1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/hugetlbfs.h> 44 45 static const struct address_space_operations hugetlbfs_aops; 46 static const struct file_operations hugetlbfs_file_operations; 47 static const struct inode_operations hugetlbfs_dir_inode_operations; 48 static const struct inode_operations hugetlbfs_inode_operations; 49 50 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 51 52 struct hugetlbfs_fs_context { 53 struct hstate *hstate; 54 unsigned long long max_size_opt; 55 unsigned long long min_size_opt; 56 long max_hpages; 57 long nr_inodes; 58 long min_hpages; 59 enum hugetlbfs_size_type max_val_type; 60 enum hugetlbfs_size_type min_val_type; 61 kuid_t uid; 62 kgid_t gid; 63 umode_t mode; 64 }; 65 66 int sysctl_hugetlb_shm_group; 67 68 enum hugetlb_param { 69 Opt_gid, 70 Opt_min_size, 71 Opt_mode, 72 Opt_nr_inodes, 73 Opt_pagesize, 74 Opt_size, 75 Opt_uid, 76 }; 77 78 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 79 fsparam_gid ("gid", Opt_gid), 80 fsparam_string("min_size", Opt_min_size), 81 fsparam_u32oct("mode", Opt_mode), 82 fsparam_string("nr_inodes", Opt_nr_inodes), 83 fsparam_string("pagesize", Opt_pagesize), 84 fsparam_string("size", Opt_size), 85 fsparam_uid ("uid", Opt_uid), 86 {} 87 }; 88 89 /* 90 * Mask used when checking the page offset value passed in via system 91 * calls. This value will be converted to a loff_t which is signed. 92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 93 * value. The extra bit (- 1 in the shift value) is to take the sign 94 * bit into account. 95 */ 96 #define PGOFF_LOFFT_MAX \ 97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 98 99 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 100 { 101 struct inode *inode = file_inode(file); 102 loff_t len, vma_len; 103 int ret; 104 struct hstate *h = hstate_file(file); 105 vm_flags_t vm_flags; 106 107 /* 108 * vma address alignment (but not the pgoff alignment) has 109 * already been checked by prepare_hugepage_range. If you add 110 * any error returns here, do so after setting VM_HUGETLB, so 111 * is_vm_hugetlb_page tests below unmap_region go the right 112 * way when do_mmap unwinds (may be important on powerpc 113 * and ia64). 114 */ 115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 116 vma->vm_ops = &hugetlb_vm_ops; 117 118 /* 119 * page based offset in vm_pgoff could be sufficiently large to 120 * overflow a loff_t when converted to byte offset. This can 121 * only happen on architectures where sizeof(loff_t) == 122 * sizeof(unsigned long). So, only check in those instances. 123 */ 124 if (sizeof(unsigned long) == sizeof(loff_t)) { 125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 126 return -EINVAL; 127 } 128 129 /* must be huge page aligned */ 130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 131 return -EINVAL; 132 133 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 135 /* check for overflow */ 136 if (len < vma_len) 137 return -EINVAL; 138 139 inode_lock(inode); 140 file_accessed(file); 141 142 ret = -ENOMEM; 143 144 vm_flags = vma->vm_flags; 145 /* 146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 147 * reserving here. Note: only for SHM hugetlbfs file, the inode 148 * flag S_PRIVATE is set. 149 */ 150 if (inode->i_flags & S_PRIVATE) 151 vm_flags |= VM_NORESERVE; 152 153 if (hugetlb_reserve_pages(inode, 154 vma->vm_pgoff >> huge_page_order(h), 155 len >> huge_page_shift(h), vma, 156 vm_flags) < 0) 157 goto out; 158 159 ret = 0; 160 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 161 i_size_write(inode, len); 162 out: 163 inode_unlock(inode); 164 165 return ret; 166 } 167 168 /* 169 * Called under mmap_write_lock(mm). 170 */ 171 172 unsigned long 173 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 174 unsigned long len, unsigned long pgoff, 175 unsigned long flags) 176 { 177 unsigned long addr0 = 0; 178 struct hstate *h = hstate_file(file); 179 180 if (len & ~huge_page_mask(h)) 181 return -EINVAL; 182 if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h))) 183 return -EINVAL; 184 if (addr) 185 addr0 = ALIGN(addr, huge_page_size(h)); 186 187 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff, 188 flags, 0); 189 } 190 191 /* 192 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset. 193 * Returns the maximum number of bytes one can read without touching the 1st raw 194 * HWPOISON page. 195 * 196 * The implementation borrows the iteration logic from copy_page_to_iter*. 197 */ 198 static size_t adjust_range_hwpoison(struct folio *folio, size_t offset, 199 size_t bytes) 200 { 201 struct page *page; 202 size_t n = 0; 203 size_t res = 0; 204 205 /* First page to start the loop. */ 206 page = folio_page(folio, offset / PAGE_SIZE); 207 offset %= PAGE_SIZE; 208 while (1) { 209 if (is_raw_hwpoison_page_in_hugepage(page)) 210 break; 211 212 /* Safe to read n bytes without touching HWPOISON subpage. */ 213 n = min(bytes, (size_t)PAGE_SIZE - offset); 214 res += n; 215 bytes -= n; 216 if (!bytes || !n) 217 break; 218 offset += n; 219 if (offset == PAGE_SIZE) { 220 page = nth_page(page, 1); 221 offset = 0; 222 } 223 } 224 225 return res; 226 } 227 228 /* 229 * Support for read() - Find the page attached to f_mapping and copy out the 230 * data. This provides functionality similar to filemap_read(). 231 */ 232 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 233 { 234 struct file *file = iocb->ki_filp; 235 struct hstate *h = hstate_file(file); 236 struct address_space *mapping = file->f_mapping; 237 struct inode *inode = mapping->host; 238 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 239 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 240 unsigned long end_index; 241 loff_t isize; 242 ssize_t retval = 0; 243 244 while (iov_iter_count(to)) { 245 struct folio *folio; 246 size_t nr, copied, want; 247 248 /* nr is the maximum number of bytes to copy from this page */ 249 nr = huge_page_size(h); 250 isize = i_size_read(inode); 251 if (!isize) 252 break; 253 end_index = (isize - 1) >> huge_page_shift(h); 254 if (index > end_index) 255 break; 256 if (index == end_index) { 257 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 258 if (nr <= offset) 259 break; 260 } 261 nr = nr - offset; 262 263 /* Find the folio */ 264 folio = filemap_lock_hugetlb_folio(h, mapping, index); 265 if (IS_ERR(folio)) { 266 /* 267 * We have a HOLE, zero out the user-buffer for the 268 * length of the hole or request. 269 */ 270 copied = iov_iter_zero(nr, to); 271 } else { 272 folio_unlock(folio); 273 274 if (!folio_test_hwpoison(folio)) 275 want = nr; 276 else { 277 /* 278 * Adjust how many bytes safe to read without 279 * touching the 1st raw HWPOISON page after 280 * offset. 281 */ 282 want = adjust_range_hwpoison(folio, offset, nr); 283 if (want == 0) { 284 folio_put(folio); 285 retval = -EIO; 286 break; 287 } 288 } 289 290 /* 291 * We have the folio, copy it to user space buffer. 292 */ 293 copied = copy_folio_to_iter(folio, offset, want, to); 294 folio_put(folio); 295 } 296 offset += copied; 297 retval += copied; 298 if (copied != nr && iov_iter_count(to)) { 299 if (!retval) 300 retval = -EFAULT; 301 break; 302 } 303 index += offset >> huge_page_shift(h); 304 offset &= ~huge_page_mask(h); 305 } 306 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 307 return retval; 308 } 309 310 static int hugetlbfs_write_begin(const struct kiocb *iocb, 311 struct address_space *mapping, 312 loff_t pos, unsigned len, 313 struct folio **foliop, void **fsdata) 314 { 315 return -EINVAL; 316 } 317 318 static int hugetlbfs_write_end(const struct kiocb *iocb, 319 struct address_space *mapping, 320 loff_t pos, unsigned len, unsigned copied, 321 struct folio *folio, void *fsdata) 322 { 323 BUG(); 324 return -EINVAL; 325 } 326 327 static void hugetlb_delete_from_page_cache(struct folio *folio) 328 { 329 folio_clear_dirty(folio); 330 folio_clear_uptodate(folio); 331 filemap_remove_folio(folio); 332 } 333 334 /* 335 * Called with i_mmap_rwsem held for inode based vma maps. This makes 336 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 337 * mutex for the page in the mapping. So, we can not race with page being 338 * faulted into the vma. 339 */ 340 static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma, 341 unsigned long addr, unsigned long pfn) 342 { 343 pte_t *ptep, pte; 344 345 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 346 if (!ptep) 347 return false; 348 349 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 350 if (huge_pte_none(pte) || !pte_present(pte)) 351 return false; 352 353 if (pte_pfn(pte) == pfn) 354 return true; 355 356 return false; 357 } 358 359 /* 360 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 361 * No, because the interval tree returns us only those vmas 362 * which overlap the truncated area starting at pgoff, 363 * and no vma on a 32-bit arch can span beyond the 4GB. 364 */ 365 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 366 { 367 unsigned long offset = 0; 368 369 if (vma->vm_pgoff < start) 370 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 371 372 return vma->vm_start + offset; 373 } 374 375 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 376 { 377 unsigned long t_end; 378 379 if (!end) 380 return vma->vm_end; 381 382 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 383 if (t_end > vma->vm_end) 384 t_end = vma->vm_end; 385 return t_end; 386 } 387 388 /* 389 * Called with hugetlb fault mutex held. Therefore, no more mappings to 390 * this folio can be created while executing the routine. 391 */ 392 static void hugetlb_unmap_file_folio(struct hstate *h, 393 struct address_space *mapping, 394 struct folio *folio, pgoff_t index) 395 { 396 struct rb_root_cached *root = &mapping->i_mmap; 397 struct hugetlb_vma_lock *vma_lock; 398 unsigned long pfn = folio_pfn(folio); 399 struct vm_area_struct *vma; 400 unsigned long v_start; 401 unsigned long v_end; 402 pgoff_t start, end; 403 404 start = index * pages_per_huge_page(h); 405 end = (index + 1) * pages_per_huge_page(h); 406 407 i_mmap_lock_write(mapping); 408 retry: 409 vma_lock = NULL; 410 vma_interval_tree_foreach(vma, root, start, end - 1) { 411 v_start = vma_offset_start(vma, start); 412 v_end = vma_offset_end(vma, end); 413 414 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn)) 415 continue; 416 417 if (!hugetlb_vma_trylock_write(vma)) { 418 vma_lock = vma->vm_private_data; 419 /* 420 * If we can not get vma lock, we need to drop 421 * immap_sema and take locks in order. First, 422 * take a ref on the vma_lock structure so that 423 * we can be guaranteed it will not go away when 424 * dropping immap_sema. 425 */ 426 kref_get(&vma_lock->refs); 427 break; 428 } 429 430 unmap_hugepage_range(vma, v_start, v_end, NULL, 431 ZAP_FLAG_DROP_MARKER); 432 hugetlb_vma_unlock_write(vma); 433 } 434 435 i_mmap_unlock_write(mapping); 436 437 if (vma_lock) { 438 /* 439 * Wait on vma_lock. We know it is still valid as we have 440 * a reference. We must 'open code' vma locking as we do 441 * not know if vma_lock is still attached to vma. 442 */ 443 down_write(&vma_lock->rw_sema); 444 i_mmap_lock_write(mapping); 445 446 vma = vma_lock->vma; 447 if (!vma) { 448 /* 449 * If lock is no longer attached to vma, then just 450 * unlock, drop our reference and retry looking for 451 * other vmas. 452 */ 453 up_write(&vma_lock->rw_sema); 454 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 455 goto retry; 456 } 457 458 /* 459 * vma_lock is still attached to vma. Check to see if vma 460 * still maps page and if so, unmap. 461 */ 462 v_start = vma_offset_start(vma, start); 463 v_end = vma_offset_end(vma, end); 464 if (hugetlb_vma_maps_pfn(vma, v_start, pfn)) 465 unmap_hugepage_range(vma, v_start, v_end, NULL, 466 ZAP_FLAG_DROP_MARKER); 467 468 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 469 hugetlb_vma_unlock_write(vma); 470 471 goto retry; 472 } 473 } 474 475 static void 476 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 477 zap_flags_t zap_flags) 478 { 479 struct vm_area_struct *vma; 480 481 /* 482 * end == 0 indicates that the entire range after start should be 483 * unmapped. Note, end is exclusive, whereas the interval tree takes 484 * an inclusive "last". 485 */ 486 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 487 unsigned long v_start; 488 unsigned long v_end; 489 490 if (!hugetlb_vma_trylock_write(vma)) 491 continue; 492 493 v_start = vma_offset_start(vma, start); 494 v_end = vma_offset_end(vma, end); 495 496 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 497 498 /* 499 * Note that vma lock only exists for shared/non-private 500 * vmas. Therefore, lock is not held when calling 501 * unmap_hugepage_range for private vmas. 502 */ 503 hugetlb_vma_unlock_write(vma); 504 } 505 } 506 507 /* 508 * Called with hugetlb fault mutex held. 509 * Returns true if page was actually removed, false otherwise. 510 */ 511 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 512 struct address_space *mapping, 513 struct folio *folio, pgoff_t index, 514 bool truncate_op) 515 { 516 bool ret = false; 517 518 /* 519 * If folio is mapped, it was faulted in after being 520 * unmapped in caller. Unmap (again) while holding 521 * the fault mutex. The mutex will prevent faults 522 * until we finish removing the folio. 523 */ 524 if (unlikely(folio_mapped(folio))) 525 hugetlb_unmap_file_folio(h, mapping, folio, index); 526 527 folio_lock(folio); 528 /* 529 * We must remove the folio from page cache before removing 530 * the region/ reserve map (hugetlb_unreserve_pages). In 531 * rare out of memory conditions, removal of the region/reserve 532 * map could fail. Correspondingly, the subpool and global 533 * reserve usage count can need to be adjusted. 534 */ 535 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 536 hugetlb_delete_from_page_cache(folio); 537 ret = true; 538 if (!truncate_op) { 539 if (unlikely(hugetlb_unreserve_pages(inode, index, 540 index + 1, 1))) 541 hugetlb_fix_reserve_counts(inode); 542 } 543 544 folio_unlock(folio); 545 return ret; 546 } 547 548 /* 549 * remove_inode_hugepages handles two distinct cases: truncation and hole 550 * punch. There are subtle differences in operation for each case. 551 * 552 * truncation is indicated by end of range being LLONG_MAX 553 * In this case, we first scan the range and release found pages. 554 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 555 * maps and global counts. Page faults can race with truncation. 556 * During faults, hugetlb_no_page() checks i_size before page allocation, 557 * and again after obtaining page table lock. It will 'back out' 558 * allocations in the truncated range. 559 * hole punch is indicated if end is not LLONG_MAX 560 * In the hole punch case we scan the range and release found pages. 561 * Only when releasing a page is the associated region/reserve map 562 * deleted. The region/reserve map for ranges without associated 563 * pages are not modified. Page faults can race with hole punch. 564 * This is indicated if we find a mapped page. 565 * Note: If the passed end of range value is beyond the end of file, but 566 * not LLONG_MAX this routine still performs a hole punch operation. 567 */ 568 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 569 loff_t lend) 570 { 571 struct hstate *h = hstate_inode(inode); 572 struct address_space *mapping = &inode->i_data; 573 const pgoff_t end = lend >> PAGE_SHIFT; 574 struct folio_batch fbatch; 575 pgoff_t next, index; 576 int i, freed = 0; 577 bool truncate_op = (lend == LLONG_MAX); 578 579 folio_batch_init(&fbatch); 580 next = lstart >> PAGE_SHIFT; 581 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 582 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 583 struct folio *folio = fbatch.folios[i]; 584 u32 hash = 0; 585 586 index = folio->index >> huge_page_order(h); 587 hash = hugetlb_fault_mutex_hash(mapping, index); 588 mutex_lock(&hugetlb_fault_mutex_table[hash]); 589 590 /* 591 * Remove folio that was part of folio_batch. 592 */ 593 if (remove_inode_single_folio(h, inode, mapping, folio, 594 index, truncate_op)) 595 freed++; 596 597 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 598 } 599 folio_batch_release(&fbatch); 600 cond_resched(); 601 } 602 603 if (truncate_op) 604 (void)hugetlb_unreserve_pages(inode, 605 lstart >> huge_page_shift(h), 606 LONG_MAX, freed); 607 } 608 609 static void hugetlbfs_evict_inode(struct inode *inode) 610 { 611 struct resv_map *resv_map; 612 613 trace_hugetlbfs_evict_inode(inode); 614 remove_inode_hugepages(inode, 0, LLONG_MAX); 615 616 /* 617 * Get the resv_map from the address space embedded in the inode. 618 * This is the address space which points to any resv_map allocated 619 * at inode creation time. If this is a device special inode, 620 * i_mapping may not point to the original address space. 621 */ 622 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 623 /* Only regular and link inodes have associated reserve maps */ 624 if (resv_map) 625 resv_map_release(&resv_map->refs); 626 clear_inode(inode); 627 } 628 629 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 630 { 631 pgoff_t pgoff; 632 struct address_space *mapping = inode->i_mapping; 633 struct hstate *h = hstate_inode(inode); 634 635 BUG_ON(offset & ~huge_page_mask(h)); 636 pgoff = offset >> PAGE_SHIFT; 637 638 i_size_write(inode, offset); 639 i_mmap_lock_write(mapping); 640 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 641 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 642 ZAP_FLAG_DROP_MARKER); 643 i_mmap_unlock_write(mapping); 644 remove_inode_hugepages(inode, offset, LLONG_MAX); 645 } 646 647 static void hugetlbfs_zero_partial_page(struct hstate *h, 648 struct address_space *mapping, 649 loff_t start, 650 loff_t end) 651 { 652 pgoff_t idx = start >> huge_page_shift(h); 653 struct folio *folio; 654 655 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 656 if (IS_ERR(folio)) 657 return; 658 659 start = start & ~huge_page_mask(h); 660 end = end & ~huge_page_mask(h); 661 if (!end) 662 end = huge_page_size(h); 663 664 folio_zero_segment(folio, (size_t)start, (size_t)end); 665 666 folio_unlock(folio); 667 folio_put(folio); 668 } 669 670 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 671 { 672 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 673 struct address_space *mapping = inode->i_mapping; 674 struct hstate *h = hstate_inode(inode); 675 loff_t hpage_size = huge_page_size(h); 676 loff_t hole_start, hole_end; 677 678 /* 679 * hole_start and hole_end indicate the full pages within the hole. 680 */ 681 hole_start = round_up(offset, hpage_size); 682 hole_end = round_down(offset + len, hpage_size); 683 684 inode_lock(inode); 685 686 /* protected by i_rwsem */ 687 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 688 inode_unlock(inode); 689 return -EPERM; 690 } 691 692 i_mmap_lock_write(mapping); 693 694 /* If range starts before first full page, zero partial page. */ 695 if (offset < hole_start) 696 hugetlbfs_zero_partial_page(h, mapping, 697 offset, min(offset + len, hole_start)); 698 699 /* Unmap users of full pages in the hole. */ 700 if (hole_end > hole_start) { 701 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 702 hugetlb_vmdelete_list(&mapping->i_mmap, 703 hole_start >> PAGE_SHIFT, 704 hole_end >> PAGE_SHIFT, 0); 705 } 706 707 /* If range extends beyond last full page, zero partial page. */ 708 if ((offset + len) > hole_end && (offset + len) > hole_start) 709 hugetlbfs_zero_partial_page(h, mapping, 710 hole_end, offset + len); 711 712 i_mmap_unlock_write(mapping); 713 714 /* Remove full pages from the file. */ 715 if (hole_end > hole_start) 716 remove_inode_hugepages(inode, hole_start, hole_end); 717 718 inode_unlock(inode); 719 720 return 0; 721 } 722 723 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 724 loff_t len) 725 { 726 struct inode *inode = file_inode(file); 727 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 728 struct address_space *mapping = inode->i_mapping; 729 struct hstate *h = hstate_inode(inode); 730 struct vm_area_struct pseudo_vma; 731 struct mm_struct *mm = current->mm; 732 loff_t hpage_size = huge_page_size(h); 733 unsigned long hpage_shift = huge_page_shift(h); 734 pgoff_t start, index, end; 735 int error; 736 u32 hash; 737 738 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 739 return -EOPNOTSUPP; 740 741 if (mode & FALLOC_FL_PUNCH_HOLE) { 742 error = hugetlbfs_punch_hole(inode, offset, len); 743 goto out_nolock; 744 } 745 746 /* 747 * Default preallocate case. 748 * For this range, start is rounded down and end is rounded up 749 * as well as being converted to page offsets. 750 */ 751 start = offset >> hpage_shift; 752 end = (offset + len + hpage_size - 1) >> hpage_shift; 753 754 inode_lock(inode); 755 756 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 757 error = inode_newsize_ok(inode, offset + len); 758 if (error) 759 goto out; 760 761 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 762 error = -EPERM; 763 goto out; 764 } 765 766 /* 767 * Initialize a pseudo vma as this is required by the huge page 768 * allocation routines. 769 */ 770 vma_init(&pseudo_vma, mm); 771 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 772 pseudo_vma.vm_file = file; 773 774 for (index = start; index < end; index++) { 775 /* 776 * This is supposed to be the vaddr where the page is being 777 * faulted in, but we have no vaddr here. 778 */ 779 struct folio *folio; 780 unsigned long addr; 781 782 cond_resched(); 783 784 /* 785 * fallocate(2) manpage permits EINTR; we may have been 786 * interrupted because we are using up too much memory. 787 */ 788 if (signal_pending(current)) { 789 error = -EINTR; 790 break; 791 } 792 793 /* addr is the offset within the file (zero based) */ 794 addr = index * hpage_size; 795 796 /* mutex taken here, fault path and hole punch */ 797 hash = hugetlb_fault_mutex_hash(mapping, index); 798 mutex_lock(&hugetlb_fault_mutex_table[hash]); 799 800 /* See if already present in mapping to avoid alloc/free */ 801 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 802 if (!IS_ERR(folio)) { 803 folio_put(folio); 804 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 805 continue; 806 } 807 808 /* 809 * Allocate folio without setting the avoid_reserve argument. 810 * There certainly are no reserves associated with the 811 * pseudo_vma. However, there could be shared mappings with 812 * reserves for the file at the inode level. If we fallocate 813 * folios in these areas, we need to consume the reserves 814 * to keep reservation accounting consistent. 815 */ 816 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false); 817 if (IS_ERR(folio)) { 818 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 819 error = PTR_ERR(folio); 820 goto out; 821 } 822 folio_zero_user(folio, addr); 823 __folio_mark_uptodate(folio); 824 error = hugetlb_add_to_page_cache(folio, mapping, index); 825 if (unlikely(error)) { 826 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 827 folio_put(folio); 828 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 829 goto out; 830 } 831 832 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 833 834 folio_set_hugetlb_migratable(folio); 835 /* 836 * folio_unlock because locked by hugetlb_add_to_page_cache() 837 * folio_put() due to reference from alloc_hugetlb_folio() 838 */ 839 folio_unlock(folio); 840 folio_put(folio); 841 } 842 843 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 844 i_size_write(inode, offset + len); 845 inode_set_ctime_current(inode); 846 out: 847 inode_unlock(inode); 848 849 out_nolock: 850 trace_hugetlbfs_fallocate(inode, mode, offset, len, error); 851 return error; 852 } 853 854 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 855 struct dentry *dentry, struct iattr *attr) 856 { 857 struct inode *inode = d_inode(dentry); 858 struct hstate *h = hstate_inode(inode); 859 int error; 860 unsigned int ia_valid = attr->ia_valid; 861 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 862 863 error = setattr_prepare(idmap, dentry, attr); 864 if (error) 865 return error; 866 867 trace_hugetlbfs_setattr(inode, dentry, attr); 868 869 if (ia_valid & ATTR_SIZE) { 870 loff_t oldsize = inode->i_size; 871 loff_t newsize = attr->ia_size; 872 873 if (newsize & ~huge_page_mask(h)) 874 return -EINVAL; 875 /* protected by i_rwsem */ 876 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 877 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 878 return -EPERM; 879 hugetlb_vmtruncate(inode, newsize); 880 } 881 882 setattr_copy(idmap, inode, attr); 883 mark_inode_dirty(inode); 884 return 0; 885 } 886 887 static struct inode *hugetlbfs_get_root(struct super_block *sb, 888 struct hugetlbfs_fs_context *ctx) 889 { 890 struct inode *inode; 891 892 inode = new_inode(sb); 893 if (inode) { 894 inode->i_ino = get_next_ino(); 895 inode->i_mode = S_IFDIR | ctx->mode; 896 inode->i_uid = ctx->uid; 897 inode->i_gid = ctx->gid; 898 simple_inode_init_ts(inode); 899 inode->i_op = &hugetlbfs_dir_inode_operations; 900 inode->i_fop = &simple_dir_operations; 901 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 902 inc_nlink(inode); 903 lockdep_annotate_inode_mutex_key(inode); 904 } 905 return inode; 906 } 907 908 /* 909 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 910 * be taken from reclaim -- unlike regular filesystems. This needs an 911 * annotation because huge_pmd_share() does an allocation under hugetlb's 912 * i_mmap_rwsem. 913 */ 914 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 915 916 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 917 struct mnt_idmap *idmap, 918 struct inode *dir, 919 umode_t mode, dev_t dev) 920 { 921 struct inode *inode; 922 struct resv_map *resv_map = NULL; 923 924 /* 925 * Reserve maps are only needed for inodes that can have associated 926 * page allocations. 927 */ 928 if (S_ISREG(mode) || S_ISLNK(mode)) { 929 resv_map = resv_map_alloc(); 930 if (!resv_map) 931 return NULL; 932 } 933 934 inode = new_inode(sb); 935 if (inode) { 936 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 937 938 inode->i_ino = get_next_ino(); 939 inode_init_owner(idmap, inode, dir, mode); 940 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 941 &hugetlbfs_i_mmap_rwsem_key); 942 inode->i_mapping->a_ops = &hugetlbfs_aops; 943 simple_inode_init_ts(inode); 944 inode->i_mapping->i_private_data = resv_map; 945 info->seals = F_SEAL_SEAL; 946 switch (mode & S_IFMT) { 947 default: 948 init_special_inode(inode, mode, dev); 949 break; 950 case S_IFREG: 951 inode->i_op = &hugetlbfs_inode_operations; 952 inode->i_fop = &hugetlbfs_file_operations; 953 break; 954 case S_IFDIR: 955 inode->i_op = &hugetlbfs_dir_inode_operations; 956 inode->i_fop = &simple_dir_operations; 957 958 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 959 inc_nlink(inode); 960 break; 961 case S_IFLNK: 962 inode->i_op = &page_symlink_inode_operations; 963 inode_nohighmem(inode); 964 break; 965 } 966 lockdep_annotate_inode_mutex_key(inode); 967 trace_hugetlbfs_alloc_inode(inode, dir, mode); 968 } else { 969 if (resv_map) 970 kref_put(&resv_map->refs, resv_map_release); 971 } 972 973 return inode; 974 } 975 976 /* 977 * File creation. Allocate an inode, and we're done.. 978 */ 979 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 980 struct dentry *dentry, umode_t mode, dev_t dev) 981 { 982 struct inode *inode; 983 984 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev); 985 if (!inode) 986 return -ENOSPC; 987 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 988 d_instantiate(dentry, inode); 989 dget(dentry);/* Extra count - pin the dentry in core */ 990 return 0; 991 } 992 993 static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 994 struct dentry *dentry, umode_t mode) 995 { 996 int retval = hugetlbfs_mknod(idmap, dir, dentry, 997 mode | S_IFDIR, 0); 998 if (!retval) 999 inc_nlink(dir); 1000 return ERR_PTR(retval); 1001 } 1002 1003 static int hugetlbfs_create(struct mnt_idmap *idmap, 1004 struct inode *dir, struct dentry *dentry, 1005 umode_t mode, bool excl) 1006 { 1007 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 1008 } 1009 1010 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1011 struct inode *dir, struct file *file, 1012 umode_t mode) 1013 { 1014 struct inode *inode; 1015 1016 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0); 1017 if (!inode) 1018 return -ENOSPC; 1019 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1020 d_tmpfile(file, inode); 1021 return finish_open_simple(file, 0); 1022 } 1023 1024 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1025 struct inode *dir, struct dentry *dentry, 1026 const char *symname) 1027 { 1028 const umode_t mode = S_IFLNK|S_IRWXUGO; 1029 struct inode *inode; 1030 int error = -ENOSPC; 1031 1032 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0); 1033 if (inode) { 1034 int l = strlen(symname)+1; 1035 error = page_symlink(inode, symname, l); 1036 if (!error) { 1037 d_instantiate(dentry, inode); 1038 dget(dentry); 1039 } else 1040 iput(inode); 1041 } 1042 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1043 1044 return error; 1045 } 1046 1047 #ifdef CONFIG_MIGRATION 1048 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1049 struct folio *dst, struct folio *src, 1050 enum migrate_mode mode) 1051 { 1052 int rc; 1053 1054 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1055 if (rc != MIGRATEPAGE_SUCCESS) 1056 return rc; 1057 1058 if (hugetlb_folio_subpool(src)) { 1059 hugetlb_set_folio_subpool(dst, 1060 hugetlb_folio_subpool(src)); 1061 hugetlb_set_folio_subpool(src, NULL); 1062 } 1063 1064 folio_migrate_flags(dst, src); 1065 1066 return MIGRATEPAGE_SUCCESS; 1067 } 1068 #else 1069 #define hugetlbfs_migrate_folio NULL 1070 #endif 1071 1072 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1073 struct folio *folio) 1074 { 1075 return 0; 1076 } 1077 1078 /* 1079 * Display the mount options in /proc/mounts. 1080 */ 1081 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1082 { 1083 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1084 struct hugepage_subpool *spool = sbinfo->spool; 1085 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1086 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1087 char mod; 1088 1089 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1090 seq_printf(m, ",uid=%u", 1091 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1092 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1093 seq_printf(m, ",gid=%u", 1094 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1095 if (sbinfo->mode != 0755) 1096 seq_printf(m, ",mode=%o", sbinfo->mode); 1097 if (sbinfo->max_inodes != -1) 1098 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1099 1100 hpage_size /= 1024; 1101 mod = 'K'; 1102 if (hpage_size >= 1024) { 1103 hpage_size /= 1024; 1104 mod = 'M'; 1105 } 1106 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1107 if (spool) { 1108 if (spool->max_hpages != -1) 1109 seq_printf(m, ",size=%llu", 1110 (unsigned long long)spool->max_hpages << hpage_shift); 1111 if (spool->min_hpages != -1) 1112 seq_printf(m, ",min_size=%llu", 1113 (unsigned long long)spool->min_hpages << hpage_shift); 1114 } 1115 return 0; 1116 } 1117 1118 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1119 { 1120 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1121 struct hstate *h = hstate_inode(d_inode(dentry)); 1122 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1123 1124 buf->f_fsid = u64_to_fsid(id); 1125 buf->f_type = HUGETLBFS_MAGIC; 1126 buf->f_bsize = huge_page_size(h); 1127 if (sbinfo) { 1128 spin_lock(&sbinfo->stat_lock); 1129 /* If no limits set, just report 0 or -1 for max/free/used 1130 * blocks, like simple_statfs() */ 1131 if (sbinfo->spool) { 1132 long free_pages; 1133 1134 spin_lock_irq(&sbinfo->spool->lock); 1135 buf->f_blocks = sbinfo->spool->max_hpages; 1136 free_pages = sbinfo->spool->max_hpages 1137 - sbinfo->spool->used_hpages; 1138 buf->f_bavail = buf->f_bfree = free_pages; 1139 spin_unlock_irq(&sbinfo->spool->lock); 1140 buf->f_files = sbinfo->max_inodes; 1141 buf->f_ffree = sbinfo->free_inodes; 1142 } 1143 spin_unlock(&sbinfo->stat_lock); 1144 } 1145 buf->f_namelen = NAME_MAX; 1146 return 0; 1147 } 1148 1149 static void hugetlbfs_put_super(struct super_block *sb) 1150 { 1151 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1152 1153 if (sbi) { 1154 sb->s_fs_info = NULL; 1155 1156 if (sbi->spool) 1157 hugepage_put_subpool(sbi->spool); 1158 1159 kfree(sbi); 1160 } 1161 } 1162 1163 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1164 { 1165 if (sbinfo->free_inodes >= 0) { 1166 spin_lock(&sbinfo->stat_lock); 1167 if (unlikely(!sbinfo->free_inodes)) { 1168 spin_unlock(&sbinfo->stat_lock); 1169 return 0; 1170 } 1171 sbinfo->free_inodes--; 1172 spin_unlock(&sbinfo->stat_lock); 1173 } 1174 1175 return 1; 1176 } 1177 1178 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1179 { 1180 if (sbinfo->free_inodes >= 0) { 1181 spin_lock(&sbinfo->stat_lock); 1182 sbinfo->free_inodes++; 1183 spin_unlock(&sbinfo->stat_lock); 1184 } 1185 } 1186 1187 1188 static struct kmem_cache *hugetlbfs_inode_cachep; 1189 1190 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1191 { 1192 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1193 struct hugetlbfs_inode_info *p; 1194 1195 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1196 return NULL; 1197 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1198 if (unlikely(!p)) { 1199 hugetlbfs_inc_free_inodes(sbinfo); 1200 return NULL; 1201 } 1202 return &p->vfs_inode; 1203 } 1204 1205 static void hugetlbfs_free_inode(struct inode *inode) 1206 { 1207 trace_hugetlbfs_free_inode(inode); 1208 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1209 } 1210 1211 static void hugetlbfs_destroy_inode(struct inode *inode) 1212 { 1213 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1214 } 1215 1216 static const struct address_space_operations hugetlbfs_aops = { 1217 .write_begin = hugetlbfs_write_begin, 1218 .write_end = hugetlbfs_write_end, 1219 .dirty_folio = noop_dirty_folio, 1220 .migrate_folio = hugetlbfs_migrate_folio, 1221 .error_remove_folio = hugetlbfs_error_remove_folio, 1222 }; 1223 1224 1225 static void init_once(void *foo) 1226 { 1227 struct hugetlbfs_inode_info *ei = foo; 1228 1229 inode_init_once(&ei->vfs_inode); 1230 } 1231 1232 static const struct file_operations hugetlbfs_file_operations = { 1233 .read_iter = hugetlbfs_read_iter, 1234 .mmap = hugetlbfs_file_mmap, 1235 .fsync = noop_fsync, 1236 .get_unmapped_area = hugetlb_get_unmapped_area, 1237 .llseek = default_llseek, 1238 .fallocate = hugetlbfs_fallocate, 1239 .fop_flags = FOP_HUGE_PAGES, 1240 }; 1241 1242 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1243 .create = hugetlbfs_create, 1244 .lookup = simple_lookup, 1245 .link = simple_link, 1246 .unlink = simple_unlink, 1247 .symlink = hugetlbfs_symlink, 1248 .mkdir = hugetlbfs_mkdir, 1249 .rmdir = simple_rmdir, 1250 .mknod = hugetlbfs_mknod, 1251 .rename = simple_rename, 1252 .setattr = hugetlbfs_setattr, 1253 .tmpfile = hugetlbfs_tmpfile, 1254 }; 1255 1256 static const struct inode_operations hugetlbfs_inode_operations = { 1257 .setattr = hugetlbfs_setattr, 1258 }; 1259 1260 static const struct super_operations hugetlbfs_ops = { 1261 .alloc_inode = hugetlbfs_alloc_inode, 1262 .free_inode = hugetlbfs_free_inode, 1263 .destroy_inode = hugetlbfs_destroy_inode, 1264 .evict_inode = hugetlbfs_evict_inode, 1265 .statfs = hugetlbfs_statfs, 1266 .put_super = hugetlbfs_put_super, 1267 .show_options = hugetlbfs_show_options, 1268 }; 1269 1270 /* 1271 * Convert size option passed from command line to number of huge pages 1272 * in the pool specified by hstate. Size option could be in bytes 1273 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1274 */ 1275 static long 1276 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1277 enum hugetlbfs_size_type val_type) 1278 { 1279 if (val_type == NO_SIZE) 1280 return -1; 1281 1282 if (val_type == SIZE_PERCENT) { 1283 size_opt <<= huge_page_shift(h); 1284 size_opt *= h->max_huge_pages; 1285 do_div(size_opt, 100); 1286 } 1287 1288 size_opt >>= huge_page_shift(h); 1289 return size_opt; 1290 } 1291 1292 /* 1293 * Parse one mount parameter. 1294 */ 1295 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1296 { 1297 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1298 struct fs_parse_result result; 1299 struct hstate *h; 1300 char *rest; 1301 unsigned long ps; 1302 int opt; 1303 1304 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1305 if (opt < 0) 1306 return opt; 1307 1308 switch (opt) { 1309 case Opt_uid: 1310 ctx->uid = result.uid; 1311 return 0; 1312 1313 case Opt_gid: 1314 ctx->gid = result.gid; 1315 return 0; 1316 1317 case Opt_mode: 1318 ctx->mode = result.uint_32 & 01777U; 1319 return 0; 1320 1321 case Opt_size: 1322 /* memparse() will accept a K/M/G without a digit */ 1323 if (!param->string || !isdigit(param->string[0])) 1324 goto bad_val; 1325 ctx->max_size_opt = memparse(param->string, &rest); 1326 ctx->max_val_type = SIZE_STD; 1327 if (*rest == '%') 1328 ctx->max_val_type = SIZE_PERCENT; 1329 return 0; 1330 1331 case Opt_nr_inodes: 1332 /* memparse() will accept a K/M/G without a digit */ 1333 if (!param->string || !isdigit(param->string[0])) 1334 goto bad_val; 1335 ctx->nr_inodes = memparse(param->string, &rest); 1336 return 0; 1337 1338 case Opt_pagesize: 1339 ps = memparse(param->string, &rest); 1340 h = size_to_hstate(ps); 1341 if (!h) { 1342 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1343 return -EINVAL; 1344 } 1345 ctx->hstate = h; 1346 return 0; 1347 1348 case Opt_min_size: 1349 /* memparse() will accept a K/M/G without a digit */ 1350 if (!param->string || !isdigit(param->string[0])) 1351 goto bad_val; 1352 ctx->min_size_opt = memparse(param->string, &rest); 1353 ctx->min_val_type = SIZE_STD; 1354 if (*rest == '%') 1355 ctx->min_val_type = SIZE_PERCENT; 1356 return 0; 1357 1358 default: 1359 return -EINVAL; 1360 } 1361 1362 bad_val: 1363 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1364 param->string, param->key); 1365 } 1366 1367 /* 1368 * Validate the parsed options. 1369 */ 1370 static int hugetlbfs_validate(struct fs_context *fc) 1371 { 1372 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1373 1374 /* 1375 * Use huge page pool size (in hstate) to convert the size 1376 * options to number of huge pages. If NO_SIZE, -1 is returned. 1377 */ 1378 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1379 ctx->max_size_opt, 1380 ctx->max_val_type); 1381 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1382 ctx->min_size_opt, 1383 ctx->min_val_type); 1384 1385 /* 1386 * If max_size was specified, then min_size must be smaller 1387 */ 1388 if (ctx->max_val_type > NO_SIZE && 1389 ctx->min_hpages > ctx->max_hpages) { 1390 pr_err("Minimum size can not be greater than maximum size\n"); 1391 return -EINVAL; 1392 } 1393 1394 return 0; 1395 } 1396 1397 static int 1398 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1399 { 1400 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1401 struct hugetlbfs_sb_info *sbinfo; 1402 1403 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1404 if (!sbinfo) 1405 return -ENOMEM; 1406 sb->s_fs_info = sbinfo; 1407 spin_lock_init(&sbinfo->stat_lock); 1408 sbinfo->hstate = ctx->hstate; 1409 sbinfo->max_inodes = ctx->nr_inodes; 1410 sbinfo->free_inodes = ctx->nr_inodes; 1411 sbinfo->spool = NULL; 1412 sbinfo->uid = ctx->uid; 1413 sbinfo->gid = ctx->gid; 1414 sbinfo->mode = ctx->mode; 1415 1416 /* 1417 * Allocate and initialize subpool if maximum or minimum size is 1418 * specified. Any needed reservations (for minimum size) are taken 1419 * when the subpool is created. 1420 */ 1421 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1422 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1423 ctx->max_hpages, 1424 ctx->min_hpages); 1425 if (!sbinfo->spool) 1426 goto out_free; 1427 } 1428 sb->s_maxbytes = MAX_LFS_FILESIZE; 1429 sb->s_blocksize = huge_page_size(ctx->hstate); 1430 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1431 sb->s_magic = HUGETLBFS_MAGIC; 1432 sb->s_op = &hugetlbfs_ops; 1433 sb->s_d_flags = DCACHE_DONTCACHE; 1434 sb->s_time_gran = 1; 1435 1436 /* 1437 * Due to the special and limited functionality of hugetlbfs, it does 1438 * not work well as a stacking filesystem. 1439 */ 1440 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1441 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1442 if (!sb->s_root) 1443 goto out_free; 1444 return 0; 1445 out_free: 1446 kfree(sbinfo->spool); 1447 kfree(sbinfo); 1448 return -ENOMEM; 1449 } 1450 1451 static int hugetlbfs_get_tree(struct fs_context *fc) 1452 { 1453 int err = hugetlbfs_validate(fc); 1454 if (err) 1455 return err; 1456 return get_tree_nodev(fc, hugetlbfs_fill_super); 1457 } 1458 1459 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1460 { 1461 kfree(fc->fs_private); 1462 } 1463 1464 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1465 .free = hugetlbfs_fs_context_free, 1466 .parse_param = hugetlbfs_parse_param, 1467 .get_tree = hugetlbfs_get_tree, 1468 }; 1469 1470 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1471 { 1472 struct hugetlbfs_fs_context *ctx; 1473 1474 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1475 if (!ctx) 1476 return -ENOMEM; 1477 1478 ctx->max_hpages = -1; /* No limit on size by default */ 1479 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1480 ctx->uid = current_fsuid(); 1481 ctx->gid = current_fsgid(); 1482 ctx->mode = 0755; 1483 ctx->hstate = &default_hstate; 1484 ctx->min_hpages = -1; /* No default minimum size */ 1485 ctx->max_val_type = NO_SIZE; 1486 ctx->min_val_type = NO_SIZE; 1487 fc->fs_private = ctx; 1488 fc->ops = &hugetlbfs_fs_context_ops; 1489 return 0; 1490 } 1491 1492 static struct file_system_type hugetlbfs_fs_type = { 1493 .name = "hugetlbfs", 1494 .init_fs_context = hugetlbfs_init_fs_context, 1495 .parameters = hugetlb_fs_parameters, 1496 .kill_sb = kill_litter_super, 1497 .fs_flags = FS_ALLOW_IDMAP, 1498 }; 1499 1500 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1501 1502 static int can_do_hugetlb_shm(void) 1503 { 1504 kgid_t shm_group; 1505 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1506 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1507 } 1508 1509 static int get_hstate_idx(int page_size_log) 1510 { 1511 struct hstate *h = hstate_sizelog(page_size_log); 1512 1513 if (!h) 1514 return -1; 1515 return hstate_index(h); 1516 } 1517 1518 /* 1519 * Note that size should be aligned to proper hugepage size in caller side, 1520 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1521 */ 1522 struct file *hugetlb_file_setup(const char *name, size_t size, 1523 vm_flags_t acctflag, int creat_flags, 1524 int page_size_log) 1525 { 1526 struct inode *inode; 1527 struct vfsmount *mnt; 1528 int hstate_idx; 1529 struct file *file; 1530 1531 hstate_idx = get_hstate_idx(page_size_log); 1532 if (hstate_idx < 0) 1533 return ERR_PTR(-ENODEV); 1534 1535 mnt = hugetlbfs_vfsmount[hstate_idx]; 1536 if (!mnt) 1537 return ERR_PTR(-ENOENT); 1538 1539 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1540 struct ucounts *ucounts = current_ucounts(); 1541 1542 if (user_shm_lock(size, ucounts)) { 1543 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1544 current->comm, current->pid); 1545 user_shm_unlock(size, ucounts); 1546 } 1547 return ERR_PTR(-EPERM); 1548 } 1549 1550 file = ERR_PTR(-ENOSPC); 1551 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */ 1552 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL, 1553 S_IFREG | S_IRWXUGO, 0); 1554 if (!inode) 1555 goto out; 1556 if (creat_flags == HUGETLB_SHMFS_INODE) 1557 inode->i_flags |= S_PRIVATE; 1558 1559 inode->i_size = size; 1560 clear_nlink(inode); 1561 1562 if (hugetlb_reserve_pages(inode, 0, 1563 size >> huge_page_shift(hstate_inode(inode)), NULL, 1564 acctflag) < 0) 1565 file = ERR_PTR(-ENOMEM); 1566 else 1567 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1568 &hugetlbfs_file_operations); 1569 if (!IS_ERR(file)) 1570 return file; 1571 1572 iput(inode); 1573 out: 1574 return file; 1575 } 1576 1577 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1578 { 1579 struct fs_context *fc; 1580 struct vfsmount *mnt; 1581 1582 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1583 if (IS_ERR(fc)) { 1584 mnt = ERR_CAST(fc); 1585 } else { 1586 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1587 ctx->hstate = h; 1588 mnt = fc_mount_longterm(fc); 1589 put_fs_context(fc); 1590 } 1591 if (IS_ERR(mnt)) 1592 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1593 huge_page_size(h) / SZ_1K); 1594 return mnt; 1595 } 1596 1597 static int __init init_hugetlbfs_fs(void) 1598 { 1599 struct vfsmount *mnt; 1600 struct hstate *h; 1601 int error; 1602 int i; 1603 1604 if (!hugepages_supported()) { 1605 pr_info("disabling because there are no supported hugepage sizes\n"); 1606 return -ENOTSUPP; 1607 } 1608 1609 error = -ENOMEM; 1610 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1611 sizeof(struct hugetlbfs_inode_info), 1612 0, SLAB_ACCOUNT, init_once); 1613 if (hugetlbfs_inode_cachep == NULL) 1614 goto out; 1615 1616 error = register_filesystem(&hugetlbfs_fs_type); 1617 if (error) 1618 goto out_free; 1619 1620 /* default hstate mount is required */ 1621 mnt = mount_one_hugetlbfs(&default_hstate); 1622 if (IS_ERR(mnt)) { 1623 error = PTR_ERR(mnt); 1624 goto out_unreg; 1625 } 1626 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1627 1628 /* other hstates are optional */ 1629 i = 0; 1630 for_each_hstate(h) { 1631 if (i == default_hstate_idx) { 1632 i++; 1633 continue; 1634 } 1635 1636 mnt = mount_one_hugetlbfs(h); 1637 if (IS_ERR(mnt)) 1638 hugetlbfs_vfsmount[i] = NULL; 1639 else 1640 hugetlbfs_vfsmount[i] = mnt; 1641 i++; 1642 } 1643 1644 return 0; 1645 1646 out_unreg: 1647 (void)unregister_filesystem(&hugetlbfs_fs_type); 1648 out_free: 1649 kmem_cache_destroy(hugetlbfs_inode_cachep); 1650 out: 1651 return error; 1652 } 1653 fs_initcall(init_hugetlbfs_fs) 1654