1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_u32 ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_u32 ("uid", Opt_uid), 83 {} 84 }; 85 86 #ifdef CONFIG_NUMA 87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 88 struct inode *inode, pgoff_t index) 89 { 90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 91 index); 92 } 93 94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 95 { 96 mpol_cond_put(vma->vm_policy); 97 } 98 #else 99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 100 struct inode *inode, pgoff_t index) 101 { 102 } 103 104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 105 { 106 } 107 #endif 108 109 /* 110 * Mask used when checking the page offset value passed in via system 111 * calls. This value will be converted to a loff_t which is signed. 112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 113 * value. The extra bit (- 1 in the shift value) is to take the sign 114 * bit into account. 115 */ 116 #define PGOFF_LOFFT_MAX \ 117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 118 119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 120 { 121 struct inode *inode = file_inode(file); 122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 123 loff_t len, vma_len; 124 int ret; 125 struct hstate *h = hstate_file(file); 126 127 /* 128 * vma address alignment (but not the pgoff alignment) has 129 * already been checked by prepare_hugepage_range. If you add 130 * any error returns here, do so after setting VM_HUGETLB, so 131 * is_vm_hugetlb_page tests below unmap_region go the right 132 * way when do_mmap unwinds (may be important on powerpc 133 * and ia64). 134 */ 135 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 136 vma->vm_ops = &hugetlb_vm_ops; 137 138 ret = seal_check_future_write(info->seals, vma); 139 if (ret) 140 return ret; 141 142 /* 143 * page based offset in vm_pgoff could be sufficiently large to 144 * overflow a loff_t when converted to byte offset. This can 145 * only happen on architectures where sizeof(loff_t) == 146 * sizeof(unsigned long). So, only check in those instances. 147 */ 148 if (sizeof(unsigned long) == sizeof(loff_t)) { 149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 150 return -EINVAL; 151 } 152 153 /* must be huge page aligned */ 154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 155 return -EINVAL; 156 157 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 159 /* check for overflow */ 160 if (len < vma_len) 161 return -EINVAL; 162 163 inode_lock(inode); 164 file_accessed(file); 165 166 ret = -ENOMEM; 167 if (!hugetlb_reserve_pages(inode, 168 vma->vm_pgoff >> huge_page_order(h), 169 len >> huge_page_shift(h), vma, 170 vma->vm_flags)) 171 goto out; 172 173 ret = 0; 174 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 175 i_size_write(inode, len); 176 out: 177 inode_unlock(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called under mmap_write_lock(mm). 184 */ 185 186 static unsigned long 187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 188 unsigned long len, unsigned long pgoff, unsigned long flags) 189 { 190 struct hstate *h = hstate_file(file); 191 struct vm_unmapped_area_info info; 192 193 info.flags = 0; 194 info.length = len; 195 info.low_limit = current->mm->mmap_base; 196 info.high_limit = arch_get_mmap_end(addr, len, flags); 197 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 198 info.align_offset = 0; 199 return vm_unmapped_area(&info); 200 } 201 202 static unsigned long 203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 204 unsigned long len, unsigned long pgoff, unsigned long flags) 205 { 206 struct hstate *h = hstate_file(file); 207 struct vm_unmapped_area_info info; 208 209 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 210 info.length = len; 211 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 213 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 214 info.align_offset = 0; 215 addr = vm_unmapped_area(&info); 216 217 /* 218 * A failed mmap() very likely causes application failure, 219 * so fall back to the bottom-up function here. This scenario 220 * can happen with large stack limits and large mmap() 221 * allocations. 222 */ 223 if (unlikely(offset_in_page(addr))) { 224 VM_BUG_ON(addr != -ENOMEM); 225 info.flags = 0; 226 info.low_limit = current->mm->mmap_base; 227 info.high_limit = arch_get_mmap_end(addr, len, flags); 228 addr = vm_unmapped_area(&info); 229 } 230 231 return addr; 232 } 233 234 unsigned long 235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 236 unsigned long len, unsigned long pgoff, 237 unsigned long flags) 238 { 239 struct mm_struct *mm = current->mm; 240 struct vm_area_struct *vma; 241 struct hstate *h = hstate_file(file); 242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 243 244 if (len & ~huge_page_mask(h)) 245 return -EINVAL; 246 if (len > TASK_SIZE) 247 return -ENOMEM; 248 249 if (flags & MAP_FIXED) { 250 if (prepare_hugepage_range(file, addr, len)) 251 return -EINVAL; 252 return addr; 253 } 254 255 if (addr) { 256 addr = ALIGN(addr, huge_page_size(h)); 257 vma = find_vma(mm, addr); 258 if (mmap_end - len >= addr && 259 (!vma || addr + len <= vm_start_gap(vma))) 260 return addr; 261 } 262 263 /* 264 * Use mm->get_unmapped_area value as a hint to use topdown routine. 265 * If architectures have special needs, they should define their own 266 * version of hugetlb_get_unmapped_area. 267 */ 268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 269 return hugetlb_get_unmapped_area_topdown(file, addr, len, 270 pgoff, flags); 271 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 272 pgoff, flags); 273 } 274 275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 276 static unsigned long 277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 278 unsigned long len, unsigned long pgoff, 279 unsigned long flags) 280 { 281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 282 } 283 #endif 284 285 /* 286 * Support for read() - Find the page attached to f_mapping and copy out the 287 * data. This provides functionality similar to filemap_read(). 288 */ 289 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 290 { 291 struct file *file = iocb->ki_filp; 292 struct hstate *h = hstate_file(file); 293 struct address_space *mapping = file->f_mapping; 294 struct inode *inode = mapping->host; 295 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 296 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 297 unsigned long end_index; 298 loff_t isize; 299 ssize_t retval = 0; 300 301 while (iov_iter_count(to)) { 302 struct page *page; 303 size_t nr, copied; 304 305 /* nr is the maximum number of bytes to copy from this page */ 306 nr = huge_page_size(h); 307 isize = i_size_read(inode); 308 if (!isize) 309 break; 310 end_index = (isize - 1) >> huge_page_shift(h); 311 if (index > end_index) 312 break; 313 if (index == end_index) { 314 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 315 if (nr <= offset) 316 break; 317 } 318 nr = nr - offset; 319 320 /* Find the page */ 321 page = find_lock_page(mapping, index); 322 if (unlikely(page == NULL)) { 323 /* 324 * We have a HOLE, zero out the user-buffer for the 325 * length of the hole or request. 326 */ 327 copied = iov_iter_zero(nr, to); 328 } else { 329 unlock_page(page); 330 331 /* 332 * We have the page, copy it to user space buffer. 333 */ 334 copied = copy_page_to_iter(page, offset, nr, to); 335 put_page(page); 336 } 337 offset += copied; 338 retval += copied; 339 if (copied != nr && iov_iter_count(to)) { 340 if (!retval) 341 retval = -EFAULT; 342 break; 343 } 344 index += offset >> huge_page_shift(h); 345 offset &= ~huge_page_mask(h); 346 } 347 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 348 return retval; 349 } 350 351 static int hugetlbfs_write_begin(struct file *file, 352 struct address_space *mapping, 353 loff_t pos, unsigned len, 354 struct page **pagep, void **fsdata) 355 { 356 return -EINVAL; 357 } 358 359 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 360 loff_t pos, unsigned len, unsigned copied, 361 struct page *page, void *fsdata) 362 { 363 BUG(); 364 return -EINVAL; 365 } 366 367 static void hugetlb_delete_from_page_cache(struct page *page) 368 { 369 ClearPageDirty(page); 370 ClearPageUptodate(page); 371 delete_from_page_cache(page); 372 } 373 374 /* 375 * Called with i_mmap_rwsem held for inode based vma maps. This makes 376 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 377 * mutex for the page in the mapping. So, we can not race with page being 378 * faulted into the vma. 379 */ 380 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 381 unsigned long addr, struct page *page) 382 { 383 pte_t *ptep, pte; 384 385 ptep = huge_pte_offset(vma->vm_mm, addr, 386 huge_page_size(hstate_vma(vma))); 387 388 if (!ptep) 389 return false; 390 391 pte = huge_ptep_get(ptep); 392 if (huge_pte_none(pte) || !pte_present(pte)) 393 return false; 394 395 if (pte_page(pte) == page) 396 return true; 397 398 return false; 399 } 400 401 /* 402 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 403 * No, because the interval tree returns us only those vmas 404 * which overlap the truncated area starting at pgoff, 405 * and no vma on a 32-bit arch can span beyond the 4GB. 406 */ 407 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 408 { 409 if (vma->vm_pgoff < start) 410 return (start - vma->vm_pgoff) << PAGE_SHIFT; 411 else 412 return 0; 413 } 414 415 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 416 { 417 unsigned long t_end; 418 419 if (!end) 420 return vma->vm_end; 421 422 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 423 if (t_end > vma->vm_end) 424 t_end = vma->vm_end; 425 return t_end; 426 } 427 428 /* 429 * Called with hugetlb fault mutex held. Therefore, no more mappings to 430 * this folio can be created while executing the routine. 431 */ 432 static void hugetlb_unmap_file_folio(struct hstate *h, 433 struct address_space *mapping, 434 struct folio *folio, pgoff_t index) 435 { 436 struct rb_root_cached *root = &mapping->i_mmap; 437 struct hugetlb_vma_lock *vma_lock; 438 struct page *page = &folio->page; 439 struct vm_area_struct *vma; 440 unsigned long v_start; 441 unsigned long v_end; 442 pgoff_t start, end; 443 444 start = index * pages_per_huge_page(h); 445 end = (index + 1) * pages_per_huge_page(h); 446 447 i_mmap_lock_write(mapping); 448 retry: 449 vma_lock = NULL; 450 vma_interval_tree_foreach(vma, root, start, end - 1) { 451 v_start = vma_offset_start(vma, start); 452 v_end = vma_offset_end(vma, end); 453 454 if (!hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page)) 455 continue; 456 457 if (!hugetlb_vma_trylock_write(vma)) { 458 vma_lock = vma->vm_private_data; 459 /* 460 * If we can not get vma lock, we need to drop 461 * immap_sema and take locks in order. First, 462 * take a ref on the vma_lock structure so that 463 * we can be guaranteed it will not go away when 464 * dropping immap_sema. 465 */ 466 kref_get(&vma_lock->refs); 467 break; 468 } 469 470 unmap_hugepage_range(vma, vma->vm_start + v_start, v_end, 471 NULL, ZAP_FLAG_DROP_MARKER); 472 hugetlb_vma_unlock_write(vma); 473 } 474 475 i_mmap_unlock_write(mapping); 476 477 if (vma_lock) { 478 /* 479 * Wait on vma_lock. We know it is still valid as we have 480 * a reference. We must 'open code' vma locking as we do 481 * not know if vma_lock is still attached to vma. 482 */ 483 down_write(&vma_lock->rw_sema); 484 i_mmap_lock_write(mapping); 485 486 vma = vma_lock->vma; 487 if (!vma) { 488 /* 489 * If lock is no longer attached to vma, then just 490 * unlock, drop our reference and retry looking for 491 * other vmas. 492 */ 493 up_write(&vma_lock->rw_sema); 494 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 495 goto retry; 496 } 497 498 /* 499 * vma_lock is still attached to vma. Check to see if vma 500 * still maps page and if so, unmap. 501 */ 502 v_start = vma_offset_start(vma, start); 503 v_end = vma_offset_end(vma, end); 504 if (hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page)) 505 unmap_hugepage_range(vma, vma->vm_start + v_start, 506 v_end, NULL, 507 ZAP_FLAG_DROP_MARKER); 508 509 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 510 hugetlb_vma_unlock_write(vma); 511 512 goto retry; 513 } 514 } 515 516 static void 517 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 518 zap_flags_t zap_flags) 519 { 520 struct vm_area_struct *vma; 521 522 /* 523 * end == 0 indicates that the entire range after start should be 524 * unmapped. Note, end is exclusive, whereas the interval tree takes 525 * an inclusive "last". 526 */ 527 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 528 unsigned long v_start; 529 unsigned long v_end; 530 531 if (!hugetlb_vma_trylock_write(vma)) 532 continue; 533 534 v_start = vma_offset_start(vma, start); 535 v_end = vma_offset_end(vma, end); 536 537 unmap_hugepage_range(vma, vma->vm_start + v_start, v_end, 538 NULL, zap_flags); 539 540 /* 541 * Note that vma lock only exists for shared/non-private 542 * vmas. Therefore, lock is not held when calling 543 * unmap_hugepage_range for private vmas. 544 */ 545 hugetlb_vma_unlock_write(vma); 546 } 547 } 548 549 /* 550 * Called with hugetlb fault mutex held. 551 * Returns true if page was actually removed, false otherwise. 552 */ 553 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 554 struct address_space *mapping, 555 struct folio *folio, pgoff_t index, 556 bool truncate_op) 557 { 558 bool ret = false; 559 560 /* 561 * If folio is mapped, it was faulted in after being 562 * unmapped in caller. Unmap (again) while holding 563 * the fault mutex. The mutex will prevent faults 564 * until we finish removing the folio. 565 */ 566 if (unlikely(folio_mapped(folio))) 567 hugetlb_unmap_file_folio(h, mapping, folio, index); 568 569 folio_lock(folio); 570 /* 571 * We must remove the folio from page cache before removing 572 * the region/ reserve map (hugetlb_unreserve_pages). In 573 * rare out of memory conditions, removal of the region/reserve 574 * map could fail. Correspondingly, the subpool and global 575 * reserve usage count can need to be adjusted. 576 */ 577 VM_BUG_ON(HPageRestoreReserve(&folio->page)); 578 hugetlb_delete_from_page_cache(&folio->page); 579 ret = true; 580 if (!truncate_op) { 581 if (unlikely(hugetlb_unreserve_pages(inode, index, 582 index + 1, 1))) 583 hugetlb_fix_reserve_counts(inode); 584 } 585 586 folio_unlock(folio); 587 return ret; 588 } 589 590 /* 591 * remove_inode_hugepages handles two distinct cases: truncation and hole 592 * punch. There are subtle differences in operation for each case. 593 * 594 * truncation is indicated by end of range being LLONG_MAX 595 * In this case, we first scan the range and release found pages. 596 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 597 * maps and global counts. Page faults can race with truncation. 598 * During faults, hugetlb_no_page() checks i_size before page allocation, 599 * and again after obtaining page table lock. It will 'back out' 600 * allocations in the truncated range. 601 * hole punch is indicated if end is not LLONG_MAX 602 * In the hole punch case we scan the range and release found pages. 603 * Only when releasing a page is the associated region/reserve map 604 * deleted. The region/reserve map for ranges without associated 605 * pages are not modified. Page faults can race with hole punch. 606 * This is indicated if we find a mapped page. 607 * Note: If the passed end of range value is beyond the end of file, but 608 * not LLONG_MAX this routine still performs a hole punch operation. 609 */ 610 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 611 loff_t lend) 612 { 613 struct hstate *h = hstate_inode(inode); 614 struct address_space *mapping = &inode->i_data; 615 const pgoff_t start = lstart >> huge_page_shift(h); 616 const pgoff_t end = lend >> huge_page_shift(h); 617 struct folio_batch fbatch; 618 pgoff_t next, index; 619 int i, freed = 0; 620 bool truncate_op = (lend == LLONG_MAX); 621 622 folio_batch_init(&fbatch); 623 next = start; 624 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 625 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 626 struct folio *folio = fbatch.folios[i]; 627 u32 hash = 0; 628 629 index = folio->index; 630 hash = hugetlb_fault_mutex_hash(mapping, index); 631 mutex_lock(&hugetlb_fault_mutex_table[hash]); 632 633 /* 634 * Remove folio that was part of folio_batch. 635 */ 636 if (remove_inode_single_folio(h, inode, mapping, folio, 637 index, truncate_op)) 638 freed++; 639 640 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 641 } 642 folio_batch_release(&fbatch); 643 cond_resched(); 644 } 645 646 if (truncate_op) 647 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 648 } 649 650 static void hugetlbfs_evict_inode(struct inode *inode) 651 { 652 struct resv_map *resv_map; 653 654 remove_inode_hugepages(inode, 0, LLONG_MAX); 655 656 /* 657 * Get the resv_map from the address space embedded in the inode. 658 * This is the address space which points to any resv_map allocated 659 * at inode creation time. If this is a device special inode, 660 * i_mapping may not point to the original address space. 661 */ 662 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 663 /* Only regular and link inodes have associated reserve maps */ 664 if (resv_map) 665 resv_map_release(&resv_map->refs); 666 clear_inode(inode); 667 } 668 669 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 670 { 671 pgoff_t pgoff; 672 struct address_space *mapping = inode->i_mapping; 673 struct hstate *h = hstate_inode(inode); 674 675 BUG_ON(offset & ~huge_page_mask(h)); 676 pgoff = offset >> PAGE_SHIFT; 677 678 i_size_write(inode, offset); 679 i_mmap_lock_write(mapping); 680 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 681 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 682 ZAP_FLAG_DROP_MARKER); 683 i_mmap_unlock_write(mapping); 684 remove_inode_hugepages(inode, offset, LLONG_MAX); 685 } 686 687 static void hugetlbfs_zero_partial_page(struct hstate *h, 688 struct address_space *mapping, 689 loff_t start, 690 loff_t end) 691 { 692 pgoff_t idx = start >> huge_page_shift(h); 693 struct folio *folio; 694 695 folio = filemap_lock_folio(mapping, idx); 696 if (!folio) 697 return; 698 699 start = start & ~huge_page_mask(h); 700 end = end & ~huge_page_mask(h); 701 if (!end) 702 end = huge_page_size(h); 703 704 folio_zero_segment(folio, (size_t)start, (size_t)end); 705 706 folio_unlock(folio); 707 folio_put(folio); 708 } 709 710 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 711 { 712 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 713 struct address_space *mapping = inode->i_mapping; 714 struct hstate *h = hstate_inode(inode); 715 loff_t hpage_size = huge_page_size(h); 716 loff_t hole_start, hole_end; 717 718 /* 719 * hole_start and hole_end indicate the full pages within the hole. 720 */ 721 hole_start = round_up(offset, hpage_size); 722 hole_end = round_down(offset + len, hpage_size); 723 724 inode_lock(inode); 725 726 /* protected by i_rwsem */ 727 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 728 inode_unlock(inode); 729 return -EPERM; 730 } 731 732 i_mmap_lock_write(mapping); 733 734 /* If range starts before first full page, zero partial page. */ 735 if (offset < hole_start) 736 hugetlbfs_zero_partial_page(h, mapping, 737 offset, min(offset + len, hole_start)); 738 739 /* Unmap users of full pages in the hole. */ 740 if (hole_end > hole_start) { 741 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 742 hugetlb_vmdelete_list(&mapping->i_mmap, 743 hole_start >> PAGE_SHIFT, 744 hole_end >> PAGE_SHIFT, 0); 745 } 746 747 /* If range extends beyond last full page, zero partial page. */ 748 if ((offset + len) > hole_end && (offset + len) > hole_start) 749 hugetlbfs_zero_partial_page(h, mapping, 750 hole_end, offset + len); 751 752 i_mmap_unlock_write(mapping); 753 754 /* Remove full pages from the file. */ 755 if (hole_end > hole_start) 756 remove_inode_hugepages(inode, hole_start, hole_end); 757 758 inode_unlock(inode); 759 760 return 0; 761 } 762 763 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 764 loff_t len) 765 { 766 struct inode *inode = file_inode(file); 767 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 768 struct address_space *mapping = inode->i_mapping; 769 struct hstate *h = hstate_inode(inode); 770 struct vm_area_struct pseudo_vma; 771 struct mm_struct *mm = current->mm; 772 loff_t hpage_size = huge_page_size(h); 773 unsigned long hpage_shift = huge_page_shift(h); 774 pgoff_t start, index, end; 775 int error; 776 u32 hash; 777 778 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 779 return -EOPNOTSUPP; 780 781 if (mode & FALLOC_FL_PUNCH_HOLE) 782 return hugetlbfs_punch_hole(inode, offset, len); 783 784 /* 785 * Default preallocate case. 786 * For this range, start is rounded down and end is rounded up 787 * as well as being converted to page offsets. 788 */ 789 start = offset >> hpage_shift; 790 end = (offset + len + hpage_size - 1) >> hpage_shift; 791 792 inode_lock(inode); 793 794 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 795 error = inode_newsize_ok(inode, offset + len); 796 if (error) 797 goto out; 798 799 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 800 error = -EPERM; 801 goto out; 802 } 803 804 /* 805 * Initialize a pseudo vma as this is required by the huge page 806 * allocation routines. If NUMA is configured, use page index 807 * as input to create an allocation policy. 808 */ 809 vma_init(&pseudo_vma, mm); 810 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 811 pseudo_vma.vm_file = file; 812 813 for (index = start; index < end; index++) { 814 /* 815 * This is supposed to be the vaddr where the page is being 816 * faulted in, but we have no vaddr here. 817 */ 818 struct page *page; 819 unsigned long addr; 820 821 cond_resched(); 822 823 /* 824 * fallocate(2) manpage permits EINTR; we may have been 825 * interrupted because we are using up too much memory. 826 */ 827 if (signal_pending(current)) { 828 error = -EINTR; 829 break; 830 } 831 832 /* Set numa allocation policy based on index */ 833 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 834 835 /* addr is the offset within the file (zero based) */ 836 addr = index * hpage_size; 837 838 /* mutex taken here, fault path and hole punch */ 839 hash = hugetlb_fault_mutex_hash(mapping, index); 840 mutex_lock(&hugetlb_fault_mutex_table[hash]); 841 842 /* See if already present in mapping to avoid alloc/free */ 843 page = find_get_page(mapping, index); 844 if (page) { 845 put_page(page); 846 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 847 hugetlb_drop_vma_policy(&pseudo_vma); 848 continue; 849 } 850 851 /* 852 * Allocate page without setting the avoid_reserve argument. 853 * There certainly are no reserves associated with the 854 * pseudo_vma. However, there could be shared mappings with 855 * reserves for the file at the inode level. If we fallocate 856 * pages in these areas, we need to consume the reserves 857 * to keep reservation accounting consistent. 858 */ 859 page = alloc_huge_page(&pseudo_vma, addr, 0); 860 hugetlb_drop_vma_policy(&pseudo_vma); 861 if (IS_ERR(page)) { 862 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 863 error = PTR_ERR(page); 864 goto out; 865 } 866 clear_huge_page(page, addr, pages_per_huge_page(h)); 867 __SetPageUptodate(page); 868 error = hugetlb_add_to_page_cache(page, mapping, index); 869 if (unlikely(error)) { 870 restore_reserve_on_error(h, &pseudo_vma, addr, page); 871 put_page(page); 872 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 873 goto out; 874 } 875 876 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 877 878 SetHPageMigratable(page); 879 /* 880 * unlock_page because locked by hugetlb_add_to_page_cache() 881 * put_page() due to reference from alloc_huge_page() 882 */ 883 unlock_page(page); 884 put_page(page); 885 } 886 887 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 888 i_size_write(inode, offset + len); 889 inode->i_ctime = current_time(inode); 890 out: 891 inode_unlock(inode); 892 return error; 893 } 894 895 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 896 struct dentry *dentry, struct iattr *attr) 897 { 898 struct inode *inode = d_inode(dentry); 899 struct hstate *h = hstate_inode(inode); 900 int error; 901 unsigned int ia_valid = attr->ia_valid; 902 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 903 904 error = setattr_prepare(&init_user_ns, dentry, attr); 905 if (error) 906 return error; 907 908 if (ia_valid & ATTR_SIZE) { 909 loff_t oldsize = inode->i_size; 910 loff_t newsize = attr->ia_size; 911 912 if (newsize & ~huge_page_mask(h)) 913 return -EINVAL; 914 /* protected by i_rwsem */ 915 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 916 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 917 return -EPERM; 918 hugetlb_vmtruncate(inode, newsize); 919 } 920 921 setattr_copy(&init_user_ns, inode, attr); 922 mark_inode_dirty(inode); 923 return 0; 924 } 925 926 static struct inode *hugetlbfs_get_root(struct super_block *sb, 927 struct hugetlbfs_fs_context *ctx) 928 { 929 struct inode *inode; 930 931 inode = new_inode(sb); 932 if (inode) { 933 inode->i_ino = get_next_ino(); 934 inode->i_mode = S_IFDIR | ctx->mode; 935 inode->i_uid = ctx->uid; 936 inode->i_gid = ctx->gid; 937 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 938 inode->i_op = &hugetlbfs_dir_inode_operations; 939 inode->i_fop = &simple_dir_operations; 940 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 941 inc_nlink(inode); 942 lockdep_annotate_inode_mutex_key(inode); 943 } 944 return inode; 945 } 946 947 /* 948 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 949 * be taken from reclaim -- unlike regular filesystems. This needs an 950 * annotation because huge_pmd_share() does an allocation under hugetlb's 951 * i_mmap_rwsem. 952 */ 953 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 954 955 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 956 struct inode *dir, 957 umode_t mode, dev_t dev) 958 { 959 struct inode *inode; 960 struct resv_map *resv_map = NULL; 961 962 /* 963 * Reserve maps are only needed for inodes that can have associated 964 * page allocations. 965 */ 966 if (S_ISREG(mode) || S_ISLNK(mode)) { 967 resv_map = resv_map_alloc(); 968 if (!resv_map) 969 return NULL; 970 } 971 972 inode = new_inode(sb); 973 if (inode) { 974 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 975 976 inode->i_ino = get_next_ino(); 977 inode_init_owner(&init_user_ns, inode, dir, mode); 978 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 979 &hugetlbfs_i_mmap_rwsem_key); 980 inode->i_mapping->a_ops = &hugetlbfs_aops; 981 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 982 inode->i_mapping->private_data = resv_map; 983 info->seals = F_SEAL_SEAL; 984 switch (mode & S_IFMT) { 985 default: 986 init_special_inode(inode, mode, dev); 987 break; 988 case S_IFREG: 989 inode->i_op = &hugetlbfs_inode_operations; 990 inode->i_fop = &hugetlbfs_file_operations; 991 break; 992 case S_IFDIR: 993 inode->i_op = &hugetlbfs_dir_inode_operations; 994 inode->i_fop = &simple_dir_operations; 995 996 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 997 inc_nlink(inode); 998 break; 999 case S_IFLNK: 1000 inode->i_op = &page_symlink_inode_operations; 1001 inode_nohighmem(inode); 1002 break; 1003 } 1004 lockdep_annotate_inode_mutex_key(inode); 1005 } else { 1006 if (resv_map) 1007 kref_put(&resv_map->refs, resv_map_release); 1008 } 1009 1010 return inode; 1011 } 1012 1013 /* 1014 * File creation. Allocate an inode, and we're done.. 1015 */ 1016 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 1017 struct dentry *dentry, umode_t mode, dev_t dev) 1018 { 1019 struct inode *inode; 1020 1021 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 1022 if (!inode) 1023 return -ENOSPC; 1024 dir->i_ctime = dir->i_mtime = current_time(dir); 1025 d_instantiate(dentry, inode); 1026 dget(dentry);/* Extra count - pin the dentry in core */ 1027 return 0; 1028 } 1029 1030 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 1031 struct dentry *dentry, umode_t mode) 1032 { 1033 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 1034 mode | S_IFDIR, 0); 1035 if (!retval) 1036 inc_nlink(dir); 1037 return retval; 1038 } 1039 1040 static int hugetlbfs_create(struct user_namespace *mnt_userns, 1041 struct inode *dir, struct dentry *dentry, 1042 umode_t mode, bool excl) 1043 { 1044 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 1045 } 1046 1047 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 1048 struct inode *dir, struct file *file, 1049 umode_t mode) 1050 { 1051 struct inode *inode; 1052 1053 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0); 1054 if (!inode) 1055 return -ENOSPC; 1056 dir->i_ctime = dir->i_mtime = current_time(dir); 1057 d_tmpfile(file, inode); 1058 return finish_open_simple(file, 0); 1059 } 1060 1061 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 1062 struct inode *dir, struct dentry *dentry, 1063 const char *symname) 1064 { 1065 struct inode *inode; 1066 int error = -ENOSPC; 1067 1068 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 1069 if (inode) { 1070 int l = strlen(symname)+1; 1071 error = page_symlink(inode, symname, l); 1072 if (!error) { 1073 d_instantiate(dentry, inode); 1074 dget(dentry); 1075 } else 1076 iput(inode); 1077 } 1078 dir->i_ctime = dir->i_mtime = current_time(dir); 1079 1080 return error; 1081 } 1082 1083 #ifdef CONFIG_MIGRATION 1084 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1085 struct folio *dst, struct folio *src, 1086 enum migrate_mode mode) 1087 { 1088 int rc; 1089 1090 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1091 if (rc != MIGRATEPAGE_SUCCESS) 1092 return rc; 1093 1094 if (hugetlb_page_subpool(&src->page)) { 1095 hugetlb_set_page_subpool(&dst->page, 1096 hugetlb_page_subpool(&src->page)); 1097 hugetlb_set_page_subpool(&src->page, NULL); 1098 } 1099 1100 if (mode != MIGRATE_SYNC_NO_COPY) 1101 folio_migrate_copy(dst, src); 1102 else 1103 folio_migrate_flags(dst, src); 1104 1105 return MIGRATEPAGE_SUCCESS; 1106 } 1107 #else 1108 #define hugetlbfs_migrate_folio NULL 1109 #endif 1110 1111 static int hugetlbfs_error_remove_page(struct address_space *mapping, 1112 struct page *page) 1113 { 1114 struct inode *inode = mapping->host; 1115 pgoff_t index = page->index; 1116 1117 hugetlb_delete_from_page_cache(page); 1118 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 1119 hugetlb_fix_reserve_counts(inode); 1120 1121 return 0; 1122 } 1123 1124 /* 1125 * Display the mount options in /proc/mounts. 1126 */ 1127 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1128 { 1129 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1130 struct hugepage_subpool *spool = sbinfo->spool; 1131 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1132 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1133 char mod; 1134 1135 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1136 seq_printf(m, ",uid=%u", 1137 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1138 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1139 seq_printf(m, ",gid=%u", 1140 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1141 if (sbinfo->mode != 0755) 1142 seq_printf(m, ",mode=%o", sbinfo->mode); 1143 if (sbinfo->max_inodes != -1) 1144 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1145 1146 hpage_size /= 1024; 1147 mod = 'K'; 1148 if (hpage_size >= 1024) { 1149 hpage_size /= 1024; 1150 mod = 'M'; 1151 } 1152 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1153 if (spool) { 1154 if (spool->max_hpages != -1) 1155 seq_printf(m, ",size=%llu", 1156 (unsigned long long)spool->max_hpages << hpage_shift); 1157 if (spool->min_hpages != -1) 1158 seq_printf(m, ",min_size=%llu", 1159 (unsigned long long)spool->min_hpages << hpage_shift); 1160 } 1161 return 0; 1162 } 1163 1164 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1165 { 1166 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1167 struct hstate *h = hstate_inode(d_inode(dentry)); 1168 1169 buf->f_type = HUGETLBFS_MAGIC; 1170 buf->f_bsize = huge_page_size(h); 1171 if (sbinfo) { 1172 spin_lock(&sbinfo->stat_lock); 1173 /* If no limits set, just report 0 or -1 for max/free/used 1174 * blocks, like simple_statfs() */ 1175 if (sbinfo->spool) { 1176 long free_pages; 1177 1178 spin_lock_irq(&sbinfo->spool->lock); 1179 buf->f_blocks = sbinfo->spool->max_hpages; 1180 free_pages = sbinfo->spool->max_hpages 1181 - sbinfo->spool->used_hpages; 1182 buf->f_bavail = buf->f_bfree = free_pages; 1183 spin_unlock_irq(&sbinfo->spool->lock); 1184 buf->f_files = sbinfo->max_inodes; 1185 buf->f_ffree = sbinfo->free_inodes; 1186 } 1187 spin_unlock(&sbinfo->stat_lock); 1188 } 1189 buf->f_namelen = NAME_MAX; 1190 return 0; 1191 } 1192 1193 static void hugetlbfs_put_super(struct super_block *sb) 1194 { 1195 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1196 1197 if (sbi) { 1198 sb->s_fs_info = NULL; 1199 1200 if (sbi->spool) 1201 hugepage_put_subpool(sbi->spool); 1202 1203 kfree(sbi); 1204 } 1205 } 1206 1207 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1208 { 1209 if (sbinfo->free_inodes >= 0) { 1210 spin_lock(&sbinfo->stat_lock); 1211 if (unlikely(!sbinfo->free_inodes)) { 1212 spin_unlock(&sbinfo->stat_lock); 1213 return 0; 1214 } 1215 sbinfo->free_inodes--; 1216 spin_unlock(&sbinfo->stat_lock); 1217 } 1218 1219 return 1; 1220 } 1221 1222 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1223 { 1224 if (sbinfo->free_inodes >= 0) { 1225 spin_lock(&sbinfo->stat_lock); 1226 sbinfo->free_inodes++; 1227 spin_unlock(&sbinfo->stat_lock); 1228 } 1229 } 1230 1231 1232 static struct kmem_cache *hugetlbfs_inode_cachep; 1233 1234 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1235 { 1236 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1237 struct hugetlbfs_inode_info *p; 1238 1239 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1240 return NULL; 1241 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1242 if (unlikely(!p)) { 1243 hugetlbfs_inc_free_inodes(sbinfo); 1244 return NULL; 1245 } 1246 1247 /* 1248 * Any time after allocation, hugetlbfs_destroy_inode can be called 1249 * for the inode. mpol_free_shared_policy is unconditionally called 1250 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1251 * in case of a quick call to destroy. 1252 * 1253 * Note that the policy is initialized even if we are creating a 1254 * private inode. This simplifies hugetlbfs_destroy_inode. 1255 */ 1256 mpol_shared_policy_init(&p->policy, NULL); 1257 1258 return &p->vfs_inode; 1259 } 1260 1261 static void hugetlbfs_free_inode(struct inode *inode) 1262 { 1263 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1264 } 1265 1266 static void hugetlbfs_destroy_inode(struct inode *inode) 1267 { 1268 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1269 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1270 } 1271 1272 static const struct address_space_operations hugetlbfs_aops = { 1273 .write_begin = hugetlbfs_write_begin, 1274 .write_end = hugetlbfs_write_end, 1275 .dirty_folio = noop_dirty_folio, 1276 .migrate_folio = hugetlbfs_migrate_folio, 1277 .error_remove_page = hugetlbfs_error_remove_page, 1278 }; 1279 1280 1281 static void init_once(void *foo) 1282 { 1283 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1284 1285 inode_init_once(&ei->vfs_inode); 1286 } 1287 1288 const struct file_operations hugetlbfs_file_operations = { 1289 .read_iter = hugetlbfs_read_iter, 1290 .mmap = hugetlbfs_file_mmap, 1291 .fsync = noop_fsync, 1292 .get_unmapped_area = hugetlb_get_unmapped_area, 1293 .llseek = default_llseek, 1294 .fallocate = hugetlbfs_fallocate, 1295 }; 1296 1297 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1298 .create = hugetlbfs_create, 1299 .lookup = simple_lookup, 1300 .link = simple_link, 1301 .unlink = simple_unlink, 1302 .symlink = hugetlbfs_symlink, 1303 .mkdir = hugetlbfs_mkdir, 1304 .rmdir = simple_rmdir, 1305 .mknod = hugetlbfs_mknod, 1306 .rename = simple_rename, 1307 .setattr = hugetlbfs_setattr, 1308 .tmpfile = hugetlbfs_tmpfile, 1309 }; 1310 1311 static const struct inode_operations hugetlbfs_inode_operations = { 1312 .setattr = hugetlbfs_setattr, 1313 }; 1314 1315 static const struct super_operations hugetlbfs_ops = { 1316 .alloc_inode = hugetlbfs_alloc_inode, 1317 .free_inode = hugetlbfs_free_inode, 1318 .destroy_inode = hugetlbfs_destroy_inode, 1319 .evict_inode = hugetlbfs_evict_inode, 1320 .statfs = hugetlbfs_statfs, 1321 .put_super = hugetlbfs_put_super, 1322 .show_options = hugetlbfs_show_options, 1323 }; 1324 1325 /* 1326 * Convert size option passed from command line to number of huge pages 1327 * in the pool specified by hstate. Size option could be in bytes 1328 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1329 */ 1330 static long 1331 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1332 enum hugetlbfs_size_type val_type) 1333 { 1334 if (val_type == NO_SIZE) 1335 return -1; 1336 1337 if (val_type == SIZE_PERCENT) { 1338 size_opt <<= huge_page_shift(h); 1339 size_opt *= h->max_huge_pages; 1340 do_div(size_opt, 100); 1341 } 1342 1343 size_opt >>= huge_page_shift(h); 1344 return size_opt; 1345 } 1346 1347 /* 1348 * Parse one mount parameter. 1349 */ 1350 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1351 { 1352 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1353 struct fs_parse_result result; 1354 char *rest; 1355 unsigned long ps; 1356 int opt; 1357 1358 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1359 if (opt < 0) 1360 return opt; 1361 1362 switch (opt) { 1363 case Opt_uid: 1364 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1365 if (!uid_valid(ctx->uid)) 1366 goto bad_val; 1367 return 0; 1368 1369 case Opt_gid: 1370 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1371 if (!gid_valid(ctx->gid)) 1372 goto bad_val; 1373 return 0; 1374 1375 case Opt_mode: 1376 ctx->mode = result.uint_32 & 01777U; 1377 return 0; 1378 1379 case Opt_size: 1380 /* memparse() will accept a K/M/G without a digit */ 1381 if (!isdigit(param->string[0])) 1382 goto bad_val; 1383 ctx->max_size_opt = memparse(param->string, &rest); 1384 ctx->max_val_type = SIZE_STD; 1385 if (*rest == '%') 1386 ctx->max_val_type = SIZE_PERCENT; 1387 return 0; 1388 1389 case Opt_nr_inodes: 1390 /* memparse() will accept a K/M/G without a digit */ 1391 if (!isdigit(param->string[0])) 1392 goto bad_val; 1393 ctx->nr_inodes = memparse(param->string, &rest); 1394 return 0; 1395 1396 case Opt_pagesize: 1397 ps = memparse(param->string, &rest); 1398 ctx->hstate = size_to_hstate(ps); 1399 if (!ctx->hstate) { 1400 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1401 return -EINVAL; 1402 } 1403 return 0; 1404 1405 case Opt_min_size: 1406 /* memparse() will accept a K/M/G without a digit */ 1407 if (!isdigit(param->string[0])) 1408 goto bad_val; 1409 ctx->min_size_opt = memparse(param->string, &rest); 1410 ctx->min_val_type = SIZE_STD; 1411 if (*rest == '%') 1412 ctx->min_val_type = SIZE_PERCENT; 1413 return 0; 1414 1415 default: 1416 return -EINVAL; 1417 } 1418 1419 bad_val: 1420 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1421 param->string, param->key); 1422 } 1423 1424 /* 1425 * Validate the parsed options. 1426 */ 1427 static int hugetlbfs_validate(struct fs_context *fc) 1428 { 1429 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1430 1431 /* 1432 * Use huge page pool size (in hstate) to convert the size 1433 * options to number of huge pages. If NO_SIZE, -1 is returned. 1434 */ 1435 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1436 ctx->max_size_opt, 1437 ctx->max_val_type); 1438 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1439 ctx->min_size_opt, 1440 ctx->min_val_type); 1441 1442 /* 1443 * If max_size was specified, then min_size must be smaller 1444 */ 1445 if (ctx->max_val_type > NO_SIZE && 1446 ctx->min_hpages > ctx->max_hpages) { 1447 pr_err("Minimum size can not be greater than maximum size\n"); 1448 return -EINVAL; 1449 } 1450 1451 return 0; 1452 } 1453 1454 static int 1455 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1456 { 1457 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1458 struct hugetlbfs_sb_info *sbinfo; 1459 1460 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1461 if (!sbinfo) 1462 return -ENOMEM; 1463 sb->s_fs_info = sbinfo; 1464 spin_lock_init(&sbinfo->stat_lock); 1465 sbinfo->hstate = ctx->hstate; 1466 sbinfo->max_inodes = ctx->nr_inodes; 1467 sbinfo->free_inodes = ctx->nr_inodes; 1468 sbinfo->spool = NULL; 1469 sbinfo->uid = ctx->uid; 1470 sbinfo->gid = ctx->gid; 1471 sbinfo->mode = ctx->mode; 1472 1473 /* 1474 * Allocate and initialize subpool if maximum or minimum size is 1475 * specified. Any needed reservations (for minimum size) are taken 1476 * when the subpool is created. 1477 */ 1478 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1479 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1480 ctx->max_hpages, 1481 ctx->min_hpages); 1482 if (!sbinfo->spool) 1483 goto out_free; 1484 } 1485 sb->s_maxbytes = MAX_LFS_FILESIZE; 1486 sb->s_blocksize = huge_page_size(ctx->hstate); 1487 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1488 sb->s_magic = HUGETLBFS_MAGIC; 1489 sb->s_op = &hugetlbfs_ops; 1490 sb->s_time_gran = 1; 1491 1492 /* 1493 * Due to the special and limited functionality of hugetlbfs, it does 1494 * not work well as a stacking filesystem. 1495 */ 1496 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1497 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1498 if (!sb->s_root) 1499 goto out_free; 1500 return 0; 1501 out_free: 1502 kfree(sbinfo->spool); 1503 kfree(sbinfo); 1504 return -ENOMEM; 1505 } 1506 1507 static int hugetlbfs_get_tree(struct fs_context *fc) 1508 { 1509 int err = hugetlbfs_validate(fc); 1510 if (err) 1511 return err; 1512 return get_tree_nodev(fc, hugetlbfs_fill_super); 1513 } 1514 1515 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1516 { 1517 kfree(fc->fs_private); 1518 } 1519 1520 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1521 .free = hugetlbfs_fs_context_free, 1522 .parse_param = hugetlbfs_parse_param, 1523 .get_tree = hugetlbfs_get_tree, 1524 }; 1525 1526 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1527 { 1528 struct hugetlbfs_fs_context *ctx; 1529 1530 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1531 if (!ctx) 1532 return -ENOMEM; 1533 1534 ctx->max_hpages = -1; /* No limit on size by default */ 1535 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1536 ctx->uid = current_fsuid(); 1537 ctx->gid = current_fsgid(); 1538 ctx->mode = 0755; 1539 ctx->hstate = &default_hstate; 1540 ctx->min_hpages = -1; /* No default minimum size */ 1541 ctx->max_val_type = NO_SIZE; 1542 ctx->min_val_type = NO_SIZE; 1543 fc->fs_private = ctx; 1544 fc->ops = &hugetlbfs_fs_context_ops; 1545 return 0; 1546 } 1547 1548 static struct file_system_type hugetlbfs_fs_type = { 1549 .name = "hugetlbfs", 1550 .init_fs_context = hugetlbfs_init_fs_context, 1551 .parameters = hugetlb_fs_parameters, 1552 .kill_sb = kill_litter_super, 1553 }; 1554 1555 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1556 1557 static int can_do_hugetlb_shm(void) 1558 { 1559 kgid_t shm_group; 1560 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1561 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1562 } 1563 1564 static int get_hstate_idx(int page_size_log) 1565 { 1566 struct hstate *h = hstate_sizelog(page_size_log); 1567 1568 if (!h) 1569 return -1; 1570 return hstate_index(h); 1571 } 1572 1573 /* 1574 * Note that size should be aligned to proper hugepage size in caller side, 1575 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1576 */ 1577 struct file *hugetlb_file_setup(const char *name, size_t size, 1578 vm_flags_t acctflag, int creat_flags, 1579 int page_size_log) 1580 { 1581 struct inode *inode; 1582 struct vfsmount *mnt; 1583 int hstate_idx; 1584 struct file *file; 1585 1586 hstate_idx = get_hstate_idx(page_size_log); 1587 if (hstate_idx < 0) 1588 return ERR_PTR(-ENODEV); 1589 1590 mnt = hugetlbfs_vfsmount[hstate_idx]; 1591 if (!mnt) 1592 return ERR_PTR(-ENOENT); 1593 1594 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1595 struct ucounts *ucounts = current_ucounts(); 1596 1597 if (user_shm_lock(size, ucounts)) { 1598 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1599 current->comm, current->pid); 1600 user_shm_unlock(size, ucounts); 1601 } 1602 return ERR_PTR(-EPERM); 1603 } 1604 1605 file = ERR_PTR(-ENOSPC); 1606 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1607 if (!inode) 1608 goto out; 1609 if (creat_flags == HUGETLB_SHMFS_INODE) 1610 inode->i_flags |= S_PRIVATE; 1611 1612 inode->i_size = size; 1613 clear_nlink(inode); 1614 1615 if (!hugetlb_reserve_pages(inode, 0, 1616 size >> huge_page_shift(hstate_inode(inode)), NULL, 1617 acctflag)) 1618 file = ERR_PTR(-ENOMEM); 1619 else 1620 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1621 &hugetlbfs_file_operations); 1622 if (!IS_ERR(file)) 1623 return file; 1624 1625 iput(inode); 1626 out: 1627 return file; 1628 } 1629 1630 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1631 { 1632 struct fs_context *fc; 1633 struct vfsmount *mnt; 1634 1635 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1636 if (IS_ERR(fc)) { 1637 mnt = ERR_CAST(fc); 1638 } else { 1639 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1640 ctx->hstate = h; 1641 mnt = fc_mount(fc); 1642 put_fs_context(fc); 1643 } 1644 if (IS_ERR(mnt)) 1645 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1646 huge_page_size(h) / SZ_1K); 1647 return mnt; 1648 } 1649 1650 static int __init init_hugetlbfs_fs(void) 1651 { 1652 struct vfsmount *mnt; 1653 struct hstate *h; 1654 int error; 1655 int i; 1656 1657 if (!hugepages_supported()) { 1658 pr_info("disabling because there are no supported hugepage sizes\n"); 1659 return -ENOTSUPP; 1660 } 1661 1662 error = -ENOMEM; 1663 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1664 sizeof(struct hugetlbfs_inode_info), 1665 0, SLAB_ACCOUNT, init_once); 1666 if (hugetlbfs_inode_cachep == NULL) 1667 goto out; 1668 1669 error = register_filesystem(&hugetlbfs_fs_type); 1670 if (error) 1671 goto out_free; 1672 1673 /* default hstate mount is required */ 1674 mnt = mount_one_hugetlbfs(&default_hstate); 1675 if (IS_ERR(mnt)) { 1676 error = PTR_ERR(mnt); 1677 goto out_unreg; 1678 } 1679 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1680 1681 /* other hstates are optional */ 1682 i = 0; 1683 for_each_hstate(h) { 1684 if (i == default_hstate_idx) { 1685 i++; 1686 continue; 1687 } 1688 1689 mnt = mount_one_hugetlbfs(h); 1690 if (IS_ERR(mnt)) 1691 hugetlbfs_vfsmount[i] = NULL; 1692 else 1693 hugetlbfs_vfsmount[i] = mnt; 1694 i++; 1695 } 1696 1697 return 0; 1698 1699 out_unreg: 1700 (void)unregister_filesystem(&hugetlbfs_fs_type); 1701 out_free: 1702 kmem_cache_destroy(hugetlbfs_inode_cachep); 1703 out: 1704 return error; 1705 } 1706 fs_initcall(init_hugetlbfs_fs) 1707