1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlb_file_mmap_prepare_success(const struct vm_area_struct *vma) 100 { 101 /* Unfortunate we have to reassign vma->vm_private_data. */ 102 return hugetlb_vma_lock_alloc((struct vm_area_struct *)vma); 103 } 104 105 static int hugetlbfs_file_mmap_prepare(struct vm_area_desc *desc) 106 { 107 struct file *file = desc->file; 108 struct inode *inode = file_inode(file); 109 loff_t len, vma_len; 110 int ret; 111 struct hstate *h = hstate_file(file); 112 vm_flags_t vm_flags; 113 114 /* 115 * vma address alignment (but not the pgoff alignment) has 116 * already been checked by prepare_hugepage_range. If you add 117 * any error returns here, do so after setting VM_HUGETLB, so 118 * is_vm_hugetlb_page tests below unmap_region go the right 119 * way when do_mmap unwinds (may be important on powerpc 120 * and ia64). 121 */ 122 desc->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 123 desc->vm_ops = &hugetlb_vm_ops; 124 125 /* 126 * page based offset in vm_pgoff could be sufficiently large to 127 * overflow a loff_t when converted to byte offset. This can 128 * only happen on architectures where sizeof(loff_t) == 129 * sizeof(unsigned long). So, only check in those instances. 130 */ 131 if (sizeof(unsigned long) == sizeof(loff_t)) { 132 if (desc->pgoff & PGOFF_LOFFT_MAX) 133 return -EINVAL; 134 } 135 136 /* must be huge page aligned */ 137 if (desc->pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 138 return -EINVAL; 139 140 vma_len = (loff_t)vma_desc_size(desc); 141 len = vma_len + ((loff_t)desc->pgoff << PAGE_SHIFT); 142 /* check for overflow */ 143 if (len < vma_len) 144 return -EINVAL; 145 146 inode_lock(inode); 147 file_accessed(file); 148 149 ret = -ENOMEM; 150 151 vm_flags = desc->vm_flags; 152 /* 153 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 154 * reserving here. Note: only for SHM hugetlbfs file, the inode 155 * flag S_PRIVATE is set. 156 */ 157 if (inode->i_flags & S_PRIVATE) 158 vm_flags |= VM_NORESERVE; 159 160 if (hugetlb_reserve_pages(inode, 161 desc->pgoff >> huge_page_order(h), 162 len >> huge_page_shift(h), desc, 163 vm_flags) < 0) 164 goto out; 165 166 ret = 0; 167 if ((desc->vm_flags & VM_WRITE) && inode->i_size < len) 168 i_size_write(inode, len); 169 out: 170 inode_unlock(inode); 171 172 if (!ret) { 173 /* Allocate the VMA lock after we set it up. */ 174 desc->action.success_hook = hugetlb_file_mmap_prepare_success; 175 /* 176 * We cannot permit the rmap finding this VMA in the time 177 * between the VMA being inserted into the VMA tree and the 178 * completion/success hook being invoked. 179 * 180 * This is because we establish a per-VMA hugetlb lock which can 181 * be raced by rmap. 182 */ 183 desc->action.hide_from_rmap_until_complete = true; 184 } 185 return ret; 186 } 187 188 /* 189 * Called under mmap_write_lock(mm). 190 */ 191 192 unsigned long 193 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 194 unsigned long len, unsigned long pgoff, 195 unsigned long flags) 196 { 197 unsigned long addr0 = 0; 198 struct hstate *h = hstate_file(file); 199 200 if (len & ~huge_page_mask(h)) 201 return -EINVAL; 202 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h))) 203 return -EINVAL; 204 if (addr) 205 addr0 = ALIGN(addr, huge_page_size(h)); 206 207 return mm_get_unmapped_area_vmflags(file, addr0, len, pgoff, flags, 0); 208 } 209 210 /* 211 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset. 212 * Returns the maximum number of bytes one can read without touching the 1st raw 213 * HWPOISON page. 214 */ 215 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset, 216 size_t bytes) 217 { 218 struct page *page = folio_page(folio, offset / PAGE_SIZE); 219 size_t safe_bytes; 220 221 if (is_raw_hwpoison_page_in_hugepage(page)) 222 return 0; 223 /* Safe to read the remaining bytes in this page. */ 224 safe_bytes = PAGE_SIZE - (offset % PAGE_SIZE); 225 page++; 226 227 /* Check each remaining page as long as we are not done yet. */ 228 for (; safe_bytes < bytes; safe_bytes += PAGE_SIZE, page++) 229 if (is_raw_hwpoison_page_in_hugepage(page)) 230 break; 231 232 return min(safe_bytes, bytes); 233 } 234 235 /* 236 * Support for read() - Find the page attached to f_mapping and copy out the 237 * data. This provides functionality similar to filemap_read(). 238 */ 239 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 240 { 241 struct file *file = iocb->ki_filp; 242 struct hstate *h = hstate_file(file); 243 struct address_space *mapping = file->f_mapping; 244 struct inode *inode = mapping->host; 245 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 246 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 247 unsigned long end_index; 248 loff_t isize; 249 ssize_t retval = 0; 250 251 while (iov_iter_count(to)) { 252 struct folio *folio; 253 size_t nr, copied, want; 254 255 /* nr is the maximum number of bytes to copy from this page */ 256 nr = huge_page_size(h); 257 isize = i_size_read(inode); 258 if (!isize) 259 break; 260 end_index = (isize - 1) >> huge_page_shift(h); 261 if (index > end_index) 262 break; 263 if (index == end_index) { 264 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 265 if (nr <= offset) 266 break; 267 } 268 nr = nr - offset; 269 270 /* Find the folio */ 271 folio = filemap_lock_hugetlb_folio(h, mapping, index); 272 if (IS_ERR(folio)) { 273 /* 274 * We have a HOLE, zero out the user-buffer for the 275 * length of the hole or request. 276 */ 277 copied = iov_iter_zero(nr, to); 278 } else { 279 folio_unlock(folio); 280 281 if (!folio_test_hwpoison(folio)) 282 want = nr; 283 else { 284 /* 285 * Adjust how many bytes safe to read without 286 * touching the 1st raw HWPOISON page after 287 * offset. 288 */ 289 want = adjust_range_hwpoison(folio, offset, nr); 290 if (want == 0) { 291 folio_put(folio); 292 retval = -EIO; 293 break; 294 } 295 } 296 297 /* 298 * We have the folio, copy it to user space buffer. 299 */ 300 copied = copy_folio_to_iter(folio, offset, want, to); 301 folio_put(folio); 302 } 303 offset += copied; 304 retval += copied; 305 if (copied != nr && iov_iter_count(to)) { 306 if (!retval) 307 retval = -EFAULT; 308 break; 309 } 310 index += offset >> huge_page_shift(h); 311 offset &= ~huge_page_mask(h); 312 } 313 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 314 return retval; 315 } 316 317 static int hugetlbfs_write_begin(const struct kiocb *iocb, 318 struct address_space *mapping, 319 loff_t pos, unsigned len, 320 struct folio **foliop, void **fsdata) 321 { 322 return -EINVAL; 323 } 324 325 static int hugetlbfs_write_end(const struct kiocb *iocb, 326 struct address_space *mapping, 327 loff_t pos, unsigned len, unsigned copied, 328 struct folio *folio, void *fsdata) 329 { 330 BUG(); 331 return -EINVAL; 332 } 333 334 static void hugetlb_delete_from_page_cache(struct folio *folio) 335 { 336 folio_clear_dirty(folio); 337 folio_clear_uptodate(folio); 338 filemap_remove_folio(folio); 339 } 340 341 /* 342 * Called with i_mmap_rwsem held for inode based vma maps. This makes 343 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 344 * mutex for the page in the mapping. So, we can not race with page being 345 * faulted into the vma. 346 */ 347 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma, 348 unsigned long addr, unsigned long pfn) 349 { 350 pte_t *ptep, pte; 351 352 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 353 if (!ptep) 354 return false; 355 356 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 357 if (huge_pte_none(pte) || !pte_present(pte)) 358 return false; 359 360 if (pte_pfn(pte) == pfn) 361 return true; 362 363 return false; 364 } 365 366 /* 367 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 368 * No, because the interval tree returns us only those vmas 369 * which overlap the truncated area starting at pgoff, 370 * and no vma on a 32-bit arch can span beyond the 4GB. 371 */ 372 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 373 { 374 unsigned long offset = 0; 375 376 if (vma->vm_pgoff < start) 377 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 378 379 return vma->vm_start + offset; 380 } 381 382 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 383 { 384 unsigned long t_end; 385 386 if (!end) 387 return vma->vm_end; 388 389 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 390 if (t_end > vma->vm_end) 391 t_end = vma->vm_end; 392 return t_end; 393 } 394 395 /* 396 * Called with hugetlb fault mutex held. Therefore, no more mappings to 397 * this folio can be created while executing the routine. 398 */ 399 static void hugetlb_unmap_file_folio(struct hstate *h, 400 struct address_space *mapping, 401 struct folio *folio, pgoff_t index) 402 { 403 struct rb_root_cached *root = &mapping->i_mmap; 404 struct hugetlb_vma_lock *vma_lock; 405 unsigned long pfn = folio_pfn(folio); 406 struct vm_area_struct *vma; 407 unsigned long v_start; 408 unsigned long v_end; 409 pgoff_t start, end; 410 411 start = index * pages_per_huge_page(h); 412 end = (index + 1) * pages_per_huge_page(h); 413 414 i_mmap_lock_write(mapping); 415 retry: 416 vma_lock = NULL; 417 vma_interval_tree_foreach(vma, root, start, end - 1) { 418 v_start = vma_offset_start(vma, start); 419 v_end = vma_offset_end(vma, end); 420 421 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn)) 422 continue; 423 424 if (!hugetlb_vma_trylock_write(vma)) { 425 vma_lock = vma->vm_private_data; 426 /* 427 * If we can not get vma lock, we need to drop 428 * immap_sema and take locks in order. First, 429 * take a ref on the vma_lock structure so that 430 * we can be guaranteed it will not go away when 431 * dropping immap_sema. 432 */ 433 kref_get(&vma_lock->refs); 434 break; 435 } 436 437 unmap_hugepage_range(vma, v_start, v_end, NULL, 438 ZAP_FLAG_DROP_MARKER); 439 hugetlb_vma_unlock_write(vma); 440 } 441 442 i_mmap_unlock_write(mapping); 443 444 if (vma_lock) { 445 /* 446 * Wait on vma_lock. We know it is still valid as we have 447 * a reference. We must 'open code' vma locking as we do 448 * not know if vma_lock is still attached to vma. 449 */ 450 down_write(&vma_lock->rw_sema); 451 i_mmap_lock_write(mapping); 452 453 vma = vma_lock->vma; 454 if (!vma) { 455 /* 456 * If lock is no longer attached to vma, then just 457 * unlock, drop our reference and retry looking for 458 * other vmas. 459 */ 460 up_write(&vma_lock->rw_sema); 461 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 462 goto retry; 463 } 464 465 /* 466 * vma_lock is still attached to vma. Check to see if vma 467 * still maps page and if so, unmap. 468 */ 469 v_start = vma_offset_start(vma, start); 470 v_end = vma_offset_end(vma, end); 471 if (hugetlb_vma_maps_pfn(vma, v_start, pfn)) 472 unmap_hugepage_range(vma, v_start, v_end, NULL, 473 ZAP_FLAG_DROP_MARKER); 474 475 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 476 hugetlb_vma_unlock_write(vma); 477 478 goto retry; 479 } 480 } 481 482 static void 483 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 484 zap_flags_t zap_flags) 485 { 486 struct vm_area_struct *vma; 487 488 /* 489 * end == 0 indicates that the entire range after start should be 490 * unmapped. Note, end is exclusive, whereas the interval tree takes 491 * an inclusive "last". 492 */ 493 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 494 unsigned long v_start; 495 unsigned long v_end; 496 497 if (!hugetlb_vma_trylock_write(vma)) 498 continue; 499 500 v_start = vma_offset_start(vma, start); 501 v_end = vma_offset_end(vma, end); 502 503 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 504 505 /* 506 * Note that vma lock only exists for shared/non-private 507 * vmas. Therefore, lock is not held when calling 508 * unmap_hugepage_range for private vmas. 509 */ 510 hugetlb_vma_unlock_write(vma); 511 } 512 } 513 514 /* 515 * Called with hugetlb fault mutex held. 516 * Returns true if page was actually removed, false otherwise. 517 */ 518 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 519 struct address_space *mapping, 520 struct folio *folio, pgoff_t index, 521 bool truncate_op) 522 { 523 bool ret = false; 524 525 /* 526 * If folio is mapped, it was faulted in after being 527 * unmapped in caller or hugetlb_vmdelete_list() skips 528 * unmapping it due to fail to grab lock. Unmap (again) 529 * while holding the fault mutex. The mutex will prevent 530 * faults until we finish removing the folio. Hold folio 531 * lock to guarantee no concurrent migration. 532 */ 533 folio_lock(folio); 534 if (unlikely(folio_mapped(folio))) 535 hugetlb_unmap_file_folio(h, mapping, folio, index); 536 537 /* 538 * We must remove the folio from page cache before removing 539 * the region/ reserve map (hugetlb_unreserve_pages). In 540 * rare out of memory conditions, removal of the region/reserve 541 * map could fail. Correspondingly, the subpool and global 542 * reserve usage count can need to be adjusted. 543 */ 544 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 545 hugetlb_delete_from_page_cache(folio); 546 ret = true; 547 if (!truncate_op) { 548 if (unlikely(hugetlb_unreserve_pages(inode, index, 549 index + 1, 1))) 550 hugetlb_fix_reserve_counts(inode); 551 } 552 553 folio_unlock(folio); 554 return ret; 555 } 556 557 /* 558 * remove_inode_hugepages handles two distinct cases: truncation and hole 559 * punch. There are subtle differences in operation for each case. 560 * 561 * truncation is indicated by end of range being LLONG_MAX 562 * In this case, we first scan the range and release found pages. 563 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 564 * maps and global counts. Page faults can race with truncation. 565 * During faults, hugetlb_no_page() checks i_size before page allocation, 566 * and again after obtaining page table lock. It will 'back out' 567 * allocations in the truncated range. 568 * hole punch is indicated if end is not LLONG_MAX 569 * In the hole punch case we scan the range and release found pages. 570 * Only when releasing a page is the associated region/reserve map 571 * deleted. The region/reserve map for ranges without associated 572 * pages are not modified. Page faults can race with hole punch. 573 * This is indicated if we find a mapped page. 574 * Note: If the passed end of range value is beyond the end of file, but 575 * not LLONG_MAX this routine still performs a hole punch operation. 576 */ 577 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 578 loff_t lend) 579 { 580 struct hstate *h = hstate_inode(inode); 581 struct address_space *mapping = &inode->i_data; 582 const pgoff_t end = lend >> PAGE_SHIFT; 583 struct folio_batch fbatch; 584 pgoff_t next, index; 585 int i, freed = 0; 586 bool truncate_op = (lend == LLONG_MAX); 587 588 folio_batch_init(&fbatch); 589 next = lstart >> PAGE_SHIFT; 590 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 591 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 592 struct folio *folio = fbatch.folios[i]; 593 u32 hash = 0; 594 595 index = folio->index >> huge_page_order(h); 596 hash = hugetlb_fault_mutex_hash(mapping, index); 597 mutex_lock(&hugetlb_fault_mutex_table[hash]); 598 599 /* 600 * Remove folio that was part of folio_batch. 601 */ 602 if (remove_inode_single_folio(h, inode, mapping, folio, 603 index, truncate_op)) 604 freed++; 605 606 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 607 } 608 folio_batch_release(&fbatch); 609 cond_resched(); 610 } 611 612 if (truncate_op) 613 (void)hugetlb_unreserve_pages(inode, 614 lstart >> huge_page_shift(h), 615 LONG_MAX, freed); 616 } 617 618 static void hugetlbfs_evict_inode(struct inode *inode) 619 { 620 struct resv_map *resv_map; 621 622 trace_hugetlbfs_evict_inode(inode); 623 remove_inode_hugepages(inode, 0, LLONG_MAX); 624 625 /* 626 * Get the resv_map from the address space embedded in the inode. 627 * This is the address space which points to any resv_map allocated 628 * at inode creation time. If this is a device special inode, 629 * i_mapping may not point to the original address space. 630 */ 631 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 632 /* Only regular and link inodes have associated reserve maps */ 633 if (resv_map) 634 resv_map_release(&resv_map->refs); 635 clear_inode(inode); 636 } 637 638 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 639 { 640 pgoff_t pgoff; 641 struct address_space *mapping = inode->i_mapping; 642 struct hstate *h = hstate_inode(inode); 643 644 BUG_ON(offset & ~huge_page_mask(h)); 645 pgoff = offset >> PAGE_SHIFT; 646 647 i_size_write(inode, offset); 648 i_mmap_lock_write(mapping); 649 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 650 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 651 ZAP_FLAG_DROP_MARKER); 652 i_mmap_unlock_write(mapping); 653 remove_inode_hugepages(inode, offset, LLONG_MAX); 654 } 655 656 static void hugetlbfs_zero_partial_page(struct hstate *h, 657 struct address_space *mapping, 658 loff_t start, 659 loff_t end) 660 { 661 pgoff_t idx = start >> huge_page_shift(h); 662 struct folio *folio; 663 664 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 665 if (IS_ERR(folio)) 666 return; 667 668 start = start & ~huge_page_mask(h); 669 end = end & ~huge_page_mask(h); 670 if (!end) 671 end = huge_page_size(h); 672 673 folio_zero_segment(folio, (size_t)start, (size_t)end); 674 675 folio_unlock(folio); 676 folio_put(folio); 677 } 678 679 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 680 { 681 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 682 struct address_space *mapping = inode->i_mapping; 683 struct hstate *h = hstate_inode(inode); 684 loff_t hpage_size = huge_page_size(h); 685 loff_t hole_start, hole_end; 686 687 /* 688 * hole_start and hole_end indicate the full pages within the hole. 689 */ 690 hole_start = round_up(offset, hpage_size); 691 hole_end = round_down(offset + len, hpage_size); 692 693 inode_lock(inode); 694 695 /* protected by i_rwsem */ 696 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 697 inode_unlock(inode); 698 return -EPERM; 699 } 700 701 i_mmap_lock_write(mapping); 702 703 /* If range starts before first full page, zero partial page. */ 704 if (offset < hole_start) 705 hugetlbfs_zero_partial_page(h, mapping, 706 offset, min(offset + len, hole_start)); 707 708 /* Unmap users of full pages in the hole. */ 709 if (hole_end > hole_start) { 710 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 711 hugetlb_vmdelete_list(&mapping->i_mmap, 712 hole_start >> PAGE_SHIFT, 713 hole_end >> PAGE_SHIFT, 0); 714 } 715 716 /* If range extends beyond last full page, zero partial page. */ 717 if ((offset + len) > hole_end && (offset + len) > hole_start) 718 hugetlbfs_zero_partial_page(h, mapping, 719 hole_end, offset + len); 720 721 i_mmap_unlock_write(mapping); 722 723 /* Remove full pages from the file. */ 724 if (hole_end > hole_start) 725 remove_inode_hugepages(inode, hole_start, hole_end); 726 727 inode_unlock(inode); 728 729 return 0; 730 } 731 732 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 733 loff_t len) 734 { 735 struct inode *inode = file_inode(file); 736 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 737 struct address_space *mapping = inode->i_mapping; 738 struct hstate *h = hstate_inode(inode); 739 struct vm_area_struct pseudo_vma; 740 struct mm_struct *mm = current->mm; 741 loff_t hpage_size = huge_page_size(h); 742 unsigned long hpage_shift = huge_page_shift(h); 743 pgoff_t start, index, end; 744 int error; 745 u32 hash; 746 747 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 748 return -EOPNOTSUPP; 749 750 if (mode & FALLOC_FL_PUNCH_HOLE) { 751 error = hugetlbfs_punch_hole(inode, offset, len); 752 goto out_nolock; 753 } 754 755 /* 756 * Default preallocate case. 757 * For this range, start is rounded down and end is rounded up 758 * as well as being converted to page offsets. 759 */ 760 start = offset >> hpage_shift; 761 end = (offset + len + hpage_size - 1) >> hpage_shift; 762 763 inode_lock(inode); 764 765 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 766 error = inode_newsize_ok(inode, offset + len); 767 if (error) 768 goto out; 769 770 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 771 error = -EPERM; 772 goto out; 773 } 774 775 /* 776 * Initialize a pseudo vma as this is required by the huge page 777 * allocation routines. 778 */ 779 vma_init(&pseudo_vma, mm); 780 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 781 pseudo_vma.vm_file = file; 782 783 for (index = start; index < end; index++) { 784 /* 785 * This is supposed to be the vaddr where the page is being 786 * faulted in, but we have no vaddr here. 787 */ 788 struct folio *folio; 789 unsigned long addr; 790 791 cond_resched(); 792 793 /* 794 * fallocate(2) manpage permits EINTR; we may have been 795 * interrupted because we are using up too much memory. 796 */ 797 if (signal_pending(current)) { 798 error = -EINTR; 799 break; 800 } 801 802 /* addr is the offset within the file (zero based) */ 803 addr = index * hpage_size; 804 805 /* mutex taken here, fault path and hole punch */ 806 hash = hugetlb_fault_mutex_hash(mapping, index); 807 mutex_lock(&hugetlb_fault_mutex_table[hash]); 808 809 /* See if already present in mapping to avoid alloc/free */ 810 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 811 if (!IS_ERR(folio)) { 812 folio_put(folio); 813 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 814 continue; 815 } 816 817 /* 818 * Allocate folio without setting the avoid_reserve argument. 819 * There certainly are no reserves associated with the 820 * pseudo_vma. However, there could be shared mappings with 821 * reserves for the file at the inode level. If we fallocate 822 * folios in these areas, we need to consume the reserves 823 * to keep reservation accounting consistent. 824 */ 825 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); 826 if (IS_ERR(folio)) { 827 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 828 error = PTR_ERR(folio); 829 goto out; 830 } 831 folio_zero_user(folio, addr); 832 __folio_mark_uptodate(folio); 833 error = hugetlb_add_to_page_cache(folio, mapping, index); 834 if (unlikely(error)) { 835 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 836 folio_put(folio); 837 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 838 goto out; 839 } 840 841 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 842 843 folio_set_hugetlb_migratable(folio); 844 /* 845 * folio_unlock because locked by hugetlb_add_to_page_cache() 846 * folio_put() due to reference from alloc_hugetlb_folio() 847 */ 848 folio_unlock(folio); 849 folio_put(folio); 850 } 851 852 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 853 i_size_write(inode, offset + len); 854 inode_set_ctime_current(inode); 855 out: 856 inode_unlock(inode); 857 858 out_nolock: 859 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 860 return error; 861 } 862 863 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 864 struct dentry *dentry, struct iattr *attr) 865 { 866 struct inode *inode = d_inode(dentry); 867 struct hstate *h = hstate_inode(inode); 868 int error; 869 unsigned int ia_valid = attr->ia_valid; 870 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 871 872 error = setattr_prepare(idmap, dentry, attr); 873 if (error) 874 return error; 875 876 trace_hugetlbfs_setattr(inode, dentry, attr); 877 878 if (ia_valid & ATTR_SIZE) { 879 loff_t oldsize = inode->i_size; 880 loff_t newsize = attr->ia_size; 881 882 if (newsize & ~huge_page_mask(h)) 883 return -EINVAL; 884 /* protected by i_rwsem */ 885 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 886 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 887 return -EPERM; 888 hugetlb_vmtruncate(inode, newsize); 889 } 890 891 setattr_copy(idmap, inode, attr); 892 mark_inode_dirty(inode); 893 return 0; 894 } 895 896 static struct inode *hugetlbfs_get_root(struct super_block *sb, 897 struct hugetlbfs_fs_context *ctx) 898 { 899 struct inode *inode; 900 901 inode = new_inode(sb); 902 if (inode) { 903 inode->i_ino = get_next_ino(); 904 inode->i_mode = S_IFDIR | ctx->mode; 905 inode->i_uid = ctx->uid; 906 inode->i_gid = ctx->gid; 907 simple_inode_init_ts(inode); 908 inode->i_op = &hugetlbfs_dir_inode_operations; 909 inode->i_fop = &simple_dir_operations; 910 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 911 inc_nlink(inode); 912 lockdep_annotate_inode_mutex_key(inode); 913 } 914 return inode; 915 } 916 917 /* 918 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 919 * be taken from reclaim -- unlike regular filesystems. This needs an 920 * annotation because huge_pmd_share() does an allocation under hugetlb's 921 * i_mmap_rwsem. 922 */ 923 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 924 925 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 926 struct mnt_idmap *idmap, 927 struct inode *dir, 928 umode_t mode, dev_t dev) 929 { 930 struct inode *inode; 931 struct resv_map *resv_map = NULL; 932 933 /* 934 * Reserve maps are only needed for inodes that can have associated 935 * page allocations. 936 */ 937 if (S_ISREG(mode) || S_ISLNK(mode)) { 938 resv_map = resv_map_alloc(); 939 if (!resv_map) 940 return NULL; 941 } 942 943 inode = new_inode(sb); 944 if (inode) { 945 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 946 947 inode->i_ino = get_next_ino(); 948 inode_init_owner(idmap, inode, dir, mode); 949 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 950 &hugetlbfs_i_mmap_rwsem_key); 951 inode->i_mapping->a_ops = &hugetlbfs_aops; 952 simple_inode_init_ts(inode); 953 inode->i_mapping->i_private_data = resv_map; 954 info->seals = F_SEAL_SEAL; 955 switch (mode & S_IFMT) { 956 default: 957 init_special_inode(inode, mode, dev); 958 break; 959 case S_IFREG: 960 inode->i_op = &hugetlbfs_inode_operations; 961 inode->i_fop = &hugetlbfs_file_operations; 962 break; 963 case S_IFDIR: 964 inode->i_op = &hugetlbfs_dir_inode_operations; 965 inode->i_fop = &simple_dir_operations; 966 967 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 968 inc_nlink(inode); 969 break; 970 case S_IFLNK: 971 inode->i_op = &page_symlink_inode_operations; 972 inode_nohighmem(inode); 973 break; 974 } 975 lockdep_annotate_inode_mutex_key(inode); 976 trace_hugetlbfs_alloc_inode(inode, dir, mode); 977 } else { 978 if (resv_map) 979 kref_put(&resv_map->refs, resv_map_release); 980 } 981 982 return inode; 983 } 984 985 /* 986 * File creation. Allocate an inode, and we're done.. 987 */ 988 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 989 struct dentry *dentry, umode_t mode, dev_t dev) 990 { 991 struct inode *inode; 992 993 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 994 if (!inode) 995 return -ENOSPC; 996 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 997 d_make_persistent(dentry, inode); 998 return 0; 999 } 1000 1001 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 1002 struct dentry *dentry, umode_t mode) 1003 { 1004 int retval = hugetlbfs_mknod(idmap, dir, dentry, 1005 mode | S_IFDIR, 0); 1006 if (!retval) 1007 inc_nlink(dir); 1008 return ERR_PTR(retval); 1009 } 1010 1011 static int hugetlbfs_create(struct mnt_idmap *idmap, 1012 struct inode *dir, struct dentry *dentry, 1013 umode_t mode, bool excl) 1014 { 1015 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1016 } 1017 1018 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1019 struct inode *dir, struct file *file, 1020 umode_t mode) 1021 { 1022 struct inode *inode; 1023 1024 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1025 if (!inode) 1026 return -ENOSPC; 1027 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1028 d_tmpfile(file, inode); 1029 return finish_open_simple(file, 0); 1030 } 1031 1032 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1033 struct inode *dir, struct dentry *dentry, 1034 const char *symname) 1035 { 1036 const umode_t mode = S_IFLNK|S_IRWXUGO; 1037 struct inode *inode; 1038 int error = -ENOSPC; 1039 1040 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1041 if (inode) { 1042 int l = strlen(symname)+1; 1043 error = page_symlink(inode, symname, l); 1044 if (!error) 1045 d_make_persistent(dentry, inode); 1046 else 1047 iput(inode); 1048 } 1049 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1050 1051 return error; 1052 } 1053 1054 #ifdef CONFIG_MIGRATION 1055 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1056 struct folio *dst, struct folio *src, 1057 enum migrate_mode mode) 1058 { 1059 int rc; 1060 1061 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1062 if (rc) 1063 return rc; 1064 1065 if (hugetlb_folio_subpool(src)) { 1066 hugetlb_set_folio_subpool(dst, 1067 hugetlb_folio_subpool(src)); 1068 hugetlb_set_folio_subpool(src, NULL); 1069 } 1070 1071 folio_migrate_flags(dst, src); 1072 1073 return 0; 1074 } 1075 #else 1076 #define hugetlbfs_migrate_folio NULL 1077 #endif 1078 1079 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1080 struct folio *folio) 1081 { 1082 return 0; 1083 } 1084 1085 /* 1086 * Display the mount options in /proc/mounts. 1087 */ 1088 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1089 { 1090 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1091 struct hugepage_subpool *spool = sbinfo->spool; 1092 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1093 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1094 char mod; 1095 1096 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1097 seq_printf(m, ",uid=%u", 1098 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1099 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1100 seq_printf(m, ",gid=%u", 1101 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1102 if (sbinfo->mode != 0755) 1103 seq_printf(m, ",mode=%o", sbinfo->mode); 1104 if (sbinfo->max_inodes != -1) 1105 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1106 1107 hpage_size /= 1024; 1108 mod = 'K'; 1109 if (hpage_size >= 1024) { 1110 hpage_size /= 1024; 1111 mod = 'M'; 1112 } 1113 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1114 if (spool) { 1115 if (spool->max_hpages != -1) 1116 seq_printf(m, ",size=%llu", 1117 (unsigned long long)spool->max_hpages << hpage_shift); 1118 if (spool->min_hpages != -1) 1119 seq_printf(m, ",min_size=%llu", 1120 (unsigned long long)spool->min_hpages << hpage_shift); 1121 } 1122 return 0; 1123 } 1124 1125 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1126 { 1127 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1128 struct hstate *h = hstate_inode(d_inode(dentry)); 1129 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1130 1131 buf->f_fsid = u64_to_fsid(id); 1132 buf->f_type = HUGETLBFS_MAGIC; 1133 buf->f_bsize = huge_page_size(h); 1134 if (sbinfo) { 1135 spin_lock(&sbinfo->stat_lock); 1136 /* If no limits set, just report 0 or -1 for max/free/used 1137 * blocks, like simple_statfs() */ 1138 if (sbinfo->spool) { 1139 long free_pages; 1140 1141 spin_lock_irq(&sbinfo->spool->lock); 1142 buf->f_blocks = sbinfo->spool->max_hpages; 1143 free_pages = sbinfo->spool->max_hpages 1144 - sbinfo->spool->used_hpages; 1145 buf->f_bavail = buf->f_bfree = free_pages; 1146 spin_unlock_irq(&sbinfo->spool->lock); 1147 buf->f_files = sbinfo->max_inodes; 1148 buf->f_ffree = sbinfo->free_inodes; 1149 } 1150 spin_unlock(&sbinfo->stat_lock); 1151 } 1152 buf->f_namelen = NAME_MAX; 1153 return 0; 1154 } 1155 1156 static void hugetlbfs_put_super(struct super_block *sb) 1157 { 1158 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1159 1160 if (sbi) { 1161 sb->s_fs_info = NULL; 1162 1163 if (sbi->spool) 1164 hugepage_put_subpool(sbi->spool); 1165 1166 kfree(sbi); 1167 } 1168 } 1169 1170 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1171 { 1172 if (sbinfo->free_inodes >= 0) { 1173 spin_lock(&sbinfo->stat_lock); 1174 if (unlikely(!sbinfo->free_inodes)) { 1175 spin_unlock(&sbinfo->stat_lock); 1176 return 0; 1177 } 1178 sbinfo->free_inodes--; 1179 spin_unlock(&sbinfo->stat_lock); 1180 } 1181 1182 return 1; 1183 } 1184 1185 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1186 { 1187 if (sbinfo->free_inodes >= 0) { 1188 spin_lock(&sbinfo->stat_lock); 1189 sbinfo->free_inodes++; 1190 spin_unlock(&sbinfo->stat_lock); 1191 } 1192 } 1193 1194 1195 static struct kmem_cache *hugetlbfs_inode_cachep; 1196 1197 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1198 { 1199 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1200 struct hugetlbfs_inode_info *p; 1201 1202 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1203 return NULL; 1204 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1205 if (unlikely(!p)) { 1206 hugetlbfs_inc_free_inodes(sbinfo); 1207 return NULL; 1208 } 1209 return &p->vfs_inode; 1210 } 1211 1212 static void hugetlbfs_free_inode(struct inode *inode) 1213 { 1214 trace_hugetlbfs_free_inode(inode); 1215 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1216 } 1217 1218 static void hugetlbfs_destroy_inode(struct inode *inode) 1219 { 1220 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1221 } 1222 1223 static const struct address_space_operations hugetlbfs_aops = { 1224 .write_begin = hugetlbfs_write_begin, 1225 .write_end = hugetlbfs_write_end, 1226 .dirty_folio = noop_dirty_folio, 1227 .migrate_folio = hugetlbfs_migrate_folio, 1228 .error_remove_folio = hugetlbfs_error_remove_folio, 1229 }; 1230 1231 1232 static void init_once(void *foo) 1233 { 1234 struct hugetlbfs_inode_info *ei = foo; 1235 1236 inode_init_once(&ei->vfs_inode); 1237 } 1238 1239 static const struct file_operations hugetlbfs_file_operations = { 1240 .read_iter = hugetlbfs_read_iter, 1241 .mmap_prepare = hugetlbfs_file_mmap_prepare, 1242 .fsync = noop_fsync, 1243 .get_unmapped_area = hugetlb_get_unmapped_area, 1244 .llseek = default_llseek, 1245 .fallocate = hugetlbfs_fallocate, 1246 .fop_flags = FOP_HUGE_PAGES, 1247 }; 1248 1249 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1250 .create = hugetlbfs_create, 1251 .lookup = simple_lookup, 1252 .link = simple_link, 1253 .unlink = simple_unlink, 1254 .symlink = hugetlbfs_symlink, 1255 .mkdir = hugetlbfs_mkdir, 1256 .rmdir = simple_rmdir, 1257 .mknod = hugetlbfs_mknod, 1258 .rename = simple_rename, 1259 .setattr = hugetlbfs_setattr, 1260 .tmpfile = hugetlbfs_tmpfile, 1261 }; 1262 1263 static const struct inode_operations hugetlbfs_inode_operations = { 1264 .setattr = hugetlbfs_setattr, 1265 }; 1266 1267 static const struct super_operations hugetlbfs_ops = { 1268 .alloc_inode = hugetlbfs_alloc_inode, 1269 .free_inode = hugetlbfs_free_inode, 1270 .destroy_inode = hugetlbfs_destroy_inode, 1271 .evict_inode = hugetlbfs_evict_inode, 1272 .statfs = hugetlbfs_statfs, 1273 .put_super = hugetlbfs_put_super, 1274 .show_options = hugetlbfs_show_options, 1275 }; 1276 1277 /* 1278 * Convert size option passed from command line to number of huge pages 1279 * in the pool specified by hstate. Size option could be in bytes 1280 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1281 */ 1282 static long 1283 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1284 enum hugetlbfs_size_type val_type) 1285 { 1286 if (val_type == NO_SIZE) 1287 return -1; 1288 1289 if (val_type == SIZE_PERCENT) { 1290 size_opt <<= huge_page_shift(h); 1291 size_opt *= h->max_huge_pages; 1292 do_div(size_opt, 100); 1293 } 1294 1295 size_opt >>= huge_page_shift(h); 1296 return size_opt; 1297 } 1298 1299 /* 1300 * Parse one mount parameter. 1301 */ 1302 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1303 { 1304 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1305 struct fs_parse_result result; 1306 struct hstate *h; 1307 char *rest; 1308 unsigned long ps; 1309 int opt; 1310 1311 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1312 if (opt < 0) 1313 return opt; 1314 1315 switch (opt) { 1316 case Opt_uid: 1317 ctx->uid = result.uid; 1318 return 0; 1319 1320 case Opt_gid: 1321 ctx->gid = result.gid; 1322 return 0; 1323 1324 case Opt_mode: 1325 ctx->mode = result.uint_32 & 01777U; 1326 return 0; 1327 1328 case Opt_size: 1329 /* memparse() will accept a K/M/G without a digit */ 1330 if (!param->string || !isdigit(param->string[0])) 1331 goto bad_val; 1332 ctx->max_size_opt = memparse(param->string, &rest); 1333 ctx->max_val_type = SIZE_STD; 1334 if (*rest == '%') 1335 ctx->max_val_type = SIZE_PERCENT; 1336 return 0; 1337 1338 case Opt_nr_inodes: 1339 /* memparse() will accept a K/M/G without a digit */ 1340 if (!param->string || !isdigit(param->string[0])) 1341 goto bad_val; 1342 ctx->nr_inodes = memparse(param->string, &rest); 1343 return 0; 1344 1345 case Opt_pagesize: 1346 ps = memparse(param->string, &rest); 1347 h = size_to_hstate(ps); 1348 if (!h) { 1349 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1350 return -EINVAL; 1351 } 1352 ctx->hstate = h; 1353 return 0; 1354 1355 case Opt_min_size: 1356 /* memparse() will accept a K/M/G without a digit */ 1357 if (!param->string || !isdigit(param->string[0])) 1358 goto bad_val; 1359 ctx->min_size_opt = memparse(param->string, &rest); 1360 ctx->min_val_type = SIZE_STD; 1361 if (*rest == '%') 1362 ctx->min_val_type = SIZE_PERCENT; 1363 return 0; 1364 1365 default: 1366 return -EINVAL; 1367 } 1368 1369 bad_val: 1370 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1371 param->string, param->key); 1372 } 1373 1374 /* 1375 * Validate the parsed options. 1376 */ 1377 static int hugetlbfs_validate(struct fs_context *fc) 1378 { 1379 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1380 1381 /* 1382 * Use huge page pool size (in hstate) to convert the size 1383 * options to number of huge pages. If NO_SIZE, -1 is returned. 1384 */ 1385 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1386 ctx->max_size_opt, 1387 ctx->max_val_type); 1388 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1389 ctx->min_size_opt, 1390 ctx->min_val_type); 1391 1392 /* 1393 * If max_size was specified, then min_size must be smaller 1394 */ 1395 if (ctx->max_val_type > NO_SIZE && 1396 ctx->min_hpages > ctx->max_hpages) { 1397 pr_err("Minimum size can not be greater than maximum size\n"); 1398 return -EINVAL; 1399 } 1400 1401 return 0; 1402 } 1403 1404 static int 1405 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1406 { 1407 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1408 struct hugetlbfs_sb_info *sbinfo; 1409 1410 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1411 if (!sbinfo) 1412 return -ENOMEM; 1413 sb->s_fs_info = sbinfo; 1414 spin_lock_init(&sbinfo->stat_lock); 1415 sbinfo->hstate = ctx->hstate; 1416 sbinfo->max_inodes = ctx->nr_inodes; 1417 sbinfo->free_inodes = ctx->nr_inodes; 1418 sbinfo->spool = NULL; 1419 sbinfo->uid = ctx->uid; 1420 sbinfo->gid = ctx->gid; 1421 sbinfo->mode = ctx->mode; 1422 1423 /* 1424 * Allocate and initialize subpool if maximum or minimum size is 1425 * specified. Any needed reservations (for minimum size) are taken 1426 * when the subpool is created. 1427 */ 1428 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1429 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1430 ctx->max_hpages, 1431 ctx->min_hpages); 1432 if (!sbinfo->spool) 1433 goto out_free; 1434 } 1435 sb->s_maxbytes = MAX_LFS_FILESIZE; 1436 sb->s_blocksize = huge_page_size(ctx->hstate); 1437 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1438 sb->s_magic = HUGETLBFS_MAGIC; 1439 sb->s_op = &hugetlbfs_ops; 1440 sb->s_d_flags = DCACHE_DONTCACHE; 1441 sb->s_time_gran = 1; 1442 1443 /* 1444 * Due to the special and limited functionality of hugetlbfs, it does 1445 * not work well as a stacking filesystem. 1446 */ 1447 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1448 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1449 if (!sb->s_root) 1450 goto out_free; 1451 return 0; 1452 out_free: 1453 kfree(sbinfo->spool); 1454 kfree(sbinfo); 1455 return -ENOMEM; 1456 } 1457 1458 static int hugetlbfs_get_tree(struct fs_context *fc) 1459 { 1460 int err = hugetlbfs_validate(fc); 1461 if (err) 1462 return err; 1463 return get_tree_nodev(fc, hugetlbfs_fill_super); 1464 } 1465 1466 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1467 { 1468 kfree(fc->fs_private); 1469 } 1470 1471 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1472 .free = hugetlbfs_fs_context_free, 1473 .parse_param = hugetlbfs_parse_param, 1474 .get_tree = hugetlbfs_get_tree, 1475 }; 1476 1477 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1478 { 1479 struct hugetlbfs_fs_context *ctx; 1480 1481 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1482 if (!ctx) 1483 return -ENOMEM; 1484 1485 ctx->max_hpages = -1; /* No limit on size by default */ 1486 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1487 ctx->uid = current_fsuid(); 1488 ctx->gid = current_fsgid(); 1489 ctx->mode = 0755; 1490 ctx->hstate = &default_hstate; 1491 ctx->min_hpages = -1; /* No default minimum size */ 1492 ctx->max_val_type = NO_SIZE; 1493 ctx->min_val_type = NO_SIZE; 1494 fc->fs_private = ctx; 1495 fc->ops = &hugetlbfs_fs_context_ops; 1496 return 0; 1497 } 1498 1499 static struct file_system_type hugetlbfs_fs_type = { 1500 .name = "hugetlbfs", 1501 .init_fs_context = hugetlbfs_init_fs_context, 1502 .parameters = hugetlb_fs_parameters, 1503 .kill_sb = kill_anon_super, 1504 .fs_flags = FS_ALLOW_IDMAP, 1505 }; 1506 1507 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1508 1509 static int can_do_hugetlb_shm(void) 1510 { 1511 kgid_t shm_group; 1512 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1513 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1514 } 1515 1516 static int get_hstate_idx(int page_size_log) 1517 { 1518 struct hstate *h = hstate_sizelog(page_size_log); 1519 1520 if (!h) 1521 return -1; 1522 return hstate_index(h); 1523 } 1524 1525 /* 1526 * Note that size should be aligned to proper hugepage size in caller side, 1527 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1528 */ 1529 struct file *hugetlb_file_setup(const char *name, size_t size, 1530 vm_flags_t acctflag, int creat_flags, 1531 int page_size_log) 1532 { 1533 struct inode *inode; 1534 struct vfsmount *mnt; 1535 int hstate_idx; 1536 struct file *file; 1537 1538 hstate_idx = get_hstate_idx(page_size_log); 1539 if (hstate_idx < 0) 1540 return ERR_PTR(-ENODEV); 1541 1542 mnt = hugetlbfs_vfsmount[hstate_idx]; 1543 if (!mnt) 1544 return ERR_PTR(-ENOENT); 1545 1546 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1547 struct ucounts *ucounts = current_ucounts(); 1548 1549 if (user_shm_lock(size, ucounts)) { 1550 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1551 current->comm, current->pid); 1552 user_shm_unlock(size, ucounts); 1553 } 1554 return ERR_PTR(-EPERM); 1555 } 1556 1557 file = ERR_PTR(-ENOSPC); 1558 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1559 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1560 S_IFREG | S_IRWXUGO, 0); 1561 if (!inode) 1562 goto out; 1563 if (creat_flags == HUGETLB_SHMFS_INODE) 1564 inode->i_flags |= S_PRIVATE; 1565 1566 inode->i_size = size; 1567 clear_nlink(inode); 1568 1569 if (hugetlb_reserve_pages(inode, 0, 1570 size >> huge_page_shift(hstate_inode(inode)), NULL, 1571 acctflag) < 0) 1572 file = ERR_PTR(-ENOMEM); 1573 else 1574 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1575 &hugetlbfs_file_operations); 1576 if (!IS_ERR(file)) 1577 return file; 1578 1579 iput(inode); 1580 out: 1581 return file; 1582 } 1583 1584 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1585 { 1586 struct fs_context *fc; 1587 struct vfsmount *mnt; 1588 1589 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1590 if (IS_ERR(fc)) { 1591 mnt = ERR_CAST(fc); 1592 } else { 1593 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1594 ctx->hstate = h; 1595 mnt = fc_mount_longterm(fc); 1596 put_fs_context(fc); 1597 } 1598 if (IS_ERR(mnt)) 1599 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1600 huge_page_size(h) / SZ_1K); 1601 return mnt; 1602 } 1603 1604 static int __init init_hugetlbfs_fs(void) 1605 { 1606 struct vfsmount *mnt; 1607 struct hstate *h; 1608 int error; 1609 int i; 1610 1611 if (!hugepages_supported()) { 1612 pr_info("disabling because there are no supported hugepage sizes\n"); 1613 return -ENOTSUPP; 1614 } 1615 1616 error = -ENOMEM; 1617 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1618 sizeof(struct hugetlbfs_inode_info), 1619 0, SLAB_ACCOUNT, init_once); 1620 if (hugetlbfs_inode_cachep == NULL) 1621 goto out; 1622 1623 error = register_filesystem(&hugetlbfs_fs_type); 1624 if (error) 1625 goto out_free; 1626 1627 /* default hstate mount is required */ 1628 mnt = mount_one_hugetlbfs(&default_hstate); 1629 if (IS_ERR(mnt)) { 1630 error = PTR_ERR(mnt); 1631 goto out_unreg; 1632 } 1633 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1634 1635 /* other hstates are optional */ 1636 i = 0; 1637 for_each_hstate(h) { 1638 if (i == default_hstate_idx) { 1639 i++; 1640 continue; 1641 } 1642 1643 mnt = mount_one_hugetlbfs(h); 1644 if (IS_ERR(mnt)) 1645 hugetlbfs_vfsmount[i] = NULL; 1646 else 1647 hugetlbfs_vfsmount[i] = mnt; 1648 i++; 1649 } 1650 1651 return 0; 1652 1653 out_unreg: 1654 (void)unregister_filesystem(&hugetlbfs_fs_type); 1655 out_free: 1656 kmem_cache_destroy(hugetlbfs_inode_cachep); 1657 out: 1658 return error; 1659 } 1660 fs_initcall(init_hugetlbfs_fs) 1661