xref: /linux/fs/hugetlbfs/inode.c (revision ca93bf607a44c1f009283dac4af7df0d9ae5e357)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 /*
87  * Mask used when checking the page offset value passed in via system
88  * calls.  This value will be converted to a loff_t which is signed.
89  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90  * value.  The extra bit (- 1 in the shift value) is to take the sign
91  * bit into account.
92  */
93 #define PGOFF_LOFFT_MAX \
94 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95 
96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97 {
98 	struct inode *inode = file_inode(file);
99 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
100 	loff_t len, vma_len;
101 	int ret;
102 	struct hstate *h = hstate_file(file);
103 	vm_flags_t vm_flags;
104 
105 	/*
106 	 * vma address alignment (but not the pgoff alignment) has
107 	 * already been checked by prepare_hugepage_range.  If you add
108 	 * any error returns here, do so after setting VM_HUGETLB, so
109 	 * is_vm_hugetlb_page tests below unmap_region go the right
110 	 * way when do_mmap unwinds (may be important on powerpc
111 	 * and ia64).
112 	 */
113 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
114 	vma->vm_ops = &hugetlb_vm_ops;
115 
116 	ret = seal_check_write(info->seals, vma);
117 	if (ret)
118 		return ret;
119 
120 	/*
121 	 * page based offset in vm_pgoff could be sufficiently large to
122 	 * overflow a loff_t when converted to byte offset.  This can
123 	 * only happen on architectures where sizeof(loff_t) ==
124 	 * sizeof(unsigned long).  So, only check in those instances.
125 	 */
126 	if (sizeof(unsigned long) == sizeof(loff_t)) {
127 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
128 			return -EINVAL;
129 	}
130 
131 	/* must be huge page aligned */
132 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
133 		return -EINVAL;
134 
135 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
136 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
137 	/* check for overflow */
138 	if (len < vma_len)
139 		return -EINVAL;
140 
141 	inode_lock(inode);
142 	file_accessed(file);
143 
144 	ret = -ENOMEM;
145 
146 	vm_flags = vma->vm_flags;
147 	/*
148 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
149 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
150 	 * flag S_PRIVATE is set.
151 	 */
152 	if (inode->i_flags & S_PRIVATE)
153 		vm_flags |= VM_NORESERVE;
154 
155 	if (!hugetlb_reserve_pages(inode,
156 				vma->vm_pgoff >> huge_page_order(h),
157 				len >> huge_page_shift(h), vma,
158 				vm_flags))
159 		goto out;
160 
161 	ret = 0;
162 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
163 		i_size_write(inode, len);
164 out:
165 	inode_unlock(inode);
166 
167 	return ret;
168 }
169 
170 /*
171  * Called under mmap_write_lock(mm).
172  */
173 
174 static unsigned long
175 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
176 		unsigned long len, unsigned long pgoff, unsigned long flags)
177 {
178 	struct hstate *h = hstate_file(file);
179 	struct vm_unmapped_area_info info;
180 
181 	info.flags = 0;
182 	info.length = len;
183 	info.low_limit = current->mm->mmap_base;
184 	info.high_limit = arch_get_mmap_end(addr, len, flags);
185 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
186 	info.align_offset = 0;
187 	return vm_unmapped_area(&info);
188 }
189 
190 static unsigned long
191 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
192 		unsigned long len, unsigned long pgoff, unsigned long flags)
193 {
194 	struct hstate *h = hstate_file(file);
195 	struct vm_unmapped_area_info info;
196 
197 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
198 	info.length = len;
199 	info.low_limit = PAGE_SIZE;
200 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
201 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
202 	info.align_offset = 0;
203 	addr = vm_unmapped_area(&info);
204 
205 	/*
206 	 * A failed mmap() very likely causes application failure,
207 	 * so fall back to the bottom-up function here. This scenario
208 	 * can happen with large stack limits and large mmap()
209 	 * allocations.
210 	 */
211 	if (unlikely(offset_in_page(addr))) {
212 		VM_BUG_ON(addr != -ENOMEM);
213 		info.flags = 0;
214 		info.low_limit = current->mm->mmap_base;
215 		info.high_limit = arch_get_mmap_end(addr, len, flags);
216 		addr = vm_unmapped_area(&info);
217 	}
218 
219 	return addr;
220 }
221 
222 unsigned long
223 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
224 				  unsigned long len, unsigned long pgoff,
225 				  unsigned long flags)
226 {
227 	struct mm_struct *mm = current->mm;
228 	struct vm_area_struct *vma;
229 	struct hstate *h = hstate_file(file);
230 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
231 
232 	if (len & ~huge_page_mask(h))
233 		return -EINVAL;
234 	if (len > TASK_SIZE)
235 		return -ENOMEM;
236 
237 	if (flags & MAP_FIXED) {
238 		if (prepare_hugepage_range(file, addr, len))
239 			return -EINVAL;
240 		return addr;
241 	}
242 
243 	if (addr) {
244 		addr = ALIGN(addr, huge_page_size(h));
245 		vma = find_vma(mm, addr);
246 		if (mmap_end - len >= addr &&
247 		    (!vma || addr + len <= vm_start_gap(vma)))
248 			return addr;
249 	}
250 
251 	/*
252 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
253 	 * If architectures have special needs, they should define their own
254 	 * version of hugetlb_get_unmapped_area.
255 	 */
256 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
257 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
258 				pgoff, flags);
259 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
260 			pgoff, flags);
261 }
262 
263 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
264 static unsigned long
265 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
266 			  unsigned long len, unsigned long pgoff,
267 			  unsigned long flags)
268 {
269 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
270 }
271 #endif
272 
273 /*
274  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
275  * Returns the maximum number of bytes one can read without touching the 1st raw
276  * HWPOISON subpage.
277  *
278  * The implementation borrows the iteration logic from copy_page_to_iter*.
279  */
280 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
281 {
282 	size_t n = 0;
283 	size_t res = 0;
284 
285 	/* First subpage to start the loop. */
286 	page = nth_page(page, offset / PAGE_SIZE);
287 	offset %= PAGE_SIZE;
288 	while (1) {
289 		if (is_raw_hwpoison_page_in_hugepage(page))
290 			break;
291 
292 		/* Safe to read n bytes without touching HWPOISON subpage. */
293 		n = min(bytes, (size_t)PAGE_SIZE - offset);
294 		res += n;
295 		bytes -= n;
296 		if (!bytes || !n)
297 			break;
298 		offset += n;
299 		if (offset == PAGE_SIZE) {
300 			page = nth_page(page, 1);
301 			offset = 0;
302 		}
303 	}
304 
305 	return res;
306 }
307 
308 /*
309  * Support for read() - Find the page attached to f_mapping and copy out the
310  * data. This provides functionality similar to filemap_read().
311  */
312 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
313 {
314 	struct file *file = iocb->ki_filp;
315 	struct hstate *h = hstate_file(file);
316 	struct address_space *mapping = file->f_mapping;
317 	struct inode *inode = mapping->host;
318 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
319 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
320 	unsigned long end_index;
321 	loff_t isize;
322 	ssize_t retval = 0;
323 
324 	while (iov_iter_count(to)) {
325 		struct folio *folio;
326 		size_t nr, copied, want;
327 
328 		/* nr is the maximum number of bytes to copy from this page */
329 		nr = huge_page_size(h);
330 		isize = i_size_read(inode);
331 		if (!isize)
332 			break;
333 		end_index = (isize - 1) >> huge_page_shift(h);
334 		if (index > end_index)
335 			break;
336 		if (index == end_index) {
337 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
338 			if (nr <= offset)
339 				break;
340 		}
341 		nr = nr - offset;
342 
343 		/* Find the folio */
344 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
345 		if (IS_ERR(folio)) {
346 			/*
347 			 * We have a HOLE, zero out the user-buffer for the
348 			 * length of the hole or request.
349 			 */
350 			copied = iov_iter_zero(nr, to);
351 		} else {
352 			folio_unlock(folio);
353 
354 			if (!folio_test_hwpoison(folio))
355 				want = nr;
356 			else {
357 				/*
358 				 * Adjust how many bytes safe to read without
359 				 * touching the 1st raw HWPOISON subpage after
360 				 * offset.
361 				 */
362 				want = adjust_range_hwpoison(&folio->page, offset, nr);
363 				if (want == 0) {
364 					folio_put(folio);
365 					retval = -EIO;
366 					break;
367 				}
368 			}
369 
370 			/*
371 			 * We have the folio, copy it to user space buffer.
372 			 */
373 			copied = copy_folio_to_iter(folio, offset, want, to);
374 			folio_put(folio);
375 		}
376 		offset += copied;
377 		retval += copied;
378 		if (copied != nr && iov_iter_count(to)) {
379 			if (!retval)
380 				retval = -EFAULT;
381 			break;
382 		}
383 		index += offset >> huge_page_shift(h);
384 		offset &= ~huge_page_mask(h);
385 	}
386 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
387 	return retval;
388 }
389 
390 static int hugetlbfs_write_begin(struct file *file,
391 			struct address_space *mapping,
392 			loff_t pos, unsigned len,
393 			struct page **pagep, void **fsdata)
394 {
395 	return -EINVAL;
396 }
397 
398 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
399 			loff_t pos, unsigned len, unsigned copied,
400 			struct page *page, void *fsdata)
401 {
402 	BUG();
403 	return -EINVAL;
404 }
405 
406 static void hugetlb_delete_from_page_cache(struct folio *folio)
407 {
408 	folio_clear_dirty(folio);
409 	folio_clear_uptodate(folio);
410 	filemap_remove_folio(folio);
411 }
412 
413 /*
414  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
415  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
416  * mutex for the page in the mapping.  So, we can not race with page being
417  * faulted into the vma.
418  */
419 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
420 				unsigned long addr, struct page *page)
421 {
422 	pte_t *ptep, pte;
423 
424 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
425 	if (!ptep)
426 		return false;
427 
428 	pte = huge_ptep_get(ptep);
429 	if (huge_pte_none(pte) || !pte_present(pte))
430 		return false;
431 
432 	if (pte_page(pte) == page)
433 		return true;
434 
435 	return false;
436 }
437 
438 /*
439  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
440  * No, because the interval tree returns us only those vmas
441  * which overlap the truncated area starting at pgoff,
442  * and no vma on a 32-bit arch can span beyond the 4GB.
443  */
444 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
445 {
446 	unsigned long offset = 0;
447 
448 	if (vma->vm_pgoff < start)
449 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
450 
451 	return vma->vm_start + offset;
452 }
453 
454 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
455 {
456 	unsigned long t_end;
457 
458 	if (!end)
459 		return vma->vm_end;
460 
461 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
462 	if (t_end > vma->vm_end)
463 		t_end = vma->vm_end;
464 	return t_end;
465 }
466 
467 /*
468  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
469  * this folio can be created while executing the routine.
470  */
471 static void hugetlb_unmap_file_folio(struct hstate *h,
472 					struct address_space *mapping,
473 					struct folio *folio, pgoff_t index)
474 {
475 	struct rb_root_cached *root = &mapping->i_mmap;
476 	struct hugetlb_vma_lock *vma_lock;
477 	struct page *page = &folio->page;
478 	struct vm_area_struct *vma;
479 	unsigned long v_start;
480 	unsigned long v_end;
481 	pgoff_t start, end;
482 
483 	start = index * pages_per_huge_page(h);
484 	end = (index + 1) * pages_per_huge_page(h);
485 
486 	i_mmap_lock_write(mapping);
487 retry:
488 	vma_lock = NULL;
489 	vma_interval_tree_foreach(vma, root, start, end - 1) {
490 		v_start = vma_offset_start(vma, start);
491 		v_end = vma_offset_end(vma, end);
492 
493 		if (!hugetlb_vma_maps_page(vma, v_start, page))
494 			continue;
495 
496 		if (!hugetlb_vma_trylock_write(vma)) {
497 			vma_lock = vma->vm_private_data;
498 			/*
499 			 * If we can not get vma lock, we need to drop
500 			 * immap_sema and take locks in order.  First,
501 			 * take a ref on the vma_lock structure so that
502 			 * we can be guaranteed it will not go away when
503 			 * dropping immap_sema.
504 			 */
505 			kref_get(&vma_lock->refs);
506 			break;
507 		}
508 
509 		unmap_hugepage_range(vma, v_start, v_end, NULL,
510 				     ZAP_FLAG_DROP_MARKER);
511 		hugetlb_vma_unlock_write(vma);
512 	}
513 
514 	i_mmap_unlock_write(mapping);
515 
516 	if (vma_lock) {
517 		/*
518 		 * Wait on vma_lock.  We know it is still valid as we have
519 		 * a reference.  We must 'open code' vma locking as we do
520 		 * not know if vma_lock is still attached to vma.
521 		 */
522 		down_write(&vma_lock->rw_sema);
523 		i_mmap_lock_write(mapping);
524 
525 		vma = vma_lock->vma;
526 		if (!vma) {
527 			/*
528 			 * If lock is no longer attached to vma, then just
529 			 * unlock, drop our reference and retry looking for
530 			 * other vmas.
531 			 */
532 			up_write(&vma_lock->rw_sema);
533 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
534 			goto retry;
535 		}
536 
537 		/*
538 		 * vma_lock is still attached to vma.  Check to see if vma
539 		 * still maps page and if so, unmap.
540 		 */
541 		v_start = vma_offset_start(vma, start);
542 		v_end = vma_offset_end(vma, end);
543 		if (hugetlb_vma_maps_page(vma, v_start, page))
544 			unmap_hugepage_range(vma, v_start, v_end, NULL,
545 					     ZAP_FLAG_DROP_MARKER);
546 
547 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
548 		hugetlb_vma_unlock_write(vma);
549 
550 		goto retry;
551 	}
552 }
553 
554 static void
555 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
556 		      zap_flags_t zap_flags)
557 {
558 	struct vm_area_struct *vma;
559 
560 	/*
561 	 * end == 0 indicates that the entire range after start should be
562 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
563 	 * an inclusive "last".
564 	 */
565 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
566 		unsigned long v_start;
567 		unsigned long v_end;
568 
569 		if (!hugetlb_vma_trylock_write(vma))
570 			continue;
571 
572 		v_start = vma_offset_start(vma, start);
573 		v_end = vma_offset_end(vma, end);
574 
575 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
576 
577 		/*
578 		 * Note that vma lock only exists for shared/non-private
579 		 * vmas.  Therefore, lock is not held when calling
580 		 * unmap_hugepage_range for private vmas.
581 		 */
582 		hugetlb_vma_unlock_write(vma);
583 	}
584 }
585 
586 /*
587  * Called with hugetlb fault mutex held.
588  * Returns true if page was actually removed, false otherwise.
589  */
590 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
591 					struct address_space *mapping,
592 					struct folio *folio, pgoff_t index,
593 					bool truncate_op)
594 {
595 	bool ret = false;
596 
597 	/*
598 	 * If folio is mapped, it was faulted in after being
599 	 * unmapped in caller.  Unmap (again) while holding
600 	 * the fault mutex.  The mutex will prevent faults
601 	 * until we finish removing the folio.
602 	 */
603 	if (unlikely(folio_mapped(folio)))
604 		hugetlb_unmap_file_folio(h, mapping, folio, index);
605 
606 	folio_lock(folio);
607 	/*
608 	 * We must remove the folio from page cache before removing
609 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
610 	 * rare out of memory conditions, removal of the region/reserve
611 	 * map could fail.  Correspondingly, the subpool and global
612 	 * reserve usage count can need to be adjusted.
613 	 */
614 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
615 	hugetlb_delete_from_page_cache(folio);
616 	ret = true;
617 	if (!truncate_op) {
618 		if (unlikely(hugetlb_unreserve_pages(inode, index,
619 							index + 1, 1)))
620 			hugetlb_fix_reserve_counts(inode);
621 	}
622 
623 	folio_unlock(folio);
624 	return ret;
625 }
626 
627 /*
628  * remove_inode_hugepages handles two distinct cases: truncation and hole
629  * punch.  There are subtle differences in operation for each case.
630  *
631  * truncation is indicated by end of range being LLONG_MAX
632  *	In this case, we first scan the range and release found pages.
633  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
634  *	maps and global counts.  Page faults can race with truncation.
635  *	During faults, hugetlb_no_page() checks i_size before page allocation,
636  *	and again after obtaining page table lock.  It will 'back out'
637  *	allocations in the truncated range.
638  * hole punch is indicated if end is not LLONG_MAX
639  *	In the hole punch case we scan the range and release found pages.
640  *	Only when releasing a page is the associated region/reserve map
641  *	deleted.  The region/reserve map for ranges without associated
642  *	pages are not modified.  Page faults can race with hole punch.
643  *	This is indicated if we find a mapped page.
644  * Note: If the passed end of range value is beyond the end of file, but
645  * not LLONG_MAX this routine still performs a hole punch operation.
646  */
647 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
648 				   loff_t lend)
649 {
650 	struct hstate *h = hstate_inode(inode);
651 	struct address_space *mapping = &inode->i_data;
652 	const pgoff_t end = lend >> PAGE_SHIFT;
653 	struct folio_batch fbatch;
654 	pgoff_t next, index;
655 	int i, freed = 0;
656 	bool truncate_op = (lend == LLONG_MAX);
657 
658 	folio_batch_init(&fbatch);
659 	next = lstart >> PAGE_SHIFT;
660 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
661 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
662 			struct folio *folio = fbatch.folios[i];
663 			u32 hash = 0;
664 
665 			index = folio->index >> huge_page_order(h);
666 			hash = hugetlb_fault_mutex_hash(mapping, index);
667 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
668 
669 			/*
670 			 * Remove folio that was part of folio_batch.
671 			 */
672 			if (remove_inode_single_folio(h, inode, mapping, folio,
673 							index, truncate_op))
674 				freed++;
675 
676 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
677 		}
678 		folio_batch_release(&fbatch);
679 		cond_resched();
680 	}
681 
682 	if (truncate_op)
683 		(void)hugetlb_unreserve_pages(inode,
684 				lstart >> huge_page_shift(h),
685 				LONG_MAX, freed);
686 }
687 
688 static void hugetlbfs_evict_inode(struct inode *inode)
689 {
690 	struct resv_map *resv_map;
691 
692 	remove_inode_hugepages(inode, 0, LLONG_MAX);
693 
694 	/*
695 	 * Get the resv_map from the address space embedded in the inode.
696 	 * This is the address space which points to any resv_map allocated
697 	 * at inode creation time.  If this is a device special inode,
698 	 * i_mapping may not point to the original address space.
699 	 */
700 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
701 	/* Only regular and link inodes have associated reserve maps */
702 	if (resv_map)
703 		resv_map_release(&resv_map->refs);
704 	clear_inode(inode);
705 }
706 
707 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
708 {
709 	pgoff_t pgoff;
710 	struct address_space *mapping = inode->i_mapping;
711 	struct hstate *h = hstate_inode(inode);
712 
713 	BUG_ON(offset & ~huge_page_mask(h));
714 	pgoff = offset >> PAGE_SHIFT;
715 
716 	i_size_write(inode, offset);
717 	i_mmap_lock_write(mapping);
718 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
719 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
720 				      ZAP_FLAG_DROP_MARKER);
721 	i_mmap_unlock_write(mapping);
722 	remove_inode_hugepages(inode, offset, LLONG_MAX);
723 }
724 
725 static void hugetlbfs_zero_partial_page(struct hstate *h,
726 					struct address_space *mapping,
727 					loff_t start,
728 					loff_t end)
729 {
730 	pgoff_t idx = start >> huge_page_shift(h);
731 	struct folio *folio;
732 
733 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
734 	if (IS_ERR(folio))
735 		return;
736 
737 	start = start & ~huge_page_mask(h);
738 	end = end & ~huge_page_mask(h);
739 	if (!end)
740 		end = huge_page_size(h);
741 
742 	folio_zero_segment(folio, (size_t)start, (size_t)end);
743 
744 	folio_unlock(folio);
745 	folio_put(folio);
746 }
747 
748 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
749 {
750 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
751 	struct address_space *mapping = inode->i_mapping;
752 	struct hstate *h = hstate_inode(inode);
753 	loff_t hpage_size = huge_page_size(h);
754 	loff_t hole_start, hole_end;
755 
756 	/*
757 	 * hole_start and hole_end indicate the full pages within the hole.
758 	 */
759 	hole_start = round_up(offset, hpage_size);
760 	hole_end = round_down(offset + len, hpage_size);
761 
762 	inode_lock(inode);
763 
764 	/* protected by i_rwsem */
765 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
766 		inode_unlock(inode);
767 		return -EPERM;
768 	}
769 
770 	i_mmap_lock_write(mapping);
771 
772 	/* If range starts before first full page, zero partial page. */
773 	if (offset < hole_start)
774 		hugetlbfs_zero_partial_page(h, mapping,
775 				offset, min(offset + len, hole_start));
776 
777 	/* Unmap users of full pages in the hole. */
778 	if (hole_end > hole_start) {
779 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
780 			hugetlb_vmdelete_list(&mapping->i_mmap,
781 					      hole_start >> PAGE_SHIFT,
782 					      hole_end >> PAGE_SHIFT, 0);
783 	}
784 
785 	/* If range extends beyond last full page, zero partial page. */
786 	if ((offset + len) > hole_end && (offset + len) > hole_start)
787 		hugetlbfs_zero_partial_page(h, mapping,
788 				hole_end, offset + len);
789 
790 	i_mmap_unlock_write(mapping);
791 
792 	/* Remove full pages from the file. */
793 	if (hole_end > hole_start)
794 		remove_inode_hugepages(inode, hole_start, hole_end);
795 
796 	inode_unlock(inode);
797 
798 	return 0;
799 }
800 
801 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
802 				loff_t len)
803 {
804 	struct inode *inode = file_inode(file);
805 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
806 	struct address_space *mapping = inode->i_mapping;
807 	struct hstate *h = hstate_inode(inode);
808 	struct vm_area_struct pseudo_vma;
809 	struct mm_struct *mm = current->mm;
810 	loff_t hpage_size = huge_page_size(h);
811 	unsigned long hpage_shift = huge_page_shift(h);
812 	pgoff_t start, index, end;
813 	int error;
814 	u32 hash;
815 
816 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
817 		return -EOPNOTSUPP;
818 
819 	if (mode & FALLOC_FL_PUNCH_HOLE)
820 		return hugetlbfs_punch_hole(inode, offset, len);
821 
822 	/*
823 	 * Default preallocate case.
824 	 * For this range, start is rounded down and end is rounded up
825 	 * as well as being converted to page offsets.
826 	 */
827 	start = offset >> hpage_shift;
828 	end = (offset + len + hpage_size - 1) >> hpage_shift;
829 
830 	inode_lock(inode);
831 
832 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
833 	error = inode_newsize_ok(inode, offset + len);
834 	if (error)
835 		goto out;
836 
837 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
838 		error = -EPERM;
839 		goto out;
840 	}
841 
842 	/*
843 	 * Initialize a pseudo vma as this is required by the huge page
844 	 * allocation routines.
845 	 */
846 	vma_init(&pseudo_vma, mm);
847 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
848 	pseudo_vma.vm_file = file;
849 
850 	for (index = start; index < end; index++) {
851 		/*
852 		 * This is supposed to be the vaddr where the page is being
853 		 * faulted in, but we have no vaddr here.
854 		 */
855 		struct folio *folio;
856 		unsigned long addr;
857 
858 		cond_resched();
859 
860 		/*
861 		 * fallocate(2) manpage permits EINTR; we may have been
862 		 * interrupted because we are using up too much memory.
863 		 */
864 		if (signal_pending(current)) {
865 			error = -EINTR;
866 			break;
867 		}
868 
869 		/* addr is the offset within the file (zero based) */
870 		addr = index * hpage_size;
871 
872 		/* mutex taken here, fault path and hole punch */
873 		hash = hugetlb_fault_mutex_hash(mapping, index);
874 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
875 
876 		/* See if already present in mapping to avoid alloc/free */
877 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
878 		if (!IS_ERR(folio)) {
879 			folio_put(folio);
880 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
881 			continue;
882 		}
883 
884 		/*
885 		 * Allocate folio without setting the avoid_reserve argument.
886 		 * There certainly are no reserves associated with the
887 		 * pseudo_vma.  However, there could be shared mappings with
888 		 * reserves for the file at the inode level.  If we fallocate
889 		 * folios in these areas, we need to consume the reserves
890 		 * to keep reservation accounting consistent.
891 		 */
892 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
893 		if (IS_ERR(folio)) {
894 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
895 			error = PTR_ERR(folio);
896 			goto out;
897 		}
898 		clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
899 		__folio_mark_uptodate(folio);
900 		error = hugetlb_add_to_page_cache(folio, mapping, index);
901 		if (unlikely(error)) {
902 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
903 			folio_put(folio);
904 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
905 			goto out;
906 		}
907 
908 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
909 
910 		folio_set_hugetlb_migratable(folio);
911 		/*
912 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
913 		 * folio_put() due to reference from alloc_hugetlb_folio()
914 		 */
915 		folio_unlock(folio);
916 		folio_put(folio);
917 	}
918 
919 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
920 		i_size_write(inode, offset + len);
921 	inode_set_ctime_current(inode);
922 out:
923 	inode_unlock(inode);
924 	return error;
925 }
926 
927 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
928 			     struct dentry *dentry, struct iattr *attr)
929 {
930 	struct inode *inode = d_inode(dentry);
931 	struct hstate *h = hstate_inode(inode);
932 	int error;
933 	unsigned int ia_valid = attr->ia_valid;
934 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
935 
936 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
937 	if (error)
938 		return error;
939 
940 	if (ia_valid & ATTR_SIZE) {
941 		loff_t oldsize = inode->i_size;
942 		loff_t newsize = attr->ia_size;
943 
944 		if (newsize & ~huge_page_mask(h))
945 			return -EINVAL;
946 		/* protected by i_rwsem */
947 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
948 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
949 			return -EPERM;
950 		hugetlb_vmtruncate(inode, newsize);
951 	}
952 
953 	setattr_copy(&nop_mnt_idmap, inode, attr);
954 	mark_inode_dirty(inode);
955 	return 0;
956 }
957 
958 static struct inode *hugetlbfs_get_root(struct super_block *sb,
959 					struct hugetlbfs_fs_context *ctx)
960 {
961 	struct inode *inode;
962 
963 	inode = new_inode(sb);
964 	if (inode) {
965 		inode->i_ino = get_next_ino();
966 		inode->i_mode = S_IFDIR | ctx->mode;
967 		inode->i_uid = ctx->uid;
968 		inode->i_gid = ctx->gid;
969 		simple_inode_init_ts(inode);
970 		inode->i_op = &hugetlbfs_dir_inode_operations;
971 		inode->i_fop = &simple_dir_operations;
972 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
973 		inc_nlink(inode);
974 		lockdep_annotate_inode_mutex_key(inode);
975 	}
976 	return inode;
977 }
978 
979 /*
980  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
981  * be taken from reclaim -- unlike regular filesystems. This needs an
982  * annotation because huge_pmd_share() does an allocation under hugetlb's
983  * i_mmap_rwsem.
984  */
985 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
986 
987 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
988 					struct inode *dir,
989 					umode_t mode, dev_t dev)
990 {
991 	struct inode *inode;
992 	struct resv_map *resv_map = NULL;
993 
994 	/*
995 	 * Reserve maps are only needed for inodes that can have associated
996 	 * page allocations.
997 	 */
998 	if (S_ISREG(mode) || S_ISLNK(mode)) {
999 		resv_map = resv_map_alloc();
1000 		if (!resv_map)
1001 			return NULL;
1002 	}
1003 
1004 	inode = new_inode(sb);
1005 	if (inode) {
1006 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1007 
1008 		inode->i_ino = get_next_ino();
1009 		inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
1010 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1011 				&hugetlbfs_i_mmap_rwsem_key);
1012 		inode->i_mapping->a_ops = &hugetlbfs_aops;
1013 		simple_inode_init_ts(inode);
1014 		inode->i_mapping->i_private_data = resv_map;
1015 		info->seals = F_SEAL_SEAL;
1016 		switch (mode & S_IFMT) {
1017 		default:
1018 			init_special_inode(inode, mode, dev);
1019 			break;
1020 		case S_IFREG:
1021 			inode->i_op = &hugetlbfs_inode_operations;
1022 			inode->i_fop = &hugetlbfs_file_operations;
1023 			break;
1024 		case S_IFDIR:
1025 			inode->i_op = &hugetlbfs_dir_inode_operations;
1026 			inode->i_fop = &simple_dir_operations;
1027 
1028 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
1029 			inc_nlink(inode);
1030 			break;
1031 		case S_IFLNK:
1032 			inode->i_op = &page_symlink_inode_operations;
1033 			inode_nohighmem(inode);
1034 			break;
1035 		}
1036 		lockdep_annotate_inode_mutex_key(inode);
1037 	} else {
1038 		if (resv_map)
1039 			kref_put(&resv_map->refs, resv_map_release);
1040 	}
1041 
1042 	return inode;
1043 }
1044 
1045 /*
1046  * File creation. Allocate an inode, and we're done..
1047  */
1048 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1049 			   struct dentry *dentry, umode_t mode, dev_t dev)
1050 {
1051 	struct inode *inode;
1052 
1053 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1054 	if (!inode)
1055 		return -ENOSPC;
1056 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1057 	d_instantiate(dentry, inode);
1058 	dget(dentry);/* Extra count - pin the dentry in core */
1059 	return 0;
1060 }
1061 
1062 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1063 			   struct dentry *dentry, umode_t mode)
1064 {
1065 	int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
1066 				     mode | S_IFDIR, 0);
1067 	if (!retval)
1068 		inc_nlink(dir);
1069 	return retval;
1070 }
1071 
1072 static int hugetlbfs_create(struct mnt_idmap *idmap,
1073 			    struct inode *dir, struct dentry *dentry,
1074 			    umode_t mode, bool excl)
1075 {
1076 	return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1077 }
1078 
1079 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1080 			     struct inode *dir, struct file *file,
1081 			     umode_t mode)
1082 {
1083 	struct inode *inode;
1084 
1085 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1086 	if (!inode)
1087 		return -ENOSPC;
1088 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1089 	d_tmpfile(file, inode);
1090 	return finish_open_simple(file, 0);
1091 }
1092 
1093 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1094 			     struct inode *dir, struct dentry *dentry,
1095 			     const char *symname)
1096 {
1097 	struct inode *inode;
1098 	int error = -ENOSPC;
1099 
1100 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1101 	if (inode) {
1102 		int l = strlen(symname)+1;
1103 		error = page_symlink(inode, symname, l);
1104 		if (!error) {
1105 			d_instantiate(dentry, inode);
1106 			dget(dentry);
1107 		} else
1108 			iput(inode);
1109 	}
1110 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1111 
1112 	return error;
1113 }
1114 
1115 #ifdef CONFIG_MIGRATION
1116 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1117 				struct folio *dst, struct folio *src,
1118 				enum migrate_mode mode)
1119 {
1120 	int rc;
1121 
1122 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1123 	if (rc != MIGRATEPAGE_SUCCESS)
1124 		return rc;
1125 
1126 	if (hugetlb_folio_subpool(src)) {
1127 		hugetlb_set_folio_subpool(dst,
1128 					hugetlb_folio_subpool(src));
1129 		hugetlb_set_folio_subpool(src, NULL);
1130 	}
1131 
1132 	if (mode != MIGRATE_SYNC_NO_COPY)
1133 		folio_migrate_copy(dst, src);
1134 	else
1135 		folio_migrate_flags(dst, src);
1136 
1137 	return MIGRATEPAGE_SUCCESS;
1138 }
1139 #else
1140 #define hugetlbfs_migrate_folio NULL
1141 #endif
1142 
1143 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1144 				struct folio *folio)
1145 {
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Display the mount options in /proc/mounts.
1151  */
1152 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1153 {
1154 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1155 	struct hugepage_subpool *spool = sbinfo->spool;
1156 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1157 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1158 	char mod;
1159 
1160 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1161 		seq_printf(m, ",uid=%u",
1162 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1163 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1164 		seq_printf(m, ",gid=%u",
1165 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1166 	if (sbinfo->mode != 0755)
1167 		seq_printf(m, ",mode=%o", sbinfo->mode);
1168 	if (sbinfo->max_inodes != -1)
1169 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1170 
1171 	hpage_size /= 1024;
1172 	mod = 'K';
1173 	if (hpage_size >= 1024) {
1174 		hpage_size /= 1024;
1175 		mod = 'M';
1176 	}
1177 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1178 	if (spool) {
1179 		if (spool->max_hpages != -1)
1180 			seq_printf(m, ",size=%llu",
1181 				   (unsigned long long)spool->max_hpages << hpage_shift);
1182 		if (spool->min_hpages != -1)
1183 			seq_printf(m, ",min_size=%llu",
1184 				   (unsigned long long)spool->min_hpages << hpage_shift);
1185 	}
1186 	return 0;
1187 }
1188 
1189 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1190 {
1191 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1192 	struct hstate *h = hstate_inode(d_inode(dentry));
1193 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1194 
1195 	buf->f_fsid = u64_to_fsid(id);
1196 	buf->f_type = HUGETLBFS_MAGIC;
1197 	buf->f_bsize = huge_page_size(h);
1198 	if (sbinfo) {
1199 		spin_lock(&sbinfo->stat_lock);
1200 		/* If no limits set, just report 0 or -1 for max/free/used
1201 		 * blocks, like simple_statfs() */
1202 		if (sbinfo->spool) {
1203 			long free_pages;
1204 
1205 			spin_lock_irq(&sbinfo->spool->lock);
1206 			buf->f_blocks = sbinfo->spool->max_hpages;
1207 			free_pages = sbinfo->spool->max_hpages
1208 				- sbinfo->spool->used_hpages;
1209 			buf->f_bavail = buf->f_bfree = free_pages;
1210 			spin_unlock_irq(&sbinfo->spool->lock);
1211 			buf->f_files = sbinfo->max_inodes;
1212 			buf->f_ffree = sbinfo->free_inodes;
1213 		}
1214 		spin_unlock(&sbinfo->stat_lock);
1215 	}
1216 	buf->f_namelen = NAME_MAX;
1217 	return 0;
1218 }
1219 
1220 static void hugetlbfs_put_super(struct super_block *sb)
1221 {
1222 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1223 
1224 	if (sbi) {
1225 		sb->s_fs_info = NULL;
1226 
1227 		if (sbi->spool)
1228 			hugepage_put_subpool(sbi->spool);
1229 
1230 		kfree(sbi);
1231 	}
1232 }
1233 
1234 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1235 {
1236 	if (sbinfo->free_inodes >= 0) {
1237 		spin_lock(&sbinfo->stat_lock);
1238 		if (unlikely(!sbinfo->free_inodes)) {
1239 			spin_unlock(&sbinfo->stat_lock);
1240 			return 0;
1241 		}
1242 		sbinfo->free_inodes--;
1243 		spin_unlock(&sbinfo->stat_lock);
1244 	}
1245 
1246 	return 1;
1247 }
1248 
1249 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1250 {
1251 	if (sbinfo->free_inodes >= 0) {
1252 		spin_lock(&sbinfo->stat_lock);
1253 		sbinfo->free_inodes++;
1254 		spin_unlock(&sbinfo->stat_lock);
1255 	}
1256 }
1257 
1258 
1259 static struct kmem_cache *hugetlbfs_inode_cachep;
1260 
1261 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1262 {
1263 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1264 	struct hugetlbfs_inode_info *p;
1265 
1266 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1267 		return NULL;
1268 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1269 	if (unlikely(!p)) {
1270 		hugetlbfs_inc_free_inodes(sbinfo);
1271 		return NULL;
1272 	}
1273 	return &p->vfs_inode;
1274 }
1275 
1276 static void hugetlbfs_free_inode(struct inode *inode)
1277 {
1278 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1279 }
1280 
1281 static void hugetlbfs_destroy_inode(struct inode *inode)
1282 {
1283 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1284 }
1285 
1286 static const struct address_space_operations hugetlbfs_aops = {
1287 	.write_begin	= hugetlbfs_write_begin,
1288 	.write_end	= hugetlbfs_write_end,
1289 	.dirty_folio	= noop_dirty_folio,
1290 	.migrate_folio  = hugetlbfs_migrate_folio,
1291 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1292 };
1293 
1294 
1295 static void init_once(void *foo)
1296 {
1297 	struct hugetlbfs_inode_info *ei = foo;
1298 
1299 	inode_init_once(&ei->vfs_inode);
1300 }
1301 
1302 const struct file_operations hugetlbfs_file_operations = {
1303 	.read_iter		= hugetlbfs_read_iter,
1304 	.mmap			= hugetlbfs_file_mmap,
1305 	.fsync			= noop_fsync,
1306 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1307 	.llseek			= default_llseek,
1308 	.fallocate		= hugetlbfs_fallocate,
1309 };
1310 
1311 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1312 	.create		= hugetlbfs_create,
1313 	.lookup		= simple_lookup,
1314 	.link		= simple_link,
1315 	.unlink		= simple_unlink,
1316 	.symlink	= hugetlbfs_symlink,
1317 	.mkdir		= hugetlbfs_mkdir,
1318 	.rmdir		= simple_rmdir,
1319 	.mknod		= hugetlbfs_mknod,
1320 	.rename		= simple_rename,
1321 	.setattr	= hugetlbfs_setattr,
1322 	.tmpfile	= hugetlbfs_tmpfile,
1323 };
1324 
1325 static const struct inode_operations hugetlbfs_inode_operations = {
1326 	.setattr	= hugetlbfs_setattr,
1327 };
1328 
1329 static const struct super_operations hugetlbfs_ops = {
1330 	.alloc_inode    = hugetlbfs_alloc_inode,
1331 	.free_inode     = hugetlbfs_free_inode,
1332 	.destroy_inode  = hugetlbfs_destroy_inode,
1333 	.evict_inode	= hugetlbfs_evict_inode,
1334 	.statfs		= hugetlbfs_statfs,
1335 	.put_super	= hugetlbfs_put_super,
1336 	.show_options	= hugetlbfs_show_options,
1337 };
1338 
1339 /*
1340  * Convert size option passed from command line to number of huge pages
1341  * in the pool specified by hstate.  Size option could be in bytes
1342  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1343  */
1344 static long
1345 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1346 			 enum hugetlbfs_size_type val_type)
1347 {
1348 	if (val_type == NO_SIZE)
1349 		return -1;
1350 
1351 	if (val_type == SIZE_PERCENT) {
1352 		size_opt <<= huge_page_shift(h);
1353 		size_opt *= h->max_huge_pages;
1354 		do_div(size_opt, 100);
1355 	}
1356 
1357 	size_opt >>= huge_page_shift(h);
1358 	return size_opt;
1359 }
1360 
1361 /*
1362  * Parse one mount parameter.
1363  */
1364 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1365 {
1366 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1367 	struct fs_parse_result result;
1368 	struct hstate *h;
1369 	char *rest;
1370 	unsigned long ps;
1371 	int opt;
1372 
1373 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1374 	if (opt < 0)
1375 		return opt;
1376 
1377 	switch (opt) {
1378 	case Opt_uid:
1379 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1380 		if (!uid_valid(ctx->uid))
1381 			goto bad_val;
1382 		return 0;
1383 
1384 	case Opt_gid:
1385 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1386 		if (!gid_valid(ctx->gid))
1387 			goto bad_val;
1388 		return 0;
1389 
1390 	case Opt_mode:
1391 		ctx->mode = result.uint_32 & 01777U;
1392 		return 0;
1393 
1394 	case Opt_size:
1395 		/* memparse() will accept a K/M/G without a digit */
1396 		if (!param->string || !isdigit(param->string[0]))
1397 			goto bad_val;
1398 		ctx->max_size_opt = memparse(param->string, &rest);
1399 		ctx->max_val_type = SIZE_STD;
1400 		if (*rest == '%')
1401 			ctx->max_val_type = SIZE_PERCENT;
1402 		return 0;
1403 
1404 	case Opt_nr_inodes:
1405 		/* memparse() will accept a K/M/G without a digit */
1406 		if (!param->string || !isdigit(param->string[0]))
1407 			goto bad_val;
1408 		ctx->nr_inodes = memparse(param->string, &rest);
1409 		return 0;
1410 
1411 	case Opt_pagesize:
1412 		ps = memparse(param->string, &rest);
1413 		h = size_to_hstate(ps);
1414 		if (!h) {
1415 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1416 			return -EINVAL;
1417 		}
1418 		ctx->hstate = h;
1419 		return 0;
1420 
1421 	case Opt_min_size:
1422 		/* memparse() will accept a K/M/G without a digit */
1423 		if (!param->string || !isdigit(param->string[0]))
1424 			goto bad_val;
1425 		ctx->min_size_opt = memparse(param->string, &rest);
1426 		ctx->min_val_type = SIZE_STD;
1427 		if (*rest == '%')
1428 			ctx->min_val_type = SIZE_PERCENT;
1429 		return 0;
1430 
1431 	default:
1432 		return -EINVAL;
1433 	}
1434 
1435 bad_val:
1436 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1437 		      param->string, param->key);
1438 }
1439 
1440 /*
1441  * Validate the parsed options.
1442  */
1443 static int hugetlbfs_validate(struct fs_context *fc)
1444 {
1445 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1446 
1447 	/*
1448 	 * Use huge page pool size (in hstate) to convert the size
1449 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1450 	 */
1451 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1452 						   ctx->max_size_opt,
1453 						   ctx->max_val_type);
1454 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1455 						   ctx->min_size_opt,
1456 						   ctx->min_val_type);
1457 
1458 	/*
1459 	 * If max_size was specified, then min_size must be smaller
1460 	 */
1461 	if (ctx->max_val_type > NO_SIZE &&
1462 	    ctx->min_hpages > ctx->max_hpages) {
1463 		pr_err("Minimum size can not be greater than maximum size\n");
1464 		return -EINVAL;
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static int
1471 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1472 {
1473 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1474 	struct hugetlbfs_sb_info *sbinfo;
1475 
1476 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1477 	if (!sbinfo)
1478 		return -ENOMEM;
1479 	sb->s_fs_info = sbinfo;
1480 	spin_lock_init(&sbinfo->stat_lock);
1481 	sbinfo->hstate		= ctx->hstate;
1482 	sbinfo->max_inodes	= ctx->nr_inodes;
1483 	sbinfo->free_inodes	= ctx->nr_inodes;
1484 	sbinfo->spool		= NULL;
1485 	sbinfo->uid		= ctx->uid;
1486 	sbinfo->gid		= ctx->gid;
1487 	sbinfo->mode		= ctx->mode;
1488 
1489 	/*
1490 	 * Allocate and initialize subpool if maximum or minimum size is
1491 	 * specified.  Any needed reservations (for minimum size) are taken
1492 	 * when the subpool is created.
1493 	 */
1494 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1495 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1496 						     ctx->max_hpages,
1497 						     ctx->min_hpages);
1498 		if (!sbinfo->spool)
1499 			goto out_free;
1500 	}
1501 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1502 	sb->s_blocksize = huge_page_size(ctx->hstate);
1503 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1504 	sb->s_magic = HUGETLBFS_MAGIC;
1505 	sb->s_op = &hugetlbfs_ops;
1506 	sb->s_time_gran = 1;
1507 
1508 	/*
1509 	 * Due to the special and limited functionality of hugetlbfs, it does
1510 	 * not work well as a stacking filesystem.
1511 	 */
1512 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1513 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1514 	if (!sb->s_root)
1515 		goto out_free;
1516 	return 0;
1517 out_free:
1518 	kfree(sbinfo->spool);
1519 	kfree(sbinfo);
1520 	return -ENOMEM;
1521 }
1522 
1523 static int hugetlbfs_get_tree(struct fs_context *fc)
1524 {
1525 	int err = hugetlbfs_validate(fc);
1526 	if (err)
1527 		return err;
1528 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1529 }
1530 
1531 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1532 {
1533 	kfree(fc->fs_private);
1534 }
1535 
1536 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1537 	.free		= hugetlbfs_fs_context_free,
1538 	.parse_param	= hugetlbfs_parse_param,
1539 	.get_tree	= hugetlbfs_get_tree,
1540 };
1541 
1542 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1543 {
1544 	struct hugetlbfs_fs_context *ctx;
1545 
1546 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1547 	if (!ctx)
1548 		return -ENOMEM;
1549 
1550 	ctx->max_hpages	= -1; /* No limit on size by default */
1551 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1552 	ctx->uid	= current_fsuid();
1553 	ctx->gid	= current_fsgid();
1554 	ctx->mode	= 0755;
1555 	ctx->hstate	= &default_hstate;
1556 	ctx->min_hpages	= -1; /* No default minimum size */
1557 	ctx->max_val_type = NO_SIZE;
1558 	ctx->min_val_type = NO_SIZE;
1559 	fc->fs_private = ctx;
1560 	fc->ops	= &hugetlbfs_fs_context_ops;
1561 	return 0;
1562 }
1563 
1564 static struct file_system_type hugetlbfs_fs_type = {
1565 	.name			= "hugetlbfs",
1566 	.init_fs_context	= hugetlbfs_init_fs_context,
1567 	.parameters		= hugetlb_fs_parameters,
1568 	.kill_sb		= kill_litter_super,
1569 };
1570 
1571 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1572 
1573 static int can_do_hugetlb_shm(void)
1574 {
1575 	kgid_t shm_group;
1576 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1577 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1578 }
1579 
1580 static int get_hstate_idx(int page_size_log)
1581 {
1582 	struct hstate *h = hstate_sizelog(page_size_log);
1583 
1584 	if (!h)
1585 		return -1;
1586 	return hstate_index(h);
1587 }
1588 
1589 /*
1590  * Note that size should be aligned to proper hugepage size in caller side,
1591  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1592  */
1593 struct file *hugetlb_file_setup(const char *name, size_t size,
1594 				vm_flags_t acctflag, int creat_flags,
1595 				int page_size_log)
1596 {
1597 	struct inode *inode;
1598 	struct vfsmount *mnt;
1599 	int hstate_idx;
1600 	struct file *file;
1601 
1602 	hstate_idx = get_hstate_idx(page_size_log);
1603 	if (hstate_idx < 0)
1604 		return ERR_PTR(-ENODEV);
1605 
1606 	mnt = hugetlbfs_vfsmount[hstate_idx];
1607 	if (!mnt)
1608 		return ERR_PTR(-ENOENT);
1609 
1610 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1611 		struct ucounts *ucounts = current_ucounts();
1612 
1613 		if (user_shm_lock(size, ucounts)) {
1614 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1615 				current->comm, current->pid);
1616 			user_shm_unlock(size, ucounts);
1617 		}
1618 		return ERR_PTR(-EPERM);
1619 	}
1620 
1621 	file = ERR_PTR(-ENOSPC);
1622 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1623 	if (!inode)
1624 		goto out;
1625 	if (creat_flags == HUGETLB_SHMFS_INODE)
1626 		inode->i_flags |= S_PRIVATE;
1627 
1628 	inode->i_size = size;
1629 	clear_nlink(inode);
1630 
1631 	if (!hugetlb_reserve_pages(inode, 0,
1632 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1633 			acctflag))
1634 		file = ERR_PTR(-ENOMEM);
1635 	else
1636 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1637 					&hugetlbfs_file_operations);
1638 	if (!IS_ERR(file))
1639 		return file;
1640 
1641 	iput(inode);
1642 out:
1643 	return file;
1644 }
1645 
1646 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1647 {
1648 	struct fs_context *fc;
1649 	struct vfsmount *mnt;
1650 
1651 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1652 	if (IS_ERR(fc)) {
1653 		mnt = ERR_CAST(fc);
1654 	} else {
1655 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1656 		ctx->hstate = h;
1657 		mnt = fc_mount(fc);
1658 		put_fs_context(fc);
1659 	}
1660 	if (IS_ERR(mnt))
1661 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1662 		       huge_page_size(h) / SZ_1K);
1663 	return mnt;
1664 }
1665 
1666 static int __init init_hugetlbfs_fs(void)
1667 {
1668 	struct vfsmount *mnt;
1669 	struct hstate *h;
1670 	int error;
1671 	int i;
1672 
1673 	if (!hugepages_supported()) {
1674 		pr_info("disabling because there are no supported hugepage sizes\n");
1675 		return -ENOTSUPP;
1676 	}
1677 
1678 	error = -ENOMEM;
1679 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1680 					sizeof(struct hugetlbfs_inode_info),
1681 					0, SLAB_ACCOUNT, init_once);
1682 	if (hugetlbfs_inode_cachep == NULL)
1683 		goto out;
1684 
1685 	error = register_filesystem(&hugetlbfs_fs_type);
1686 	if (error)
1687 		goto out_free;
1688 
1689 	/* default hstate mount is required */
1690 	mnt = mount_one_hugetlbfs(&default_hstate);
1691 	if (IS_ERR(mnt)) {
1692 		error = PTR_ERR(mnt);
1693 		goto out_unreg;
1694 	}
1695 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1696 
1697 	/* other hstates are optional */
1698 	i = 0;
1699 	for_each_hstate(h) {
1700 		if (i == default_hstate_idx) {
1701 			i++;
1702 			continue;
1703 		}
1704 
1705 		mnt = mount_one_hugetlbfs(h);
1706 		if (IS_ERR(mnt))
1707 			hugetlbfs_vfsmount[i] = NULL;
1708 		else
1709 			hugetlbfs_vfsmount[i] = mnt;
1710 		i++;
1711 	}
1712 
1713 	return 0;
1714 
1715  out_unreg:
1716 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1717  out_free:
1718 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1719  out:
1720 	return error;
1721 }
1722 fs_initcall(init_hugetlbfs_fs)
1723