1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 loff_t len, vma_len; 103 int ret; 104 struct hstate *h = hstate_file(file); 105 vm_flags_t vm_flags; 106 107 /* 108 * vma address alignment (but not the pgoff alignment) has 109 * already been checked by prepare_hugepage_range. If you add 110 * any error returns here, do so after setting VM_HUGETLB, so 111 * is_vm_hugetlb_page tests below unmap_region go the right 112 * way when do_mmap unwinds (may be important on powerpc 113 * and ia64). 114 */ 115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 116 vma->vm_ops = &hugetlb_vm_ops; 117 118 /* 119 * page based offset in vm_pgoff could be sufficiently large to 120 * overflow a loff_t when converted to byte offset. This can 121 * only happen on architectures where sizeof(loff_t) == 122 * sizeof(unsigned long). So, only check in those instances. 123 */ 124 if (sizeof(unsigned long) == sizeof(loff_t)) { 125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 126 return -EINVAL; 127 } 128 129 /* must be huge page aligned */ 130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 131 return -EINVAL; 132 133 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 135 /* check for overflow */ 136 if (len < vma_len) 137 return -EINVAL; 138 139 inode_lock(inode); 140 file_accessed(file); 141 142 ret = -ENOMEM; 143 144 vm_flags = vma->vm_flags; 145 /* 146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 147 * reserving here. Note: only for SHM hugetlbfs file, the inode 148 * flag S_PRIVATE is set. 149 */ 150 if (inode->i_flags & S_PRIVATE) 151 vm_flags |= VM_NORESERVE; 152 153 if (hugetlb_reserve_pages(inode, 154 vma->vm_pgoff >> huge_page_order(h), 155 len >> huge_page_shift(h), vma, 156 vm_flags) < 0) 157 goto out; 158 159 ret = 0; 160 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 161 i_size_write(inode, len); 162 out: 163 inode_unlock(inode); 164 165 return ret; 166 } 167 168 /* 169 * Called under mmap_write_lock(mm). 170 */ 171 172 unsigned long 173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 174 unsigned long len, unsigned long pgoff, 175 unsigned long flags) 176 { 177 unsigned long addr0 = 0; 178 struct hstate *h = hstate_file(file); 179 180 if (len & ~huge_page_mask(h)) 181 return -EINVAL; 182 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h))) 183 return -EINVAL; 184 if (addr) 185 addr0 = ALIGN(addr, huge_page_size(h)); 186 187 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 188 flags, 0); 189 } 190 191 /* 192 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset. 193 * Returns the maximum number of bytes one can read without touching the 1st raw 194 * HWPOISON page. 195 */ 196 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset, 197 size_t bytes) 198 { 199 struct page *page = folio_page(folio, offset / PAGE_SIZE); 200 size_t safe_bytes; 201 202 if (is_raw_hwpoison_page_in_hugepage(page)) 203 return 0; 204 /* Safe to read the remaining bytes in this page. */ 205 safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE); 206 page++; 207 208 /* Check each remaining page as long as we are not done yet. */ 209 for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++) 210 if (is_raw_hwpoison_page_in_hugepage(page)) 211 break; 212 213 return min(safe_bytes, bytes); 214 } 215 216 /* 217 * Support for read() - Find the page attached to f_mapping and copy out the 218 * data. This provides functionality similar to filemap_read(). 219 */ 220 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 221 { 222 struct file *file = iocb->ki_filp; 223 struct hstate *h = hstate_file(file); 224 struct address_space *mapping = file->f_mapping; 225 struct inode *inode = mapping->host; 226 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 227 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 228 unsigned long end_index; 229 loff_t isize; 230 ssize_t retval = 0; 231 232 while (iov_iter_count(to)) { 233 struct folio *folio; 234 size_t nr, copied, want; 235 236 /* nr is the maximum number of bytes to copy from this page */ 237 nr = huge_page_size(h); 238 isize = i_size_read(inode); 239 if (!isize) 240 break; 241 end_index = (isize - 1) >> huge_page_shift(h); 242 if (index > end_index) 243 break; 244 if (index == end_index) { 245 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 246 if (nr <= offset) 247 break; 248 } 249 nr = nr - offset; 250 251 /* Find the folio */ 252 folio = filemap_lock_hugetlb_folio(h, mapping, index); 253 if (IS_ERR(folio)) { 254 /* 255 * We have a HOLE, zero out the user-buffer for the 256 * length of the hole or request. 257 */ 258 copied = iov_iter_zero(nr, to); 259 } else { 260 folio_unlock(folio); 261 262 if (!folio_test_hwpoison(folio)) 263 want = nr; 264 else { 265 /* 266 * Adjust how many bytes safe to read without 267 * touching the 1st raw HWPOISON page after 268 * offset. 269 */ 270 want = adjust_range_hwpoison(folio, offset, nr); 271 if (want == 0) { 272 folio_put(folio); 273 retval = -EIO; 274 break; 275 } 276 } 277 278 /* 279 * We have the folio, copy it to user space buffer. 280 */ 281 copied = copy_folio_to_iter(folio, offset, want, to); 282 folio_put(folio); 283 } 284 offset += copied; 285 retval += copied; 286 if (copied != nr && iov_iter_count(to)) { 287 if (!retval) 288 retval = -EFAULT; 289 break; 290 } 291 index += offset >> huge_page_shift(h); 292 offset &= ~huge_page_mask(h); 293 } 294 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 295 return retval; 296 } 297 298 static int hugetlbfs_write_begin(const struct kiocb *iocb, 299 struct address_space *mapping, 300 loff_t pos, unsigned len, 301 struct folio **foliop, void **fsdata) 302 { 303 return -EINVAL; 304 } 305 306 static int hugetlbfs_write_end(const struct kiocb *iocb, 307 struct address_space *mapping, 308 loff_t pos, unsigned len, unsigned copied, 309 struct folio *folio, void *fsdata) 310 { 311 BUG(); 312 return -EINVAL; 313 } 314 315 static void hugetlb_delete_from_page_cache(struct folio *folio) 316 { 317 folio_clear_dirty(folio); 318 folio_clear_uptodate(folio); 319 filemap_remove_folio(folio); 320 } 321 322 /* 323 * Called with i_mmap_rwsem held for inode based vma maps. This makes 324 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 325 * mutex for the page in the mapping. So, we can not race with page being 326 * faulted into the vma. 327 */ 328 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma, 329 unsigned long addr, unsigned long pfn) 330 { 331 pte_t *ptep, pte; 332 333 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 334 if (!ptep) 335 return false; 336 337 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 338 if (huge_pte_none(pte) || !pte_present(pte)) 339 return false; 340 341 if (pte_pfn(pte) == pfn) 342 return true; 343 344 return false; 345 } 346 347 /* 348 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 349 * No, because the interval tree returns us only those vmas 350 * which overlap the truncated area starting at pgoff, 351 * and no vma on a 32-bit arch can span beyond the 4GB. 352 */ 353 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 354 { 355 unsigned long offset = 0; 356 357 if (vma->vm_pgoff < start) 358 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 359 360 return vma->vm_start + offset; 361 } 362 363 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 364 { 365 unsigned long t_end; 366 367 if (!end) 368 return vma->vm_end; 369 370 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 371 if (t_end > vma->vm_end) 372 t_end = vma->vm_end; 373 return t_end; 374 } 375 376 /* 377 * Called with hugetlb fault mutex held. Therefore, no more mappings to 378 * this folio can be created while executing the routine. 379 */ 380 static void hugetlb_unmap_file_folio(struct hstate *h, 381 struct address_space *mapping, 382 struct folio *folio, pgoff_t index) 383 { 384 struct rb_root_cached *root = &mapping->i_mmap; 385 struct hugetlb_vma_lock *vma_lock; 386 unsigned long pfn = folio_pfn(folio); 387 struct vm_area_struct *vma; 388 unsigned long v_start; 389 unsigned long v_end; 390 pgoff_t start, end; 391 392 start = index * pages_per_huge_page(h); 393 end = (index + 1) * pages_per_huge_page(h); 394 395 i_mmap_lock_write(mapping); 396 retry: 397 vma_lock = NULL; 398 vma_interval_tree_foreach(vma, root, start, end - 1) { 399 v_start = vma_offset_start(vma, start); 400 v_end = vma_offset_end(vma, end); 401 402 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn)) 403 continue; 404 405 if (!hugetlb_vma_trylock_write(vma)) { 406 vma_lock = vma->vm_private_data; 407 /* 408 * If we can not get vma lock, we need to drop 409 * immap_sema and take locks in order. First, 410 * take a ref on the vma_lock structure so that 411 * we can be guaranteed it will not go away when 412 * dropping immap_sema. 413 */ 414 kref_get(&vma_lock->refs); 415 break; 416 } 417 418 unmap_hugepage_range(vma, v_start, v_end, NULL, 419 ZAP_FLAG_DROP_MARKER); 420 hugetlb_vma_unlock_write(vma); 421 } 422 423 i_mmap_unlock_write(mapping); 424 425 if (vma_lock) { 426 /* 427 * Wait on vma_lock. We know it is still valid as we have 428 * a reference. We must 'open code' vma locking as we do 429 * not know if vma_lock is still attached to vma. 430 */ 431 down_write(&vma_lock->rw_sema); 432 i_mmap_lock_write(mapping); 433 434 vma = vma_lock->vma; 435 if (!vma) { 436 /* 437 * If lock is no longer attached to vma, then just 438 * unlock, drop our reference and retry looking for 439 * other vmas. 440 */ 441 up_write(&vma_lock->rw_sema); 442 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 443 goto retry; 444 } 445 446 /* 447 * vma_lock is still attached to vma. Check to see if vma 448 * still maps page and if so, unmap. 449 */ 450 v_start = vma_offset_start(vma, start); 451 v_end = vma_offset_end(vma, end); 452 if (hugetlb_vma_maps_pfn(vma, v_start, pfn)) 453 unmap_hugepage_range(vma, v_start, v_end, NULL, 454 ZAP_FLAG_DROP_MARKER); 455 456 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 457 hugetlb_vma_unlock_write(vma); 458 459 goto retry; 460 } 461 } 462 463 static void 464 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 465 zap_flags_t zap_flags) 466 { 467 struct vm_area_struct *vma; 468 469 /* 470 * end == 0 indicates that the entire range after start should be 471 * unmapped. Note, end is exclusive, whereas the interval tree takes 472 * an inclusive "last". 473 */ 474 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 475 unsigned long v_start; 476 unsigned long v_end; 477 478 if (!hugetlb_vma_trylock_write(vma)) 479 continue; 480 481 v_start = vma_offset_start(vma, start); 482 v_end = vma_offset_end(vma, end); 483 484 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 485 486 /* 487 * Note that vma lock only exists for shared/non-private 488 * vmas. Therefore, lock is not held when calling 489 * unmap_hugepage_range for private vmas. 490 */ 491 hugetlb_vma_unlock_write(vma); 492 } 493 } 494 495 /* 496 * Called with hugetlb fault mutex held. 497 * Returns true if page was actually removed, false otherwise. 498 */ 499 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 500 struct address_space *mapping, 501 struct folio *folio, pgoff_t index, 502 bool truncate_op) 503 { 504 bool ret = false; 505 506 /* 507 * If folio is mapped, it was faulted in after being 508 * unmapped in caller or hugetlb_vmdelete_list() skips 509 * unmapping it due to fail to grab lock. Unmap (again) 510 * while holding the fault mutex. The mutex will prevent 511 * faults until we finish removing the folio. Hold folio 512 * lock to guarantee no concurrent migration. 513 */ 514 folio_lock(folio); 515 if (unlikely(folio_mapped(folio))) 516 hugetlb_unmap_file_folio(h, mapping, folio, index); 517 518 /* 519 * We must remove the folio from page cache before removing 520 * the region/ reserve map (hugetlb_unreserve_pages). In 521 * rare out of memory conditions, removal of the region/reserve 522 * map could fail. Correspondingly, the subpool and global 523 * reserve usage count can need to be adjusted. 524 */ 525 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 526 hugetlb_delete_from_page_cache(folio); 527 ret = true; 528 if (!truncate_op) { 529 if (unlikely(hugetlb_unreserve_pages(inode, index, 530 index + 1, 1))) 531 hugetlb_fix_reserve_counts(inode); 532 } 533 534 folio_unlock(folio); 535 return ret; 536 } 537 538 /* 539 * remove_inode_hugepages handles two distinct cases: truncation and hole 540 * punch. There are subtle differences in operation for each case. 541 * 542 * truncation is indicated by end of range being LLONG_MAX 543 * In this case, we first scan the range and release found pages. 544 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 545 * maps and global counts. Page faults can race with truncation. 546 * During faults, hugetlb_no_page() checks i_size before page allocation, 547 * and again after obtaining page table lock. It will 'back out' 548 * allocations in the truncated range. 549 * hole punch is indicated if end is not LLONG_MAX 550 * In the hole punch case we scan the range and release found pages. 551 * Only when releasing a page is the associated region/reserve map 552 * deleted. The region/reserve map for ranges without associated 553 * pages are not modified. Page faults can race with hole punch. 554 * This is indicated if we find a mapped page. 555 * Note: If the passed end of range value is beyond the end of file, but 556 * not LLONG_MAX this routine still performs a hole punch operation. 557 */ 558 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 559 loff_t lend) 560 { 561 struct hstate *h = hstate_inode(inode); 562 struct address_space *mapping = &inode->i_data; 563 const pgoff_t end = lend >> PAGE_SHIFT; 564 struct folio_batch fbatch; 565 pgoff_t next, index; 566 int i, freed = 0; 567 bool truncate_op = (lend == LLONG_MAX); 568 569 folio_batch_init(&fbatch); 570 next = lstart >> PAGE_SHIFT; 571 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 572 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 573 struct folio *folio = fbatch.folios[i]; 574 u32 hash = 0; 575 576 index = folio->index >> huge_page_order(h); 577 hash = hugetlb_fault_mutex_hash(mapping, index); 578 mutex_lock(&hugetlb_fault_mutex_table[hash]); 579 580 /* 581 * Remove folio that was part of folio_batch. 582 */ 583 if (remove_inode_single_folio(h, inode, mapping, folio, 584 index, truncate_op)) 585 freed++; 586 587 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 588 } 589 folio_batch_release(&fbatch); 590 cond_resched(); 591 } 592 593 if (truncate_op) 594 (void)hugetlb_unreserve_pages(inode, 595 lstart >> huge_page_shift(h), 596 LONG_MAX, freed); 597 } 598 599 static void hugetlbfs_evict_inode(struct inode *inode) 600 { 601 struct resv_map *resv_map; 602 603 trace_hugetlbfs_evict_inode(inode); 604 remove_inode_hugepages(inode, 0, LLONG_MAX); 605 606 /* 607 * Get the resv_map from the address space embedded in the inode. 608 * This is the address space which points to any resv_map allocated 609 * at inode creation time. If this is a device special inode, 610 * i_mapping may not point to the original address space. 611 */ 612 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 613 /* Only regular and link inodes have associated reserve maps */ 614 if (resv_map) 615 resv_map_release(&resv_map->refs); 616 clear_inode(inode); 617 } 618 619 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 620 { 621 pgoff_t pgoff; 622 struct address_space *mapping = inode->i_mapping; 623 struct hstate *h = hstate_inode(inode); 624 625 BUG_ON(offset & ~huge_page_mask(h)); 626 pgoff = offset >> PAGE_SHIFT; 627 628 i_size_write(inode, offset); 629 i_mmap_lock_write(mapping); 630 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 631 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 632 ZAP_FLAG_DROP_MARKER); 633 i_mmap_unlock_write(mapping); 634 remove_inode_hugepages(inode, offset, LLONG_MAX); 635 } 636 637 static void hugetlbfs_zero_partial_page(struct hstate *h, 638 struct address_space *mapping, 639 loff_t start, 640 loff_t end) 641 { 642 pgoff_t idx = start >> huge_page_shift(h); 643 struct folio *folio; 644 645 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 646 if (IS_ERR(folio)) 647 return; 648 649 start = start & ~huge_page_mask(h); 650 end = end & ~huge_page_mask(h); 651 if (!end) 652 end = huge_page_size(h); 653 654 folio_zero_segment(folio, (size_t)start, (size_t)end); 655 656 folio_unlock(folio); 657 folio_put(folio); 658 } 659 660 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 661 { 662 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 663 struct address_space *mapping = inode->i_mapping; 664 struct hstate *h = hstate_inode(inode); 665 loff_t hpage_size = huge_page_size(h); 666 loff_t hole_start, hole_end; 667 668 /* 669 * hole_start and hole_end indicate the full pages within the hole. 670 */ 671 hole_start = round_up(offset, hpage_size); 672 hole_end = round_down(offset + len, hpage_size); 673 674 inode_lock(inode); 675 676 /* protected by i_rwsem */ 677 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 678 inode_unlock(inode); 679 return -EPERM; 680 } 681 682 i_mmap_lock_write(mapping); 683 684 /* If range starts before first full page, zero partial page. */ 685 if (offset < hole_start) 686 hugetlbfs_zero_partial_page(h, mapping, 687 offset, min(offset + len, hole_start)); 688 689 /* Unmap users of full pages in the hole. */ 690 if (hole_end > hole_start) { 691 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 692 hugetlb_vmdelete_list(&mapping->i_mmap, 693 hole_start >> PAGE_SHIFT, 694 hole_end >> PAGE_SHIFT, 0); 695 } 696 697 /* If range extends beyond last full page, zero partial page. */ 698 if ((offset + len) > hole_end && (offset + len) > hole_start) 699 hugetlbfs_zero_partial_page(h, mapping, 700 hole_end, offset + len); 701 702 i_mmap_unlock_write(mapping); 703 704 /* Remove full pages from the file. */ 705 if (hole_end > hole_start) 706 remove_inode_hugepages(inode, hole_start, hole_end); 707 708 inode_unlock(inode); 709 710 return 0; 711 } 712 713 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 714 loff_t len) 715 { 716 struct inode *inode = file_inode(file); 717 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 718 struct address_space *mapping = inode->i_mapping; 719 struct hstate *h = hstate_inode(inode); 720 struct vm_area_struct pseudo_vma; 721 struct mm_struct *mm = current->mm; 722 loff_t hpage_size = huge_page_size(h); 723 unsigned long hpage_shift = huge_page_shift(h); 724 pgoff_t start, index, end; 725 int error; 726 u32 hash; 727 728 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 729 return -EOPNOTSUPP; 730 731 if (mode & FALLOC_FL_PUNCH_HOLE) { 732 error = hugetlbfs_punch_hole(inode, offset, len); 733 goto out_nolock; 734 } 735 736 /* 737 * Default preallocate case. 738 * For this range, start is rounded down and end is rounded up 739 * as well as being converted to page offsets. 740 */ 741 start = offset >> hpage_shift; 742 end = (offset + len + hpage_size - 1) >> hpage_shift; 743 744 inode_lock(inode); 745 746 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 747 error = inode_newsize_ok(inode, offset + len); 748 if (error) 749 goto out; 750 751 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 752 error = -EPERM; 753 goto out; 754 } 755 756 /* 757 * Initialize a pseudo vma as this is required by the huge page 758 * allocation routines. 759 */ 760 vma_init(&pseudo_vma, mm); 761 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 762 pseudo_vma.vm_file = file; 763 764 for (index = start; index < end; index++) { 765 /* 766 * This is supposed to be the vaddr where the page is being 767 * faulted in, but we have no vaddr here. 768 */ 769 struct folio *folio; 770 unsigned long addr; 771 772 cond_resched(); 773 774 /* 775 * fallocate(2) manpage permits EINTR; we may have been 776 * interrupted because we are using up too much memory. 777 */ 778 if (signal_pending(current)) { 779 error = -EINTR; 780 break; 781 } 782 783 /* addr is the offset within the file (zero based) */ 784 addr = index * hpage_size; 785 786 /* mutex taken here, fault path and hole punch */ 787 hash = hugetlb_fault_mutex_hash(mapping, index); 788 mutex_lock(&hugetlb_fault_mutex_table[hash]); 789 790 /* See if already present in mapping to avoid alloc/free */ 791 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 792 if (!IS_ERR(folio)) { 793 folio_put(folio); 794 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 795 continue; 796 } 797 798 /* 799 * Allocate folio without setting the avoid_reserve argument. 800 * There certainly are no reserves associated with the 801 * pseudo_vma. However, there could be shared mappings with 802 * reserves for the file at the inode level. If we fallocate 803 * folios in these areas, we need to consume the reserves 804 * to keep reservation accounting consistent. 805 */ 806 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); 807 if (IS_ERR(folio)) { 808 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 809 error = PTR_ERR(folio); 810 goto out; 811 } 812 folio_zero_user(folio, addr); 813 __folio_mark_uptodate(folio); 814 error = hugetlb_add_to_page_cache(folio, mapping, index); 815 if (unlikely(error)) { 816 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 817 folio_put(folio); 818 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 819 goto out; 820 } 821 822 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 823 824 folio_set_hugetlb_migratable(folio); 825 /* 826 * folio_unlock because locked by hugetlb_add_to_page_cache() 827 * folio_put() due to reference from alloc_hugetlb_folio() 828 */ 829 folio_unlock(folio); 830 folio_put(folio); 831 } 832 833 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 834 i_size_write(inode, offset + len); 835 inode_set_ctime_current(inode); 836 out: 837 inode_unlock(inode); 838 839 out_nolock: 840 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 841 return error; 842 } 843 844 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 845 struct dentry *dentry, struct iattr *attr) 846 { 847 struct inode *inode = d_inode(dentry); 848 struct hstate *h = hstate_inode(inode); 849 int error; 850 unsigned int ia_valid = attr->ia_valid; 851 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 852 853 error = setattr_prepare(idmap, dentry, attr); 854 if (error) 855 return error; 856 857 trace_hugetlbfs_setattr(inode, dentry, attr); 858 859 if (ia_valid & ATTR_SIZE) { 860 loff_t oldsize = inode->i_size; 861 loff_t newsize = attr->ia_size; 862 863 if (newsize & ~huge_page_mask(h)) 864 return -EINVAL; 865 /* protected by i_rwsem */ 866 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 867 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 868 return -EPERM; 869 hugetlb_vmtruncate(inode, newsize); 870 } 871 872 setattr_copy(idmap, inode, attr); 873 mark_inode_dirty(inode); 874 return 0; 875 } 876 877 static struct inode *hugetlbfs_get_root(struct super_block *sb, 878 struct hugetlbfs_fs_context *ctx) 879 { 880 struct inode *inode; 881 882 inode = new_inode(sb); 883 if (inode) { 884 inode->i_ino = get_next_ino(); 885 inode->i_mode = S_IFDIR | ctx->mode; 886 inode->i_uid = ctx->uid; 887 inode->i_gid = ctx->gid; 888 simple_inode_init_ts(inode); 889 inode->i_op = &hugetlbfs_dir_inode_operations; 890 inode->i_fop = &simple_dir_operations; 891 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 892 inc_nlink(inode); 893 lockdep_annotate_inode_mutex_key(inode); 894 } 895 return inode; 896 } 897 898 /* 899 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 900 * be taken from reclaim -- unlike regular filesystems. This needs an 901 * annotation because huge_pmd_share() does an allocation under hugetlb's 902 * i_mmap_rwsem. 903 */ 904 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 905 906 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 907 struct mnt_idmap *idmap, 908 struct inode *dir, 909 umode_t mode, dev_t dev) 910 { 911 struct inode *inode; 912 struct resv_map *resv_map = NULL; 913 914 /* 915 * Reserve maps are only needed for inodes that can have associated 916 * page allocations. 917 */ 918 if (S_ISREG(mode) || S_ISLNK(mode)) { 919 resv_map = resv_map_alloc(); 920 if (!resv_map) 921 return NULL; 922 } 923 924 inode = new_inode(sb); 925 if (inode) { 926 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 927 928 inode->i_ino = get_next_ino(); 929 inode_init_owner(idmap, inode, dir, mode); 930 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 931 &hugetlbfs_i_mmap_rwsem_key); 932 inode->i_mapping->a_ops = &hugetlbfs_aops; 933 simple_inode_init_ts(inode); 934 inode->i_mapping->i_private_data = resv_map; 935 info->seals = F_SEAL_SEAL; 936 switch (mode & S_IFMT) { 937 default: 938 init_special_inode(inode, mode, dev); 939 break; 940 case S_IFREG: 941 inode->i_op = &hugetlbfs_inode_operations; 942 inode->i_fop = &hugetlbfs_file_operations; 943 break; 944 case S_IFDIR: 945 inode->i_op = &hugetlbfs_dir_inode_operations; 946 inode->i_fop = &simple_dir_operations; 947 948 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 949 inc_nlink(inode); 950 break; 951 case S_IFLNK: 952 inode->i_op = &page_symlink_inode_operations; 953 inode_nohighmem(inode); 954 break; 955 } 956 lockdep_annotate_inode_mutex_key(inode); 957 trace_hugetlbfs_alloc_inode(inode, dir, mode); 958 } else { 959 if (resv_map) 960 kref_put(&resv_map->refs, resv_map_release); 961 } 962 963 return inode; 964 } 965 966 /* 967 * File creation. Allocate an inode, and we're done.. 968 */ 969 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 970 struct dentry *dentry, umode_t mode, dev_t dev) 971 { 972 struct inode *inode; 973 974 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 975 if (!inode) 976 return -ENOSPC; 977 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 978 d_instantiate(dentry, inode); 979 dget(dentry);/* Extra count - pin the dentry in core */ 980 return 0; 981 } 982 983 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 984 struct dentry *dentry, umode_t mode) 985 { 986 int retval = hugetlbfs_mknod(idmap, dir, dentry, 987 mode | S_IFDIR, 0); 988 if (!retval) 989 inc_nlink(dir); 990 return ERR_PTR(retval); 991 } 992 993 static int hugetlbfs_create(struct mnt_idmap *idmap, 994 struct inode *dir, struct dentry *dentry, 995 umode_t mode, bool excl) 996 { 997 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 998 } 999 1000 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1001 struct inode *dir, struct file *file, 1002 umode_t mode) 1003 { 1004 struct inode *inode; 1005 1006 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1007 if (!inode) 1008 return -ENOSPC; 1009 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1010 d_tmpfile(file, inode); 1011 return finish_open_simple(file, 0); 1012 } 1013 1014 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1015 struct inode *dir, struct dentry *dentry, 1016 const char *symname) 1017 { 1018 const umode_t mode = S_IFLNK|S_IRWXUGO; 1019 struct inode *inode; 1020 int error = -ENOSPC; 1021 1022 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1023 if (inode) { 1024 int l = strlen(symname)+1; 1025 error = page_symlink(inode, symname, l); 1026 if (!error) { 1027 d_instantiate(dentry, inode); 1028 dget(dentry); 1029 } else 1030 iput(inode); 1031 } 1032 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1033 1034 return error; 1035 } 1036 1037 #ifdef CONFIG_MIGRATION 1038 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1039 struct folio *dst, struct folio *src, 1040 enum migrate_mode mode) 1041 { 1042 int rc; 1043 1044 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1045 if (rc) 1046 return rc; 1047 1048 if (hugetlb_folio_subpool(src)) { 1049 hugetlb_set_folio_subpool(dst, 1050 hugetlb_folio_subpool(src)); 1051 hugetlb_set_folio_subpool(src, NULL); 1052 } 1053 1054 folio_migrate_flags(dst, src); 1055 1056 return 0; 1057 } 1058 #else 1059 #define hugetlbfs_migrate_folio NULL 1060 #endif 1061 1062 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1063 struct folio *folio) 1064 { 1065 return 0; 1066 } 1067 1068 /* 1069 * Display the mount options in /proc/mounts. 1070 */ 1071 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1072 { 1073 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1074 struct hugepage_subpool *spool = sbinfo->spool; 1075 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1076 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1077 char mod; 1078 1079 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1080 seq_printf(m, ",uid=%u", 1081 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1082 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1083 seq_printf(m, ",gid=%u", 1084 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1085 if (sbinfo->mode != 0755) 1086 seq_printf(m, ",mode=%o", sbinfo->mode); 1087 if (sbinfo->max_inodes != -1) 1088 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1089 1090 hpage_size /= 1024; 1091 mod = 'K'; 1092 if (hpage_size >= 1024) { 1093 hpage_size /= 1024; 1094 mod = 'M'; 1095 } 1096 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1097 if (spool) { 1098 if (spool->max_hpages != -1) 1099 seq_printf(m, ",size=%llu", 1100 (unsigned long long)spool->max_hpages << hpage_shift); 1101 if (spool->min_hpages != -1) 1102 seq_printf(m, ",min_size=%llu", 1103 (unsigned long long)spool->min_hpages << hpage_shift); 1104 } 1105 return 0; 1106 } 1107 1108 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1109 { 1110 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1111 struct hstate *h = hstate_inode(d_inode(dentry)); 1112 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1113 1114 buf->f_fsid = u64_to_fsid(id); 1115 buf->f_type = HUGETLBFS_MAGIC; 1116 buf->f_bsize = huge_page_size(h); 1117 if (sbinfo) { 1118 spin_lock(&sbinfo->stat_lock); 1119 /* If no limits set, just report 0 or -1 for max/free/used 1120 * blocks, like simple_statfs() */ 1121 if (sbinfo->spool) { 1122 long free_pages; 1123 1124 spin_lock_irq(&sbinfo->spool->lock); 1125 buf->f_blocks = sbinfo->spool->max_hpages; 1126 free_pages = sbinfo->spool->max_hpages 1127 - sbinfo->spool->used_hpages; 1128 buf->f_bavail = buf->f_bfree = free_pages; 1129 spin_unlock_irq(&sbinfo->spool->lock); 1130 buf->f_files = sbinfo->max_inodes; 1131 buf->f_ffree = sbinfo->free_inodes; 1132 } 1133 spin_unlock(&sbinfo->stat_lock); 1134 } 1135 buf->f_namelen = NAME_MAX; 1136 return 0; 1137 } 1138 1139 static void hugetlbfs_put_super(struct super_block *sb) 1140 { 1141 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1142 1143 if (sbi) { 1144 sb->s_fs_info = NULL; 1145 1146 if (sbi->spool) 1147 hugepage_put_subpool(sbi->spool); 1148 1149 kfree(sbi); 1150 } 1151 } 1152 1153 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1154 { 1155 if (sbinfo->free_inodes >= 0) { 1156 spin_lock(&sbinfo->stat_lock); 1157 if (unlikely(!sbinfo->free_inodes)) { 1158 spin_unlock(&sbinfo->stat_lock); 1159 return 0; 1160 } 1161 sbinfo->free_inodes--; 1162 spin_unlock(&sbinfo->stat_lock); 1163 } 1164 1165 return 1; 1166 } 1167 1168 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1169 { 1170 if (sbinfo->free_inodes >= 0) { 1171 spin_lock(&sbinfo->stat_lock); 1172 sbinfo->free_inodes++; 1173 spin_unlock(&sbinfo->stat_lock); 1174 } 1175 } 1176 1177 1178 static struct kmem_cache *hugetlbfs_inode_cachep; 1179 1180 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1181 { 1182 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1183 struct hugetlbfs_inode_info *p; 1184 1185 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1186 return NULL; 1187 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1188 if (unlikely(!p)) { 1189 hugetlbfs_inc_free_inodes(sbinfo); 1190 return NULL; 1191 } 1192 return &p->vfs_inode; 1193 } 1194 1195 static void hugetlbfs_free_inode(struct inode *inode) 1196 { 1197 trace_hugetlbfs_free_inode(inode); 1198 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1199 } 1200 1201 static void hugetlbfs_destroy_inode(struct inode *inode) 1202 { 1203 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1204 } 1205 1206 static const struct address_space_operations hugetlbfs_aops = { 1207 .write_begin = hugetlbfs_write_begin, 1208 .write_end = hugetlbfs_write_end, 1209 .dirty_folio = noop_dirty_folio, 1210 .migrate_folio = hugetlbfs_migrate_folio, 1211 .error_remove_folio = hugetlbfs_error_remove_folio, 1212 }; 1213 1214 1215 static void init_once(void *foo) 1216 { 1217 struct hugetlbfs_inode_info *ei = foo; 1218 1219 inode_init_once(&ei->vfs_inode); 1220 } 1221 1222 static const struct file_operations hugetlbfs_file_operations = { 1223 .read_iter = hugetlbfs_read_iter, 1224 .mmap = hugetlbfs_file_mmap, 1225 .fsync = noop_fsync, 1226 .get_unmapped_area = hugetlb_get_unmapped_area, 1227 .llseek = default_llseek, 1228 .fallocate = hugetlbfs_fallocate, 1229 .fop_flags = FOP_HUGE_PAGES, 1230 }; 1231 1232 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1233 .create = hugetlbfs_create, 1234 .lookup = simple_lookup, 1235 .link = simple_link, 1236 .unlink = simple_unlink, 1237 .symlink = hugetlbfs_symlink, 1238 .mkdir = hugetlbfs_mkdir, 1239 .rmdir = simple_rmdir, 1240 .mknod = hugetlbfs_mknod, 1241 .rename = simple_rename, 1242 .setattr = hugetlbfs_setattr, 1243 .tmpfile = hugetlbfs_tmpfile, 1244 }; 1245 1246 static const struct inode_operations hugetlbfs_inode_operations = { 1247 .setattr = hugetlbfs_setattr, 1248 }; 1249 1250 static const struct super_operations hugetlbfs_ops = { 1251 .alloc_inode = hugetlbfs_alloc_inode, 1252 .free_inode = hugetlbfs_free_inode, 1253 .destroy_inode = hugetlbfs_destroy_inode, 1254 .evict_inode = hugetlbfs_evict_inode, 1255 .statfs = hugetlbfs_statfs, 1256 .put_super = hugetlbfs_put_super, 1257 .show_options = hugetlbfs_show_options, 1258 }; 1259 1260 /* 1261 * Convert size option passed from command line to number of huge pages 1262 * in the pool specified by hstate. Size option could be in bytes 1263 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1264 */ 1265 static long 1266 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1267 enum hugetlbfs_size_type val_type) 1268 { 1269 if (val_type == NO_SIZE) 1270 return -1; 1271 1272 if (val_type == SIZE_PERCENT) { 1273 size_opt <<= huge_page_shift(h); 1274 size_opt *= h->max_huge_pages; 1275 do_div(size_opt, 100); 1276 } 1277 1278 size_opt >>= huge_page_shift(h); 1279 return size_opt; 1280 } 1281 1282 /* 1283 * Parse one mount parameter. 1284 */ 1285 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1286 { 1287 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1288 struct fs_parse_result result; 1289 struct hstate *h; 1290 char *rest; 1291 unsigned long ps; 1292 int opt; 1293 1294 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1295 if (opt < 0) 1296 return opt; 1297 1298 switch (opt) { 1299 case Opt_uid: 1300 ctx->uid = result.uid; 1301 return 0; 1302 1303 case Opt_gid: 1304 ctx->gid = result.gid; 1305 return 0; 1306 1307 case Opt_mode: 1308 ctx->mode = result.uint_32 & 01777U; 1309 return 0; 1310 1311 case Opt_size: 1312 /* memparse() will accept a K/M/G without a digit */ 1313 if (!param->string || !isdigit(param->string[0])) 1314 goto bad_val; 1315 ctx->max_size_opt = memparse(param->string, &rest); 1316 ctx->max_val_type = SIZE_STD; 1317 if (*rest == '%') 1318 ctx->max_val_type = SIZE_PERCENT; 1319 return 0; 1320 1321 case Opt_nr_inodes: 1322 /* memparse() will accept a K/M/G without a digit */ 1323 if (!param->string || !isdigit(param->string[0])) 1324 goto bad_val; 1325 ctx->nr_inodes = memparse(param->string, &rest); 1326 return 0; 1327 1328 case Opt_pagesize: 1329 ps = memparse(param->string, &rest); 1330 h = size_to_hstate(ps); 1331 if (!h) { 1332 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1333 return -EINVAL; 1334 } 1335 ctx->hstate = h; 1336 return 0; 1337 1338 case Opt_min_size: 1339 /* memparse() will accept a K/M/G without a digit */ 1340 if (!param->string || !isdigit(param->string[0])) 1341 goto bad_val; 1342 ctx->min_size_opt = memparse(param->string, &rest); 1343 ctx->min_val_type = SIZE_STD; 1344 if (*rest == '%') 1345 ctx->min_val_type = SIZE_PERCENT; 1346 return 0; 1347 1348 default: 1349 return -EINVAL; 1350 } 1351 1352 bad_val: 1353 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1354 param->string, param->key); 1355 } 1356 1357 /* 1358 * Validate the parsed options. 1359 */ 1360 static int hugetlbfs_validate(struct fs_context *fc) 1361 { 1362 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1363 1364 /* 1365 * Use huge page pool size (in hstate) to convert the size 1366 * options to number of huge pages. If NO_SIZE, -1 is returned. 1367 */ 1368 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1369 ctx->max_size_opt, 1370 ctx->max_val_type); 1371 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1372 ctx->min_size_opt, 1373 ctx->min_val_type); 1374 1375 /* 1376 * If max_size was specified, then min_size must be smaller 1377 */ 1378 if (ctx->max_val_type > NO_SIZE && 1379 ctx->min_hpages > ctx->max_hpages) { 1380 pr_err("Minimum size can not be greater than maximum size\n"); 1381 return -EINVAL; 1382 } 1383 1384 return 0; 1385 } 1386 1387 static int 1388 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1389 { 1390 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1391 struct hugetlbfs_sb_info *sbinfo; 1392 1393 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1394 if (!sbinfo) 1395 return -ENOMEM; 1396 sb->s_fs_info = sbinfo; 1397 spin_lock_init(&sbinfo->stat_lock); 1398 sbinfo->hstate = ctx->hstate; 1399 sbinfo->max_inodes = ctx->nr_inodes; 1400 sbinfo->free_inodes = ctx->nr_inodes; 1401 sbinfo->spool = NULL; 1402 sbinfo->uid = ctx->uid; 1403 sbinfo->gid = ctx->gid; 1404 sbinfo->mode = ctx->mode; 1405 1406 /* 1407 * Allocate and initialize subpool if maximum or minimum size is 1408 * specified. Any needed reservations (for minimum size) are taken 1409 * when the subpool is created. 1410 */ 1411 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1412 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1413 ctx->max_hpages, 1414 ctx->min_hpages); 1415 if (!sbinfo->spool) 1416 goto out_free; 1417 } 1418 sb->s_maxbytes = MAX_LFS_FILESIZE; 1419 sb->s_blocksize = huge_page_size(ctx->hstate); 1420 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1421 sb->s_magic = HUGETLBFS_MAGIC; 1422 sb->s_op = &hugetlbfs_ops; 1423 sb->s_d_flags = DCACHE_DONTCACHE; 1424 sb->s_time_gran = 1; 1425 1426 /* 1427 * Due to the special and limited functionality of hugetlbfs, it does 1428 * not work well as a stacking filesystem. 1429 */ 1430 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1431 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1432 if (!sb->s_root) 1433 goto out_free; 1434 return 0; 1435 out_free: 1436 kfree(sbinfo->spool); 1437 kfree(sbinfo); 1438 return -ENOMEM; 1439 } 1440 1441 static int hugetlbfs_get_tree(struct fs_context *fc) 1442 { 1443 int err = hugetlbfs_validate(fc); 1444 if (err) 1445 return err; 1446 return get_tree_nodev(fc, hugetlbfs_fill_super); 1447 } 1448 1449 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1450 { 1451 kfree(fc->fs_private); 1452 } 1453 1454 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1455 .free = hugetlbfs_fs_context_free, 1456 .parse_param = hugetlbfs_parse_param, 1457 .get_tree = hugetlbfs_get_tree, 1458 }; 1459 1460 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1461 { 1462 struct hugetlbfs_fs_context *ctx; 1463 1464 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1465 if (!ctx) 1466 return -ENOMEM; 1467 1468 ctx->max_hpages = -1; /* No limit on size by default */ 1469 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1470 ctx->uid = current_fsuid(); 1471 ctx->gid = current_fsgid(); 1472 ctx->mode = 0755; 1473 ctx->hstate = &default_hstate; 1474 ctx->min_hpages = -1; /* No default minimum size */ 1475 ctx->max_val_type = NO_SIZE; 1476 ctx->min_val_type = NO_SIZE; 1477 fc->fs_private = ctx; 1478 fc->ops = &hugetlbfs_fs_context_ops; 1479 return 0; 1480 } 1481 1482 static struct file_system_type hugetlbfs_fs_type = { 1483 .name = "hugetlbfs", 1484 .init_fs_context = hugetlbfs_init_fs_context, 1485 .parameters = hugetlb_fs_parameters, 1486 .kill_sb = kill_litter_super, 1487 .fs_flags = FS_ALLOW_IDMAP, 1488 }; 1489 1490 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1491 1492 static int can_do_hugetlb_shm(void) 1493 { 1494 kgid_t shm_group; 1495 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1496 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1497 } 1498 1499 static int get_hstate_idx(int page_size_log) 1500 { 1501 struct hstate *h = hstate_sizelog(page_size_log); 1502 1503 if (!h) 1504 return -1; 1505 return hstate_index(h); 1506 } 1507 1508 /* 1509 * Note that size should be aligned to proper hugepage size in caller side, 1510 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1511 */ 1512 struct file *hugetlb_file_setup(const char *name, size_t size, 1513 vm_flags_t acctflag, int creat_flags, 1514 int page_size_log) 1515 { 1516 struct inode *inode; 1517 struct vfsmount *mnt; 1518 int hstate_idx; 1519 struct file *file; 1520 1521 hstate_idx = get_hstate_idx(page_size_log); 1522 if (hstate_idx < 0) 1523 return ERR_PTR(-ENODEV); 1524 1525 mnt = hugetlbfs_vfsmount[hstate_idx]; 1526 if (!mnt) 1527 return ERR_PTR(-ENOENT); 1528 1529 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1530 struct ucounts *ucounts = current_ucounts(); 1531 1532 if (user_shm_lock(size, ucounts)) { 1533 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1534 current->comm, current->pid); 1535 user_shm_unlock(size, ucounts); 1536 } 1537 return ERR_PTR(-EPERM); 1538 } 1539 1540 file = ERR_PTR(-ENOSPC); 1541 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1542 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1543 S_IFREG | S_IRWXUGO, 0); 1544 if (!inode) 1545 goto out; 1546 if (creat_flags == HUGETLB_SHMFS_INODE) 1547 inode->i_flags |= S_PRIVATE; 1548 1549 inode->i_size = size; 1550 clear_nlink(inode); 1551 1552 if (hugetlb_reserve_pages(inode, 0, 1553 size >> huge_page_shift(hstate_inode(inode)), NULL, 1554 acctflag) < 0) 1555 file = ERR_PTR(-ENOMEM); 1556 else 1557 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1558 &hugetlbfs_file_operations); 1559 if (!IS_ERR(file)) 1560 return file; 1561 1562 iput(inode); 1563 out: 1564 return file; 1565 } 1566 1567 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1568 { 1569 struct fs_context *fc; 1570 struct vfsmount *mnt; 1571 1572 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1573 if (IS_ERR(fc)) { 1574 mnt = ERR_CAST(fc); 1575 } else { 1576 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1577 ctx->hstate = h; 1578 mnt = fc_mount_longterm(fc); 1579 put_fs_context(fc); 1580 } 1581 if (IS_ERR(mnt)) 1582 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1583 huge_page_size(h) / SZ_1K); 1584 return mnt; 1585 } 1586 1587 static int __init init_hugetlbfs_fs(void) 1588 { 1589 struct vfsmount *mnt; 1590 struct hstate *h; 1591 int error; 1592 int i; 1593 1594 if (!hugepages_supported()) { 1595 pr_info("disabling because there are no supported hugepage sizes\n"); 1596 return -ENOTSUPP; 1597 } 1598 1599 error = -ENOMEM; 1600 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1601 sizeof(struct hugetlbfs_inode_info), 1602 0, SLAB_ACCOUNT, init_once); 1603 if (hugetlbfs_inode_cachep == NULL) 1604 goto out; 1605 1606 error = register_filesystem(&hugetlbfs_fs_type); 1607 if (error) 1608 goto out_free; 1609 1610 /* default hstate mount is required */ 1611 mnt = mount_one_hugetlbfs(&default_hstate); 1612 if (IS_ERR(mnt)) { 1613 error = PTR_ERR(mnt); 1614 goto out_unreg; 1615 } 1616 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1617 1618 /* other hstates are optional */ 1619 i = 0; 1620 for_each_hstate(h) { 1621 if (i == default_hstate_idx) { 1622 i++; 1623 continue; 1624 } 1625 1626 mnt = mount_one_hugetlbfs(h); 1627 if (IS_ERR(mnt)) 1628 hugetlbfs_vfsmount[i] = NULL; 1629 else 1630 hugetlbfs_vfsmount[i] = mnt; 1631 i++; 1632 } 1633 1634 return 0; 1635 1636 out_unreg: 1637 (void)unregister_filesystem(&hugetlbfs_fs_type); 1638 out_free: 1639 kmem_cache_destroy(hugetlbfs_inode_cachep); 1640 out: 1641 return error; 1642 } 1643 fs_initcall(init_hugetlbfs_fs) 1644