(h),
596 				LONG_MAX, freed);
597 }
598 
599 static void hugetlbfs_evict_inode(struct inode *inode)
600 {
601 	struct resv_map *resv_map;
602 
603 	trace_hugetlbfs_evict_inode(inode);
604 	remove_inode_hugepages(inode, 0, LLONG_MAX);
605 
606 	/*
607 	 * Get the resv_map from the address space embedded in the inode.
608 	 * This is the address space which points to any resv_map allocated
609 	 * at inode creation time.  If this is a device special inode,
610 	 * i_mapping may not point to the original address space.
611 	 */
612 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
613 	/* Only regular and link inodes have associated reserve maps */
614 	if (resv_map)
615 		resv_map_release(&resv_map->refs);
616 	clear_inode(inode);
617 }
618 
619 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
620 {
621 	pgoff_t pgoff;
622 	struct address_space *mapping = inode->i_mapping;
623 	struct hstate *h = hstate_inode(inode);
624 
625 	BUG_ON(offset & ~huge_page_mask(h));
626 	pgoff = offset >> PAGE_SHIFT;
627 
628 	i_size_write(inode, offset);
629 	i_mmap_lock_write(mapping);
630 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
631 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
632 				      ZAP_FLAG_DROP_MARKER);
633 	i_mmap_unlock_write(mapping);
634 	remove_inode_hugepages(inode, offset, LLONG_MAX);
635 }
636 
637 static void hugetlbfs_zero_partial_page(struct hstate *h,
638 					struct address_space *mapping,
639 					loff_t start,
640 					loff_t end)
641 {
642 	pgoff_t idx = start >> huge_page_shift(h);
643 	struct folio *folio;
644 
645 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
646 	if (IS_ERR(folio))
647 		return;
648 
649 	start = start & ~huge_page_mask(h);
650 	end = end & ~huge_page_mask(h);
651 	if (!end)
652 		end = huge_page_size(h);
653 
654 	folio_zero_segment(folio, (size_t)start, (size_t)end);
655 
656 	folio_unlock(folio);
657 	folio_put(folio);
658 }
659 
660 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
661 {
662 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
663 	struct address_space *mapping = inode->i_mapping;
664 	struct hstate *h = hstate_inode(inode);
665 	loff_t hpage_size = huge_page_size(h);
666 	loff_t hole_start, hole_end;
667 
668 	/*
669 	 * hole_start and hole_end indicate the full pages within the hole.
670 	 */
671 	hole_start = round_up(offset, hpage_size);
672 	hole_end = round_down(offset + len, hpage_size);
673 
674 	inode_lock(inode);
675 
676 	/* protected by i_rwsem */
677 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
678 		inode_unlock(inode);
679 		return -EPERM;
680 	}
681 
682 	i_mmap_lock_write(mapping);
683 
684 	/* If range starts before first full page, zero partial page. */
685 	if (offset < hole_start)
686 		hugetlbfs_zero_partial_page(h, mapping,
687 				offset, min(offset + len, hole_start));
688 
689 	/* Unmap users of full pages in the hole. */
690 	if (hole_end > hole_start) {
691 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
692 			hugetlb_vmdelete_list(&mapping->i_mmap,
693 					      hole_start >> PAGE_SHIFT,
694 					      hole_end >> PAGE_SHIFT, 0);
695 	}
696 
697 	/* If range extends beyond last full page, zero partial page. */
698 	if ((offset + len) > hole_end && (offset + len) > hole_start)
699 		hugetlbfs_zero_partial_page(h, mapping,
700 				hole_end, offset + len);
701 
702 	i_mmap_unlock_write(mapping);
703 
704 	/* Remove full pages from the file. */
705 	if (hole_end > hole_start)
706 		remove_inode_hugepages(inode, hole_start, hole_end);
707 
708 	inode_unlock(inode);
709 
710 	return 0;
711 }
712 
713 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
714 				loff_t len)
715 {
716 	struct inode *inode = file_inode(file);
717 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
718 	struct address_space *mapping = inode->i_mapping;
719 	struct hstate *h = hstate_inode(inode);
720 	struct vm_area_struct pseudo_vma;
721 	struct mm_struct *mm = current->mm;
722 	loff_t hpage_size = huge_page_size(h);
723 	unsigned long hpage_shift = huge_page_shift(h);
724 	pgoff_t start, index, end;
725 	int error;
726 	u32 hash;
727 
728 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
729 		return -EOPNOTSUPP;
730 
731 	if (mode & FALLOC_FL_PUNCH_HOLE) {
732 		error = hugetlbfs_punch_hole(inode, offset, len);
733 		goto out_nolock;
734 	}
735 
736 	/*
737 	 * Default preallocate case.
738 	 * For this range, start is rounded down and end is rounded up
739 	 * as well as being converted to page offsets.
740 	 */
741 	start = offset >> hpage_shift;
742 	end = (offset + len + hpage_size - 1) >> hpage_shift;
743 
744 	inode_lock(inode);
745 
746 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
747 	error = inode_newsize_ok(inode, offset + len);
748 	if (error)
749 		goto out;
750 
751 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
752 		error = -EPERM;
753 		goto out;
754 	}
755 
756 	/*
757 	 * Initialize a pseudo vma as this is required by the huge page
758 	 * allocation routines.
759 	 */
760 	vma_init(&pseudo_vma, mm);
761 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
762 	pseudo_vma.vm_file = file;
763 
764 	for (index = start; index < end; index++) {
765 		/*
766 		 * This is supposed to be the vaddr where the page is being
767 		 * faulted in, but we have no vaddr here.
768 		 */
769 		struct folio *folio;
770 		unsigned long addr;
771 
772 		cond_resched();
773 
774 		/*
775 		 * fallocate(2) manpage permits EINTR; we may have been
776 		 * interrupted because we are using up too much memory.
777 		 */
778 		if (signal_pending(current)) {
779 			error = -EINTR;
780 			break;
781 		}
782 
783 		/* addr is the offset within the file (zero based) */
784 		addr = index * hpage_size;
785 
786 		/* mutex taken here, fault path and hole punch */
787 		hash = hugetlb_fault_mutex_hash(mapping, index);
788 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
789 
790 		/* See if already present in mapping to avoid alloc/free */
791 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
792 		if (!IS_ERR(folio)) {
793 			folio_put(folio);
794 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
795 			continue;
796 		}
797 
798 		/*
799 		 * Allocate folio without setting the avoid_reserve argument.
800 		 * There certainly are no reserves associated with the
801 		 * pseudo_vma.  However, there could be shared mappings with
802 		 * reserves for the file at the inode level.  If we fallocate
803 		 * folios in these areas, we need to consume the reserves
804 		 * to keep reservation accounting consistent.
805 		 */
806 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
807 		if (IS_ERR(folio)) {
808 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
809 			error = PTR_ERR(folio);
810 			goto out;
811 		}
812 		folio_zero_user(folio, addr);
813 		__folio_mark_uptodate(folio);
814 		error = hugetlb_add_to_page_cache(folio, mapping, index);
815 		if (unlikely(error)) {
816 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
817 			folio_put(folio);
818 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
819 			goto out;
820 		}
821 
822 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
823 
824 		folio_set_hugetlb_migratable(folio);
825 		/*
826 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
827 		 * folio_put() due to reference from alloc_hugetlb_folio()
828 		 */
829 		folio_unlock(folio);
830 		folio_put(folio);
831 	}
832 
833 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
834 		i_size_write(inode, offset + len);
835 	inode_set_ctime_current(inode);
836 out:
837 	inode_unlock(inode);
838 
839 out_nolock:
840 	trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
841 	return error;
842 }
843 
844 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
845 			     struct dentry *dentry, struct iattr *attr)
846 {
847 	struct inode *inode = d_inode(dentry);
848 	struct hstate *h = hstate_inode(inode);
849 	int error;
850 	unsigned int ia_valid = attr->ia_valid;
851 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
852 
853 	error = setattr_prepare(idmap, dentry, attr);
854 	if (error)
855 		return error;
856 
857 	trace_hugetlbfs_setattr(inode, dentry, attr);
858 
859 	if (ia_valid & ATTR_SIZE) {
860 		loff_t oldsize = inode->i_size;
861 		loff_t newsize = attr->ia_size;
862 
863 		if (newsize & ~huge_page_mask(h))
864 			return -EINVAL;
865 		/* protected by i_rwsem */
866 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
867 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
868 			return -EPERM;
869 		hugetlb_vmtruncate(inode, newsize);
870 	}
871 
872 	setattr_copy(idmap, inode, attr);
873 	mark_inode_dirty(inode);
874 	return 0;
875 }
876 
877 static struct inode *hugetlbfs_get_root(struct super_block *sb,
878 					struct hugetlbfs_fs_context *ctx)
879 {
880 	struct inode *inode;
881 
882 	inode = new_inode(sb);
883 	if (inode) {
884 		inode->i_ino = get_next_ino();
885 		inode->i_mode = S_IFDIR | ctx->mode;
886 		inode->i_uid = ctx->uid;
887 		inode->i_gid = ctx->gid;
888 		simple_inode_init_ts(inode);
889 		inode->i_op = &hugetlbfs_dir_inode_operations;
890 		inode->i_fop = &simple_dir_operations;
891 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
892 		inc_nlink(inode);
893 		lockdep_annotate_inode_mutex_key(inode);
894 	}
895 	return inode;
896 }
897 
898 /*
899  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
900  * be taken from reclaim -- unlike regular filesystems. This needs an
901  * annotation because huge_pmd_share() does an allocation under hugetlb's
902  * i_mmap_rwsem.
903  */
904 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
905 
906 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
907 					struct mnt_idmap *idmap,
908 					struct inode *dir,
909 					umode_t mode, dev_t dev)
910 {
911 	struct inode *inode;
912 	struct resv_map *resv_map = NULL;
913 
914 	/*
915 	 * Reserve maps are only needed for inodes that can have associated
916 	 * page allocations.
917 	 */
918 	if (S_ISREG(mode) || S_ISLNK(mode)) {
919 		resv_map = resv_map_alloc();
920 		if (!resv_map)
921 			return NULL;
922 	}
923 
924 	inode = new_inode(sb);
925 	if (inode) {
926 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
927 
928 		inode->i_ino = get_next_ino();
929 		inode_init_owner(idmap, inode, dir, mode);
930 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
931 				&hugetlbfs_i_mmap_rwsem_key);
932 		inode->i_mapping->a_ops = &hugetlbfs_aops;
933 		simple_inode_init_ts(inode);
934 		inode->i_mapping->i_private_data = resv_map;
935 		info->seals = F_SEAL_SEAL;
936 		switch (mode & S_IFMT) {
937 		default:
938 			init_special_inode(inode, mode, dev);
939 			break;
940 		case S_IFREG:
941 			inode->i_op = &hugetlbfs_inode_operations;
942 			inode->i_fop = &hugetlbfs_file_operations;
943 			break;
944 		case S_IFDIR:
945 			inode->i_op = &hugetlbfs_dir_inode_operations;
946 			inode->i_fop = &simple_dir_operations;
947 
948 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
949 			inc_nlink(inode);
950 			break;
951 		case S_IFLNK:
952 			inode->i_op = &page_symlink_inode_operations;
953 			inode_nohighmem(inode);
954 			break;
955 		}
956 		lockdep_annotate_inode_mutex_key(inode);
957 		trace_hugetlbfs_alloc_inode(inode, dir, mode);
958 	} else {
959 		if (resv_map)
960 			kref_put(&resv_map->refs, resv_map_release);
961 	}
962 
963 	return inode;
964 }
965 
966 /*
967  * File creation. Allocate an inode, and we're done..
968  */
969 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
970 			   struct dentry *dentry, umode_t mode, dev_t dev)
971 {
972 	struct inode *inode;
973 
974 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
975 	if (!inode)
976 		return -ENOSPC;
977 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
978 	d_instantiate(dentry, inode);
979 	dget(dentry);/* Extra count - pin the dentry in core */
980 	return 0;
981 }
982 
983 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
984 				      struct dentry *dentry, umode_t mode)
985 {
986 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
987 				     mode | S_IFDIR, 0);
988 	if (!retval)
989 		inc_nlink(dir);
990 	return ERR_PTR(retval);
991 }
992 
993 static int hugetlbfs_create(struct mnt_idmap *idmap,
994 			    struct inode *dir, struct dentry *dentry,
995 			    umode_t mode, bool excl)
996 {
997 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
998 }
999 
1000 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1001 			     struct inode *dir, struct file *file,
1002 			     umode_t mode)
1003 {
1004 	struct inode *inode;
1005 
1006 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1007 	if (!inode)
1008 		return -ENOSPC;
1009 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1010 	d_tmpfile(file, inode);
1011 	return finish_open_simple(file, 0);
1012 }
1013 
1014 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1015 			     struct inode *dir, struct dentry *dentry,
1016 			     const char *symname)
1017 {
1018 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1019 	struct inode *inode;
1020 	int error = -ENOSPC;
1021 
1022 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1023 	if (inode) {
1024 		int l = strlen(symname)+1;
1025 		error = page_symlink(inode, symname, l);
1026 		if (!error) {
1027 			d_instantiate(dentry, inode);
1028 			dget(dentry);
1029 		} else
1030 			iput(inode);
1031 	}
1032 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1033 
1034 	return error;
1035 }
1036 
1037 #ifdef CONFIG_MIGRATION
1038 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1039 				struct folio *dst, struct folio *src,
1040 				enum migrate_mode mode)
1041 {
1042 	int rc;
1043 
1044 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1045 	if (rc)
1046 		return rc;
1047 
1048 	if (hugetlb_folio_subpool(src)) {
1049 		hugetlb_set_folio_subpool(dst,
1050 					hugetlb_folio_subpool(src));
1051 		hugetlb_set_folio_subpool(src, NULL);
1052 	}
1053 
1054 	folio_migrate_flags(dst, src);
1055 
1056 	return 0;
1057 }
1058 #else
1059 #define hugetlbfs_migrate_folio NULL
1060 #endif
1061 
1062 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1063 				struct folio *folio)
1064 {
1065 	return 0;
1066 }
1067 
1068 /*
1069  * Display the mount options in /proc/mounts.
1070  */
1071 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1072 {
1073 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1074 	struct hugepage_subpool *spool = sbinfo->spool;
1075 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1076 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1077 	char mod;
1078 
1079 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1080 		seq_printf(m, ",uid=%u",
1081 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1082 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1083 		seq_printf(m, ",gid=%u",
1084 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1085 	if (sbinfo->mode != 0755)
1086 		seq_printf(m, ",mode=%o", sbinfo->mode);
1087 	if (sbinfo->max_inodes != -1)
1088 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1089 
1090 	hpage_size /= 1024;
1091 	mod = 'K';
1092 	if (hpage_size >= 1024) {
1093 		hpage_size /= 1024;
1094 		mod = 'M';
1095 	}
1096 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1097 	if (spool) {
1098 		if (spool->max_hpages != -1)
1099 			seq_printf(m, ",size=%llu",
1100 				   (unsigned long long)spool->max_hpages << hpage_shift);
1101 		if (spool->min_hpages != -1)
1102 			seq_printf(m, ",min_size=%llu",
1103 				   (unsigned long long)spool->min_hpages << hpage_shift);
1104 	}
1105 	return 0;
1106 }
1107 
1108 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1109 {
1110 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1111 	struct hstate *h = hstate_inode(d_inode(dentry));
1112 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1113 
1114 	buf->f_fsid = u64_to_fsid(id);
1115 	buf->f_type = HUGETLBFS_MAGIC;
1116 	buf->f_bsize = huge_page_size(h);
1117 	if (sbinfo) {
1118 		spin_lock(&sbinfo->stat_lock);
1119 		/* If no limits set, just report 0 or -1 for max/free/used
1120 		 * blocks, like simple_statfs() */
1121 		if (sbinfo->spool) {
1122 			long free_pages;
1123 
1124 			spin_lock_irq(&sbinfo->spool->lock);
1125 			buf->f_blocks = sbinfo->spool->max_hpages;
1126 			free_pages = sbinfo->spool->max_hpages
1127 				- sbinfo->spool->used_hpages;
1128 			buf->f_bavail = buf->f_bfree = free_pages;
1129 			spin_unlock_irq(&sbinfo->spool->lock);
1130 			buf->f_files = sbinfo->max_inodes;
1131 			buf->f_ffree = sbinfo->free_inodes;
1132 		}
1133 		spin_unlock(&sbinfo->stat_lock);
1134 	}
1135 	buf->f_namelen = NAME_MAX;
1136 	return 0;
1137 }
1138 
1139 static void hugetlbfs_put_super(struct super_block *sb)
1140 {
1141 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1142 
1143 	if (sbi) {
1144 		sb->s_fs_info = NULL;
1145 
1146 		if (sbi->spool)
1147 			hugepage_put_subpool(sbi->spool);
1148 
1149 		kfree(sbi);
1150 	}
1151 }
1152 
1153 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1154 {
1155 	if (sbinfo->free_inodes >= 0) {
1156 		spin_lock(&sbinfo->stat_lock);
1157 		if (unlikely(!sbinfo->free_inodes)) {
1158 			spin_unlock(&sbinfo->stat_lock);
1159 			return 0;
1160 		}
1161 		sbinfo->free_inodes--;
1162 		spin_unlock(&sbinfo->stat_lock);
1163 	}
1164 
1165 	return 1;
1166 }
1167 
1168 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1169 {
1170 	if (sbinfo->free_inodes >= 0) {
1171 		spin_lock(&sbinfo->stat_lock);
1172 		sbinfo->free_inodes++;
1173 		spin_unlock(&sbinfo->stat_lock);
1174 	}
1175 }
1176 
1177 
1178 static struct kmem_cache *hugetlbfs_inode_cachep;
1179 
1180 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1181 {
1182 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1183 	struct hugetlbfs_inode_info *p;
1184 
1185 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1186 		return NULL;
1187 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1188 	if (unlikely(!p)) {
1189 		hugetlbfs_inc_free_inodes(sbinfo);
1190 		return NULL;
1191 	}
1192 	return &p->vfs_inode;
1193 }
1194 
1195 static void hugetlbfs_free_inode(struct inode *inode)
1196 {
1197 	trace_hugetlbfs_free_inode(inode);
1198 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1199 }
1200 
1201 static void hugetlbfs_destroy_inode(struct inode *inode)
1202 {
1203 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1204 }
1205 
1206 static const struct address_space_operations hugetlbfs_aops = {
1207 	.write_begin	= hugetlbfs_write_begin,
1208 	.write_end	= hugetlbfs_write_end,
1209 	.dirty_folio	= noop_dirty_folio,
1210 	.migrate_folio  = hugetlbfs_migrate_folio,
1211 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1212 };
1213 
1214 
1215 static void init_once(void *foo)
1216 {
1217 	struct hugetlbfs_inode_info *ei = foo;
1218 
1219 	inode_init_once(&ei->vfs_inode);
1220 }
1221 
1222 static const struct file_operations hugetlbfs_file_operations = {
1223 	.read_iter		= hugetlbfs_read_iter,
1224 	.mmap			= hugetlbfs_file_mmap,
1225 	.fsync			= noop_fsync,
1226 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1227 	.llseek			= default_llseek,
1228 	.fallocate		= hugetlbfs_fallocate,
1229 	.fop_flags		= FOP_HUGE_PAGES,
1230 };
1231 
1232 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1233 	.create		= hugetlbfs_create,
1234 	.lookup		= simple_lookup,
1235 	.link		= simple_link,
1236 	.unlink		= simple_unlink,
1237 	.symlink	= hugetlbfs_symlink,
1238 	.mkdir		= hugetlbfs_mkdir,
1239 	.rmdir		= simple_rmdir,
1240 	.mknod		= hugetlbfs_mknod,
1241 	.rename		= simple_rename,
1242 	.setattr	= hugetlbfs_setattr,
1243 	.tmpfile	= hugetlbfs_tmpfile,
1244 };
1245 
1246 static const struct inode_operations hugetlbfs_inode_operations = {
1247 	.setattr	= hugetlbfs_setattr,
1248 };
1249 
1250 static const struct super_operations hugetlbfs_ops = {
1251 	.alloc_inode    = hugetlbfs_alloc_inode,
1252 	.free_inode     = hugetlbfs_free_inode,
1253 	.destroy_inode  = hugetlbfs_destroy_inode,
1254 	.evict_inode	= hugetlbfs_evict_inode,
1255 	.statfs		= hugetlbfs_statfs,
1256 	.put_super	= hugetlbfs_put_super,
1257 	.show_options	= hugetlbfs_show_options,
1258 };
1259 
1260 /*
1261  * Convert size option passed from command line to number of huge pages
1262  * in the pool specified by hstate.  Size option could be in bytes
1263  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1264  */
1265 static long
1266 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1267 			 enum hugetlbfs_size_type val_type)
1268 {
1269 	if (val_type == NO_SIZE)
1270 		return -1;
1271 
1272 	if (val_type == SIZE_PERCENT) {
1273 		size_opt <<= huge_page_shift(h);
1274 		size_opt *= h->max_huge_pages;
1275 		do_div(size_opt, 100);
1276 	}
1277 
1278 	size_opt >>= huge_page_shift(h);
1279 	return size_opt;
1280 }
1281 
1282 /*
1283  * Parse one mount parameter.
1284  */
1285 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1286 {
1287 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1288 	struct fs_parse_result result;
1289 	struct hstate *h;
1290 	char *rest;
1291 	unsigned long ps;
1292 	int opt;
1293 
1294 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1295 	if (opt < 0)
1296 		return opt;
1297 
1298 	switch (opt) {
1299 	case Opt_uid:
1300 		ctx->uid = result.uid;
1301 		return 0;
1302 
1303 	case Opt_gid:
1304 		ctx->gid = result.gid;
1305 		return 0;
1306 
1307 	case Opt_mode:
1308 		ctx->mode = result.uint_32 & 01777U;
1309 		return 0;
1310 
1311 	case Opt_size:
1312 		/* memparse() will accept a K/M/G without a digit */
1313 		if (!param->string || !isdigit(param->string[0]))
1314 			goto bad_val;
1315 		ctx->max_size_opt = memparse(param->string, &rest);
1316 		ctx->max_val_type = SIZE_STD;
1317 		if (*rest == '%')
1318 			ctx->max_val_type = SIZE_PERCENT;
1319 		return 0;
1320 
1321 	case Opt_nr_inodes:
1322 		/* memparse() will accept a K/M/G without a digit */
1323 		if (!param->string || !isdigit(param->string[0]))
1324 			goto bad_val;
1325 		ctx->nr_inodes = memparse(param->string, &rest);
1326 		return 0;
1327 
1328 	case Opt_pagesize:
1329 		ps = memparse(param->string, &rest);
1330 		h = size_to_hstate(ps);
1331 		if (!h) {
1332 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1333 			return -EINVAL;
1334 		}
1335 		ctx->hstate = h;
1336 		return 0;
1337 
1338 	case Opt_min_size:
1339 		/* memparse() will accept a K/M/G without a digit */
1340 		if (!param->string || !isdigit(param->string[0]))
1341 			goto bad_val;
1342 		ctx->min_size_opt = memparse(param->string, &rest);
1343 		ctx->min_val_type = SIZE_STD;
1344 		if (*rest == '%')
1345 			ctx->min_val_type = SIZE_PERCENT;
1346 		return 0;
1347 
1348 	default:
1349 		return -EINVAL;
1350 	}
1351 
1352 bad_val:
1353 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1354 		      param->string, param->key);
1355 }
1356 
1357 /*
1358  * Validate the parsed options.
1359  */
1360 static int hugetlbfs_validate(struct fs_context *fc)
1361 {
1362 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1363 
1364 	/*
1365 	 * Use huge page pool size (in hstate) to convert the size
1366 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1367 	 */
1368 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1369 						   ctx->max_size_opt,
1370 						   ctx->max_val_type);
1371 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1372 						   ctx->min_size_opt,
1373 						   ctx->min_val_type);
1374 
1375 	/*
1376 	 * If max_size was specified, then min_size must be smaller
1377 	 */
1378 	if (ctx->max_val_type > NO_SIZE &&
1379 	    ctx->min_hpages > ctx->max_hpages) {
1380 		pr_err("Minimum size can not be greater than maximum size\n");
1381 		return -EINVAL;
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 static int
1388 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1389 {
1390 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1391 	struct hugetlbfs_sb_info *sbinfo;
1392 
1393 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1394 	if (!sbinfo)
1395 		return -ENOMEM;
1396 	sb->s_fs_info = sbinfo;
1397 	spin_lock_init(&sbinfo->stat_lock);
1398 	sbinfo->hstate		= ctx->hstate;
1399 	sbinfo->max_inodes	= ctx->nr_inodes;
1400 	sbinfo->free_inodes	= ctx->nr_inodes;
1401 	sbinfo->spool		= NULL;
1402 	sbinfo->uid		= ctx->uid;
1403 	sbinfo->gid		= ctx->gid;
1404 	sbinfo->mode		= ctx->mode;
1405 
1406 	/*
1407 	 * Allocate and initialize subpool if maximum or minimum size is
1408 	 * specified.  Any needed reservations (for minimum size) are taken
1409 	 * when the subpool is created.
1410 	 */
1411 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1412 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1413 						     ctx->max_hpages,
1414 						     ctx->min_hpages);
1415 		if (!sbinfo->spool)
1416 			goto out_free;
1417 	}
1418 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1419 	sb->s_blocksize = huge_page_size(ctx->hstate);
1420 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1421 	sb->s_magic = HUGETLBFS_MAGIC;
1422 	sb->s_op = &hugetlbfs_ops;
1423 	sb->s_d_flags = DCACHE_DONTCACHE;
1424 	sb->s_time_gran = 1;
1425 
1426 	/*
1427 	 * Due to the special and limited functionality of hugetlbfs, it does
1428 	 * not work well as a stacking filesystem.
1429 	 */
1430 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1431 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1432 	if (!sb->s_root)
1433 		goto out_free;
1434 	return 0;
1435 out_free:
1436 	kfree(sbinfo->spool);
1437 	kfree(sbinfo);
1438 	return -ENOMEM;
1439 }
1440 
1441 static int hugetlbfs_get_tree(struct fs_context *fc)
1442 {
1443 	int err = hugetlbfs_validate(fc);
1444 	if (err)
1445 		return err;
1446 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1447 }
1448 
1449 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1450 {
1451 	kfree(fc->fs_private);
1452 }
1453 
1454 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1455 	.free		= hugetlbfs_fs_context_free,
1456 	.parse_param	= hugetlbfs_parse_param,
1457 	.get_tree	= hugetlbfs_get_tree,
1458 };
1459 
1460 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1461 {
1462 	struct hugetlbfs_fs_context *ctx;
1463 
1464 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1465 	if (!ctx)
1466 		return -ENOMEM;
1467 
1468 	ctx->max_hpages	= -1; /* No limit on size by default */
1469 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1470 	ctx->uid	= current_fsuid();
1471 	ctx->gid	= current_fsgid();
1472 	ctx->mode	= 0755;
1473 	ctx->hstate	= &default_hstate;
1474 	ctx->min_hpages	= -1; /* No default minimum size */
1475 	ctx->max_val_type = NO_SIZE;
1476 	ctx->min_val_type = NO_SIZE;
1477 	fc->fs_private = ctx;
1478 	fc->ops	= &hugetlbfs_fs_context_ops;
1479 	return 0;
1480 }
1481 
1482 static struct file_system_type hugetlbfs_fs_type = {
1483 	.name			= "hugetlbfs",
1484 	.init_fs_context	= hugetlbfs_init_fs_context,
1485 	.parameters		= hugetlb_fs_parameters,
1486 	.kill_sb		= kill_litter_super,
1487 	.fs_flags               = FS_ALLOW_IDMAP,
1488 };
1489 
1490 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1491 
1492 static int can_do_hugetlb_shm(void)
1493 {
1494 	kgid_t shm_group;
1495 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1496 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1497 }
1498 
1499 static int get_hstate_idx(int page_size_log)
1500 {
1501 	struct hstate *h = hstate_sizelog(page_size_log);
1502 
1503 	if (!h)
1504 		return -1;
1505 	return hstate_index(h);
1506 }
1507 
1508 /*
1509  * Note that size should be aligned to proper hugepage size in caller side,
1510  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1511  */
1512 struct file *hugetlb_file_setup(const char *name, size_t size,
1513 				vm_flags_t acctflag, int creat_flags,
1514 				int page_size_log)
1515 {
1516 	struct inode *inode;
1517 	struct vfsmount *mnt;
1518 	int hstate_idx;
1519 	struct file *file;
1520 
1521 	hstate_idx = get_hstate_idx(page_size_log);
1522 	if (hstate_idx < 0)
1523 		return ERR_PTR(-ENODEV);
1524 
1525 	mnt = hugetlbfs_vfsmount[hstate_idx];
1526 	if (!mnt)
1527 		return ERR_PTR(-ENOENT);
1528 
1529 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1530 		struct ucounts *ucounts = current_ucounts();
1531 
1532 		if (user_shm_lock(size, ucounts)) {
1533 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1534 				current->comm, current->pid);
1535 			user_shm_unlock(size, ucounts);
1536 		}
1537 		return ERR_PTR(-EPERM);
1538 	}
1539 
1540 	file = ERR_PTR(-ENOSPC);
1541 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1542 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1543 				    S_IFREG | S_IRWXUGO, 0);
1544 	if (!inode)
1545 		goto out;
1546 	if (creat_flags == HUGETLB_SHMFS_INODE)
1547 		inode->i_flags |= S_PRIVATE;
1548 
1549 	inode->i_size = size;
1550 	clear_nlink(inode);
1551 
1552 	if (hugetlb_reserve_pages(inode, 0,
1553 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1554 			acctflag) < 0)
1555 		file = ERR_PTR(-ENOMEM);
1556 	else
1557 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1558 					&hugetlbfs_file_operations);
1559 	if (!IS_ERR(file))
1560 		return file;
1561 
1562 	iput(inode);
1563 out:
1564 	return file;
1565 }
1566 
1567 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1568 {
1569 	struct fs_context *fc;
1570 	struct vfsmount *mnt;
1571 
1572 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1573 	if (IS_ERR(fc)) {
1574 		mnt = ERR_CAST(fc);
1575 	} else {
1576 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1577 		ctx->hstate = h;
1578 		mnt = fc_mount_longterm(fc);
1579 		put_fs_context(fc);
1580 	}
1581 	if (IS_ERR(mnt))
1582 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1583 		       huge_page_size(h) / SZ_1K);
1584 	return mnt;
1585 }
1586 
1587 static int __init init_hugetlbfs_fs(void)
1588 {
1589 	struct vfsmount *mnt;
1590 	struct hstate *h;
1591 	int error;
1592 	int i;
1593 
1594 	if (!hugepages_supported()) {
1595 		pr_info("disabling because there are no supported hugepage sizes\n");
1596 		return -ENOTSUPP;
1597 	}
1598 
1599 	error = -ENOMEM;
1600 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1601 					sizeof(struct hugetlbfs_inode_info),
1602 					0, SLAB_ACCOUNT, init_once);
1603 	if (hugetlbfs_inode_cachep == NULL)
1604 		goto out;
1605 
1606 	error = register_filesystem(&hugetlbfs_fs_type);
1607 	if (error)
1608 		goto out_free;
1609 
1610 	/* default hstate mount is required */
1611 	mnt = mount_one_hugetlbfs(&default_hstate);
1612 	if (IS_ERR(mnt)) {
1613 		error = PTR_ERR(mnt);
1614 		goto out_unreg;
1615 	}
1616 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1617 
1618 	/* other hstates are optional */
1619 	i = 0;
1620 	for_each_hstate(h) {
1621 		if (i == default_hstate_idx) {
1622 			i++;
1623 			continue;
1624 		}
1625 
1626 		mnt = mount_one_hugetlbfs(h);
1627 		if (IS_ERR(mnt))
1628 			hugetlbfs_vfsmount[i] = NULL;
1629 		else
1630 			hugetlbfs_vfsmount[i] = mnt;
1631 		i++;
1632 	}
1633 
1634 	return 0;
1635 
1636  out_unreg:
1637 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1638  out_free:
1639 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1640  out:
1641 	return error;
1642 }
1643 fs_initcall(init_hugetlbfs_fs)
1644