1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32 ("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 loff_t len, vma_len; 135 int ret; 136 struct hstate *h = hstate_file(file); 137 138 /* 139 * vma address alignment (but not the pgoff alignment) has 140 * already been checked by prepare_hugepage_range. If you add 141 * any error returns here, do so after setting VM_HUGETLB, so 142 * is_vm_hugetlb_page tests below unmap_region go the right 143 * way when do_mmap unwinds (may be important on powerpc 144 * and ia64). 145 */ 146 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 147 vma->vm_ops = &hugetlb_vm_ops; 148 149 /* 150 * page based offset in vm_pgoff could be sufficiently large to 151 * overflow a loff_t when converted to byte offset. This can 152 * only happen on architectures where sizeof(loff_t) == 153 * sizeof(unsigned long). So, only check in those instances. 154 */ 155 if (sizeof(unsigned long) == sizeof(loff_t)) { 156 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 157 return -EINVAL; 158 } 159 160 /* must be huge page aligned */ 161 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 162 return -EINVAL; 163 164 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 165 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 166 /* check for overflow */ 167 if (len < vma_len) 168 return -EINVAL; 169 170 inode_lock(inode); 171 file_accessed(file); 172 173 ret = -ENOMEM; 174 if (hugetlb_reserve_pages(inode, 175 vma->vm_pgoff >> huge_page_order(h), 176 len >> huge_page_shift(h), vma, 177 vma->vm_flags)) 178 goto out; 179 180 ret = 0; 181 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 182 i_size_write(inode, len); 183 out: 184 inode_unlock(inode); 185 186 return ret; 187 } 188 189 /* 190 * Called under mmap_write_lock(mm). 191 */ 192 193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 194 static unsigned long 195 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 196 unsigned long len, unsigned long pgoff, unsigned long flags) 197 { 198 struct hstate *h = hstate_file(file); 199 struct vm_unmapped_area_info info; 200 201 info.flags = 0; 202 info.length = len; 203 info.low_limit = current->mm->mmap_base; 204 info.high_limit = TASK_SIZE; 205 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 206 info.align_offset = 0; 207 return vm_unmapped_area(&info); 208 } 209 210 static unsigned long 211 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 212 unsigned long len, unsigned long pgoff, unsigned long flags) 213 { 214 struct hstate *h = hstate_file(file); 215 struct vm_unmapped_area_info info; 216 217 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 218 info.length = len; 219 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 220 info.high_limit = current->mm->mmap_base; 221 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 222 info.align_offset = 0; 223 addr = vm_unmapped_area(&info); 224 225 /* 226 * A failed mmap() very likely causes application failure, 227 * so fall back to the bottom-up function here. This scenario 228 * can happen with large stack limits and large mmap() 229 * allocations. 230 */ 231 if (unlikely(offset_in_page(addr))) { 232 VM_BUG_ON(addr != -ENOMEM); 233 info.flags = 0; 234 info.low_limit = current->mm->mmap_base; 235 info.high_limit = TASK_SIZE; 236 addr = vm_unmapped_area(&info); 237 } 238 239 return addr; 240 } 241 242 static unsigned long 243 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 244 unsigned long len, unsigned long pgoff, unsigned long flags) 245 { 246 struct mm_struct *mm = current->mm; 247 struct vm_area_struct *vma; 248 struct hstate *h = hstate_file(file); 249 250 if (len & ~huge_page_mask(h)) 251 return -EINVAL; 252 if (len > TASK_SIZE) 253 return -ENOMEM; 254 255 if (flags & MAP_FIXED) { 256 if (prepare_hugepage_range(file, addr, len)) 257 return -EINVAL; 258 return addr; 259 } 260 261 if (addr) { 262 addr = ALIGN(addr, huge_page_size(h)); 263 vma = find_vma(mm, addr); 264 if (TASK_SIZE - len >= addr && 265 (!vma || addr + len <= vm_start_gap(vma))) 266 return addr; 267 } 268 269 /* 270 * Use mm->get_unmapped_area value as a hint to use topdown routine. 271 * If architectures have special needs, they should define their own 272 * version of hugetlb_get_unmapped_area. 273 */ 274 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 275 return hugetlb_get_unmapped_area_topdown(file, addr, len, 276 pgoff, flags); 277 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 278 pgoff, flags); 279 } 280 #endif 281 282 static size_t 283 hugetlbfs_read_actor(struct page *page, unsigned long offset, 284 struct iov_iter *to, unsigned long size) 285 { 286 size_t copied = 0; 287 int i, chunksize; 288 289 /* Find which 4k chunk and offset with in that chunk */ 290 i = offset >> PAGE_SHIFT; 291 offset = offset & ~PAGE_MASK; 292 293 while (size) { 294 size_t n; 295 chunksize = PAGE_SIZE; 296 if (offset) 297 chunksize -= offset; 298 if (chunksize > size) 299 chunksize = size; 300 n = copy_page_to_iter(&page[i], offset, chunksize, to); 301 copied += n; 302 if (n != chunksize) 303 return copied; 304 offset = 0; 305 size -= chunksize; 306 i++; 307 } 308 return copied; 309 } 310 311 /* 312 * Support for read() - Find the page attached to f_mapping and copy out the 313 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 314 * since it has PAGE_SIZE assumptions. 315 */ 316 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 317 { 318 struct file *file = iocb->ki_filp; 319 struct hstate *h = hstate_file(file); 320 struct address_space *mapping = file->f_mapping; 321 struct inode *inode = mapping->host; 322 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 323 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 324 unsigned long end_index; 325 loff_t isize; 326 ssize_t retval = 0; 327 328 while (iov_iter_count(to)) { 329 struct page *page; 330 size_t nr, copied; 331 332 /* nr is the maximum number of bytes to copy from this page */ 333 nr = huge_page_size(h); 334 isize = i_size_read(inode); 335 if (!isize) 336 break; 337 end_index = (isize - 1) >> huge_page_shift(h); 338 if (index > end_index) 339 break; 340 if (index == end_index) { 341 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 342 if (nr <= offset) 343 break; 344 } 345 nr = nr - offset; 346 347 /* Find the page */ 348 page = find_lock_page(mapping, index); 349 if (unlikely(page == NULL)) { 350 /* 351 * We have a HOLE, zero out the user-buffer for the 352 * length of the hole or request. 353 */ 354 copied = iov_iter_zero(nr, to); 355 } else { 356 unlock_page(page); 357 358 /* 359 * We have the page, copy it to user space buffer. 360 */ 361 copied = hugetlbfs_read_actor(page, offset, to, nr); 362 put_page(page); 363 } 364 offset += copied; 365 retval += copied; 366 if (copied != nr && iov_iter_count(to)) { 367 if (!retval) 368 retval = -EFAULT; 369 break; 370 } 371 index += offset >> huge_page_shift(h); 372 offset &= ~huge_page_mask(h); 373 } 374 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 375 return retval; 376 } 377 378 static int hugetlbfs_write_begin(struct file *file, 379 struct address_space *mapping, 380 loff_t pos, unsigned len, unsigned flags, 381 struct page **pagep, void **fsdata) 382 { 383 return -EINVAL; 384 } 385 386 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 387 loff_t pos, unsigned len, unsigned copied, 388 struct page *page, void *fsdata) 389 { 390 BUG(); 391 return -EINVAL; 392 } 393 394 static void remove_huge_page(struct page *page) 395 { 396 ClearPageDirty(page); 397 ClearPageUptodate(page); 398 delete_from_page_cache(page); 399 } 400 401 static void 402 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 403 { 404 struct vm_area_struct *vma; 405 406 /* 407 * end == 0 indicates that the entire range after 408 * start should be unmapped. 409 */ 410 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 411 unsigned long v_offset; 412 unsigned long v_end; 413 414 /* 415 * Can the expression below overflow on 32-bit arches? 416 * No, because the interval tree returns us only those vmas 417 * which overlap the truncated area starting at pgoff, 418 * and no vma on a 32-bit arch can span beyond the 4GB. 419 */ 420 if (vma->vm_pgoff < start) 421 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 422 else 423 v_offset = 0; 424 425 if (!end) 426 v_end = vma->vm_end; 427 else { 428 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 429 + vma->vm_start; 430 if (v_end > vma->vm_end) 431 v_end = vma->vm_end; 432 } 433 434 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 435 NULL); 436 } 437 } 438 439 /* 440 * remove_inode_hugepages handles two distinct cases: truncation and hole 441 * punch. There are subtle differences in operation for each case. 442 * 443 * truncation is indicated by end of range being LLONG_MAX 444 * In this case, we first scan the range and release found pages. 445 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 446 * maps and global counts. Page faults can not race with truncation 447 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 448 * page faults in the truncated range by checking i_size. i_size is 449 * modified while holding i_mmap_rwsem. 450 * hole punch is indicated if end is not LLONG_MAX 451 * In the hole punch case we scan the range and release found pages. 452 * Only when releasing a page is the associated region/reserv map 453 * deleted. The region/reserv map for ranges without associated 454 * pages are not modified. Page faults can race with hole punch. 455 * This is indicated if we find a mapped page. 456 * Note: If the passed end of range value is beyond the end of file, but 457 * not LLONG_MAX this routine still performs a hole punch operation. 458 */ 459 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 460 loff_t lend) 461 { 462 struct hstate *h = hstate_inode(inode); 463 struct address_space *mapping = &inode->i_data; 464 const pgoff_t start = lstart >> huge_page_shift(h); 465 const pgoff_t end = lend >> huge_page_shift(h); 466 struct vm_area_struct pseudo_vma; 467 struct pagevec pvec; 468 pgoff_t next, index; 469 int i, freed = 0; 470 bool truncate_op = (lend == LLONG_MAX); 471 472 vma_init(&pseudo_vma, current->mm); 473 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 474 pagevec_init(&pvec); 475 next = start; 476 while (next < end) { 477 /* 478 * When no more pages are found, we are done. 479 */ 480 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 481 break; 482 483 for (i = 0; i < pagevec_count(&pvec); ++i) { 484 struct page *page = pvec.pages[i]; 485 u32 hash; 486 487 index = page->index; 488 hash = hugetlb_fault_mutex_hash(mapping, index); 489 if (!truncate_op) { 490 /* 491 * Only need to hold the fault mutex in the 492 * hole punch case. This prevents races with 493 * page faults. Races are not possible in the 494 * case of truncation. 495 */ 496 mutex_lock(&hugetlb_fault_mutex_table[hash]); 497 } 498 499 /* 500 * If page is mapped, it was faulted in after being 501 * unmapped in caller. Unmap (again) now after taking 502 * the fault mutex. The mutex will prevent faults 503 * until we finish removing the page. 504 * 505 * This race can only happen in the hole punch case. 506 * Getting here in a truncate operation is a bug. 507 */ 508 if (unlikely(page_mapped(page))) { 509 BUG_ON(truncate_op); 510 511 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 512 i_mmap_lock_write(mapping); 513 mutex_lock(&hugetlb_fault_mutex_table[hash]); 514 hugetlb_vmdelete_list(&mapping->i_mmap, 515 index * pages_per_huge_page(h), 516 (index + 1) * pages_per_huge_page(h)); 517 i_mmap_unlock_write(mapping); 518 } 519 520 lock_page(page); 521 /* 522 * We must free the huge page and remove from page 523 * cache (remove_huge_page) BEFORE removing the 524 * region/reserve map (hugetlb_unreserve_pages). In 525 * rare out of memory conditions, removal of the 526 * region/reserve map could fail. Correspondingly, 527 * the subpool and global reserve usage count can need 528 * to be adjusted. 529 */ 530 VM_BUG_ON(PagePrivate(page)); 531 remove_huge_page(page); 532 freed++; 533 if (!truncate_op) { 534 if (unlikely(hugetlb_unreserve_pages(inode, 535 index, index + 1, 1))) 536 hugetlb_fix_reserve_counts(inode); 537 } 538 539 unlock_page(page); 540 if (!truncate_op) 541 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 542 } 543 huge_pagevec_release(&pvec); 544 cond_resched(); 545 } 546 547 if (truncate_op) 548 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 549 } 550 551 static void hugetlbfs_evict_inode(struct inode *inode) 552 { 553 struct resv_map *resv_map; 554 555 remove_inode_hugepages(inode, 0, LLONG_MAX); 556 557 /* 558 * Get the resv_map from the address space embedded in the inode. 559 * This is the address space which points to any resv_map allocated 560 * at inode creation time. If this is a device special inode, 561 * i_mapping may not point to the original address space. 562 */ 563 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 564 /* Only regular and link inodes have associated reserve maps */ 565 if (resv_map) 566 resv_map_release(&resv_map->refs); 567 clear_inode(inode); 568 } 569 570 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 571 { 572 pgoff_t pgoff; 573 struct address_space *mapping = inode->i_mapping; 574 struct hstate *h = hstate_inode(inode); 575 576 BUG_ON(offset & ~huge_page_mask(h)); 577 pgoff = offset >> PAGE_SHIFT; 578 579 i_mmap_lock_write(mapping); 580 i_size_write(inode, offset); 581 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 582 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 583 i_mmap_unlock_write(mapping); 584 remove_inode_hugepages(inode, offset, LLONG_MAX); 585 return 0; 586 } 587 588 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 589 { 590 struct hstate *h = hstate_inode(inode); 591 loff_t hpage_size = huge_page_size(h); 592 loff_t hole_start, hole_end; 593 594 /* 595 * For hole punch round up the beginning offset of the hole and 596 * round down the end. 597 */ 598 hole_start = round_up(offset, hpage_size); 599 hole_end = round_down(offset + len, hpage_size); 600 601 if (hole_end > hole_start) { 602 struct address_space *mapping = inode->i_mapping; 603 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 604 605 inode_lock(inode); 606 607 /* protected by i_mutex */ 608 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 609 inode_unlock(inode); 610 return -EPERM; 611 } 612 613 i_mmap_lock_write(mapping); 614 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 615 hugetlb_vmdelete_list(&mapping->i_mmap, 616 hole_start >> PAGE_SHIFT, 617 hole_end >> PAGE_SHIFT); 618 i_mmap_unlock_write(mapping); 619 remove_inode_hugepages(inode, hole_start, hole_end); 620 inode_unlock(inode); 621 } 622 623 return 0; 624 } 625 626 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 627 loff_t len) 628 { 629 struct inode *inode = file_inode(file); 630 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 631 struct address_space *mapping = inode->i_mapping; 632 struct hstate *h = hstate_inode(inode); 633 struct vm_area_struct pseudo_vma; 634 struct mm_struct *mm = current->mm; 635 loff_t hpage_size = huge_page_size(h); 636 unsigned long hpage_shift = huge_page_shift(h); 637 pgoff_t start, index, end; 638 int error; 639 u32 hash; 640 641 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 642 return -EOPNOTSUPP; 643 644 if (mode & FALLOC_FL_PUNCH_HOLE) 645 return hugetlbfs_punch_hole(inode, offset, len); 646 647 /* 648 * Default preallocate case. 649 * For this range, start is rounded down and end is rounded up 650 * as well as being converted to page offsets. 651 */ 652 start = offset >> hpage_shift; 653 end = (offset + len + hpage_size - 1) >> hpage_shift; 654 655 inode_lock(inode); 656 657 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 658 error = inode_newsize_ok(inode, offset + len); 659 if (error) 660 goto out; 661 662 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 663 error = -EPERM; 664 goto out; 665 } 666 667 /* 668 * Initialize a pseudo vma as this is required by the huge page 669 * allocation routines. If NUMA is configured, use page index 670 * as input to create an allocation policy. 671 */ 672 vma_init(&pseudo_vma, mm); 673 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 674 pseudo_vma.vm_file = file; 675 676 for (index = start; index < end; index++) { 677 /* 678 * This is supposed to be the vaddr where the page is being 679 * faulted in, but we have no vaddr here. 680 */ 681 struct page *page; 682 unsigned long addr; 683 int avoid_reserve = 0; 684 685 cond_resched(); 686 687 /* 688 * fallocate(2) manpage permits EINTR; we may have been 689 * interrupted because we are using up too much memory. 690 */ 691 if (signal_pending(current)) { 692 error = -EINTR; 693 break; 694 } 695 696 /* Set numa allocation policy based on index */ 697 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 698 699 /* addr is the offset within the file (zero based) */ 700 addr = index * hpage_size; 701 702 /* 703 * fault mutex taken here, protects against fault path 704 * and hole punch. inode_lock previously taken protects 705 * against truncation. 706 */ 707 hash = hugetlb_fault_mutex_hash(mapping, index); 708 mutex_lock(&hugetlb_fault_mutex_table[hash]); 709 710 /* See if already present in mapping to avoid alloc/free */ 711 page = find_get_page(mapping, index); 712 if (page) { 713 put_page(page); 714 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 715 hugetlb_drop_vma_policy(&pseudo_vma); 716 continue; 717 } 718 719 /* Allocate page and add to page cache */ 720 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 721 hugetlb_drop_vma_policy(&pseudo_vma); 722 if (IS_ERR(page)) { 723 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 724 error = PTR_ERR(page); 725 goto out; 726 } 727 clear_huge_page(page, addr, pages_per_huge_page(h)); 728 __SetPageUptodate(page); 729 error = huge_add_to_page_cache(page, mapping, index); 730 if (unlikely(error)) { 731 put_page(page); 732 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 733 goto out; 734 } 735 736 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 737 738 /* 739 * unlock_page because locked by add_to_page_cache() 740 * page_put due to reference from alloc_huge_page() 741 */ 742 unlock_page(page); 743 put_page(page); 744 } 745 746 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 747 i_size_write(inode, offset + len); 748 inode->i_ctime = current_time(inode); 749 out: 750 inode_unlock(inode); 751 return error; 752 } 753 754 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 755 { 756 struct inode *inode = d_inode(dentry); 757 struct hstate *h = hstate_inode(inode); 758 int error; 759 unsigned int ia_valid = attr->ia_valid; 760 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 761 762 BUG_ON(!inode); 763 764 error = setattr_prepare(dentry, attr); 765 if (error) 766 return error; 767 768 if (ia_valid & ATTR_SIZE) { 769 loff_t oldsize = inode->i_size; 770 loff_t newsize = attr->ia_size; 771 772 if (newsize & ~huge_page_mask(h)) 773 return -EINVAL; 774 /* protected by i_mutex */ 775 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 776 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 777 return -EPERM; 778 error = hugetlb_vmtruncate(inode, newsize); 779 if (error) 780 return error; 781 } 782 783 setattr_copy(inode, attr); 784 mark_inode_dirty(inode); 785 return 0; 786 } 787 788 static struct inode *hugetlbfs_get_root(struct super_block *sb, 789 struct hugetlbfs_fs_context *ctx) 790 { 791 struct inode *inode; 792 793 inode = new_inode(sb); 794 if (inode) { 795 inode->i_ino = get_next_ino(); 796 inode->i_mode = S_IFDIR | ctx->mode; 797 inode->i_uid = ctx->uid; 798 inode->i_gid = ctx->gid; 799 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 800 inode->i_op = &hugetlbfs_dir_inode_operations; 801 inode->i_fop = &simple_dir_operations; 802 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 803 inc_nlink(inode); 804 lockdep_annotate_inode_mutex_key(inode); 805 } 806 return inode; 807 } 808 809 /* 810 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 811 * be taken from reclaim -- unlike regular filesystems. This needs an 812 * annotation because huge_pmd_share() does an allocation under hugetlb's 813 * i_mmap_rwsem. 814 */ 815 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 816 817 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 818 struct inode *dir, 819 umode_t mode, dev_t dev) 820 { 821 struct inode *inode; 822 struct resv_map *resv_map = NULL; 823 824 /* 825 * Reserve maps are only needed for inodes that can have associated 826 * page allocations. 827 */ 828 if (S_ISREG(mode) || S_ISLNK(mode)) { 829 resv_map = resv_map_alloc(); 830 if (!resv_map) 831 return NULL; 832 } 833 834 inode = new_inode(sb); 835 if (inode) { 836 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 837 838 inode->i_ino = get_next_ino(); 839 inode_init_owner(inode, dir, mode); 840 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 841 &hugetlbfs_i_mmap_rwsem_key); 842 inode->i_mapping->a_ops = &hugetlbfs_aops; 843 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 844 inode->i_mapping->private_data = resv_map; 845 info->seals = F_SEAL_SEAL; 846 switch (mode & S_IFMT) { 847 default: 848 init_special_inode(inode, mode, dev); 849 break; 850 case S_IFREG: 851 inode->i_op = &hugetlbfs_inode_operations; 852 inode->i_fop = &hugetlbfs_file_operations; 853 break; 854 case S_IFDIR: 855 inode->i_op = &hugetlbfs_dir_inode_operations; 856 inode->i_fop = &simple_dir_operations; 857 858 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 859 inc_nlink(inode); 860 break; 861 case S_IFLNK: 862 inode->i_op = &page_symlink_inode_operations; 863 inode_nohighmem(inode); 864 break; 865 } 866 lockdep_annotate_inode_mutex_key(inode); 867 } else { 868 if (resv_map) 869 kref_put(&resv_map->refs, resv_map_release); 870 } 871 872 return inode; 873 } 874 875 /* 876 * File creation. Allocate an inode, and we're done.. 877 */ 878 static int do_hugetlbfs_mknod(struct inode *dir, 879 struct dentry *dentry, 880 umode_t mode, 881 dev_t dev, 882 bool tmpfile) 883 { 884 struct inode *inode; 885 int error = -ENOSPC; 886 887 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 888 if (inode) { 889 dir->i_ctime = dir->i_mtime = current_time(dir); 890 if (tmpfile) { 891 d_tmpfile(dentry, inode); 892 } else { 893 d_instantiate(dentry, inode); 894 dget(dentry);/* Extra count - pin the dentry in core */ 895 } 896 error = 0; 897 } 898 return error; 899 } 900 901 static int hugetlbfs_mknod(struct inode *dir, 902 struct dentry *dentry, umode_t mode, dev_t dev) 903 { 904 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 905 } 906 907 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 908 { 909 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 910 if (!retval) 911 inc_nlink(dir); 912 return retval; 913 } 914 915 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 916 { 917 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 918 } 919 920 static int hugetlbfs_tmpfile(struct inode *dir, 921 struct dentry *dentry, umode_t mode) 922 { 923 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 924 } 925 926 static int hugetlbfs_symlink(struct inode *dir, 927 struct dentry *dentry, const char *symname) 928 { 929 struct inode *inode; 930 int error = -ENOSPC; 931 932 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 933 if (inode) { 934 int l = strlen(symname)+1; 935 error = page_symlink(inode, symname, l); 936 if (!error) { 937 d_instantiate(dentry, inode); 938 dget(dentry); 939 } else 940 iput(inode); 941 } 942 dir->i_ctime = dir->i_mtime = current_time(dir); 943 944 return error; 945 } 946 947 /* 948 * mark the head page dirty 949 */ 950 static int hugetlbfs_set_page_dirty(struct page *page) 951 { 952 struct page *head = compound_head(page); 953 954 SetPageDirty(head); 955 return 0; 956 } 957 958 static int hugetlbfs_migrate_page(struct address_space *mapping, 959 struct page *newpage, struct page *page, 960 enum migrate_mode mode) 961 { 962 int rc; 963 964 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 965 if (rc != MIGRATEPAGE_SUCCESS) 966 return rc; 967 968 /* 969 * page_private is subpool pointer in hugetlb pages. Transfer to 970 * new page. PagePrivate is not associated with page_private for 971 * hugetlb pages and can not be set here as only page_huge_active 972 * pages can be migrated. 973 */ 974 if (page_private(page)) { 975 set_page_private(newpage, page_private(page)); 976 set_page_private(page, 0); 977 } 978 979 if (mode != MIGRATE_SYNC_NO_COPY) 980 migrate_page_copy(newpage, page); 981 else 982 migrate_page_states(newpage, page); 983 984 return MIGRATEPAGE_SUCCESS; 985 } 986 987 static int hugetlbfs_error_remove_page(struct address_space *mapping, 988 struct page *page) 989 { 990 struct inode *inode = mapping->host; 991 pgoff_t index = page->index; 992 993 remove_huge_page(page); 994 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 995 hugetlb_fix_reserve_counts(inode); 996 997 return 0; 998 } 999 1000 /* 1001 * Display the mount options in /proc/mounts. 1002 */ 1003 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1004 { 1005 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1006 struct hugepage_subpool *spool = sbinfo->spool; 1007 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1008 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1009 char mod; 1010 1011 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1012 seq_printf(m, ",uid=%u", 1013 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1014 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1015 seq_printf(m, ",gid=%u", 1016 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1017 if (sbinfo->mode != 0755) 1018 seq_printf(m, ",mode=%o", sbinfo->mode); 1019 if (sbinfo->max_inodes != -1) 1020 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1021 1022 hpage_size /= 1024; 1023 mod = 'K'; 1024 if (hpage_size >= 1024) { 1025 hpage_size /= 1024; 1026 mod = 'M'; 1027 } 1028 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1029 if (spool) { 1030 if (spool->max_hpages != -1) 1031 seq_printf(m, ",size=%llu", 1032 (unsigned long long)spool->max_hpages << hpage_shift); 1033 if (spool->min_hpages != -1) 1034 seq_printf(m, ",min_size=%llu", 1035 (unsigned long long)spool->min_hpages << hpage_shift); 1036 } 1037 return 0; 1038 } 1039 1040 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1041 { 1042 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1043 struct hstate *h = hstate_inode(d_inode(dentry)); 1044 1045 buf->f_type = HUGETLBFS_MAGIC; 1046 buf->f_bsize = huge_page_size(h); 1047 if (sbinfo) { 1048 spin_lock(&sbinfo->stat_lock); 1049 /* If no limits set, just report 0 for max/free/used 1050 * blocks, like simple_statfs() */ 1051 if (sbinfo->spool) { 1052 long free_pages; 1053 1054 spin_lock(&sbinfo->spool->lock); 1055 buf->f_blocks = sbinfo->spool->max_hpages; 1056 free_pages = sbinfo->spool->max_hpages 1057 - sbinfo->spool->used_hpages; 1058 buf->f_bavail = buf->f_bfree = free_pages; 1059 spin_unlock(&sbinfo->spool->lock); 1060 buf->f_files = sbinfo->max_inodes; 1061 buf->f_ffree = sbinfo->free_inodes; 1062 } 1063 spin_unlock(&sbinfo->stat_lock); 1064 } 1065 buf->f_namelen = NAME_MAX; 1066 return 0; 1067 } 1068 1069 static void hugetlbfs_put_super(struct super_block *sb) 1070 { 1071 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1072 1073 if (sbi) { 1074 sb->s_fs_info = NULL; 1075 1076 if (sbi->spool) 1077 hugepage_put_subpool(sbi->spool); 1078 1079 kfree(sbi); 1080 } 1081 } 1082 1083 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1084 { 1085 if (sbinfo->free_inodes >= 0) { 1086 spin_lock(&sbinfo->stat_lock); 1087 if (unlikely(!sbinfo->free_inodes)) { 1088 spin_unlock(&sbinfo->stat_lock); 1089 return 0; 1090 } 1091 sbinfo->free_inodes--; 1092 spin_unlock(&sbinfo->stat_lock); 1093 } 1094 1095 return 1; 1096 } 1097 1098 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1099 { 1100 if (sbinfo->free_inodes >= 0) { 1101 spin_lock(&sbinfo->stat_lock); 1102 sbinfo->free_inodes++; 1103 spin_unlock(&sbinfo->stat_lock); 1104 } 1105 } 1106 1107 1108 static struct kmem_cache *hugetlbfs_inode_cachep; 1109 1110 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1111 { 1112 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1113 struct hugetlbfs_inode_info *p; 1114 1115 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1116 return NULL; 1117 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1118 if (unlikely(!p)) { 1119 hugetlbfs_inc_free_inodes(sbinfo); 1120 return NULL; 1121 } 1122 1123 /* 1124 * Any time after allocation, hugetlbfs_destroy_inode can be called 1125 * for the inode. mpol_free_shared_policy is unconditionally called 1126 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1127 * in case of a quick call to destroy. 1128 * 1129 * Note that the policy is initialized even if we are creating a 1130 * private inode. This simplifies hugetlbfs_destroy_inode. 1131 */ 1132 mpol_shared_policy_init(&p->policy, NULL); 1133 1134 return &p->vfs_inode; 1135 } 1136 1137 static void hugetlbfs_free_inode(struct inode *inode) 1138 { 1139 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1140 } 1141 1142 static void hugetlbfs_destroy_inode(struct inode *inode) 1143 { 1144 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1145 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1146 } 1147 1148 static const struct address_space_operations hugetlbfs_aops = { 1149 .write_begin = hugetlbfs_write_begin, 1150 .write_end = hugetlbfs_write_end, 1151 .set_page_dirty = hugetlbfs_set_page_dirty, 1152 .migratepage = hugetlbfs_migrate_page, 1153 .error_remove_page = hugetlbfs_error_remove_page, 1154 }; 1155 1156 1157 static void init_once(void *foo) 1158 { 1159 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1160 1161 inode_init_once(&ei->vfs_inode); 1162 } 1163 1164 const struct file_operations hugetlbfs_file_operations = { 1165 .read_iter = hugetlbfs_read_iter, 1166 .mmap = hugetlbfs_file_mmap, 1167 .fsync = noop_fsync, 1168 .get_unmapped_area = hugetlb_get_unmapped_area, 1169 .llseek = default_llseek, 1170 .fallocate = hugetlbfs_fallocate, 1171 }; 1172 1173 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1174 .create = hugetlbfs_create, 1175 .lookup = simple_lookup, 1176 .link = simple_link, 1177 .unlink = simple_unlink, 1178 .symlink = hugetlbfs_symlink, 1179 .mkdir = hugetlbfs_mkdir, 1180 .rmdir = simple_rmdir, 1181 .mknod = hugetlbfs_mknod, 1182 .rename = simple_rename, 1183 .setattr = hugetlbfs_setattr, 1184 .tmpfile = hugetlbfs_tmpfile, 1185 }; 1186 1187 static const struct inode_operations hugetlbfs_inode_operations = { 1188 .setattr = hugetlbfs_setattr, 1189 }; 1190 1191 static const struct super_operations hugetlbfs_ops = { 1192 .alloc_inode = hugetlbfs_alloc_inode, 1193 .free_inode = hugetlbfs_free_inode, 1194 .destroy_inode = hugetlbfs_destroy_inode, 1195 .evict_inode = hugetlbfs_evict_inode, 1196 .statfs = hugetlbfs_statfs, 1197 .put_super = hugetlbfs_put_super, 1198 .show_options = hugetlbfs_show_options, 1199 }; 1200 1201 /* 1202 * Convert size option passed from command line to number of huge pages 1203 * in the pool specified by hstate. Size option could be in bytes 1204 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1205 */ 1206 static long 1207 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1208 enum hugetlbfs_size_type val_type) 1209 { 1210 if (val_type == NO_SIZE) 1211 return -1; 1212 1213 if (val_type == SIZE_PERCENT) { 1214 size_opt <<= huge_page_shift(h); 1215 size_opt *= h->max_huge_pages; 1216 do_div(size_opt, 100); 1217 } 1218 1219 size_opt >>= huge_page_shift(h); 1220 return size_opt; 1221 } 1222 1223 /* 1224 * Parse one mount parameter. 1225 */ 1226 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1227 { 1228 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1229 struct fs_parse_result result; 1230 char *rest; 1231 unsigned long ps; 1232 int opt; 1233 1234 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1235 if (opt < 0) 1236 return opt; 1237 1238 switch (opt) { 1239 case Opt_uid: 1240 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1241 if (!uid_valid(ctx->uid)) 1242 goto bad_val; 1243 return 0; 1244 1245 case Opt_gid: 1246 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1247 if (!gid_valid(ctx->gid)) 1248 goto bad_val; 1249 return 0; 1250 1251 case Opt_mode: 1252 ctx->mode = result.uint_32 & 01777U; 1253 return 0; 1254 1255 case Opt_size: 1256 /* memparse() will accept a K/M/G without a digit */ 1257 if (!isdigit(param->string[0])) 1258 goto bad_val; 1259 ctx->max_size_opt = memparse(param->string, &rest); 1260 ctx->max_val_type = SIZE_STD; 1261 if (*rest == '%') 1262 ctx->max_val_type = SIZE_PERCENT; 1263 return 0; 1264 1265 case Opt_nr_inodes: 1266 /* memparse() will accept a K/M/G without a digit */ 1267 if (!isdigit(param->string[0])) 1268 goto bad_val; 1269 ctx->nr_inodes = memparse(param->string, &rest); 1270 return 0; 1271 1272 case Opt_pagesize: 1273 ps = memparse(param->string, &rest); 1274 ctx->hstate = size_to_hstate(ps); 1275 if (!ctx->hstate) { 1276 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1277 return -EINVAL; 1278 } 1279 return 0; 1280 1281 case Opt_min_size: 1282 /* memparse() will accept a K/M/G without a digit */ 1283 if (!isdigit(param->string[0])) 1284 goto bad_val; 1285 ctx->min_size_opt = memparse(param->string, &rest); 1286 ctx->min_val_type = SIZE_STD; 1287 if (*rest == '%') 1288 ctx->min_val_type = SIZE_PERCENT; 1289 return 0; 1290 1291 default: 1292 return -EINVAL; 1293 } 1294 1295 bad_val: 1296 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1297 param->string, param->key); 1298 } 1299 1300 /* 1301 * Validate the parsed options. 1302 */ 1303 static int hugetlbfs_validate(struct fs_context *fc) 1304 { 1305 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1306 1307 /* 1308 * Use huge page pool size (in hstate) to convert the size 1309 * options to number of huge pages. If NO_SIZE, -1 is returned. 1310 */ 1311 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1312 ctx->max_size_opt, 1313 ctx->max_val_type); 1314 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1315 ctx->min_size_opt, 1316 ctx->min_val_type); 1317 1318 /* 1319 * If max_size was specified, then min_size must be smaller 1320 */ 1321 if (ctx->max_val_type > NO_SIZE && 1322 ctx->min_hpages > ctx->max_hpages) { 1323 pr_err("Minimum size can not be greater than maximum size\n"); 1324 return -EINVAL; 1325 } 1326 1327 return 0; 1328 } 1329 1330 static int 1331 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1332 { 1333 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1334 struct hugetlbfs_sb_info *sbinfo; 1335 1336 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1337 if (!sbinfo) 1338 return -ENOMEM; 1339 sb->s_fs_info = sbinfo; 1340 spin_lock_init(&sbinfo->stat_lock); 1341 sbinfo->hstate = ctx->hstate; 1342 sbinfo->max_inodes = ctx->nr_inodes; 1343 sbinfo->free_inodes = ctx->nr_inodes; 1344 sbinfo->spool = NULL; 1345 sbinfo->uid = ctx->uid; 1346 sbinfo->gid = ctx->gid; 1347 sbinfo->mode = ctx->mode; 1348 1349 /* 1350 * Allocate and initialize subpool if maximum or minimum size is 1351 * specified. Any needed reservations (for minimim size) are taken 1352 * taken when the subpool is created. 1353 */ 1354 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1355 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1356 ctx->max_hpages, 1357 ctx->min_hpages); 1358 if (!sbinfo->spool) 1359 goto out_free; 1360 } 1361 sb->s_maxbytes = MAX_LFS_FILESIZE; 1362 sb->s_blocksize = huge_page_size(ctx->hstate); 1363 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1364 sb->s_magic = HUGETLBFS_MAGIC; 1365 sb->s_op = &hugetlbfs_ops; 1366 sb->s_time_gran = 1; 1367 1368 /* 1369 * Due to the special and limited functionality of hugetlbfs, it does 1370 * not work well as a stacking filesystem. 1371 */ 1372 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1373 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1374 if (!sb->s_root) 1375 goto out_free; 1376 return 0; 1377 out_free: 1378 kfree(sbinfo->spool); 1379 kfree(sbinfo); 1380 return -ENOMEM; 1381 } 1382 1383 static int hugetlbfs_get_tree(struct fs_context *fc) 1384 { 1385 int err = hugetlbfs_validate(fc); 1386 if (err) 1387 return err; 1388 return get_tree_nodev(fc, hugetlbfs_fill_super); 1389 } 1390 1391 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1392 { 1393 kfree(fc->fs_private); 1394 } 1395 1396 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1397 .free = hugetlbfs_fs_context_free, 1398 .parse_param = hugetlbfs_parse_param, 1399 .get_tree = hugetlbfs_get_tree, 1400 }; 1401 1402 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1403 { 1404 struct hugetlbfs_fs_context *ctx; 1405 1406 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1407 if (!ctx) 1408 return -ENOMEM; 1409 1410 ctx->max_hpages = -1; /* No limit on size by default */ 1411 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1412 ctx->uid = current_fsuid(); 1413 ctx->gid = current_fsgid(); 1414 ctx->mode = 0755; 1415 ctx->hstate = &default_hstate; 1416 ctx->min_hpages = -1; /* No default minimum size */ 1417 ctx->max_val_type = NO_SIZE; 1418 ctx->min_val_type = NO_SIZE; 1419 fc->fs_private = ctx; 1420 fc->ops = &hugetlbfs_fs_context_ops; 1421 return 0; 1422 } 1423 1424 static struct file_system_type hugetlbfs_fs_type = { 1425 .name = "hugetlbfs", 1426 .init_fs_context = hugetlbfs_init_fs_context, 1427 .parameters = hugetlb_fs_parameters, 1428 .kill_sb = kill_litter_super, 1429 }; 1430 1431 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1432 1433 static int can_do_hugetlb_shm(void) 1434 { 1435 kgid_t shm_group; 1436 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1437 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1438 } 1439 1440 static int get_hstate_idx(int page_size_log) 1441 { 1442 struct hstate *h = hstate_sizelog(page_size_log); 1443 1444 if (!h) 1445 return -1; 1446 return h - hstates; 1447 } 1448 1449 /* 1450 * Note that size should be aligned to proper hugepage size in caller side, 1451 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1452 */ 1453 struct file *hugetlb_file_setup(const char *name, size_t size, 1454 vm_flags_t acctflag, struct user_struct **user, 1455 int creat_flags, int page_size_log) 1456 { 1457 struct inode *inode; 1458 struct vfsmount *mnt; 1459 int hstate_idx; 1460 struct file *file; 1461 1462 hstate_idx = get_hstate_idx(page_size_log); 1463 if (hstate_idx < 0) 1464 return ERR_PTR(-ENODEV); 1465 1466 *user = NULL; 1467 mnt = hugetlbfs_vfsmount[hstate_idx]; 1468 if (!mnt) 1469 return ERR_PTR(-ENOENT); 1470 1471 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1472 *user = current_user(); 1473 if (user_shm_lock(size, *user)) { 1474 task_lock(current); 1475 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1476 current->comm, current->pid); 1477 task_unlock(current); 1478 } else { 1479 *user = NULL; 1480 return ERR_PTR(-EPERM); 1481 } 1482 } 1483 1484 file = ERR_PTR(-ENOSPC); 1485 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1486 if (!inode) 1487 goto out; 1488 if (creat_flags == HUGETLB_SHMFS_INODE) 1489 inode->i_flags |= S_PRIVATE; 1490 1491 inode->i_size = size; 1492 clear_nlink(inode); 1493 1494 if (hugetlb_reserve_pages(inode, 0, 1495 size >> huge_page_shift(hstate_inode(inode)), NULL, 1496 acctflag)) 1497 file = ERR_PTR(-ENOMEM); 1498 else 1499 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1500 &hugetlbfs_file_operations); 1501 if (!IS_ERR(file)) 1502 return file; 1503 1504 iput(inode); 1505 out: 1506 if (*user) { 1507 user_shm_unlock(size, *user); 1508 *user = NULL; 1509 } 1510 return file; 1511 } 1512 1513 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1514 { 1515 struct fs_context *fc; 1516 struct vfsmount *mnt; 1517 1518 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1519 if (IS_ERR(fc)) { 1520 mnt = ERR_CAST(fc); 1521 } else { 1522 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1523 ctx->hstate = h; 1524 mnt = fc_mount(fc); 1525 put_fs_context(fc); 1526 } 1527 if (IS_ERR(mnt)) 1528 pr_err("Cannot mount internal hugetlbfs for page size %uK", 1529 1U << (h->order + PAGE_SHIFT - 10)); 1530 return mnt; 1531 } 1532 1533 static int __init init_hugetlbfs_fs(void) 1534 { 1535 struct vfsmount *mnt; 1536 struct hstate *h; 1537 int error; 1538 int i; 1539 1540 if (!hugepages_supported()) { 1541 pr_info("disabling because there are no supported hugepage sizes\n"); 1542 return -ENOTSUPP; 1543 } 1544 1545 error = -ENOMEM; 1546 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1547 sizeof(struct hugetlbfs_inode_info), 1548 0, SLAB_ACCOUNT, init_once); 1549 if (hugetlbfs_inode_cachep == NULL) 1550 goto out; 1551 1552 error = register_filesystem(&hugetlbfs_fs_type); 1553 if (error) 1554 goto out_free; 1555 1556 /* default hstate mount is required */ 1557 mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]); 1558 if (IS_ERR(mnt)) { 1559 error = PTR_ERR(mnt); 1560 goto out_unreg; 1561 } 1562 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1563 1564 /* other hstates are optional */ 1565 i = 0; 1566 for_each_hstate(h) { 1567 if (i == default_hstate_idx) { 1568 i++; 1569 continue; 1570 } 1571 1572 mnt = mount_one_hugetlbfs(h); 1573 if (IS_ERR(mnt)) 1574 hugetlbfs_vfsmount[i] = NULL; 1575 else 1576 hugetlbfs_vfsmount[i] = mnt; 1577 i++; 1578 } 1579 1580 return 0; 1581 1582 out_unreg: 1583 (void)unregister_filesystem(&hugetlbfs_fs_type); 1584 out_free: 1585 kmem_cache_destroy(hugetlbfs_inode_cachep); 1586 out: 1587 return error; 1588 } 1589 fs_initcall(init_hugetlbfs_fs) 1590