1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <asm/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 kuid_t uid; 50 kgid_t gid; 51 umode_t mode; 52 long max_hpages; 53 long nr_inodes; 54 struct hstate *hstate; 55 long min_hpages; 56 }; 57 58 struct hugetlbfs_inode_info { 59 struct shared_policy policy; 60 struct inode vfs_inode; 61 }; 62 63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode) 64 { 65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode); 66 } 67 68 int sysctl_hugetlb_shm_group; 69 70 enum { 71 Opt_size, Opt_nr_inodes, 72 Opt_mode, Opt_uid, Opt_gid, 73 Opt_pagesize, Opt_min_size, 74 Opt_err, 75 }; 76 77 static const match_table_t tokens = { 78 {Opt_size, "size=%s"}, 79 {Opt_nr_inodes, "nr_inodes=%s"}, 80 {Opt_mode, "mode=%o"}, 81 {Opt_uid, "uid=%u"}, 82 {Opt_gid, "gid=%u"}, 83 {Opt_pagesize, "pagesize=%s"}, 84 {Opt_min_size, "min_size=%s"}, 85 {Opt_err, NULL}, 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 loff_t len, vma_len; 125 int ret; 126 struct hstate *h = hstate_file(file); 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap_pgoff unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 140 return -EINVAL; 141 142 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 143 144 mutex_lock(&inode->i_mutex); 145 file_accessed(file); 146 147 ret = -ENOMEM; 148 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 149 150 if (hugetlb_reserve_pages(inode, 151 vma->vm_pgoff >> huge_page_order(h), 152 len >> huge_page_shift(h), vma, 153 vma->vm_flags)) 154 goto out; 155 156 ret = 0; 157 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 158 inode->i_size = len; 159 out: 160 mutex_unlock(&inode->i_mutex); 161 162 return ret; 163 } 164 165 /* 166 * Called under down_write(mmap_sem). 167 */ 168 169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 170 static unsigned long 171 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 172 unsigned long len, unsigned long pgoff, unsigned long flags) 173 { 174 struct mm_struct *mm = current->mm; 175 struct vm_area_struct *vma; 176 struct hstate *h = hstate_file(file); 177 struct vm_unmapped_area_info info; 178 179 if (len & ~huge_page_mask(h)) 180 return -EINVAL; 181 if (len > TASK_SIZE) 182 return -ENOMEM; 183 184 if (flags & MAP_FIXED) { 185 if (prepare_hugepage_range(file, addr, len)) 186 return -EINVAL; 187 return addr; 188 } 189 190 if (addr) { 191 addr = ALIGN(addr, huge_page_size(h)); 192 vma = find_vma(mm, addr); 193 if (TASK_SIZE - len >= addr && 194 (!vma || addr + len <= vma->vm_start)) 195 return addr; 196 } 197 198 info.flags = 0; 199 info.length = len; 200 info.low_limit = TASK_UNMAPPED_BASE; 201 info.high_limit = TASK_SIZE; 202 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 203 info.align_offset = 0; 204 return vm_unmapped_area(&info); 205 } 206 #endif 207 208 static size_t 209 hugetlbfs_read_actor(struct page *page, unsigned long offset, 210 struct iov_iter *to, unsigned long size) 211 { 212 size_t copied = 0; 213 int i, chunksize; 214 215 /* Find which 4k chunk and offset with in that chunk */ 216 i = offset >> PAGE_CACHE_SHIFT; 217 offset = offset & ~PAGE_CACHE_MASK; 218 219 while (size) { 220 size_t n; 221 chunksize = PAGE_CACHE_SIZE; 222 if (offset) 223 chunksize -= offset; 224 if (chunksize > size) 225 chunksize = size; 226 n = copy_page_to_iter(&page[i], offset, chunksize, to); 227 copied += n; 228 if (n != chunksize) 229 return copied; 230 offset = 0; 231 size -= chunksize; 232 i++; 233 } 234 return copied; 235 } 236 237 /* 238 * Support for read() - Find the page attached to f_mapping and copy out the 239 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 240 * since it has PAGE_CACHE_SIZE assumptions. 241 */ 242 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 243 { 244 struct file *file = iocb->ki_filp; 245 struct hstate *h = hstate_file(file); 246 struct address_space *mapping = file->f_mapping; 247 struct inode *inode = mapping->host; 248 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 249 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 250 unsigned long end_index; 251 loff_t isize; 252 ssize_t retval = 0; 253 254 while (iov_iter_count(to)) { 255 struct page *page; 256 size_t nr, copied; 257 258 /* nr is the maximum number of bytes to copy from this page */ 259 nr = huge_page_size(h); 260 isize = i_size_read(inode); 261 if (!isize) 262 break; 263 end_index = (isize - 1) >> huge_page_shift(h); 264 if (index > end_index) 265 break; 266 if (index == end_index) { 267 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 268 if (nr <= offset) 269 break; 270 } 271 nr = nr - offset; 272 273 /* Find the page */ 274 page = find_lock_page(mapping, index); 275 if (unlikely(page == NULL)) { 276 /* 277 * We have a HOLE, zero out the user-buffer for the 278 * length of the hole or request. 279 */ 280 copied = iov_iter_zero(nr, to); 281 } else { 282 unlock_page(page); 283 284 /* 285 * We have the page, copy it to user space buffer. 286 */ 287 copied = hugetlbfs_read_actor(page, offset, to, nr); 288 page_cache_release(page); 289 } 290 offset += copied; 291 retval += copied; 292 if (copied != nr && iov_iter_count(to)) { 293 if (!retval) 294 retval = -EFAULT; 295 break; 296 } 297 index += offset >> huge_page_shift(h); 298 offset &= ~huge_page_mask(h); 299 } 300 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 301 return retval; 302 } 303 304 static int hugetlbfs_write_begin(struct file *file, 305 struct address_space *mapping, 306 loff_t pos, unsigned len, unsigned flags, 307 struct page **pagep, void **fsdata) 308 { 309 return -EINVAL; 310 } 311 312 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 313 loff_t pos, unsigned len, unsigned copied, 314 struct page *page, void *fsdata) 315 { 316 BUG(); 317 return -EINVAL; 318 } 319 320 static void remove_huge_page(struct page *page) 321 { 322 ClearPageDirty(page); 323 ClearPageUptodate(page); 324 delete_from_page_cache(page); 325 } 326 327 328 /* 329 * remove_inode_hugepages handles two distinct cases: truncation and hole 330 * punch. There are subtle differences in operation for each case. 331 332 * truncation is indicated by end of range being LLONG_MAX 333 * In this case, we first scan the range and release found pages. 334 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 335 * maps and global counts. 336 * hole punch is indicated if end is not LLONG_MAX 337 * In the hole punch case we scan the range and release found pages. 338 * Only when releasing a page is the associated region/reserv map 339 * deleted. The region/reserv map for ranges without associated 340 * pages are not modified. 341 * Note: If the passed end of range value is beyond the end of file, but 342 * not LLONG_MAX this routine still performs a hole punch operation. 343 */ 344 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 345 loff_t lend) 346 { 347 struct hstate *h = hstate_inode(inode); 348 struct address_space *mapping = &inode->i_data; 349 const pgoff_t start = lstart >> huge_page_shift(h); 350 const pgoff_t end = lend >> huge_page_shift(h); 351 struct vm_area_struct pseudo_vma; 352 struct pagevec pvec; 353 pgoff_t next; 354 int i, freed = 0; 355 long lookup_nr = PAGEVEC_SIZE; 356 bool truncate_op = (lend == LLONG_MAX); 357 358 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 359 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 360 pagevec_init(&pvec, 0); 361 next = start; 362 while (next < end) { 363 /* 364 * Make sure to never grab more pages that we 365 * might possibly need. 366 */ 367 if (end - next < lookup_nr) 368 lookup_nr = end - next; 369 370 /* 371 * This pagevec_lookup() may return pages past 'end', 372 * so we must check for page->index > end. 373 */ 374 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr)) { 375 if (next == start) 376 break; 377 next = start; 378 continue; 379 } 380 381 for (i = 0; i < pagevec_count(&pvec); ++i) { 382 struct page *page = pvec.pages[i]; 383 u32 hash; 384 385 hash = hugetlb_fault_mutex_hash(h, current->mm, 386 &pseudo_vma, 387 mapping, next, 0); 388 mutex_lock(&hugetlb_fault_mutex_table[hash]); 389 390 lock_page(page); 391 if (page->index >= end) { 392 unlock_page(page); 393 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 394 next = end; /* we are done */ 395 break; 396 } 397 398 /* 399 * If page is mapped, it was faulted in after being 400 * unmapped. Do nothing in this race case. In the 401 * normal case page is not mapped. 402 */ 403 if (!page_mapped(page)) { 404 bool rsv_on_error = !PagePrivate(page); 405 /* 406 * We must free the huge page and remove 407 * from page cache (remove_huge_page) BEFORE 408 * removing the region/reserve map 409 * (hugetlb_unreserve_pages). In rare out 410 * of memory conditions, removal of the 411 * region/reserve map could fail. Before 412 * free'ing the page, note PagePrivate which 413 * is used in case of error. 414 */ 415 remove_huge_page(page); 416 freed++; 417 if (!truncate_op) { 418 if (unlikely(hugetlb_unreserve_pages( 419 inode, next, 420 next + 1, 1))) 421 hugetlb_fix_reserve_counts( 422 inode, rsv_on_error); 423 } 424 } 425 426 if (page->index > next) 427 next = page->index; 428 429 ++next; 430 unlock_page(page); 431 432 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 433 } 434 huge_pagevec_release(&pvec); 435 } 436 437 if (truncate_op) 438 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 439 } 440 441 static void hugetlbfs_evict_inode(struct inode *inode) 442 { 443 struct resv_map *resv_map; 444 445 remove_inode_hugepages(inode, 0, LLONG_MAX); 446 resv_map = (struct resv_map *)inode->i_mapping->private_data; 447 /* root inode doesn't have the resv_map, so we should check it */ 448 if (resv_map) 449 resv_map_release(&resv_map->refs); 450 clear_inode(inode); 451 } 452 453 static inline void 454 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end) 455 { 456 struct vm_area_struct *vma; 457 458 /* 459 * end == 0 indicates that the entire range after 460 * start should be unmapped. 461 */ 462 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 463 unsigned long v_offset; 464 465 /* 466 * Can the expression below overflow on 32-bit arches? 467 * No, because the interval tree returns us only those vmas 468 * which overlap the truncated area starting at pgoff, 469 * and no vma on a 32-bit arch can span beyond the 4GB. 470 */ 471 if (vma->vm_pgoff < start) 472 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 473 else 474 v_offset = 0; 475 476 if (end) { 477 end = ((end - start) << PAGE_SHIFT) + 478 vma->vm_start + v_offset; 479 if (end > vma->vm_end) 480 end = vma->vm_end; 481 } else 482 end = vma->vm_end; 483 484 unmap_hugepage_range(vma, vma->vm_start + v_offset, end, NULL); 485 } 486 } 487 488 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 489 { 490 pgoff_t pgoff; 491 struct address_space *mapping = inode->i_mapping; 492 struct hstate *h = hstate_inode(inode); 493 494 BUG_ON(offset & ~huge_page_mask(h)); 495 pgoff = offset >> PAGE_SHIFT; 496 497 i_size_write(inode, offset); 498 i_mmap_lock_write(mapping); 499 if (!RB_EMPTY_ROOT(&mapping->i_mmap)) 500 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 501 i_mmap_unlock_write(mapping); 502 remove_inode_hugepages(inode, offset, LLONG_MAX); 503 return 0; 504 } 505 506 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 507 { 508 struct hstate *h = hstate_inode(inode); 509 loff_t hpage_size = huge_page_size(h); 510 loff_t hole_start, hole_end; 511 512 /* 513 * For hole punch round up the beginning offset of the hole and 514 * round down the end. 515 */ 516 hole_start = round_up(offset, hpage_size); 517 hole_end = round_down(offset + len, hpage_size); 518 519 if (hole_end > hole_start) { 520 struct address_space *mapping = inode->i_mapping; 521 522 mutex_lock(&inode->i_mutex); 523 i_mmap_lock_write(mapping); 524 if (!RB_EMPTY_ROOT(&mapping->i_mmap)) 525 hugetlb_vmdelete_list(&mapping->i_mmap, 526 hole_start >> PAGE_SHIFT, 527 hole_end >> PAGE_SHIFT); 528 i_mmap_unlock_write(mapping); 529 remove_inode_hugepages(inode, hole_start, hole_end); 530 mutex_unlock(&inode->i_mutex); 531 } 532 533 return 0; 534 } 535 536 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 537 loff_t len) 538 { 539 struct inode *inode = file_inode(file); 540 struct address_space *mapping = inode->i_mapping; 541 struct hstate *h = hstate_inode(inode); 542 struct vm_area_struct pseudo_vma; 543 struct mm_struct *mm = current->mm; 544 loff_t hpage_size = huge_page_size(h); 545 unsigned long hpage_shift = huge_page_shift(h); 546 pgoff_t start, index, end; 547 int error; 548 u32 hash; 549 550 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 551 return -EOPNOTSUPP; 552 553 if (mode & FALLOC_FL_PUNCH_HOLE) 554 return hugetlbfs_punch_hole(inode, offset, len); 555 556 /* 557 * Default preallocate case. 558 * For this range, start is rounded down and end is rounded up 559 * as well as being converted to page offsets. 560 */ 561 start = offset >> hpage_shift; 562 end = (offset + len + hpage_size - 1) >> hpage_shift; 563 564 mutex_lock(&inode->i_mutex); 565 566 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 567 error = inode_newsize_ok(inode, offset + len); 568 if (error) 569 goto out; 570 571 /* 572 * Initialize a pseudo vma as this is required by the huge page 573 * allocation routines. If NUMA is configured, use page index 574 * as input to create an allocation policy. 575 */ 576 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 577 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 578 pseudo_vma.vm_file = file; 579 580 for (index = start; index < end; index++) { 581 /* 582 * This is supposed to be the vaddr where the page is being 583 * faulted in, but we have no vaddr here. 584 */ 585 struct page *page; 586 unsigned long addr; 587 int avoid_reserve = 0; 588 589 cond_resched(); 590 591 /* 592 * fallocate(2) manpage permits EINTR; we may have been 593 * interrupted because we are using up too much memory. 594 */ 595 if (signal_pending(current)) { 596 error = -EINTR; 597 break; 598 } 599 600 /* Set numa allocation policy based on index */ 601 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 602 603 /* addr is the offset within the file (zero based) */ 604 addr = index * hpage_size; 605 606 /* mutex taken here, fault path and hole punch */ 607 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 608 index, addr); 609 mutex_lock(&hugetlb_fault_mutex_table[hash]); 610 611 /* See if already present in mapping to avoid alloc/free */ 612 page = find_get_page(mapping, index); 613 if (page) { 614 put_page(page); 615 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 616 hugetlb_drop_vma_policy(&pseudo_vma); 617 continue; 618 } 619 620 /* Allocate page and add to page cache */ 621 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 622 hugetlb_drop_vma_policy(&pseudo_vma); 623 if (IS_ERR(page)) { 624 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 625 error = PTR_ERR(page); 626 goto out; 627 } 628 clear_huge_page(page, addr, pages_per_huge_page(h)); 629 __SetPageUptodate(page); 630 error = huge_add_to_page_cache(page, mapping, index); 631 if (unlikely(error)) { 632 put_page(page); 633 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 634 goto out; 635 } 636 637 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 638 639 /* 640 * page_put due to reference from alloc_huge_page() 641 * unlock_page because locked by add_to_page_cache() 642 */ 643 put_page(page); 644 unlock_page(page); 645 } 646 647 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 648 i_size_write(inode, offset + len); 649 inode->i_ctime = CURRENT_TIME; 650 spin_lock(&inode->i_lock); 651 inode->i_private = NULL; 652 spin_unlock(&inode->i_lock); 653 out: 654 mutex_unlock(&inode->i_mutex); 655 return error; 656 } 657 658 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 659 { 660 struct inode *inode = d_inode(dentry); 661 struct hstate *h = hstate_inode(inode); 662 int error; 663 unsigned int ia_valid = attr->ia_valid; 664 665 BUG_ON(!inode); 666 667 error = inode_change_ok(inode, attr); 668 if (error) 669 return error; 670 671 if (ia_valid & ATTR_SIZE) { 672 error = -EINVAL; 673 if (attr->ia_size & ~huge_page_mask(h)) 674 return -EINVAL; 675 error = hugetlb_vmtruncate(inode, attr->ia_size); 676 if (error) 677 return error; 678 } 679 680 setattr_copy(inode, attr); 681 mark_inode_dirty(inode); 682 return 0; 683 } 684 685 static struct inode *hugetlbfs_get_root(struct super_block *sb, 686 struct hugetlbfs_config *config) 687 { 688 struct inode *inode; 689 690 inode = new_inode(sb); 691 if (inode) { 692 struct hugetlbfs_inode_info *info; 693 inode->i_ino = get_next_ino(); 694 inode->i_mode = S_IFDIR | config->mode; 695 inode->i_uid = config->uid; 696 inode->i_gid = config->gid; 697 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 698 info = HUGETLBFS_I(inode); 699 mpol_shared_policy_init(&info->policy, NULL); 700 inode->i_op = &hugetlbfs_dir_inode_operations; 701 inode->i_fop = &simple_dir_operations; 702 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 703 inc_nlink(inode); 704 lockdep_annotate_inode_mutex_key(inode); 705 } 706 return inode; 707 } 708 709 /* 710 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 711 * be taken from reclaim -- unlike regular filesystems. This needs an 712 * annotation because huge_pmd_share() does an allocation under 713 * i_mmap_rwsem. 714 */ 715 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 716 717 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 718 struct inode *dir, 719 umode_t mode, dev_t dev) 720 { 721 struct inode *inode; 722 struct resv_map *resv_map; 723 724 resv_map = resv_map_alloc(); 725 if (!resv_map) 726 return NULL; 727 728 inode = new_inode(sb); 729 if (inode) { 730 struct hugetlbfs_inode_info *info; 731 inode->i_ino = get_next_ino(); 732 inode_init_owner(inode, dir, mode); 733 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 734 &hugetlbfs_i_mmap_rwsem_key); 735 inode->i_mapping->a_ops = &hugetlbfs_aops; 736 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 737 inode->i_mapping->private_data = resv_map; 738 info = HUGETLBFS_I(inode); 739 /* 740 * The policy is initialized here even if we are creating a 741 * private inode because initialization simply creates an 742 * an empty rb tree and calls spin_lock_init(), later when we 743 * call mpol_free_shared_policy() it will just return because 744 * the rb tree will still be empty. 745 */ 746 mpol_shared_policy_init(&info->policy, NULL); 747 switch (mode & S_IFMT) { 748 default: 749 init_special_inode(inode, mode, dev); 750 break; 751 case S_IFREG: 752 inode->i_op = &hugetlbfs_inode_operations; 753 inode->i_fop = &hugetlbfs_file_operations; 754 break; 755 case S_IFDIR: 756 inode->i_op = &hugetlbfs_dir_inode_operations; 757 inode->i_fop = &simple_dir_operations; 758 759 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 760 inc_nlink(inode); 761 break; 762 case S_IFLNK: 763 inode->i_op = &page_symlink_inode_operations; 764 break; 765 } 766 lockdep_annotate_inode_mutex_key(inode); 767 } else 768 kref_put(&resv_map->refs, resv_map_release); 769 770 return inode; 771 } 772 773 /* 774 * File creation. Allocate an inode, and we're done.. 775 */ 776 static int hugetlbfs_mknod(struct inode *dir, 777 struct dentry *dentry, umode_t mode, dev_t dev) 778 { 779 struct inode *inode; 780 int error = -ENOSPC; 781 782 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 783 if (inode) { 784 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 785 d_instantiate(dentry, inode); 786 dget(dentry); /* Extra count - pin the dentry in core */ 787 error = 0; 788 } 789 return error; 790 } 791 792 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 793 { 794 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 795 if (!retval) 796 inc_nlink(dir); 797 return retval; 798 } 799 800 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 801 { 802 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 803 } 804 805 static int hugetlbfs_symlink(struct inode *dir, 806 struct dentry *dentry, const char *symname) 807 { 808 struct inode *inode; 809 int error = -ENOSPC; 810 811 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 812 if (inode) { 813 int l = strlen(symname)+1; 814 error = page_symlink(inode, symname, l); 815 if (!error) { 816 d_instantiate(dentry, inode); 817 dget(dentry); 818 } else 819 iput(inode); 820 } 821 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 822 823 return error; 824 } 825 826 /* 827 * mark the head page dirty 828 */ 829 static int hugetlbfs_set_page_dirty(struct page *page) 830 { 831 struct page *head = compound_head(page); 832 833 SetPageDirty(head); 834 return 0; 835 } 836 837 static int hugetlbfs_migrate_page(struct address_space *mapping, 838 struct page *newpage, struct page *page, 839 enum migrate_mode mode) 840 { 841 int rc; 842 843 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 844 if (rc != MIGRATEPAGE_SUCCESS) 845 return rc; 846 migrate_page_copy(newpage, page); 847 848 return MIGRATEPAGE_SUCCESS; 849 } 850 851 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 852 { 853 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 854 struct hstate *h = hstate_inode(d_inode(dentry)); 855 856 buf->f_type = HUGETLBFS_MAGIC; 857 buf->f_bsize = huge_page_size(h); 858 if (sbinfo) { 859 spin_lock(&sbinfo->stat_lock); 860 /* If no limits set, just report 0 for max/free/used 861 * blocks, like simple_statfs() */ 862 if (sbinfo->spool) { 863 long free_pages; 864 865 spin_lock(&sbinfo->spool->lock); 866 buf->f_blocks = sbinfo->spool->max_hpages; 867 free_pages = sbinfo->spool->max_hpages 868 - sbinfo->spool->used_hpages; 869 buf->f_bavail = buf->f_bfree = free_pages; 870 spin_unlock(&sbinfo->spool->lock); 871 buf->f_files = sbinfo->max_inodes; 872 buf->f_ffree = sbinfo->free_inodes; 873 } 874 spin_unlock(&sbinfo->stat_lock); 875 } 876 buf->f_namelen = NAME_MAX; 877 return 0; 878 } 879 880 static void hugetlbfs_put_super(struct super_block *sb) 881 { 882 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 883 884 if (sbi) { 885 sb->s_fs_info = NULL; 886 887 if (sbi->spool) 888 hugepage_put_subpool(sbi->spool); 889 890 kfree(sbi); 891 } 892 } 893 894 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 895 { 896 if (sbinfo->free_inodes >= 0) { 897 spin_lock(&sbinfo->stat_lock); 898 if (unlikely(!sbinfo->free_inodes)) { 899 spin_unlock(&sbinfo->stat_lock); 900 return 0; 901 } 902 sbinfo->free_inodes--; 903 spin_unlock(&sbinfo->stat_lock); 904 } 905 906 return 1; 907 } 908 909 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 910 { 911 if (sbinfo->free_inodes >= 0) { 912 spin_lock(&sbinfo->stat_lock); 913 sbinfo->free_inodes++; 914 spin_unlock(&sbinfo->stat_lock); 915 } 916 } 917 918 919 static struct kmem_cache *hugetlbfs_inode_cachep; 920 921 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 922 { 923 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 924 struct hugetlbfs_inode_info *p; 925 926 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 927 return NULL; 928 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 929 if (unlikely(!p)) { 930 hugetlbfs_inc_free_inodes(sbinfo); 931 return NULL; 932 } 933 return &p->vfs_inode; 934 } 935 936 static void hugetlbfs_i_callback(struct rcu_head *head) 937 { 938 struct inode *inode = container_of(head, struct inode, i_rcu); 939 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 940 } 941 942 static void hugetlbfs_destroy_inode(struct inode *inode) 943 { 944 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 945 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 946 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 947 } 948 949 static const struct address_space_operations hugetlbfs_aops = { 950 .write_begin = hugetlbfs_write_begin, 951 .write_end = hugetlbfs_write_end, 952 .set_page_dirty = hugetlbfs_set_page_dirty, 953 .migratepage = hugetlbfs_migrate_page, 954 }; 955 956 957 static void init_once(void *foo) 958 { 959 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 960 961 inode_init_once(&ei->vfs_inode); 962 } 963 964 const struct file_operations hugetlbfs_file_operations = { 965 .read_iter = hugetlbfs_read_iter, 966 .mmap = hugetlbfs_file_mmap, 967 .fsync = noop_fsync, 968 .get_unmapped_area = hugetlb_get_unmapped_area, 969 .llseek = default_llseek, 970 .fallocate = hugetlbfs_fallocate, 971 }; 972 973 static const struct inode_operations hugetlbfs_dir_inode_operations = { 974 .create = hugetlbfs_create, 975 .lookup = simple_lookup, 976 .link = simple_link, 977 .unlink = simple_unlink, 978 .symlink = hugetlbfs_symlink, 979 .mkdir = hugetlbfs_mkdir, 980 .rmdir = simple_rmdir, 981 .mknod = hugetlbfs_mknod, 982 .rename = simple_rename, 983 .setattr = hugetlbfs_setattr, 984 }; 985 986 static const struct inode_operations hugetlbfs_inode_operations = { 987 .setattr = hugetlbfs_setattr, 988 }; 989 990 static const struct super_operations hugetlbfs_ops = { 991 .alloc_inode = hugetlbfs_alloc_inode, 992 .destroy_inode = hugetlbfs_destroy_inode, 993 .evict_inode = hugetlbfs_evict_inode, 994 .statfs = hugetlbfs_statfs, 995 .put_super = hugetlbfs_put_super, 996 .show_options = generic_show_options, 997 }; 998 999 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 1000 1001 /* 1002 * Convert size option passed from command line to number of huge pages 1003 * in the pool specified by hstate. Size option could be in bytes 1004 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1005 */ 1006 static long long 1007 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1008 int val_type) 1009 { 1010 if (val_type == NO_SIZE) 1011 return -1; 1012 1013 if (val_type == SIZE_PERCENT) { 1014 size_opt <<= huge_page_shift(h); 1015 size_opt *= h->max_huge_pages; 1016 do_div(size_opt, 100); 1017 } 1018 1019 size_opt >>= huge_page_shift(h); 1020 return size_opt; 1021 } 1022 1023 static int 1024 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1025 { 1026 char *p, *rest; 1027 substring_t args[MAX_OPT_ARGS]; 1028 int option; 1029 unsigned long long max_size_opt = 0, min_size_opt = 0; 1030 int max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1031 1032 if (!options) 1033 return 0; 1034 1035 while ((p = strsep(&options, ",")) != NULL) { 1036 int token; 1037 if (!*p) 1038 continue; 1039 1040 token = match_token(p, tokens, args); 1041 switch (token) { 1042 case Opt_uid: 1043 if (match_int(&args[0], &option)) 1044 goto bad_val; 1045 pconfig->uid = make_kuid(current_user_ns(), option); 1046 if (!uid_valid(pconfig->uid)) 1047 goto bad_val; 1048 break; 1049 1050 case Opt_gid: 1051 if (match_int(&args[0], &option)) 1052 goto bad_val; 1053 pconfig->gid = make_kgid(current_user_ns(), option); 1054 if (!gid_valid(pconfig->gid)) 1055 goto bad_val; 1056 break; 1057 1058 case Opt_mode: 1059 if (match_octal(&args[0], &option)) 1060 goto bad_val; 1061 pconfig->mode = option & 01777U; 1062 break; 1063 1064 case Opt_size: { 1065 /* memparse() will accept a K/M/G without a digit */ 1066 if (!isdigit(*args[0].from)) 1067 goto bad_val; 1068 max_size_opt = memparse(args[0].from, &rest); 1069 max_val_type = SIZE_STD; 1070 if (*rest == '%') 1071 max_val_type = SIZE_PERCENT; 1072 break; 1073 } 1074 1075 case Opt_nr_inodes: 1076 /* memparse() will accept a K/M/G without a digit */ 1077 if (!isdigit(*args[0].from)) 1078 goto bad_val; 1079 pconfig->nr_inodes = memparse(args[0].from, &rest); 1080 break; 1081 1082 case Opt_pagesize: { 1083 unsigned long ps; 1084 ps = memparse(args[0].from, &rest); 1085 pconfig->hstate = size_to_hstate(ps); 1086 if (!pconfig->hstate) { 1087 pr_err("Unsupported page size %lu MB\n", 1088 ps >> 20); 1089 return -EINVAL; 1090 } 1091 break; 1092 } 1093 1094 case Opt_min_size: { 1095 /* memparse() will accept a K/M/G without a digit */ 1096 if (!isdigit(*args[0].from)) 1097 goto bad_val; 1098 min_size_opt = memparse(args[0].from, &rest); 1099 min_val_type = SIZE_STD; 1100 if (*rest == '%') 1101 min_val_type = SIZE_PERCENT; 1102 break; 1103 } 1104 1105 default: 1106 pr_err("Bad mount option: \"%s\"\n", p); 1107 return -EINVAL; 1108 break; 1109 } 1110 } 1111 1112 /* 1113 * Use huge page pool size (in hstate) to convert the size 1114 * options to number of huge pages. If NO_SIZE, -1 is returned. 1115 */ 1116 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1117 max_size_opt, max_val_type); 1118 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1119 min_size_opt, min_val_type); 1120 1121 /* 1122 * If max_size was specified, then min_size must be smaller 1123 */ 1124 if (max_val_type > NO_SIZE && 1125 pconfig->min_hpages > pconfig->max_hpages) { 1126 pr_err("minimum size can not be greater than maximum size\n"); 1127 return -EINVAL; 1128 } 1129 1130 return 0; 1131 1132 bad_val: 1133 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1134 return -EINVAL; 1135 } 1136 1137 static int 1138 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1139 { 1140 int ret; 1141 struct hugetlbfs_config config; 1142 struct hugetlbfs_sb_info *sbinfo; 1143 1144 save_mount_options(sb, data); 1145 1146 config.max_hpages = -1; /* No limit on size by default */ 1147 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1148 config.uid = current_fsuid(); 1149 config.gid = current_fsgid(); 1150 config.mode = 0755; 1151 config.hstate = &default_hstate; 1152 config.min_hpages = -1; /* No default minimum size */ 1153 ret = hugetlbfs_parse_options(data, &config); 1154 if (ret) 1155 return ret; 1156 1157 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1158 if (!sbinfo) 1159 return -ENOMEM; 1160 sb->s_fs_info = sbinfo; 1161 sbinfo->hstate = config.hstate; 1162 spin_lock_init(&sbinfo->stat_lock); 1163 sbinfo->max_inodes = config.nr_inodes; 1164 sbinfo->free_inodes = config.nr_inodes; 1165 sbinfo->spool = NULL; 1166 /* 1167 * Allocate and initialize subpool if maximum or minimum size is 1168 * specified. Any needed reservations (for minimim size) are taken 1169 * taken when the subpool is created. 1170 */ 1171 if (config.max_hpages != -1 || config.min_hpages != -1) { 1172 sbinfo->spool = hugepage_new_subpool(config.hstate, 1173 config.max_hpages, 1174 config.min_hpages); 1175 if (!sbinfo->spool) 1176 goto out_free; 1177 } 1178 sb->s_maxbytes = MAX_LFS_FILESIZE; 1179 sb->s_blocksize = huge_page_size(config.hstate); 1180 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1181 sb->s_magic = HUGETLBFS_MAGIC; 1182 sb->s_op = &hugetlbfs_ops; 1183 sb->s_time_gran = 1; 1184 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1185 if (!sb->s_root) 1186 goto out_free; 1187 return 0; 1188 out_free: 1189 kfree(sbinfo->spool); 1190 kfree(sbinfo); 1191 return -ENOMEM; 1192 } 1193 1194 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1195 int flags, const char *dev_name, void *data) 1196 { 1197 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1198 } 1199 1200 static struct file_system_type hugetlbfs_fs_type = { 1201 .name = "hugetlbfs", 1202 .mount = hugetlbfs_mount, 1203 .kill_sb = kill_litter_super, 1204 }; 1205 MODULE_ALIAS_FS("hugetlbfs"); 1206 1207 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1208 1209 static int can_do_hugetlb_shm(void) 1210 { 1211 kgid_t shm_group; 1212 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1213 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1214 } 1215 1216 static int get_hstate_idx(int page_size_log) 1217 { 1218 struct hstate *h = hstate_sizelog(page_size_log); 1219 1220 if (!h) 1221 return -1; 1222 return h - hstates; 1223 } 1224 1225 static const struct dentry_operations anon_ops = { 1226 .d_dname = simple_dname 1227 }; 1228 1229 /* 1230 * Note that size should be aligned to proper hugepage size in caller side, 1231 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1232 */ 1233 struct file *hugetlb_file_setup(const char *name, size_t size, 1234 vm_flags_t acctflag, struct user_struct **user, 1235 int creat_flags, int page_size_log) 1236 { 1237 struct file *file = ERR_PTR(-ENOMEM); 1238 struct inode *inode; 1239 struct path path; 1240 struct super_block *sb; 1241 struct qstr quick_string; 1242 int hstate_idx; 1243 1244 hstate_idx = get_hstate_idx(page_size_log); 1245 if (hstate_idx < 0) 1246 return ERR_PTR(-ENODEV); 1247 1248 *user = NULL; 1249 if (!hugetlbfs_vfsmount[hstate_idx]) 1250 return ERR_PTR(-ENOENT); 1251 1252 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1253 *user = current_user(); 1254 if (user_shm_lock(size, *user)) { 1255 task_lock(current); 1256 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1257 current->comm, current->pid); 1258 task_unlock(current); 1259 } else { 1260 *user = NULL; 1261 return ERR_PTR(-EPERM); 1262 } 1263 } 1264 1265 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb; 1266 quick_string.name = name; 1267 quick_string.len = strlen(quick_string.name); 1268 quick_string.hash = 0; 1269 path.dentry = d_alloc_pseudo(sb, &quick_string); 1270 if (!path.dentry) 1271 goto out_shm_unlock; 1272 1273 d_set_d_op(path.dentry, &anon_ops); 1274 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]); 1275 file = ERR_PTR(-ENOSPC); 1276 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0); 1277 if (!inode) 1278 goto out_dentry; 1279 if (creat_flags == HUGETLB_SHMFS_INODE) 1280 inode->i_flags |= S_PRIVATE; 1281 1282 file = ERR_PTR(-ENOMEM); 1283 if (hugetlb_reserve_pages(inode, 0, 1284 size >> huge_page_shift(hstate_inode(inode)), NULL, 1285 acctflag)) 1286 goto out_inode; 1287 1288 d_instantiate(path.dentry, inode); 1289 inode->i_size = size; 1290 clear_nlink(inode); 1291 1292 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 1293 &hugetlbfs_file_operations); 1294 if (IS_ERR(file)) 1295 goto out_dentry; /* inode is already attached */ 1296 1297 return file; 1298 1299 out_inode: 1300 iput(inode); 1301 out_dentry: 1302 path_put(&path); 1303 out_shm_unlock: 1304 if (*user) { 1305 user_shm_unlock(size, *user); 1306 *user = NULL; 1307 } 1308 return file; 1309 } 1310 1311 static int __init init_hugetlbfs_fs(void) 1312 { 1313 struct hstate *h; 1314 int error; 1315 int i; 1316 1317 if (!hugepages_supported()) { 1318 pr_info("disabling because there are no supported hugepage sizes\n"); 1319 return -ENOTSUPP; 1320 } 1321 1322 error = -ENOMEM; 1323 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1324 sizeof(struct hugetlbfs_inode_info), 1325 0, 0, init_once); 1326 if (hugetlbfs_inode_cachep == NULL) 1327 goto out2; 1328 1329 error = register_filesystem(&hugetlbfs_fs_type); 1330 if (error) 1331 goto out; 1332 1333 i = 0; 1334 for_each_hstate(h) { 1335 char buf[50]; 1336 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1337 1338 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1339 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1340 buf); 1341 1342 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1343 pr_err("Cannot mount internal hugetlbfs for " 1344 "page size %uK", ps_kb); 1345 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1346 hugetlbfs_vfsmount[i] = NULL; 1347 } 1348 i++; 1349 } 1350 /* Non default hstates are optional */ 1351 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1352 return 0; 1353 1354 out: 1355 kmem_cache_destroy(hugetlbfs_inode_cachep); 1356 out2: 1357 return error; 1358 } 1359 1360 static void __exit exit_hugetlbfs_fs(void) 1361 { 1362 struct hstate *h; 1363 int i; 1364 1365 1366 /* 1367 * Make sure all delayed rcu free inodes are flushed before we 1368 * destroy cache. 1369 */ 1370 rcu_barrier(); 1371 kmem_cache_destroy(hugetlbfs_inode_cachep); 1372 i = 0; 1373 for_each_hstate(h) 1374 kern_unmount(hugetlbfs_vfsmount[i++]); 1375 unregister_filesystem(&hugetlbfs_fs_type); 1376 } 1377 1378 module_init(init_hugetlbfs_fs) 1379 module_exit(exit_hugetlbfs_fs) 1380 1381 MODULE_LICENSE("GPL"); 1382