1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 loff_t len, vma_len; 103 int ret; 104 struct hstate *h = hstate_file(file); 105 vm_flags_t vm_flags; 106 107 /* 108 * vma address alignment (but not the pgoff alignment) has 109 * already been checked by prepare_hugepage_range. If you add 110 * any error returns here, do so after setting VM_HUGETLB, so 111 * is_vm_hugetlb_page tests below unmap_region go the right 112 * way when do_mmap unwinds (may be important on powerpc 113 * and ia64). 114 */ 115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 116 vma->vm_ops = &hugetlb_vm_ops; 117 118 /* 119 * page based offset in vm_pgoff could be sufficiently large to 120 * overflow a loff_t when converted to byte offset. This can 121 * only happen on architectures where sizeof(loff_t) == 122 * sizeof(unsigned long). So, only check in those instances. 123 */ 124 if (sizeof(unsigned long) == sizeof(loff_t)) { 125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 126 return -EINVAL; 127 } 128 129 /* must be huge page aligned */ 130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 131 return -EINVAL; 132 133 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 135 /* check for overflow */ 136 if (len < vma_len) 137 return -EINVAL; 138 139 inode_lock(inode); 140 file_accessed(file); 141 142 ret = -ENOMEM; 143 144 vm_flags = vma->vm_flags; 145 /* 146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 147 * reserving here. Note: only for SHM hugetlbfs file, the inode 148 * flag S_PRIVATE is set. 149 */ 150 if (inode->i_flags & S_PRIVATE) 151 vm_flags |= VM_NORESERVE; 152 153 if (hugetlb_reserve_pages(inode, 154 vma->vm_pgoff >> huge_page_order(h), 155 len >> huge_page_shift(h), vma, 156 vm_flags) < 0) 157 goto out; 158 159 ret = 0; 160 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 161 i_size_write(inode, len); 162 out: 163 inode_unlock(inode); 164 165 return ret; 166 } 167 168 /* 169 * Called under mmap_write_lock(mm). 170 */ 171 172 unsigned long 173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 174 unsigned long len, unsigned long pgoff, 175 unsigned long flags) 176 { 177 unsigned long addr0 = 0; 178 struct hstate *h = hstate_file(file); 179 180 if (len & ~huge_page_mask(h)) 181 return -EINVAL; 182 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h))) 183 return -EINVAL; 184 if (addr) 185 addr0 = ALIGN(addr, huge_page_size(h)); 186 187 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 188 flags, 0); 189 } 190 191 /* 192 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset. 193 * Returns the maximum number of bytes one can read without touching the 1st raw 194 * HWPOISON page. 195 */ 196 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset, 197 size_t bytes) 198 { 199 struct page *page = folio_page(folio, offset / PAGE_SIZE); 200 size_t safe_bytes; 201 202 if (is_raw_hwpoison_page_in_hugepage(page)) 203 return 0; 204 /* Safe to read the remaining bytes in this page. */ 205 safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE); 206 page++; 207 208 /* Check each remaining page as long as we are not done yet. */ 209 for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++) 210 if (is_raw_hwpoison_page_in_hugepage(page)) 211 break; 212 213 return min(safe_bytes, bytes); 214 } 215 216 /* 217 * Support for read() - Find the page attached to f_mapping and copy out the 218 * data. This provides functionality similar to filemap_read(). 219 */ 220 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 221 { 222 struct file *file = iocb->ki_filp; 223 struct hstate *h = hstate_file(file); 224 struct address_space *mapping = file->f_mapping; 225 struct inode *inode = mapping->host; 226 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 227 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 228 unsigned long end_index; 229 loff_t isize; 230 ssize_t retval = 0; 231 232 while (iov_iter_count(to)) { 233 struct folio *folio; 234 size_t nr, copied, want; 235 236 /* nr is the maximum number of bytes to copy from this page */ 237 nr = huge_page_size(h); 238 isize = i_size_read(inode); 239 if (!isize) 240 break; 241 end_index = (isize - 1) >> huge_page_shift(h); 242 if (index > end_index) 243 break; 244 if (index == end_index) { 245 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 246 if (nr <= offset) 247 break; 248 } 249 nr = nr - offset; 250 251 /* Find the folio */ 252 folio = filemap_lock_hugetlb_folio(h, mapping, index); 253 if (IS_ERR(folio)) { 254 /* 255 * We have a HOLE, zero out the user-buffer for the 256 * length of the hole or request. 257 */ 258 copied = iov_iter_zero(nr, to); 259 } else { 260 folio_unlock(folio); 261 262 if (!folio_test_hwpoison(folio)) 263 want = nr; 264 else { 265 /* 266 * Adjust how many bytes safe to read without 267 * touching the 1st raw HWPOISON page after 268 * offset. 269 */ 270 want = adjust_range_hwpoison(folio, offset, nr); 271 if (want == 0) { 272 folio_put(folio); 273 retval = -EIO; 274 break; 275 } 276 } 277 278 /* 279 * We have the folio, copy it to user space buffer. 280 */ 281 copied = copy_folio_to_iter(folio, offset, want, to); 282 folio_put(folio); 283 } 284 offset += copied; 285 retval += copied; 286 if (copied != nr && iov_iter_count(to)) { 287 if (!retval) 288 retval = -EFAULT; 289 break; 290 } 291 index += offset >> huge_page_shift(h); 292 offset &= ~huge_page_mask(h); 293 } 294 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 295 return retval; 296 } 297 298 static int hugetlbfs_write_begin(const struct kiocb *iocb, 299 struct address_space *mapping, 300 loff_t pos, unsigned len, 301 struct folio **foliop, void **fsdata) 302 { 303 return -EINVAL; 304 } 305 306 static int hugetlbfs_write_end(const struct kiocb *iocb, 307 struct address_space *mapping, 308 loff_t pos, unsigned len, unsigned copied, 309 struct folio *folio, void *fsdata) 310 { 311 BUG(); 312 return -EINVAL; 313 } 314 315 static void hugetlb_delete_from_page_cache(struct folio *folio) 316 { 317 folio_clear_dirty(folio); 318 folio_clear_uptodate(folio); 319 filemap_remove_folio(folio); 320 } 321 322 /* 323 * Called with i_mmap_rwsem held for inode based vma maps. This makes 324 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 325 * mutex for the page in the mapping. So, we can not race with page being 326 * faulted into the vma. 327 */ 328 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma, 329 unsigned long addr, unsigned long pfn) 330 { 331 pte_t *ptep, pte; 332 333 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 334 if (!ptep) 335 return false; 336 337 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 338 if (huge_pte_none(pte) || !pte_present(pte)) 339 return false; 340 341 if (pte_pfn(pte) == pfn) 342 return true; 343 344 return false; 345 } 346 347 /* 348 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 349 * No, because the interval tree returns us only those vmas 350 * which overlap the truncated area starting at pgoff, 351 * and no vma on a 32-bit arch can span beyond the 4GB. 352 */ 353 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 354 { 355 unsigned long offset = 0; 356 357 if (vma->vm_pgoff < start) 358 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 359 360 return vma->vm_start + offset; 361 } 362 363 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 364 { 365 unsigned long t_end; 366 367 if (!end) 368 return vma->vm_end; 369 370 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 371 if (t_end > vma->vm_end) 372 t_end = vma->vm_end; 373 return t_end; 374 } 375 376 /* 377 * Called with hugetlb fault mutex held. Therefore, no more mappings to 378 * this folio can be created while executing the routine. 379 */ 380 static void hugetlb_unmap_file_folio(struct hstate *h, 381 struct address_space *mapping, 382 struct folio *folio, pgoff_t index) 383 { 384 struct rb_root_cached *root = &mapping->i_mmap; 385 struct hugetlb_vma_lock *vma_lock; 386 unsigned long pfn = folio_pfn(folio); 387 struct vm_area_struct *vma; 388 unsigned long v_start; 389 unsigned long v_end; 390 pgoff_t start, end; 391 392 start = index * pages_per_huge_page(h); 393 end = (index + 1) * pages_per_huge_page(h); 394 395 i_mmap_lock_write(mapping); 396 retry: 397 vma_lock = NULL; 398 vma_interval_tree_foreach(vma, root, start, end - 1) { 399 v_start = vma_offset_start(vma, start); 400 v_end = vma_offset_end(vma, end); 401 402 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn)) 403 continue; 404 405 if (!hugetlb_vma_trylock_write(vma)) { 406 vma_lock = vma->vm_private_data; 407 /* 408 * If we can not get vma lock, we need to drop 409 * immap_sema and take locks in order. First, 410 * take a ref on the vma_lock structure so that 411 * we can be guaranteed it will not go away when 412 * dropping immap_sema. 413 */ 414 kref_get(&vma_lock->refs); 415 break; 416 } 417 418 unmap_hugepage_range(vma, v_start, v_end, NULL, 419 ZAP_FLAG_DROP_MARKER); 420 hugetlb_vma_unlock_write(vma); 421 } 422 423 i_mmap_unlock_write(mapping); 424 425 if (vma_lock) { 426 /* 427 * Wait on vma_lock. We know it is still valid as we have 428 * a reference. We must 'open code' vma locking as we do 429 * not know if vma_lock is still attached to vma. 430 */ 431 down_write(&vma_lock->rw_sema); 432 i_mmap_lock_write(mapping); 433 434 vma = vma_lock->vma; 435 if (!vma) { 436 /* 437 * If lock is no longer attached to vma, then just 438 * unlock, drop our reference and retry looking for 439 * other vmas. 440 */ 441 up_write(&vma_lock->rw_sema); 442 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 443 goto retry; 444 } 445 446 /* 447 * vma_lock is still attached to vma. Check to see if vma 448 * still maps page and if so, unmap. 449 */ 450 v_start = vma_offset_start(vma, start); 451 v_end = vma_offset_end(vma, end); 452 if (hugetlb_vma_maps_pfn(vma, v_start, pfn)) 453 unmap_hugepage_range(vma, v_start, v_end, NULL, 454 ZAP_FLAG_DROP_MARKER); 455 456 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 457 hugetlb_vma_unlock_write(vma); 458 459 goto retry; 460 } 461 } 462 463 static void 464 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 465 zap_flags_t zap_flags) 466 { 467 struct vm_area_struct *vma; 468 469 /* 470 * end == 0 indicates that the entire range after start should be 471 * unmapped. Note, end is exclusive, whereas the interval tree takes 472 * an inclusive "last". 473 */ 474 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 475 unsigned long v_start; 476 unsigned long v_end; 477 478 if (!hugetlb_vma_trylock_write(vma)) 479 continue; 480 481 v_start = vma_offset_start(vma, start); 482 v_end = vma_offset_end(vma, end); 483 484 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 485 486 /* 487 * Note that vma lock only exists for shared/non-private 488 * vmas. Therefore, lock is not held when calling 489 * unmap_hugepage_range for private vmas. 490 */ 491 hugetlb_vma_unlock_write(vma); 492 } 493 } 494 495 /* 496 * Called with hugetlb fault mutex held. 497 * Returns true if page was actually removed, false otherwise. 498 */ 499 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 500 struct address_space *mapping, 501 struct folio *folio, pgoff_t index, 502 bool truncate_op) 503 { 504 bool ret = false; 505 506 /* 507 * If folio is mapped, it was faulted in after being 508 * unmapped in caller. Unmap (again) while holding 509 * the fault mutex. The mutex will prevent faults 510 * until we finish removing the folio. 511 */ 512 if (unlikely(folio_mapped(folio))) 513 hugetlb_unmap_file_folio(h, mapping, folio, index); 514 515 folio_lock(folio); 516 /* 517 * We must remove the folio from page cache before removing 518 * the region/ reserve map (hugetlb_unreserve_pages). In 519 * rare out of memory conditions, removal of the region/reserve 520 * map could fail. Correspondingly, the subpool and global 521 * reserve usage count can need to be adjusted. 522 */ 523 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 524 hugetlb_delete_from_page_cache(folio); 525 ret = true; 526 if (!truncate_op) { 527 if (unlikely(hugetlb_unreserve_pages(inode, index, 528 index + 1, 1))) 529 hugetlb_fix_reserve_counts(inode); 530 } 531 532 folio_unlock(folio); 533 return ret; 534 } 535 536 /* 537 * remove_inode_hugepages handles two distinct cases: truncation and hole 538 * punch. There are subtle differences in operation for each case. 539 * 540 * truncation is indicated by end of range being LLONG_MAX 541 * In this case, we first scan the range and release found pages. 542 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 543 * maps and global counts. Page faults can race with truncation. 544 * During faults, hugetlb_no_page() checks i_size before page allocation, 545 * and again after obtaining page table lock. It will 'back out' 546 * allocations in the truncated range. 547 * hole punch is indicated if end is not LLONG_MAX 548 * In the hole punch case we scan the range and release found pages. 549 * Only when releasing a page is the associated region/reserve map 550 * deleted. The region/reserve map for ranges without associated 551 * pages are not modified. Page faults can race with hole punch. 552 * This is indicated if we find a mapped page. 553 * Note: If the passed end of range value is beyond the end of file, but 554 * not LLONG_MAX this routine still performs a hole punch operation. 555 */ 556 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 557 loff_t lend) 558 { 559 struct hstate *h = hstate_inode(inode); 560 struct address_space *mapping = &inode->i_data; 561 const pgoff_t end = lend >> PAGE_SHIFT; 562 struct folio_batch fbatch; 563 pgoff_t next, index; 564 int i, freed = 0; 565 bool truncate_op = (lend == LLONG_MAX); 566 567 folio_batch_init(&fbatch); 568 next = lstart >> PAGE_SHIFT; 569 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 570 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 571 struct folio *folio = fbatch.folios[i]; 572 u32 hash = 0; 573 574 index = folio->index >> huge_page_order(h); 575 hash = hugetlb_fault_mutex_hash(mapping, index); 576 mutex_lock(&hugetlb_fault_mutex_table[hash]); 577 578 /* 579 * Remove folio that was part of folio_batch. 580 */ 581 if (remove_inode_single_folio(h, inode, mapping, folio, 582 index, truncate_op)) 583 freed++; 584 585 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 586 } 587 folio_batch_release(&fbatch); 588 cond_resched(); 589 } 590 591 if (truncate_op) 592 (void)hugetlb_unreserve_pages(inode, 593 lstart >> huge_page_shift(h), 594 LONG_MAX, freed); 595 } 596 597 static void hugetlbfs_evict_inode(struct inode *inode) 598 { 599 struct resv_map *resv_map; 600 601 trace_hugetlbfs_evict_inode(inode); 602 remove_inode_hugepages(inode, 0, LLONG_MAX); 603 604 /* 605 * Get the resv_map from the address space embedded in the inode. 606 * This is the address space which points to any resv_map allocated 607 * at inode creation time. If this is a device special inode, 608 * i_mapping may not point to the original address space. 609 */ 610 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 611 /* Only regular and link inodes have associated reserve maps */ 612 if (resv_map) 613 resv_map_release(&resv_map->refs); 614 clear_inode(inode); 615 } 616 617 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 618 { 619 pgoff_t pgoff; 620 struct address_space *mapping = inode->i_mapping; 621 struct hstate *h = hstate_inode(inode); 622 623 BUG_ON(offset & ~huge_page_mask(h)); 624 pgoff = offset >> PAGE_SHIFT; 625 626 i_size_write(inode, offset); 627 i_mmap_lock_write(mapping); 628 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 629 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 630 ZAP_FLAG_DROP_MARKER); 631 i_mmap_unlock_write(mapping); 632 remove_inode_hugepages(inode, offset, LLONG_MAX); 633 } 634 635 static void hugetlbfs_zero_partial_page(struct hstate *h, 636 struct address_space *mapping, 637 loff_t start, 638 loff_t end) 639 { 640 pgoff_t idx = start >> huge_page_shift(h); 641 struct folio *folio; 642 643 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 644 if (IS_ERR(folio)) 645 return; 646 647 start = start & ~huge_page_mask(h); 648 end = end & ~huge_page_mask(h); 649 if (!end) 650 end = huge_page_size(h); 651 652 folio_zero_segment(folio, (size_t)start, (size_t)end); 653 654 folio_unlock(folio); 655 folio_put(folio); 656 } 657 658 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 659 { 660 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 661 struct address_space *mapping = inode->i_mapping; 662 struct hstate *h = hstate_inode(inode); 663 loff_t hpage_size = huge_page_size(h); 664 loff_t hole_start, hole_end; 665 666 /* 667 * hole_start and hole_end indicate the full pages within the hole. 668 */ 669 hole_start = round_up(offset, hpage_size); 670 hole_end = round_down(offset + len, hpage_size); 671 672 inode_lock(inode); 673 674 /* protected by i_rwsem */ 675 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 676 inode_unlock(inode); 677 return -EPERM; 678 } 679 680 i_mmap_lock_write(mapping); 681 682 /* If range starts before first full page, zero partial page. */ 683 if (offset < hole_start) 684 hugetlbfs_zero_partial_page(h, mapping, 685 offset, min(offset + len, hole_start)); 686 687 /* Unmap users of full pages in the hole. */ 688 if (hole_end > hole_start) { 689 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 690 hugetlb_vmdelete_list(&mapping->i_mmap, 691 hole_start >> PAGE_SHIFT, 692 hole_end >> PAGE_SHIFT, 0); 693 } 694 695 /* If range extends beyond last full page, zero partial page. */ 696 if ((offset + len) > hole_end && (offset + len) > hole_start) 697 hugetlbfs_zero_partial_page(h, mapping, 698 hole_end, offset + len); 699 700 i_mmap_unlock_write(mapping); 701 702 /* Remove full pages from the file. */ 703 if (hole_end > hole_start) 704 remove_inode_hugepages(inode, hole_start, hole_end); 705 706 inode_unlock(inode); 707 708 return 0; 709 } 710 711 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 712 loff_t len) 713 { 714 struct inode *inode = file_inode(file); 715 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 716 struct address_space *mapping = inode->i_mapping; 717 struct hstate *h = hstate_inode(inode); 718 struct vm_area_struct pseudo_vma; 719 struct mm_struct *mm = current->mm; 720 loff_t hpage_size = huge_page_size(h); 721 unsigned long hpage_shift = huge_page_shift(h); 722 pgoff_t start, index, end; 723 int error; 724 u32 hash; 725 726 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 727 return -EOPNOTSUPP; 728 729 if (mode & FALLOC_FL_PUNCH_HOLE) { 730 error = hugetlbfs_punch_hole(inode, offset, len); 731 goto out_nolock; 732 } 733 734 /* 735 * Default preallocate case. 736 * For this range, start is rounded down and end is rounded up 737 * as well as being converted to page offsets. 738 */ 739 start = offset >> hpage_shift; 740 end = (offset + len + hpage_size - 1) >> hpage_shift; 741 742 inode_lock(inode); 743 744 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 745 error = inode_newsize_ok(inode, offset + len); 746 if (error) 747 goto out; 748 749 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 750 error = -EPERM; 751 goto out; 752 } 753 754 /* 755 * Initialize a pseudo vma as this is required by the huge page 756 * allocation routines. 757 */ 758 vma_init(&pseudo_vma, mm); 759 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 760 pseudo_vma.vm_file = file; 761 762 for (index = start; index < end; index++) { 763 /* 764 * This is supposed to be the vaddr where the page is being 765 * faulted in, but we have no vaddr here. 766 */ 767 struct folio *folio; 768 unsigned long addr; 769 770 cond_resched(); 771 772 /* 773 * fallocate(2) manpage permits EINTR; we may have been 774 * interrupted because we are using up too much memory. 775 */ 776 if (signal_pending(current)) { 777 error = -EINTR; 778 break; 779 } 780 781 /* addr is the offset within the file (zero based) */ 782 addr = index * hpage_size; 783 784 /* mutex taken here, fault path and hole punch */ 785 hash = hugetlb_fault_mutex_hash(mapping, index); 786 mutex_lock(&hugetlb_fault_mutex_table[hash]); 787 788 /* See if already present in mapping to avoid alloc/free */ 789 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 790 if (!IS_ERR(folio)) { 791 folio_put(folio); 792 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 793 continue; 794 } 795 796 /* 797 * Allocate folio without setting the avoid_reserve argument. 798 * There certainly are no reserves associated with the 799 * pseudo_vma. However, there could be shared mappings with 800 * reserves for the file at the inode level. If we fallocate 801 * folios in these areas, we need to consume the reserves 802 * to keep reservation accounting consistent. 803 */ 804 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); 805 if (IS_ERR(folio)) { 806 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 807 error = PTR_ERR(folio); 808 goto out; 809 } 810 folio_zero_user(folio, addr); 811 __folio_mark_uptodate(folio); 812 error = hugetlb_add_to_page_cache(folio, mapping, index); 813 if (unlikely(error)) { 814 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 815 folio_put(folio); 816 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 817 goto out; 818 } 819 820 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 821 822 folio_set_hugetlb_migratable(folio); 823 /* 824 * folio_unlock because locked by hugetlb_add_to_page_cache() 825 * folio_put() due to reference from alloc_hugetlb_folio() 826 */ 827 folio_unlock(folio); 828 folio_put(folio); 829 } 830 831 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 832 i_size_write(inode, offset + len); 833 inode_set_ctime_current(inode); 834 out: 835 inode_unlock(inode); 836 837 out_nolock: 838 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 839 return error; 840 } 841 842 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 843 struct dentry *dentry, struct iattr *attr) 844 { 845 struct inode *inode = d_inode(dentry); 846 struct hstate *h = hstate_inode(inode); 847 int error; 848 unsigned int ia_valid = attr->ia_valid; 849 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 850 851 error = setattr_prepare(idmap, dentry, attr); 852 if (error) 853 return error; 854 855 trace_hugetlbfs_setattr(inode, dentry, attr); 856 857 if (ia_valid & ATTR_SIZE) { 858 loff_t oldsize = inode->i_size; 859 loff_t newsize = attr->ia_size; 860 861 if (newsize & ~huge_page_mask(h)) 862 return -EINVAL; 863 /* protected by i_rwsem */ 864 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 865 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 866 return -EPERM; 867 hugetlb_vmtruncate(inode, newsize); 868 } 869 870 setattr_copy(idmap, inode, attr); 871 mark_inode_dirty(inode); 872 return 0; 873 } 874 875 static struct inode *hugetlbfs_get_root(struct super_block *sb, 876 struct hugetlbfs_fs_context *ctx) 877 { 878 struct inode *inode; 879 880 inode = new_inode(sb); 881 if (inode) { 882 inode->i_ino = get_next_ino(); 883 inode->i_mode = S_IFDIR | ctx->mode; 884 inode->i_uid = ctx->uid; 885 inode->i_gid = ctx->gid; 886 simple_inode_init_ts(inode); 887 inode->i_op = &hugetlbfs_dir_inode_operations; 888 inode->i_fop = &simple_dir_operations; 889 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 890 inc_nlink(inode); 891 lockdep_annotate_inode_mutex_key(inode); 892 } 893 return inode; 894 } 895 896 /* 897 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 898 * be taken from reclaim -- unlike regular filesystems. This needs an 899 * annotation because huge_pmd_share() does an allocation under hugetlb's 900 * i_mmap_rwsem. 901 */ 902 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 903 904 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 905 struct mnt_idmap *idmap, 906 struct inode *dir, 907 umode_t mode, dev_t dev) 908 { 909 struct inode *inode; 910 struct resv_map *resv_map = NULL; 911 912 /* 913 * Reserve maps are only needed for inodes that can have associated 914 * page allocations. 915 */ 916 if (S_ISREG(mode) || S_ISLNK(mode)) { 917 resv_map = resv_map_alloc(); 918 if (!resv_map) 919 return NULL; 920 } 921 922 inode = new_inode(sb); 923 if (inode) { 924 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 925 926 inode->i_ino = get_next_ino(); 927 inode_init_owner(idmap, inode, dir, mode); 928 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 929 &hugetlbfs_i_mmap_rwsem_key); 930 inode->i_mapping->a_ops = &hugetlbfs_aops; 931 simple_inode_init_ts(inode); 932 inode->i_mapping->i_private_data = resv_map; 933 info->seals = F_SEAL_SEAL; 934 switch (mode & S_IFMT) { 935 default: 936 init_special_inode(inode, mode, dev); 937 break; 938 case S_IFREG: 939 inode->i_op = &hugetlbfs_inode_operations; 940 inode->i_fop = &hugetlbfs_file_operations; 941 break; 942 case S_IFDIR: 943 inode->i_op = &hugetlbfs_dir_inode_operations; 944 inode->i_fop = &simple_dir_operations; 945 946 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 947 inc_nlink(inode); 948 break; 949 case S_IFLNK: 950 inode->i_op = &page_symlink_inode_operations; 951 inode_nohighmem(inode); 952 break; 953 } 954 lockdep_annotate_inode_mutex_key(inode); 955 trace_hugetlbfs_alloc_inode(inode, dir, mode); 956 } else { 957 if (resv_map) 958 kref_put(&resv_map->refs, resv_map_release); 959 } 960 961 return inode; 962 } 963 964 /* 965 * File creation. Allocate an inode, and we're done.. 966 */ 967 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 968 struct dentry *dentry, umode_t mode, dev_t dev) 969 { 970 struct inode *inode; 971 972 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 973 if (!inode) 974 return -ENOSPC; 975 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 976 d_instantiate(dentry, inode); 977 dget(dentry);/* Extra count - pin the dentry in core */ 978 return 0; 979 } 980 981 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 982 struct dentry *dentry, umode_t mode) 983 { 984 int retval = hugetlbfs_mknod(idmap, dir, dentry, 985 mode | S_IFDIR, 0); 986 if (!retval) 987 inc_nlink(dir); 988 return ERR_PTR(retval); 989 } 990 991 static int hugetlbfs_create(struct mnt_idmap *idmap, 992 struct inode *dir, struct dentry *dentry, 993 umode_t mode, bool excl) 994 { 995 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 996 } 997 998 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 999 struct inode *dir, struct file *file, 1000 umode_t mode) 1001 { 1002 struct inode *inode; 1003 1004 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1005 if (!inode) 1006 return -ENOSPC; 1007 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1008 d_tmpfile(file, inode); 1009 return finish_open_simple(file, 0); 1010 } 1011 1012 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1013 struct inode *dir, struct dentry *dentry, 1014 const char *symname) 1015 { 1016 const umode_t mode = S_IFLNK|S_IRWXUGO; 1017 struct inode *inode; 1018 int error = -ENOSPC; 1019 1020 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1021 if (inode) { 1022 int l = strlen(symname)+1; 1023 error = page_symlink(inode, symname, l); 1024 if (!error) { 1025 d_instantiate(dentry, inode); 1026 dget(dentry); 1027 } else 1028 iput(inode); 1029 } 1030 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1031 1032 return error; 1033 } 1034 1035 #ifdef CONFIG_MIGRATION 1036 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1037 struct folio *dst, struct folio *src, 1038 enum migrate_mode mode) 1039 { 1040 int rc; 1041 1042 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1043 if (rc) 1044 return rc; 1045 1046 if (hugetlb_folio_subpool(src)) { 1047 hugetlb_set_folio_subpool(dst, 1048 hugetlb_folio_subpool(src)); 1049 hugetlb_set_folio_subpool(src, NULL); 1050 } 1051 1052 folio_migrate_flags(dst, src); 1053 1054 return 0; 1055 } 1056 #else 1057 #define hugetlbfs_migrate_folio NULL 1058 #endif 1059 1060 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1061 struct folio *folio) 1062 { 1063 return 0; 1064 } 1065 1066 /* 1067 * Display the mount options in /proc/mounts. 1068 */ 1069 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1070 { 1071 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1072 struct hugepage_subpool *spool = sbinfo->spool; 1073 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1074 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1075 char mod; 1076 1077 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1078 seq_printf(m, ",uid=%u", 1079 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1080 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1081 seq_printf(m, ",gid=%u", 1082 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1083 if (sbinfo->mode != 0755) 1084 seq_printf(m, ",mode=%o", sbinfo->mode); 1085 if (sbinfo->max_inodes != -1) 1086 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1087 1088 hpage_size /= 1024; 1089 mod = 'K'; 1090 if (hpage_size >= 1024) { 1091 hpage_size /= 1024; 1092 mod = 'M'; 1093 } 1094 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1095 if (spool) { 1096 if (spool->max_hpages != -1) 1097 seq_printf(m, ",size=%llu", 1098 (unsigned long long)spool->max_hpages << hpage_shift); 1099 if (spool->min_hpages != -1) 1100 seq_printf(m, ",min_size=%llu", 1101 (unsigned long long)spool->min_hpages << hpage_shift); 1102 } 1103 return 0; 1104 } 1105 1106 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1107 { 1108 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1109 struct hstate *h = hstate_inode(d_inode(dentry)); 1110 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1111 1112 buf->f_fsid = u64_to_fsid(id); 1113 buf->f_type = HUGETLBFS_MAGIC; 1114 buf->f_bsize = huge_page_size(h); 1115 if (sbinfo) { 1116 spin_lock(&sbinfo->stat_lock); 1117 /* If no limits set, just report 0 or -1 for max/free/used 1118 * blocks, like simple_statfs() */ 1119 if (sbinfo->spool) { 1120 long free_pages; 1121 1122 spin_lock_irq(&sbinfo->spool->lock); 1123 buf->f_blocks = sbinfo->spool->max_hpages; 1124 free_pages = sbinfo->spool->max_hpages 1125 - sbinfo->spool->used_hpages; 1126 buf->f_bavail = buf->f_bfree = free_pages; 1127 spin_unlock_irq(&sbinfo->spool->lock); 1128 buf->f_files = sbinfo->max_inodes; 1129 buf->f_ffree = sbinfo->free_inodes; 1130 } 1131 spin_unlock(&sbinfo->stat_lock); 1132 } 1133 buf->f_namelen = NAME_MAX; 1134 return 0; 1135 } 1136 1137 static void hugetlbfs_put_super(struct super_block *sb) 1138 { 1139 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1140 1141 if (sbi) { 1142 sb->s_fs_info = NULL; 1143 1144 if (sbi->spool) 1145 hugepage_put_subpool(sbi->spool); 1146 1147 kfree(sbi); 1148 } 1149 } 1150 1151 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1152 { 1153 if (sbinfo->free_inodes >= 0) { 1154 spin_lock(&sbinfo->stat_lock); 1155 if (unlikely(!sbinfo->free_inodes)) { 1156 spin_unlock(&sbinfo->stat_lock); 1157 return 0; 1158 } 1159 sbinfo->free_inodes--; 1160 spin_unlock(&sbinfo->stat_lock); 1161 } 1162 1163 return 1; 1164 } 1165 1166 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1167 { 1168 if (sbinfo->free_inodes >= 0) { 1169 spin_lock(&sbinfo->stat_lock); 1170 sbinfo->free_inodes++; 1171 spin_unlock(&sbinfo->stat_lock); 1172 } 1173 } 1174 1175 1176 static struct kmem_cache *hugetlbfs_inode_cachep; 1177 1178 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1179 { 1180 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1181 struct hugetlbfs_inode_info *p; 1182 1183 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1184 return NULL; 1185 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1186 if (unlikely(!p)) { 1187 hugetlbfs_inc_free_inodes(sbinfo); 1188 return NULL; 1189 } 1190 return &p->vfs_inode; 1191 } 1192 1193 static void hugetlbfs_free_inode(struct inode *inode) 1194 { 1195 trace_hugetlbfs_free_inode(inode); 1196 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1197 } 1198 1199 static void hugetlbfs_destroy_inode(struct inode *inode) 1200 { 1201 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1202 } 1203 1204 static const struct address_space_operations hugetlbfs_aops = { 1205 .write_begin = hugetlbfs_write_begin, 1206 .write_end = hugetlbfs_write_end, 1207 .dirty_folio = noop_dirty_folio, 1208 .migrate_folio = hugetlbfs_migrate_folio, 1209 .error_remove_folio = hugetlbfs_error_remove_folio, 1210 }; 1211 1212 1213 static void init_once(void *foo) 1214 { 1215 struct hugetlbfs_inode_info *ei = foo; 1216 1217 inode_init_once(&ei->vfs_inode); 1218 } 1219 1220 static const struct file_operations hugetlbfs_file_operations = { 1221 .read_iter = hugetlbfs_read_iter, 1222 .mmap = hugetlbfs_file_mmap, 1223 .fsync = noop_fsync, 1224 .get_unmapped_area = hugetlb_get_unmapped_area, 1225 .llseek = default_llseek, 1226 .fallocate = hugetlbfs_fallocate, 1227 .fop_flags = FOP_HUGE_PAGES, 1228 }; 1229 1230 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1231 .create = hugetlbfs_create, 1232 .lookup = simple_lookup, 1233 .link = simple_link, 1234 .unlink = simple_unlink, 1235 .symlink = hugetlbfs_symlink, 1236 .mkdir = hugetlbfs_mkdir, 1237 .rmdir = simple_rmdir, 1238 .mknod = hugetlbfs_mknod, 1239 .rename = simple_rename, 1240 .setattr = hugetlbfs_setattr, 1241 .tmpfile = hugetlbfs_tmpfile, 1242 }; 1243 1244 static const struct inode_operations hugetlbfs_inode_operations = { 1245 .setattr = hugetlbfs_setattr, 1246 }; 1247 1248 static const struct super_operations hugetlbfs_ops = { 1249 .alloc_inode = hugetlbfs_alloc_inode, 1250 .free_inode = hugetlbfs_free_inode, 1251 .destroy_inode = hugetlbfs_destroy_inode, 1252 .evict_inode = hugetlbfs_evict_inode, 1253 .statfs = hugetlbfs_statfs, 1254 .put_super = hugetlbfs_put_super, 1255 .show_options = hugetlbfs_show_options, 1256 }; 1257 1258 /* 1259 * Convert size option passed from command line to number of huge pages 1260 * in the pool specified by hstate. Size option could be in bytes 1261 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1262 */ 1263 static long 1264 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1265 enum hugetlbfs_size_type val_type) 1266 { 1267 if (val_type == NO_SIZE) 1268 return -1; 1269 1270 if (val_type == SIZE_PERCENT) { 1271 size_opt <<= huge_page_shift(h); 1272 size_opt *= h->max_huge_pages; 1273 do_div(size_opt, 100); 1274 } 1275 1276 size_opt >>= huge_page_shift(h); 1277 return size_opt; 1278 } 1279 1280 /* 1281 * Parse one mount parameter. 1282 */ 1283 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1284 { 1285 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1286 struct fs_parse_result result; 1287 struct hstate *h; 1288 char *rest; 1289 unsigned long ps; 1290 int opt; 1291 1292 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1293 if (opt < 0) 1294 return opt; 1295 1296 switch (opt) { 1297 case Opt_uid: 1298 ctx->uid = result.uid; 1299 return 0; 1300 1301 case Opt_gid: 1302 ctx->gid = result.gid; 1303 return 0; 1304 1305 case Opt_mode: 1306 ctx->mode = result.uint_32 & 01777U; 1307 return 0; 1308 1309 case Opt_size: 1310 /* memparse() will accept a K/M/G without a digit */ 1311 if (!param->string || !isdigit(param->string[0])) 1312 goto bad_val; 1313 ctx->max_size_opt = memparse(param->string, &rest); 1314 ctx->max_val_type = SIZE_STD; 1315 if (*rest == '%') 1316 ctx->max_val_type = SIZE_PERCENT; 1317 return 0; 1318 1319 case Opt_nr_inodes: 1320 /* memparse() will accept a K/M/G without a digit */ 1321 if (!param->string || !isdigit(param->string[0])) 1322 goto bad_val; 1323 ctx->nr_inodes = memparse(param->string, &rest); 1324 return 0; 1325 1326 case Opt_pagesize: 1327 ps = memparse(param->string, &rest); 1328 h = size_to_hstate(ps); 1329 if (!h) { 1330 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1331 return -EINVAL; 1332 } 1333 ctx->hstate = h; 1334 return 0; 1335 1336 case Opt_min_size: 1337 /* memparse() will accept a K/M/G without a digit */ 1338 if (!param->string || !isdigit(param->string[0])) 1339 goto bad_val; 1340 ctx->min_size_opt = memparse(param->string, &rest); 1341 ctx->min_val_type = SIZE_STD; 1342 if (*rest == '%') 1343 ctx->min_val_type = SIZE_PERCENT; 1344 return 0; 1345 1346 default: 1347 return -EINVAL; 1348 } 1349 1350 bad_val: 1351 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1352 param->string, param->key); 1353 } 1354 1355 /* 1356 * Validate the parsed options. 1357 */ 1358 static int hugetlbfs_validate(struct fs_context *fc) 1359 { 1360 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1361 1362 /* 1363 * Use huge page pool size (in hstate) to convert the size 1364 * options to number of huge pages. If NO_SIZE, -1 is returned. 1365 */ 1366 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1367 ctx->max_size_opt, 1368 ctx->max_val_type); 1369 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1370 ctx->min_size_opt, 1371 ctx->min_val_type); 1372 1373 /* 1374 * If max_size was specified, then min_size must be smaller 1375 */ 1376 if (ctx->max_val_type > NO_SIZE && 1377 ctx->min_hpages > ctx->max_hpages) { 1378 pr_err("Minimum size can not be greater than maximum size\n"); 1379 return -EINVAL; 1380 } 1381 1382 return 0; 1383 } 1384 1385 static int 1386 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1387 { 1388 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1389 struct hugetlbfs_sb_info *sbinfo; 1390 1391 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1392 if (!sbinfo) 1393 return -ENOMEM; 1394 sb->s_fs_info = sbinfo; 1395 spin_lock_init(&sbinfo->stat_lock); 1396 sbinfo->hstate = ctx->hstate; 1397 sbinfo->max_inodes = ctx->nr_inodes; 1398 sbinfo->free_inodes = ctx->nr_inodes; 1399 sbinfo->spool = NULL; 1400 sbinfo->uid = ctx->uid; 1401 sbinfo->gid = ctx->gid; 1402 sbinfo->mode = ctx->mode; 1403 1404 /* 1405 * Allocate and initialize subpool if maximum or minimum size is 1406 * specified. Any needed reservations (for minimum size) are taken 1407 * when the subpool is created. 1408 */ 1409 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1410 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1411 ctx->max_hpages, 1412 ctx->min_hpages); 1413 if (!sbinfo->spool) 1414 goto out_free; 1415 } 1416 sb->s_maxbytes = MAX_LFS_FILESIZE; 1417 sb->s_blocksize = huge_page_size(ctx->hstate); 1418 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1419 sb->s_magic = HUGETLBFS_MAGIC; 1420 sb->s_op = &hugetlbfs_ops; 1421 sb->s_d_flags = DCACHE_DONTCACHE; 1422 sb->s_time_gran = 1; 1423 1424 /* 1425 * Due to the special and limited functionality of hugetlbfs, it does 1426 * not work well as a stacking filesystem. 1427 */ 1428 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1429 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1430 if (!sb->s_root) 1431 goto out_free; 1432 return 0; 1433 out_free: 1434 kfree(sbinfo->spool); 1435 kfree(sbinfo); 1436 return -ENOMEM; 1437 } 1438 1439 static int hugetlbfs_get_tree(struct fs_context *fc) 1440 { 1441 int err = hugetlbfs_validate(fc); 1442 if (err) 1443 return err; 1444 return get_tree_nodev(fc, hugetlbfs_fill_super); 1445 } 1446 1447 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1448 { 1449 kfree(fc->fs_private); 1450 } 1451 1452 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1453 .free = hugetlbfs_fs_context_free, 1454 .parse_param = hugetlbfs_parse_param, 1455 .get_tree = hugetlbfs_get_tree, 1456 }; 1457 1458 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1459 { 1460 struct hugetlbfs_fs_context *ctx; 1461 1462 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1463 if (!ctx) 1464 return -ENOMEM; 1465 1466 ctx->max_hpages = -1; /* No limit on size by default */ 1467 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1468 ctx->uid = current_fsuid(); 1469 ctx->gid = current_fsgid(); 1470 ctx->mode = 0755; 1471 ctx->hstate = &default_hstate; 1472 ctx->min_hpages = -1; /* No default minimum size */ 1473 ctx->max_val_type = NO_SIZE; 1474 ctx->min_val_type = NO_SIZE; 1475 fc->fs_private = ctx; 1476 fc->ops = &hugetlbfs_fs_context_ops; 1477 return 0; 1478 } 1479 1480 static struct file_system_type hugetlbfs_fs_type = { 1481 .name = "hugetlbfs", 1482 .init_fs_context = hugetlbfs_init_fs_context, 1483 .parameters = hugetlb_fs_parameters, 1484 .kill_sb = kill_litter_super, 1485 .fs_flags = FS_ALLOW_IDMAP, 1486 }; 1487 1488 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1489 1490 static int can_do_hugetlb_shm(void) 1491 { 1492 kgid_t shm_group; 1493 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1494 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1495 } 1496 1497 static int get_hstate_idx(int page_size_log) 1498 { 1499 struct hstate *h = hstate_sizelog(page_size_log); 1500 1501 if (!h) 1502 return -1; 1503 return hstate_index(h); 1504 } 1505 1506 /* 1507 * Note that size should be aligned to proper hugepage size in caller side, 1508 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1509 */ 1510 struct file *hugetlb_file_setup(const char *name, size_t size, 1511 vm_flags_t acctflag, int creat_flags, 1512 int page_size_log) 1513 { 1514 struct inode *inode; 1515 struct vfsmount *mnt; 1516 int hstate_idx; 1517 struct file *file; 1518 1519 hstate_idx = get_hstate_idx(page_size_log); 1520 if (hstate_idx < 0) 1521 return ERR_PTR(-ENODEV); 1522 1523 mnt = hugetlbfs_vfsmount[hstate_idx]; 1524 if (!mnt) 1525 return ERR_PTR(-ENOENT); 1526 1527 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1528 struct ucounts *ucounts = current_ucounts(); 1529 1530 if (user_shm_lock(size, ucounts)) { 1531 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1532 current->comm, current->pid); 1533 user_shm_unlock(size, ucounts); 1534 } 1535 return ERR_PTR(-EPERM); 1536 } 1537 1538 file = ERR_PTR(-ENOSPC); 1539 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1540 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1541 S_IFREG | S_IRWXUGO, 0); 1542 if (!inode) 1543 goto out; 1544 if (creat_flags == HUGETLB_SHMFS_INODE) 1545 inode->i_flags |= S_PRIVATE; 1546 1547 inode->i_size = size; 1548 clear_nlink(inode); 1549 1550 if (hugetlb_reserve_pages(inode, 0, 1551 size >> huge_page_shift(hstate_inode(inode)), NULL, 1552 acctflag) < 0) 1553 file = ERR_PTR(-ENOMEM); 1554 else 1555 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1556 &hugetlbfs_file_operations); 1557 if (!IS_ERR(file)) 1558 return file; 1559 1560 iput(inode); 1561 out: 1562 return file; 1563 } 1564 1565 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1566 { 1567 struct fs_context *fc; 1568 struct vfsmount *mnt; 1569 1570 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1571 if (IS_ERR(fc)) { 1572 mnt = ERR_CAST(fc); 1573 } else { 1574 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1575 ctx->hstate = h; 1576 mnt = fc_mount_longterm(fc); 1577 put_fs_context(fc); 1578 } 1579 if (IS_ERR(mnt)) 1580 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1581 huge_page_size(h) / SZ_1K); 1582 return mnt; 1583 } 1584 1585 static int __init init_hugetlbfs_fs(void) 1586 { 1587 struct vfsmount *mnt; 1588 struct hstate *h; 1589 int error; 1590 int i; 1591 1592 if (!hugepages_supported()) { 1593 pr_info("disabling because there are no supported hugepage sizes\n"); 1594 return -ENOTSUPP; 1595 } 1596 1597 error = -ENOMEM; 1598 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1599 sizeof(struct hugetlbfs_inode_info), 1600 0, SLAB_ACCOUNT, init_once); 1601 if (hugetlbfs_inode_cachep == NULL) 1602 goto out; 1603 1604 error = register_filesystem(&hugetlbfs_fs_type); 1605 if (error) 1606 goto out_free; 1607 1608 /* default hstate mount is required */ 1609 mnt = mount_one_hugetlbfs(&default_hstate); 1610 if (IS_ERR(mnt)) { 1611 error = PTR_ERR(mnt); 1612 goto out_unreg; 1613 } 1614 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1615 1616 /* other hstates are optional */ 1617 i = 0; 1618 for_each_hstate(h) { 1619 if (i == default_hstate_idx) { 1620 i++; 1621 continue; 1622 } 1623 1624 mnt = mount_one_hugetlbfs(h); 1625 if (IS_ERR(mnt)) 1626 hugetlbfs_vfsmount[i] = NULL; 1627 else 1628 hugetlbfs_vfsmount[i] = mnt; 1629 i++; 1630 } 1631 1632 return 0; 1633 1634 out_unreg: 1635 (void)unregister_filesystem(&hugetlbfs_fs_type); 1636 out_free: 1637 kmem_cache_destroy(hugetlbfs_inode_cachep); 1638 out: 1639 return error; 1640 } 1641 fs_initcall(init_hugetlbfs_fs) 1642