xref: /linux/fs/hugetlbfs/inode.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
49 
50 struct hugetlbfs_fs_context {
51 	struct hstate		*hstate;
52 	unsigned long long	max_size_opt;
53 	unsigned long long	min_size_opt;
54 	long			max_hpages;
55 	long			nr_inodes;
56 	long			min_hpages;
57 	enum hugetlbfs_size_type max_val_type;
58 	enum hugetlbfs_size_type min_val_type;
59 	kuid_t			uid;
60 	kgid_t			gid;
61 	umode_t			mode;
62 };
63 
64 int sysctl_hugetlb_shm_group;
65 
66 enum hugetlb_param {
67 	Opt_gid,
68 	Opt_min_size,
69 	Opt_mode,
70 	Opt_nr_inodes,
71 	Opt_pagesize,
72 	Opt_size,
73 	Opt_uid,
74 };
75 
76 static const struct fs_parameter_spec hugetlb_param_specs[] = {
77 	fsparam_u32   ("gid",		Opt_gid),
78 	fsparam_string("min_size",	Opt_min_size),
79 	fsparam_u32   ("mode",		Opt_mode),
80 	fsparam_string("nr_inodes",	Opt_nr_inodes),
81 	fsparam_string("pagesize",	Opt_pagesize),
82 	fsparam_string("size",		Opt_size),
83 	fsparam_u32   ("uid",		Opt_uid),
84 	{}
85 };
86 
87 static const struct fs_parameter_description hugetlb_fs_parameters = {
88 	.name		= "hugetlbfs",
89 	.specs		= hugetlb_param_specs,
90 };
91 
92 #ifdef CONFIG_NUMA
93 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
94 					struct inode *inode, pgoff_t index)
95 {
96 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
97 							index);
98 }
99 
100 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
101 {
102 	mpol_cond_put(vma->vm_policy);
103 }
104 #else
105 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
106 					struct inode *inode, pgoff_t index)
107 {
108 }
109 
110 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
111 {
112 }
113 #endif
114 
115 static void huge_pagevec_release(struct pagevec *pvec)
116 {
117 	int i;
118 
119 	for (i = 0; i < pagevec_count(pvec); ++i)
120 		put_page(pvec->pages[i]);
121 
122 	pagevec_reinit(pvec);
123 }
124 
125 /*
126  * Mask used when checking the page offset value passed in via system
127  * calls.  This value will be converted to a loff_t which is signed.
128  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
129  * value.  The extra bit (- 1 in the shift value) is to take the sign
130  * bit into account.
131  */
132 #define PGOFF_LOFFT_MAX \
133 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
134 
135 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
136 {
137 	struct inode *inode = file_inode(file);
138 	loff_t len, vma_len;
139 	int ret;
140 	struct hstate *h = hstate_file(file);
141 
142 	/*
143 	 * vma address alignment (but not the pgoff alignment) has
144 	 * already been checked by prepare_hugepage_range.  If you add
145 	 * any error returns here, do so after setting VM_HUGETLB, so
146 	 * is_vm_hugetlb_page tests below unmap_region go the right
147 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
148 	 * and ia64).
149 	 */
150 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
151 	vma->vm_ops = &hugetlb_vm_ops;
152 
153 	/*
154 	 * page based offset in vm_pgoff could be sufficiently large to
155 	 * overflow a loff_t when converted to byte offset.  This can
156 	 * only happen on architectures where sizeof(loff_t) ==
157 	 * sizeof(unsigned long).  So, only check in those instances.
158 	 */
159 	if (sizeof(unsigned long) == sizeof(loff_t)) {
160 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
161 			return -EINVAL;
162 	}
163 
164 	/* must be huge page aligned */
165 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
166 		return -EINVAL;
167 
168 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
169 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
170 	/* check for overflow */
171 	if (len < vma_len)
172 		return -EINVAL;
173 
174 	inode_lock(inode);
175 	file_accessed(file);
176 
177 	ret = -ENOMEM;
178 	if (hugetlb_reserve_pages(inode,
179 				vma->vm_pgoff >> huge_page_order(h),
180 				len >> huge_page_shift(h), vma,
181 				vma->vm_flags))
182 		goto out;
183 
184 	ret = 0;
185 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
186 		i_size_write(inode, len);
187 out:
188 	inode_unlock(inode);
189 
190 	return ret;
191 }
192 
193 /*
194  * Called under down_write(mmap_sem).
195  */
196 
197 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
198 static unsigned long
199 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
200 		unsigned long len, unsigned long pgoff, unsigned long flags)
201 {
202 	struct mm_struct *mm = current->mm;
203 	struct vm_area_struct *vma;
204 	struct hstate *h = hstate_file(file);
205 	struct vm_unmapped_area_info info;
206 
207 	if (len & ~huge_page_mask(h))
208 		return -EINVAL;
209 	if (len > TASK_SIZE)
210 		return -ENOMEM;
211 
212 	if (flags & MAP_FIXED) {
213 		if (prepare_hugepage_range(file, addr, len))
214 			return -EINVAL;
215 		return addr;
216 	}
217 
218 	if (addr) {
219 		addr = ALIGN(addr, huge_page_size(h));
220 		vma = find_vma(mm, addr);
221 		if (TASK_SIZE - len >= addr &&
222 		    (!vma || addr + len <= vm_start_gap(vma)))
223 			return addr;
224 	}
225 
226 	info.flags = 0;
227 	info.length = len;
228 	info.low_limit = TASK_UNMAPPED_BASE;
229 	info.high_limit = TASK_SIZE;
230 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
231 	info.align_offset = 0;
232 	return vm_unmapped_area(&info);
233 }
234 #endif
235 
236 static size_t
237 hugetlbfs_read_actor(struct page *page, unsigned long offset,
238 			struct iov_iter *to, unsigned long size)
239 {
240 	size_t copied = 0;
241 	int i, chunksize;
242 
243 	/* Find which 4k chunk and offset with in that chunk */
244 	i = offset >> PAGE_SHIFT;
245 	offset = offset & ~PAGE_MASK;
246 
247 	while (size) {
248 		size_t n;
249 		chunksize = PAGE_SIZE;
250 		if (offset)
251 			chunksize -= offset;
252 		if (chunksize > size)
253 			chunksize = size;
254 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
255 		copied += n;
256 		if (n != chunksize)
257 			return copied;
258 		offset = 0;
259 		size -= chunksize;
260 		i++;
261 	}
262 	return copied;
263 }
264 
265 /*
266  * Support for read() - Find the page attached to f_mapping and copy out the
267  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
268  * since it has PAGE_SIZE assumptions.
269  */
270 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
271 {
272 	struct file *file = iocb->ki_filp;
273 	struct hstate *h = hstate_file(file);
274 	struct address_space *mapping = file->f_mapping;
275 	struct inode *inode = mapping->host;
276 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
277 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
278 	unsigned long end_index;
279 	loff_t isize;
280 	ssize_t retval = 0;
281 
282 	while (iov_iter_count(to)) {
283 		struct page *page;
284 		size_t nr, copied;
285 
286 		/* nr is the maximum number of bytes to copy from this page */
287 		nr = huge_page_size(h);
288 		isize = i_size_read(inode);
289 		if (!isize)
290 			break;
291 		end_index = (isize - 1) >> huge_page_shift(h);
292 		if (index > end_index)
293 			break;
294 		if (index == end_index) {
295 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
296 			if (nr <= offset)
297 				break;
298 		}
299 		nr = nr - offset;
300 
301 		/* Find the page */
302 		page = find_lock_page(mapping, index);
303 		if (unlikely(page == NULL)) {
304 			/*
305 			 * We have a HOLE, zero out the user-buffer for the
306 			 * length of the hole or request.
307 			 */
308 			copied = iov_iter_zero(nr, to);
309 		} else {
310 			unlock_page(page);
311 
312 			/*
313 			 * We have the page, copy it to user space buffer.
314 			 */
315 			copied = hugetlbfs_read_actor(page, offset, to, nr);
316 			put_page(page);
317 		}
318 		offset += copied;
319 		retval += copied;
320 		if (copied != nr && iov_iter_count(to)) {
321 			if (!retval)
322 				retval = -EFAULT;
323 			break;
324 		}
325 		index += offset >> huge_page_shift(h);
326 		offset &= ~huge_page_mask(h);
327 	}
328 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
329 	return retval;
330 }
331 
332 static int hugetlbfs_write_begin(struct file *file,
333 			struct address_space *mapping,
334 			loff_t pos, unsigned len, unsigned flags,
335 			struct page **pagep, void **fsdata)
336 {
337 	return -EINVAL;
338 }
339 
340 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
341 			loff_t pos, unsigned len, unsigned copied,
342 			struct page *page, void *fsdata)
343 {
344 	BUG();
345 	return -EINVAL;
346 }
347 
348 static void remove_huge_page(struct page *page)
349 {
350 	ClearPageDirty(page);
351 	ClearPageUptodate(page);
352 	delete_from_page_cache(page);
353 }
354 
355 static void
356 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
357 {
358 	struct vm_area_struct *vma;
359 
360 	/*
361 	 * end == 0 indicates that the entire range after
362 	 * start should be unmapped.
363 	 */
364 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
365 		unsigned long v_offset;
366 		unsigned long v_end;
367 
368 		/*
369 		 * Can the expression below overflow on 32-bit arches?
370 		 * No, because the interval tree returns us only those vmas
371 		 * which overlap the truncated area starting at pgoff,
372 		 * and no vma on a 32-bit arch can span beyond the 4GB.
373 		 */
374 		if (vma->vm_pgoff < start)
375 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
376 		else
377 			v_offset = 0;
378 
379 		if (!end)
380 			v_end = vma->vm_end;
381 		else {
382 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
383 							+ vma->vm_start;
384 			if (v_end > vma->vm_end)
385 				v_end = vma->vm_end;
386 		}
387 
388 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
389 									NULL);
390 	}
391 }
392 
393 /*
394  * remove_inode_hugepages handles two distinct cases: truncation and hole
395  * punch.  There are subtle differences in operation for each case.
396  *
397  * truncation is indicated by end of range being LLONG_MAX
398  *	In this case, we first scan the range and release found pages.
399  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
400  *	maps and global counts.  Page faults can not race with truncation
401  *	in this routine.  hugetlb_no_page() prevents page faults in the
402  *	truncated range.  It checks i_size before allocation, and again after
403  *	with the page table lock for the page held.  The same lock must be
404  *	acquired to unmap a page.
405  * hole punch is indicated if end is not LLONG_MAX
406  *	In the hole punch case we scan the range and release found pages.
407  *	Only when releasing a page is the associated region/reserv map
408  *	deleted.  The region/reserv map for ranges without associated
409  *	pages are not modified.  Page faults can race with hole punch.
410  *	This is indicated if we find a mapped page.
411  * Note: If the passed end of range value is beyond the end of file, but
412  * not LLONG_MAX this routine still performs a hole punch operation.
413  */
414 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
415 				   loff_t lend)
416 {
417 	struct hstate *h = hstate_inode(inode);
418 	struct address_space *mapping = &inode->i_data;
419 	const pgoff_t start = lstart >> huge_page_shift(h);
420 	const pgoff_t end = lend >> huge_page_shift(h);
421 	struct vm_area_struct pseudo_vma;
422 	struct pagevec pvec;
423 	pgoff_t next, index;
424 	int i, freed = 0;
425 	bool truncate_op = (lend == LLONG_MAX);
426 
427 	vma_init(&pseudo_vma, current->mm);
428 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
429 	pagevec_init(&pvec);
430 	next = start;
431 	while (next < end) {
432 		/*
433 		 * When no more pages are found, we are done.
434 		 */
435 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
436 			break;
437 
438 		for (i = 0; i < pagevec_count(&pvec); ++i) {
439 			struct page *page = pvec.pages[i];
440 			u32 hash;
441 
442 			index = page->index;
443 			hash = hugetlb_fault_mutex_hash(mapping, index);
444 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
445 
446 			/*
447 			 * If page is mapped, it was faulted in after being
448 			 * unmapped in caller.  Unmap (again) now after taking
449 			 * the fault mutex.  The mutex will prevent faults
450 			 * until we finish removing the page.
451 			 *
452 			 * This race can only happen in the hole punch case.
453 			 * Getting here in a truncate operation is a bug.
454 			 */
455 			if (unlikely(page_mapped(page))) {
456 				BUG_ON(truncate_op);
457 
458 				i_mmap_lock_write(mapping);
459 				hugetlb_vmdelete_list(&mapping->i_mmap,
460 					index * pages_per_huge_page(h),
461 					(index + 1) * pages_per_huge_page(h));
462 				i_mmap_unlock_write(mapping);
463 			}
464 
465 			lock_page(page);
466 			/*
467 			 * We must free the huge page and remove from page
468 			 * cache (remove_huge_page) BEFORE removing the
469 			 * region/reserve map (hugetlb_unreserve_pages).  In
470 			 * rare out of memory conditions, removal of the
471 			 * region/reserve map could fail. Correspondingly,
472 			 * the subpool and global reserve usage count can need
473 			 * to be adjusted.
474 			 */
475 			VM_BUG_ON(PagePrivate(page));
476 			remove_huge_page(page);
477 			freed++;
478 			if (!truncate_op) {
479 				if (unlikely(hugetlb_unreserve_pages(inode,
480 							index, index + 1, 1)))
481 					hugetlb_fix_reserve_counts(inode);
482 			}
483 
484 			unlock_page(page);
485 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
486 		}
487 		huge_pagevec_release(&pvec);
488 		cond_resched();
489 	}
490 
491 	if (truncate_op)
492 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
493 }
494 
495 static void hugetlbfs_evict_inode(struct inode *inode)
496 {
497 	struct resv_map *resv_map;
498 
499 	remove_inode_hugepages(inode, 0, LLONG_MAX);
500 
501 	/*
502 	 * Get the resv_map from the address space embedded in the inode.
503 	 * This is the address space which points to any resv_map allocated
504 	 * at inode creation time.  If this is a device special inode,
505 	 * i_mapping may not point to the original address space.
506 	 */
507 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
508 	/* Only regular and link inodes have associated reserve maps */
509 	if (resv_map)
510 		resv_map_release(&resv_map->refs);
511 	clear_inode(inode);
512 }
513 
514 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
515 {
516 	pgoff_t pgoff;
517 	struct address_space *mapping = inode->i_mapping;
518 	struct hstate *h = hstate_inode(inode);
519 
520 	BUG_ON(offset & ~huge_page_mask(h));
521 	pgoff = offset >> PAGE_SHIFT;
522 
523 	i_size_write(inode, offset);
524 	i_mmap_lock_write(mapping);
525 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
526 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
527 	i_mmap_unlock_write(mapping);
528 	remove_inode_hugepages(inode, offset, LLONG_MAX);
529 	return 0;
530 }
531 
532 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
533 {
534 	struct hstate *h = hstate_inode(inode);
535 	loff_t hpage_size = huge_page_size(h);
536 	loff_t hole_start, hole_end;
537 
538 	/*
539 	 * For hole punch round up the beginning offset of the hole and
540 	 * round down the end.
541 	 */
542 	hole_start = round_up(offset, hpage_size);
543 	hole_end = round_down(offset + len, hpage_size);
544 
545 	if (hole_end > hole_start) {
546 		struct address_space *mapping = inode->i_mapping;
547 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
548 
549 		inode_lock(inode);
550 
551 		/* protected by i_mutex */
552 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
553 			inode_unlock(inode);
554 			return -EPERM;
555 		}
556 
557 		i_mmap_lock_write(mapping);
558 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
559 			hugetlb_vmdelete_list(&mapping->i_mmap,
560 						hole_start >> PAGE_SHIFT,
561 						hole_end  >> PAGE_SHIFT);
562 		i_mmap_unlock_write(mapping);
563 		remove_inode_hugepages(inode, hole_start, hole_end);
564 		inode_unlock(inode);
565 	}
566 
567 	return 0;
568 }
569 
570 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
571 				loff_t len)
572 {
573 	struct inode *inode = file_inode(file);
574 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
575 	struct address_space *mapping = inode->i_mapping;
576 	struct hstate *h = hstate_inode(inode);
577 	struct vm_area_struct pseudo_vma;
578 	struct mm_struct *mm = current->mm;
579 	loff_t hpage_size = huge_page_size(h);
580 	unsigned long hpage_shift = huge_page_shift(h);
581 	pgoff_t start, index, end;
582 	int error;
583 	u32 hash;
584 
585 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
586 		return -EOPNOTSUPP;
587 
588 	if (mode & FALLOC_FL_PUNCH_HOLE)
589 		return hugetlbfs_punch_hole(inode, offset, len);
590 
591 	/*
592 	 * Default preallocate case.
593 	 * For this range, start is rounded down and end is rounded up
594 	 * as well as being converted to page offsets.
595 	 */
596 	start = offset >> hpage_shift;
597 	end = (offset + len + hpage_size - 1) >> hpage_shift;
598 
599 	inode_lock(inode);
600 
601 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
602 	error = inode_newsize_ok(inode, offset + len);
603 	if (error)
604 		goto out;
605 
606 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
607 		error = -EPERM;
608 		goto out;
609 	}
610 
611 	/*
612 	 * Initialize a pseudo vma as this is required by the huge page
613 	 * allocation routines.  If NUMA is configured, use page index
614 	 * as input to create an allocation policy.
615 	 */
616 	vma_init(&pseudo_vma, mm);
617 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
618 	pseudo_vma.vm_file = file;
619 
620 	for (index = start; index < end; index++) {
621 		/*
622 		 * This is supposed to be the vaddr where the page is being
623 		 * faulted in, but we have no vaddr here.
624 		 */
625 		struct page *page;
626 		unsigned long addr;
627 		int avoid_reserve = 0;
628 
629 		cond_resched();
630 
631 		/*
632 		 * fallocate(2) manpage permits EINTR; we may have been
633 		 * interrupted because we are using up too much memory.
634 		 */
635 		if (signal_pending(current)) {
636 			error = -EINTR;
637 			break;
638 		}
639 
640 		/* Set numa allocation policy based on index */
641 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
642 
643 		/* addr is the offset within the file (zero based) */
644 		addr = index * hpage_size;
645 
646 		/* mutex taken here, fault path and hole punch */
647 		hash = hugetlb_fault_mutex_hash(mapping, index);
648 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
649 
650 		/* See if already present in mapping to avoid alloc/free */
651 		page = find_get_page(mapping, index);
652 		if (page) {
653 			put_page(page);
654 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
655 			hugetlb_drop_vma_policy(&pseudo_vma);
656 			continue;
657 		}
658 
659 		/* Allocate page and add to page cache */
660 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
661 		hugetlb_drop_vma_policy(&pseudo_vma);
662 		if (IS_ERR(page)) {
663 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
664 			error = PTR_ERR(page);
665 			goto out;
666 		}
667 		clear_huge_page(page, addr, pages_per_huge_page(h));
668 		__SetPageUptodate(page);
669 		error = huge_add_to_page_cache(page, mapping, index);
670 		if (unlikely(error)) {
671 			put_page(page);
672 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
673 			goto out;
674 		}
675 
676 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
677 
678 		/*
679 		 * unlock_page because locked by add_to_page_cache()
680 		 * page_put due to reference from alloc_huge_page()
681 		 */
682 		unlock_page(page);
683 		put_page(page);
684 	}
685 
686 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
687 		i_size_write(inode, offset + len);
688 	inode->i_ctime = current_time(inode);
689 out:
690 	inode_unlock(inode);
691 	return error;
692 }
693 
694 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
695 {
696 	struct inode *inode = d_inode(dentry);
697 	struct hstate *h = hstate_inode(inode);
698 	int error;
699 	unsigned int ia_valid = attr->ia_valid;
700 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
701 
702 	BUG_ON(!inode);
703 
704 	error = setattr_prepare(dentry, attr);
705 	if (error)
706 		return error;
707 
708 	if (ia_valid & ATTR_SIZE) {
709 		loff_t oldsize = inode->i_size;
710 		loff_t newsize = attr->ia_size;
711 
712 		if (newsize & ~huge_page_mask(h))
713 			return -EINVAL;
714 		/* protected by i_mutex */
715 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
716 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
717 			return -EPERM;
718 		error = hugetlb_vmtruncate(inode, newsize);
719 		if (error)
720 			return error;
721 	}
722 
723 	setattr_copy(inode, attr);
724 	mark_inode_dirty(inode);
725 	return 0;
726 }
727 
728 static struct inode *hugetlbfs_get_root(struct super_block *sb,
729 					struct hugetlbfs_fs_context *ctx)
730 {
731 	struct inode *inode;
732 
733 	inode = new_inode(sb);
734 	if (inode) {
735 		inode->i_ino = get_next_ino();
736 		inode->i_mode = S_IFDIR | ctx->mode;
737 		inode->i_uid = ctx->uid;
738 		inode->i_gid = ctx->gid;
739 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
740 		inode->i_op = &hugetlbfs_dir_inode_operations;
741 		inode->i_fop = &simple_dir_operations;
742 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
743 		inc_nlink(inode);
744 		lockdep_annotate_inode_mutex_key(inode);
745 	}
746 	return inode;
747 }
748 
749 /*
750  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
751  * be taken from reclaim -- unlike regular filesystems. This needs an
752  * annotation because huge_pmd_share() does an allocation under hugetlb's
753  * i_mmap_rwsem.
754  */
755 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
756 
757 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
758 					struct inode *dir,
759 					umode_t mode, dev_t dev)
760 {
761 	struct inode *inode;
762 	struct resv_map *resv_map = NULL;
763 
764 	/*
765 	 * Reserve maps are only needed for inodes that can have associated
766 	 * page allocations.
767 	 */
768 	if (S_ISREG(mode) || S_ISLNK(mode)) {
769 		resv_map = resv_map_alloc();
770 		if (!resv_map)
771 			return NULL;
772 	}
773 
774 	inode = new_inode(sb);
775 	if (inode) {
776 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
777 
778 		inode->i_ino = get_next_ino();
779 		inode_init_owner(inode, dir, mode);
780 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
781 				&hugetlbfs_i_mmap_rwsem_key);
782 		inode->i_mapping->a_ops = &hugetlbfs_aops;
783 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
784 		inode->i_mapping->private_data = resv_map;
785 		info->seals = F_SEAL_SEAL;
786 		switch (mode & S_IFMT) {
787 		default:
788 			init_special_inode(inode, mode, dev);
789 			break;
790 		case S_IFREG:
791 			inode->i_op = &hugetlbfs_inode_operations;
792 			inode->i_fop = &hugetlbfs_file_operations;
793 			break;
794 		case S_IFDIR:
795 			inode->i_op = &hugetlbfs_dir_inode_operations;
796 			inode->i_fop = &simple_dir_operations;
797 
798 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
799 			inc_nlink(inode);
800 			break;
801 		case S_IFLNK:
802 			inode->i_op = &page_symlink_inode_operations;
803 			inode_nohighmem(inode);
804 			break;
805 		}
806 		lockdep_annotate_inode_mutex_key(inode);
807 	} else {
808 		if (resv_map)
809 			kref_put(&resv_map->refs, resv_map_release);
810 	}
811 
812 	return inode;
813 }
814 
815 /*
816  * File creation. Allocate an inode, and we're done..
817  */
818 static int do_hugetlbfs_mknod(struct inode *dir,
819 			struct dentry *dentry,
820 			umode_t mode,
821 			dev_t dev,
822 			bool tmpfile)
823 {
824 	struct inode *inode;
825 	int error = -ENOSPC;
826 
827 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
828 	if (inode) {
829 		dir->i_ctime = dir->i_mtime = current_time(dir);
830 		if (tmpfile) {
831 			d_tmpfile(dentry, inode);
832 		} else {
833 			d_instantiate(dentry, inode);
834 			dget(dentry);/* Extra count - pin the dentry in core */
835 		}
836 		error = 0;
837 	}
838 	return error;
839 }
840 
841 static int hugetlbfs_mknod(struct inode *dir,
842 			struct dentry *dentry, umode_t mode, dev_t dev)
843 {
844 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
845 }
846 
847 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
848 {
849 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
850 	if (!retval)
851 		inc_nlink(dir);
852 	return retval;
853 }
854 
855 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
856 {
857 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
858 }
859 
860 static int hugetlbfs_tmpfile(struct inode *dir,
861 			struct dentry *dentry, umode_t mode)
862 {
863 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
864 }
865 
866 static int hugetlbfs_symlink(struct inode *dir,
867 			struct dentry *dentry, const char *symname)
868 {
869 	struct inode *inode;
870 	int error = -ENOSPC;
871 
872 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
873 	if (inode) {
874 		int l = strlen(symname)+1;
875 		error = page_symlink(inode, symname, l);
876 		if (!error) {
877 			d_instantiate(dentry, inode);
878 			dget(dentry);
879 		} else
880 			iput(inode);
881 	}
882 	dir->i_ctime = dir->i_mtime = current_time(dir);
883 
884 	return error;
885 }
886 
887 /*
888  * mark the head page dirty
889  */
890 static int hugetlbfs_set_page_dirty(struct page *page)
891 {
892 	struct page *head = compound_head(page);
893 
894 	SetPageDirty(head);
895 	return 0;
896 }
897 
898 static int hugetlbfs_migrate_page(struct address_space *mapping,
899 				struct page *newpage, struct page *page,
900 				enum migrate_mode mode)
901 {
902 	int rc;
903 
904 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
905 	if (rc != MIGRATEPAGE_SUCCESS)
906 		return rc;
907 
908 	/*
909 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
910 	 * new page.  PagePrivate is not associated with page_private for
911 	 * hugetlb pages and can not be set here as only page_huge_active
912 	 * pages can be migrated.
913 	 */
914 	if (page_private(page)) {
915 		set_page_private(newpage, page_private(page));
916 		set_page_private(page, 0);
917 	}
918 
919 	if (mode != MIGRATE_SYNC_NO_COPY)
920 		migrate_page_copy(newpage, page);
921 	else
922 		migrate_page_states(newpage, page);
923 
924 	return MIGRATEPAGE_SUCCESS;
925 }
926 
927 static int hugetlbfs_error_remove_page(struct address_space *mapping,
928 				struct page *page)
929 {
930 	struct inode *inode = mapping->host;
931 	pgoff_t index = page->index;
932 
933 	remove_huge_page(page);
934 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
935 		hugetlb_fix_reserve_counts(inode);
936 
937 	return 0;
938 }
939 
940 /*
941  * Display the mount options in /proc/mounts.
942  */
943 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
944 {
945 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
946 	struct hugepage_subpool *spool = sbinfo->spool;
947 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
948 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
949 	char mod;
950 
951 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
952 		seq_printf(m, ",uid=%u",
953 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
954 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
955 		seq_printf(m, ",gid=%u",
956 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
957 	if (sbinfo->mode != 0755)
958 		seq_printf(m, ",mode=%o", sbinfo->mode);
959 	if (sbinfo->max_inodes != -1)
960 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
961 
962 	hpage_size /= 1024;
963 	mod = 'K';
964 	if (hpage_size >= 1024) {
965 		hpage_size /= 1024;
966 		mod = 'M';
967 	}
968 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
969 	if (spool) {
970 		if (spool->max_hpages != -1)
971 			seq_printf(m, ",size=%llu",
972 				   (unsigned long long)spool->max_hpages << hpage_shift);
973 		if (spool->min_hpages != -1)
974 			seq_printf(m, ",min_size=%llu",
975 				   (unsigned long long)spool->min_hpages << hpage_shift);
976 	}
977 	return 0;
978 }
979 
980 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
981 {
982 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
983 	struct hstate *h = hstate_inode(d_inode(dentry));
984 
985 	buf->f_type = HUGETLBFS_MAGIC;
986 	buf->f_bsize = huge_page_size(h);
987 	if (sbinfo) {
988 		spin_lock(&sbinfo->stat_lock);
989 		/* If no limits set, just report 0 for max/free/used
990 		 * blocks, like simple_statfs() */
991 		if (sbinfo->spool) {
992 			long free_pages;
993 
994 			spin_lock(&sbinfo->spool->lock);
995 			buf->f_blocks = sbinfo->spool->max_hpages;
996 			free_pages = sbinfo->spool->max_hpages
997 				- sbinfo->spool->used_hpages;
998 			buf->f_bavail = buf->f_bfree = free_pages;
999 			spin_unlock(&sbinfo->spool->lock);
1000 			buf->f_files = sbinfo->max_inodes;
1001 			buf->f_ffree = sbinfo->free_inodes;
1002 		}
1003 		spin_unlock(&sbinfo->stat_lock);
1004 	}
1005 	buf->f_namelen = NAME_MAX;
1006 	return 0;
1007 }
1008 
1009 static void hugetlbfs_put_super(struct super_block *sb)
1010 {
1011 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1012 
1013 	if (sbi) {
1014 		sb->s_fs_info = NULL;
1015 
1016 		if (sbi->spool)
1017 			hugepage_put_subpool(sbi->spool);
1018 
1019 		kfree(sbi);
1020 	}
1021 }
1022 
1023 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1024 {
1025 	if (sbinfo->free_inodes >= 0) {
1026 		spin_lock(&sbinfo->stat_lock);
1027 		if (unlikely(!sbinfo->free_inodes)) {
1028 			spin_unlock(&sbinfo->stat_lock);
1029 			return 0;
1030 		}
1031 		sbinfo->free_inodes--;
1032 		spin_unlock(&sbinfo->stat_lock);
1033 	}
1034 
1035 	return 1;
1036 }
1037 
1038 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1039 {
1040 	if (sbinfo->free_inodes >= 0) {
1041 		spin_lock(&sbinfo->stat_lock);
1042 		sbinfo->free_inodes++;
1043 		spin_unlock(&sbinfo->stat_lock);
1044 	}
1045 }
1046 
1047 
1048 static struct kmem_cache *hugetlbfs_inode_cachep;
1049 
1050 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1051 {
1052 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1053 	struct hugetlbfs_inode_info *p;
1054 
1055 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1056 		return NULL;
1057 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1058 	if (unlikely(!p)) {
1059 		hugetlbfs_inc_free_inodes(sbinfo);
1060 		return NULL;
1061 	}
1062 
1063 	/*
1064 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1065 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1066 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1067 	 * in case of a quick call to destroy.
1068 	 *
1069 	 * Note that the policy is initialized even if we are creating a
1070 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1071 	 */
1072 	mpol_shared_policy_init(&p->policy, NULL);
1073 
1074 	return &p->vfs_inode;
1075 }
1076 
1077 static void hugetlbfs_free_inode(struct inode *inode)
1078 {
1079 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1080 }
1081 
1082 static void hugetlbfs_destroy_inode(struct inode *inode)
1083 {
1084 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1085 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1086 }
1087 
1088 static const struct address_space_operations hugetlbfs_aops = {
1089 	.write_begin	= hugetlbfs_write_begin,
1090 	.write_end	= hugetlbfs_write_end,
1091 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1092 	.migratepage    = hugetlbfs_migrate_page,
1093 	.error_remove_page	= hugetlbfs_error_remove_page,
1094 };
1095 
1096 
1097 static void init_once(void *foo)
1098 {
1099 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1100 
1101 	inode_init_once(&ei->vfs_inode);
1102 }
1103 
1104 const struct file_operations hugetlbfs_file_operations = {
1105 	.read_iter		= hugetlbfs_read_iter,
1106 	.mmap			= hugetlbfs_file_mmap,
1107 	.fsync			= noop_fsync,
1108 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1109 	.llseek			= default_llseek,
1110 	.fallocate		= hugetlbfs_fallocate,
1111 };
1112 
1113 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1114 	.create		= hugetlbfs_create,
1115 	.lookup		= simple_lookup,
1116 	.link		= simple_link,
1117 	.unlink		= simple_unlink,
1118 	.symlink	= hugetlbfs_symlink,
1119 	.mkdir		= hugetlbfs_mkdir,
1120 	.rmdir		= simple_rmdir,
1121 	.mknod		= hugetlbfs_mknod,
1122 	.rename		= simple_rename,
1123 	.setattr	= hugetlbfs_setattr,
1124 	.tmpfile	= hugetlbfs_tmpfile,
1125 };
1126 
1127 static const struct inode_operations hugetlbfs_inode_operations = {
1128 	.setattr	= hugetlbfs_setattr,
1129 };
1130 
1131 static const struct super_operations hugetlbfs_ops = {
1132 	.alloc_inode    = hugetlbfs_alloc_inode,
1133 	.free_inode     = hugetlbfs_free_inode,
1134 	.destroy_inode  = hugetlbfs_destroy_inode,
1135 	.evict_inode	= hugetlbfs_evict_inode,
1136 	.statfs		= hugetlbfs_statfs,
1137 	.put_super	= hugetlbfs_put_super,
1138 	.show_options	= hugetlbfs_show_options,
1139 };
1140 
1141 /*
1142  * Convert size option passed from command line to number of huge pages
1143  * in the pool specified by hstate.  Size option could be in bytes
1144  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1145  */
1146 static long
1147 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1148 			 enum hugetlbfs_size_type val_type)
1149 {
1150 	if (val_type == NO_SIZE)
1151 		return -1;
1152 
1153 	if (val_type == SIZE_PERCENT) {
1154 		size_opt <<= huge_page_shift(h);
1155 		size_opt *= h->max_huge_pages;
1156 		do_div(size_opt, 100);
1157 	}
1158 
1159 	size_opt >>= huge_page_shift(h);
1160 	return size_opt;
1161 }
1162 
1163 /*
1164  * Parse one mount parameter.
1165  */
1166 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1167 {
1168 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1169 	struct fs_parse_result result;
1170 	char *rest;
1171 	unsigned long ps;
1172 	int opt;
1173 
1174 	opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result);
1175 	if (opt < 0)
1176 		return opt;
1177 
1178 	switch (opt) {
1179 	case Opt_uid:
1180 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1181 		if (!uid_valid(ctx->uid))
1182 			goto bad_val;
1183 		return 0;
1184 
1185 	case Opt_gid:
1186 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1187 		if (!gid_valid(ctx->gid))
1188 			goto bad_val;
1189 		return 0;
1190 
1191 	case Opt_mode:
1192 		ctx->mode = result.uint_32 & 01777U;
1193 		return 0;
1194 
1195 	case Opt_size:
1196 		/* memparse() will accept a K/M/G without a digit */
1197 		if (!isdigit(param->string[0]))
1198 			goto bad_val;
1199 		ctx->max_size_opt = memparse(param->string, &rest);
1200 		ctx->max_val_type = SIZE_STD;
1201 		if (*rest == '%')
1202 			ctx->max_val_type = SIZE_PERCENT;
1203 		return 0;
1204 
1205 	case Opt_nr_inodes:
1206 		/* memparse() will accept a K/M/G without a digit */
1207 		if (!isdigit(param->string[0]))
1208 			goto bad_val;
1209 		ctx->nr_inodes = memparse(param->string, &rest);
1210 		return 0;
1211 
1212 	case Opt_pagesize:
1213 		ps = memparse(param->string, &rest);
1214 		ctx->hstate = size_to_hstate(ps);
1215 		if (!ctx->hstate) {
1216 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1217 			return -EINVAL;
1218 		}
1219 		return 0;
1220 
1221 	case Opt_min_size:
1222 		/* memparse() will accept a K/M/G without a digit */
1223 		if (!isdigit(param->string[0]))
1224 			goto bad_val;
1225 		ctx->min_size_opt = memparse(param->string, &rest);
1226 		ctx->min_val_type = SIZE_STD;
1227 		if (*rest == '%')
1228 			ctx->min_val_type = SIZE_PERCENT;
1229 		return 0;
1230 
1231 	default:
1232 		return -EINVAL;
1233 	}
1234 
1235 bad_val:
1236 	return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n",
1237 		      param->string, param->key);
1238 }
1239 
1240 /*
1241  * Validate the parsed options.
1242  */
1243 static int hugetlbfs_validate(struct fs_context *fc)
1244 {
1245 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1246 
1247 	/*
1248 	 * Use huge page pool size (in hstate) to convert the size
1249 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1250 	 */
1251 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1252 						   ctx->max_size_opt,
1253 						   ctx->max_val_type);
1254 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1255 						   ctx->min_size_opt,
1256 						   ctx->min_val_type);
1257 
1258 	/*
1259 	 * If max_size was specified, then min_size must be smaller
1260 	 */
1261 	if (ctx->max_val_type > NO_SIZE &&
1262 	    ctx->min_hpages > ctx->max_hpages) {
1263 		pr_err("Minimum size can not be greater than maximum size\n");
1264 		return -EINVAL;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static int
1271 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1272 {
1273 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1274 	struct hugetlbfs_sb_info *sbinfo;
1275 
1276 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1277 	if (!sbinfo)
1278 		return -ENOMEM;
1279 	sb->s_fs_info = sbinfo;
1280 	spin_lock_init(&sbinfo->stat_lock);
1281 	sbinfo->hstate		= ctx->hstate;
1282 	sbinfo->max_inodes	= ctx->nr_inodes;
1283 	sbinfo->free_inodes	= ctx->nr_inodes;
1284 	sbinfo->spool		= NULL;
1285 	sbinfo->uid		= ctx->uid;
1286 	sbinfo->gid		= ctx->gid;
1287 	sbinfo->mode		= ctx->mode;
1288 
1289 	/*
1290 	 * Allocate and initialize subpool if maximum or minimum size is
1291 	 * specified.  Any needed reservations (for minimim size) are taken
1292 	 * taken when the subpool is created.
1293 	 */
1294 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1295 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1296 						     ctx->max_hpages,
1297 						     ctx->min_hpages);
1298 		if (!sbinfo->spool)
1299 			goto out_free;
1300 	}
1301 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1302 	sb->s_blocksize = huge_page_size(ctx->hstate);
1303 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1304 	sb->s_magic = HUGETLBFS_MAGIC;
1305 	sb->s_op = &hugetlbfs_ops;
1306 	sb->s_time_gran = 1;
1307 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1308 	if (!sb->s_root)
1309 		goto out_free;
1310 	return 0;
1311 out_free:
1312 	kfree(sbinfo->spool);
1313 	kfree(sbinfo);
1314 	return -ENOMEM;
1315 }
1316 
1317 static int hugetlbfs_get_tree(struct fs_context *fc)
1318 {
1319 	int err = hugetlbfs_validate(fc);
1320 	if (err)
1321 		return err;
1322 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1323 }
1324 
1325 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1326 {
1327 	kfree(fc->fs_private);
1328 }
1329 
1330 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1331 	.free		= hugetlbfs_fs_context_free,
1332 	.parse_param	= hugetlbfs_parse_param,
1333 	.get_tree	= hugetlbfs_get_tree,
1334 };
1335 
1336 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1337 {
1338 	struct hugetlbfs_fs_context *ctx;
1339 
1340 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1341 	if (!ctx)
1342 		return -ENOMEM;
1343 
1344 	ctx->max_hpages	= -1; /* No limit on size by default */
1345 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1346 	ctx->uid	= current_fsuid();
1347 	ctx->gid	= current_fsgid();
1348 	ctx->mode	= 0755;
1349 	ctx->hstate	= &default_hstate;
1350 	ctx->min_hpages	= -1; /* No default minimum size */
1351 	ctx->max_val_type = NO_SIZE;
1352 	ctx->min_val_type = NO_SIZE;
1353 	fc->fs_private = ctx;
1354 	fc->ops	= &hugetlbfs_fs_context_ops;
1355 	return 0;
1356 }
1357 
1358 static struct file_system_type hugetlbfs_fs_type = {
1359 	.name			= "hugetlbfs",
1360 	.init_fs_context	= hugetlbfs_init_fs_context,
1361 	.parameters		= &hugetlb_fs_parameters,
1362 	.kill_sb		= kill_litter_super,
1363 };
1364 
1365 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1366 
1367 static int can_do_hugetlb_shm(void)
1368 {
1369 	kgid_t shm_group;
1370 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1371 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1372 }
1373 
1374 static int get_hstate_idx(int page_size_log)
1375 {
1376 	struct hstate *h = hstate_sizelog(page_size_log);
1377 
1378 	if (!h)
1379 		return -1;
1380 	return h - hstates;
1381 }
1382 
1383 /*
1384  * Note that size should be aligned to proper hugepage size in caller side,
1385  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1386  */
1387 struct file *hugetlb_file_setup(const char *name, size_t size,
1388 				vm_flags_t acctflag, struct user_struct **user,
1389 				int creat_flags, int page_size_log)
1390 {
1391 	struct inode *inode;
1392 	struct vfsmount *mnt;
1393 	int hstate_idx;
1394 	struct file *file;
1395 
1396 	hstate_idx = get_hstate_idx(page_size_log);
1397 	if (hstate_idx < 0)
1398 		return ERR_PTR(-ENODEV);
1399 
1400 	*user = NULL;
1401 	mnt = hugetlbfs_vfsmount[hstate_idx];
1402 	if (!mnt)
1403 		return ERR_PTR(-ENOENT);
1404 
1405 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1406 		*user = current_user();
1407 		if (user_shm_lock(size, *user)) {
1408 			task_lock(current);
1409 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1410 				current->comm, current->pid);
1411 			task_unlock(current);
1412 		} else {
1413 			*user = NULL;
1414 			return ERR_PTR(-EPERM);
1415 		}
1416 	}
1417 
1418 	file = ERR_PTR(-ENOSPC);
1419 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1420 	if (!inode)
1421 		goto out;
1422 	if (creat_flags == HUGETLB_SHMFS_INODE)
1423 		inode->i_flags |= S_PRIVATE;
1424 
1425 	inode->i_size = size;
1426 	clear_nlink(inode);
1427 
1428 	if (hugetlb_reserve_pages(inode, 0,
1429 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1430 			acctflag))
1431 		file = ERR_PTR(-ENOMEM);
1432 	else
1433 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1434 					&hugetlbfs_file_operations);
1435 	if (!IS_ERR(file))
1436 		return file;
1437 
1438 	iput(inode);
1439 out:
1440 	if (*user) {
1441 		user_shm_unlock(size, *user);
1442 		*user = NULL;
1443 	}
1444 	return file;
1445 }
1446 
1447 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1448 {
1449 	struct fs_context *fc;
1450 	struct vfsmount *mnt;
1451 
1452 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1453 	if (IS_ERR(fc)) {
1454 		mnt = ERR_CAST(fc);
1455 	} else {
1456 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1457 		ctx->hstate = h;
1458 		mnt = fc_mount(fc);
1459 		put_fs_context(fc);
1460 	}
1461 	if (IS_ERR(mnt))
1462 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1463 		       1U << (h->order + PAGE_SHIFT - 10));
1464 	return mnt;
1465 }
1466 
1467 static int __init init_hugetlbfs_fs(void)
1468 {
1469 	struct vfsmount *mnt;
1470 	struct hstate *h;
1471 	int error;
1472 	int i;
1473 
1474 	if (!hugepages_supported()) {
1475 		pr_info("disabling because there are no supported hugepage sizes\n");
1476 		return -ENOTSUPP;
1477 	}
1478 
1479 	error = -ENOMEM;
1480 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1481 					sizeof(struct hugetlbfs_inode_info),
1482 					0, SLAB_ACCOUNT, init_once);
1483 	if (hugetlbfs_inode_cachep == NULL)
1484 		goto out;
1485 
1486 	error = register_filesystem(&hugetlbfs_fs_type);
1487 	if (error)
1488 		goto out_free;
1489 
1490 	/* default hstate mount is required */
1491 	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1492 	if (IS_ERR(mnt)) {
1493 		error = PTR_ERR(mnt);
1494 		goto out_unreg;
1495 	}
1496 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1497 
1498 	/* other hstates are optional */
1499 	i = 0;
1500 	for_each_hstate(h) {
1501 		if (i == default_hstate_idx)
1502 			continue;
1503 
1504 		mnt = mount_one_hugetlbfs(h);
1505 		if (IS_ERR(mnt))
1506 			hugetlbfs_vfsmount[i] = NULL;
1507 		else
1508 			hugetlbfs_vfsmount[i] = mnt;
1509 		i++;
1510 	}
1511 
1512 	return 0;
1513 
1514  out_unreg:
1515 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1516  out_free:
1517 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1518  out:
1519 	return error;
1520 }
1521 fs_initcall(init_hugetlbfs_fs)
1522