xref: /linux/fs/hugetlbfs/inode.c (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 struct hugetlbfs_config {
49 	struct hstate		*hstate;
50 	long			max_hpages;
51 	long			nr_inodes;
52 	long			min_hpages;
53 	kuid_t			uid;
54 	kgid_t			gid;
55 	umode_t			mode;
56 };
57 
58 int sysctl_hugetlb_shm_group;
59 
60 enum {
61 	Opt_size, Opt_nr_inodes,
62 	Opt_mode, Opt_uid, Opt_gid,
63 	Opt_pagesize, Opt_min_size,
64 	Opt_err,
65 };
66 
67 static const match_table_t tokens = {
68 	{Opt_size,	"size=%s"},
69 	{Opt_nr_inodes,	"nr_inodes=%s"},
70 	{Opt_mode,	"mode=%o"},
71 	{Opt_uid,	"uid=%u"},
72 	{Opt_gid,	"gid=%u"},
73 	{Opt_pagesize,	"pagesize=%s"},
74 	{Opt_min_size,	"min_size=%s"},
75 	{Opt_err,	NULL},
76 };
77 
78 #ifdef CONFIG_NUMA
79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
80 					struct inode *inode, pgoff_t index)
81 {
82 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
83 							index);
84 }
85 
86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
87 {
88 	mpol_cond_put(vma->vm_policy);
89 }
90 #else
91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
92 					struct inode *inode, pgoff_t index)
93 {
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 }
99 #endif
100 
101 static void huge_pagevec_release(struct pagevec *pvec)
102 {
103 	int i;
104 
105 	for (i = 0; i < pagevec_count(pvec); ++i)
106 		put_page(pvec->pages[i]);
107 
108 	pagevec_reinit(pvec);
109 }
110 
111 /*
112  * Mask used when checking the page offset value passed in via system
113  * calls.  This value will be converted to a loff_t which is signed.
114  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115  * value.  The extra bit (- 1 in the shift value) is to take the sign
116  * bit into account.
117  */
118 #define PGOFF_LOFFT_MAX \
119 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
120 
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 	struct inode *inode = file_inode(file);
124 	loff_t len, vma_len;
125 	int ret;
126 	struct hstate *h = hstate_file(file);
127 
128 	/*
129 	 * vma address alignment (but not the pgoff alignment) has
130 	 * already been checked by prepare_hugepage_range.  If you add
131 	 * any error returns here, do so after setting VM_HUGETLB, so
132 	 * is_vm_hugetlb_page tests below unmap_region go the right
133 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 	 * and ia64).
135 	 */
136 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 	vma->vm_ops = &hugetlb_vm_ops;
138 
139 	/*
140 	 * page based offset in vm_pgoff could be sufficiently large to
141 	 * overflow a loff_t when converted to byte offset.  This can
142 	 * only happen on architectures where sizeof(loff_t) ==
143 	 * sizeof(unsigned long).  So, only check in those instances.
144 	 */
145 	if (sizeof(unsigned long) == sizeof(loff_t)) {
146 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
147 			return -EINVAL;
148 	}
149 
150 	/* must be huge page aligned */
151 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
152 		return -EINVAL;
153 
154 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
155 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
156 	/* check for overflow */
157 	if (len < vma_len)
158 		return -EINVAL;
159 
160 	inode_lock(inode);
161 	file_accessed(file);
162 
163 	ret = -ENOMEM;
164 	if (hugetlb_reserve_pages(inode,
165 				vma->vm_pgoff >> huge_page_order(h),
166 				len >> huge_page_shift(h), vma,
167 				vma->vm_flags))
168 		goto out;
169 
170 	ret = 0;
171 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
172 		i_size_write(inode, len);
173 out:
174 	inode_unlock(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called under down_write(mmap_sem).
181  */
182 
183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
184 static unsigned long
185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
186 		unsigned long len, unsigned long pgoff, unsigned long flags)
187 {
188 	struct mm_struct *mm = current->mm;
189 	struct vm_area_struct *vma;
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	if (len & ~huge_page_mask(h))
194 		return -EINVAL;
195 	if (len > TASK_SIZE)
196 		return -ENOMEM;
197 
198 	if (flags & MAP_FIXED) {
199 		if (prepare_hugepage_range(file, addr, len))
200 			return -EINVAL;
201 		return addr;
202 	}
203 
204 	if (addr) {
205 		addr = ALIGN(addr, huge_page_size(h));
206 		vma = find_vma(mm, addr);
207 		if (TASK_SIZE - len >= addr &&
208 		    (!vma || addr + len <= vm_start_gap(vma)))
209 			return addr;
210 	}
211 
212 	info.flags = 0;
213 	info.length = len;
214 	info.low_limit = TASK_UNMAPPED_BASE;
215 	info.high_limit = TASK_SIZE;
216 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
217 	info.align_offset = 0;
218 	return vm_unmapped_area(&info);
219 }
220 #endif
221 
222 static size_t
223 hugetlbfs_read_actor(struct page *page, unsigned long offset,
224 			struct iov_iter *to, unsigned long size)
225 {
226 	size_t copied = 0;
227 	int i, chunksize;
228 
229 	/* Find which 4k chunk and offset with in that chunk */
230 	i = offset >> PAGE_SHIFT;
231 	offset = offset & ~PAGE_MASK;
232 
233 	while (size) {
234 		size_t n;
235 		chunksize = PAGE_SIZE;
236 		if (offset)
237 			chunksize -= offset;
238 		if (chunksize > size)
239 			chunksize = size;
240 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
241 		copied += n;
242 		if (n != chunksize)
243 			return copied;
244 		offset = 0;
245 		size -= chunksize;
246 		i++;
247 	}
248 	return copied;
249 }
250 
251 /*
252  * Support for read() - Find the page attached to f_mapping and copy out the
253  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
254  * since it has PAGE_SIZE assumptions.
255  */
256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
257 {
258 	struct file *file = iocb->ki_filp;
259 	struct hstate *h = hstate_file(file);
260 	struct address_space *mapping = file->f_mapping;
261 	struct inode *inode = mapping->host;
262 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
263 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
264 	unsigned long end_index;
265 	loff_t isize;
266 	ssize_t retval = 0;
267 
268 	while (iov_iter_count(to)) {
269 		struct page *page;
270 		size_t nr, copied;
271 
272 		/* nr is the maximum number of bytes to copy from this page */
273 		nr = huge_page_size(h);
274 		isize = i_size_read(inode);
275 		if (!isize)
276 			break;
277 		end_index = (isize - 1) >> huge_page_shift(h);
278 		if (index > end_index)
279 			break;
280 		if (index == end_index) {
281 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
282 			if (nr <= offset)
283 				break;
284 		}
285 		nr = nr - offset;
286 
287 		/* Find the page */
288 		page = find_lock_page(mapping, index);
289 		if (unlikely(page == NULL)) {
290 			/*
291 			 * We have a HOLE, zero out the user-buffer for the
292 			 * length of the hole or request.
293 			 */
294 			copied = iov_iter_zero(nr, to);
295 		} else {
296 			unlock_page(page);
297 
298 			/*
299 			 * We have the page, copy it to user space buffer.
300 			 */
301 			copied = hugetlbfs_read_actor(page, offset, to, nr);
302 			put_page(page);
303 		}
304 		offset += copied;
305 		retval += copied;
306 		if (copied != nr && iov_iter_count(to)) {
307 			if (!retval)
308 				retval = -EFAULT;
309 			break;
310 		}
311 		index += offset >> huge_page_shift(h);
312 		offset &= ~huge_page_mask(h);
313 	}
314 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
315 	return retval;
316 }
317 
318 static int hugetlbfs_write_begin(struct file *file,
319 			struct address_space *mapping,
320 			loff_t pos, unsigned len, unsigned flags,
321 			struct page **pagep, void **fsdata)
322 {
323 	return -EINVAL;
324 }
325 
326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
327 			loff_t pos, unsigned len, unsigned copied,
328 			struct page *page, void *fsdata)
329 {
330 	BUG();
331 	return -EINVAL;
332 }
333 
334 static void remove_huge_page(struct page *page)
335 {
336 	ClearPageDirty(page);
337 	ClearPageUptodate(page);
338 	delete_from_page_cache(page);
339 }
340 
341 static void
342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
343 {
344 	struct vm_area_struct *vma;
345 
346 	/*
347 	 * end == 0 indicates that the entire range after
348 	 * start should be unmapped.
349 	 */
350 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
351 		unsigned long v_offset;
352 		unsigned long v_end;
353 
354 		/*
355 		 * Can the expression below overflow on 32-bit arches?
356 		 * No, because the interval tree returns us only those vmas
357 		 * which overlap the truncated area starting at pgoff,
358 		 * and no vma on a 32-bit arch can span beyond the 4GB.
359 		 */
360 		if (vma->vm_pgoff < start)
361 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
362 		else
363 			v_offset = 0;
364 
365 		if (!end)
366 			v_end = vma->vm_end;
367 		else {
368 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
369 							+ vma->vm_start;
370 			if (v_end > vma->vm_end)
371 				v_end = vma->vm_end;
372 		}
373 
374 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
375 									NULL);
376 	}
377 }
378 
379 /*
380  * remove_inode_hugepages handles two distinct cases: truncation and hole
381  * punch.  There are subtle differences in operation for each case.
382  *
383  * truncation is indicated by end of range being LLONG_MAX
384  *	In this case, we first scan the range and release found pages.
385  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
386  *	maps and global counts.  Page faults can not race with truncation
387  *	in this routine.  hugetlb_no_page() prevents page faults in the
388  *	truncated range.  It checks i_size before allocation, and again after
389  *	with the page table lock for the page held.  The same lock must be
390  *	acquired to unmap a page.
391  * hole punch is indicated if end is not LLONG_MAX
392  *	In the hole punch case we scan the range and release found pages.
393  *	Only when releasing a page is the associated region/reserv map
394  *	deleted.  The region/reserv map for ranges without associated
395  *	pages are not modified.  Page faults can race with hole punch.
396  *	This is indicated if we find a mapped page.
397  * Note: If the passed end of range value is beyond the end of file, but
398  * not LLONG_MAX this routine still performs a hole punch operation.
399  */
400 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
401 				   loff_t lend)
402 {
403 	struct hstate *h = hstate_inode(inode);
404 	struct address_space *mapping = &inode->i_data;
405 	const pgoff_t start = lstart >> huge_page_shift(h);
406 	const pgoff_t end = lend >> huge_page_shift(h);
407 	struct vm_area_struct pseudo_vma;
408 	struct pagevec pvec;
409 	pgoff_t next, index;
410 	int i, freed = 0;
411 	bool truncate_op = (lend == LLONG_MAX);
412 
413 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
414 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
415 	pagevec_init(&pvec);
416 	next = start;
417 	while (next < end) {
418 		/*
419 		 * When no more pages are found, we are done.
420 		 */
421 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
422 			break;
423 
424 		for (i = 0; i < pagevec_count(&pvec); ++i) {
425 			struct page *page = pvec.pages[i];
426 			u32 hash;
427 
428 			index = page->index;
429 			hash = hugetlb_fault_mutex_hash(h, current->mm,
430 							&pseudo_vma,
431 							mapping, index, 0);
432 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
433 
434 			/*
435 			 * If page is mapped, it was faulted in after being
436 			 * unmapped in caller.  Unmap (again) now after taking
437 			 * the fault mutex.  The mutex will prevent faults
438 			 * until we finish removing the page.
439 			 *
440 			 * This race can only happen in the hole punch case.
441 			 * Getting here in a truncate operation is a bug.
442 			 */
443 			if (unlikely(page_mapped(page))) {
444 				BUG_ON(truncate_op);
445 
446 				i_mmap_lock_write(mapping);
447 				hugetlb_vmdelete_list(&mapping->i_mmap,
448 					index * pages_per_huge_page(h),
449 					(index + 1) * pages_per_huge_page(h));
450 				i_mmap_unlock_write(mapping);
451 			}
452 
453 			lock_page(page);
454 			/*
455 			 * We must free the huge page and remove from page
456 			 * cache (remove_huge_page) BEFORE removing the
457 			 * region/reserve map (hugetlb_unreserve_pages).  In
458 			 * rare out of memory conditions, removal of the
459 			 * region/reserve map could fail. Correspondingly,
460 			 * the subpool and global reserve usage count can need
461 			 * to be adjusted.
462 			 */
463 			VM_BUG_ON(PagePrivate(page));
464 			remove_huge_page(page);
465 			freed++;
466 			if (!truncate_op) {
467 				if (unlikely(hugetlb_unreserve_pages(inode,
468 							index, index + 1, 1)))
469 					hugetlb_fix_reserve_counts(inode);
470 			}
471 
472 			unlock_page(page);
473 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
474 		}
475 		huge_pagevec_release(&pvec);
476 		cond_resched();
477 	}
478 
479 	if (truncate_op)
480 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
481 }
482 
483 static void hugetlbfs_evict_inode(struct inode *inode)
484 {
485 	struct resv_map *resv_map;
486 
487 	remove_inode_hugepages(inode, 0, LLONG_MAX);
488 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
489 	/* root inode doesn't have the resv_map, so we should check it */
490 	if (resv_map)
491 		resv_map_release(&resv_map->refs);
492 	clear_inode(inode);
493 }
494 
495 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
496 {
497 	pgoff_t pgoff;
498 	struct address_space *mapping = inode->i_mapping;
499 	struct hstate *h = hstate_inode(inode);
500 
501 	BUG_ON(offset & ~huge_page_mask(h));
502 	pgoff = offset >> PAGE_SHIFT;
503 
504 	i_size_write(inode, offset);
505 	i_mmap_lock_write(mapping);
506 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
507 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
508 	i_mmap_unlock_write(mapping);
509 	remove_inode_hugepages(inode, offset, LLONG_MAX);
510 	return 0;
511 }
512 
513 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
514 {
515 	struct hstate *h = hstate_inode(inode);
516 	loff_t hpage_size = huge_page_size(h);
517 	loff_t hole_start, hole_end;
518 
519 	/*
520 	 * For hole punch round up the beginning offset of the hole and
521 	 * round down the end.
522 	 */
523 	hole_start = round_up(offset, hpage_size);
524 	hole_end = round_down(offset + len, hpage_size);
525 
526 	if (hole_end > hole_start) {
527 		struct address_space *mapping = inode->i_mapping;
528 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
529 
530 		inode_lock(inode);
531 
532 		/* protected by i_mutex */
533 		if (info->seals & F_SEAL_WRITE) {
534 			inode_unlock(inode);
535 			return -EPERM;
536 		}
537 
538 		i_mmap_lock_write(mapping);
539 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
540 			hugetlb_vmdelete_list(&mapping->i_mmap,
541 						hole_start >> PAGE_SHIFT,
542 						hole_end  >> PAGE_SHIFT);
543 		i_mmap_unlock_write(mapping);
544 		remove_inode_hugepages(inode, hole_start, hole_end);
545 		inode_unlock(inode);
546 	}
547 
548 	return 0;
549 }
550 
551 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
552 				loff_t len)
553 {
554 	struct inode *inode = file_inode(file);
555 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
556 	struct address_space *mapping = inode->i_mapping;
557 	struct hstate *h = hstate_inode(inode);
558 	struct vm_area_struct pseudo_vma;
559 	struct mm_struct *mm = current->mm;
560 	loff_t hpage_size = huge_page_size(h);
561 	unsigned long hpage_shift = huge_page_shift(h);
562 	pgoff_t start, index, end;
563 	int error;
564 	u32 hash;
565 
566 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
567 		return -EOPNOTSUPP;
568 
569 	if (mode & FALLOC_FL_PUNCH_HOLE)
570 		return hugetlbfs_punch_hole(inode, offset, len);
571 
572 	/*
573 	 * Default preallocate case.
574 	 * For this range, start is rounded down and end is rounded up
575 	 * as well as being converted to page offsets.
576 	 */
577 	start = offset >> hpage_shift;
578 	end = (offset + len + hpage_size - 1) >> hpage_shift;
579 
580 	inode_lock(inode);
581 
582 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
583 	error = inode_newsize_ok(inode, offset + len);
584 	if (error)
585 		goto out;
586 
587 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
588 		error = -EPERM;
589 		goto out;
590 	}
591 
592 	/*
593 	 * Initialize a pseudo vma as this is required by the huge page
594 	 * allocation routines.  If NUMA is configured, use page index
595 	 * as input to create an allocation policy.
596 	 */
597 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
598 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
599 	pseudo_vma.vm_file = file;
600 
601 	for (index = start; index < end; index++) {
602 		/*
603 		 * This is supposed to be the vaddr where the page is being
604 		 * faulted in, but we have no vaddr here.
605 		 */
606 		struct page *page;
607 		unsigned long addr;
608 		int avoid_reserve = 0;
609 
610 		cond_resched();
611 
612 		/*
613 		 * fallocate(2) manpage permits EINTR; we may have been
614 		 * interrupted because we are using up too much memory.
615 		 */
616 		if (signal_pending(current)) {
617 			error = -EINTR;
618 			break;
619 		}
620 
621 		/* Set numa allocation policy based on index */
622 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
623 
624 		/* addr is the offset within the file (zero based) */
625 		addr = index * hpage_size;
626 
627 		/* mutex taken here, fault path and hole punch */
628 		hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
629 						index, addr);
630 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
631 
632 		/* See if already present in mapping to avoid alloc/free */
633 		page = find_get_page(mapping, index);
634 		if (page) {
635 			put_page(page);
636 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
637 			hugetlb_drop_vma_policy(&pseudo_vma);
638 			continue;
639 		}
640 
641 		/* Allocate page and add to page cache */
642 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
643 		hugetlb_drop_vma_policy(&pseudo_vma);
644 		if (IS_ERR(page)) {
645 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
646 			error = PTR_ERR(page);
647 			goto out;
648 		}
649 		clear_huge_page(page, addr, pages_per_huge_page(h));
650 		__SetPageUptodate(page);
651 		error = huge_add_to_page_cache(page, mapping, index);
652 		if (unlikely(error)) {
653 			put_page(page);
654 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
655 			goto out;
656 		}
657 
658 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
659 
660 		/*
661 		 * unlock_page because locked by add_to_page_cache()
662 		 * page_put due to reference from alloc_huge_page()
663 		 */
664 		unlock_page(page);
665 		put_page(page);
666 	}
667 
668 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
669 		i_size_write(inode, offset + len);
670 	inode->i_ctime = current_time(inode);
671 out:
672 	inode_unlock(inode);
673 	return error;
674 }
675 
676 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
677 {
678 	struct inode *inode = d_inode(dentry);
679 	struct hstate *h = hstate_inode(inode);
680 	int error;
681 	unsigned int ia_valid = attr->ia_valid;
682 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
683 
684 	BUG_ON(!inode);
685 
686 	error = setattr_prepare(dentry, attr);
687 	if (error)
688 		return error;
689 
690 	if (ia_valid & ATTR_SIZE) {
691 		loff_t oldsize = inode->i_size;
692 		loff_t newsize = attr->ia_size;
693 
694 		if (newsize & ~huge_page_mask(h))
695 			return -EINVAL;
696 		/* protected by i_mutex */
697 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
698 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
699 			return -EPERM;
700 		error = hugetlb_vmtruncate(inode, newsize);
701 		if (error)
702 			return error;
703 	}
704 
705 	setattr_copy(inode, attr);
706 	mark_inode_dirty(inode);
707 	return 0;
708 }
709 
710 static struct inode *hugetlbfs_get_root(struct super_block *sb,
711 					struct hugetlbfs_config *config)
712 {
713 	struct inode *inode;
714 
715 	inode = new_inode(sb);
716 	if (inode) {
717 		inode->i_ino = get_next_ino();
718 		inode->i_mode = S_IFDIR | config->mode;
719 		inode->i_uid = config->uid;
720 		inode->i_gid = config->gid;
721 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
722 		inode->i_op = &hugetlbfs_dir_inode_operations;
723 		inode->i_fop = &simple_dir_operations;
724 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
725 		inc_nlink(inode);
726 		lockdep_annotate_inode_mutex_key(inode);
727 	}
728 	return inode;
729 }
730 
731 /*
732  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
733  * be taken from reclaim -- unlike regular filesystems. This needs an
734  * annotation because huge_pmd_share() does an allocation under hugetlb's
735  * i_mmap_rwsem.
736  */
737 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
738 
739 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
740 					struct inode *dir,
741 					umode_t mode, dev_t dev)
742 {
743 	struct inode *inode;
744 	struct resv_map *resv_map;
745 
746 	resv_map = resv_map_alloc();
747 	if (!resv_map)
748 		return NULL;
749 
750 	inode = new_inode(sb);
751 	if (inode) {
752 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
753 
754 		inode->i_ino = get_next_ino();
755 		inode_init_owner(inode, dir, mode);
756 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
757 				&hugetlbfs_i_mmap_rwsem_key);
758 		inode->i_mapping->a_ops = &hugetlbfs_aops;
759 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
760 		inode->i_mapping->private_data = resv_map;
761 		info->seals = F_SEAL_SEAL;
762 		switch (mode & S_IFMT) {
763 		default:
764 			init_special_inode(inode, mode, dev);
765 			break;
766 		case S_IFREG:
767 			inode->i_op = &hugetlbfs_inode_operations;
768 			inode->i_fop = &hugetlbfs_file_operations;
769 			break;
770 		case S_IFDIR:
771 			inode->i_op = &hugetlbfs_dir_inode_operations;
772 			inode->i_fop = &simple_dir_operations;
773 
774 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
775 			inc_nlink(inode);
776 			break;
777 		case S_IFLNK:
778 			inode->i_op = &page_symlink_inode_operations;
779 			inode_nohighmem(inode);
780 			break;
781 		}
782 		lockdep_annotate_inode_mutex_key(inode);
783 	} else
784 		kref_put(&resv_map->refs, resv_map_release);
785 
786 	return inode;
787 }
788 
789 /*
790  * File creation. Allocate an inode, and we're done..
791  */
792 static int hugetlbfs_mknod(struct inode *dir,
793 			struct dentry *dentry, umode_t mode, dev_t dev)
794 {
795 	struct inode *inode;
796 	int error = -ENOSPC;
797 
798 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
799 	if (inode) {
800 		dir->i_ctime = dir->i_mtime = current_time(dir);
801 		d_instantiate(dentry, inode);
802 		dget(dentry);	/* Extra count - pin the dentry in core */
803 		error = 0;
804 	}
805 	return error;
806 }
807 
808 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
809 {
810 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
811 	if (!retval)
812 		inc_nlink(dir);
813 	return retval;
814 }
815 
816 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
817 {
818 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
819 }
820 
821 static int hugetlbfs_symlink(struct inode *dir,
822 			struct dentry *dentry, const char *symname)
823 {
824 	struct inode *inode;
825 	int error = -ENOSPC;
826 
827 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
828 	if (inode) {
829 		int l = strlen(symname)+1;
830 		error = page_symlink(inode, symname, l);
831 		if (!error) {
832 			d_instantiate(dentry, inode);
833 			dget(dentry);
834 		} else
835 			iput(inode);
836 	}
837 	dir->i_ctime = dir->i_mtime = current_time(dir);
838 
839 	return error;
840 }
841 
842 /*
843  * mark the head page dirty
844  */
845 static int hugetlbfs_set_page_dirty(struct page *page)
846 {
847 	struct page *head = compound_head(page);
848 
849 	SetPageDirty(head);
850 	return 0;
851 }
852 
853 static int hugetlbfs_migrate_page(struct address_space *mapping,
854 				struct page *newpage, struct page *page,
855 				enum migrate_mode mode)
856 {
857 	int rc;
858 
859 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
860 	if (rc != MIGRATEPAGE_SUCCESS)
861 		return rc;
862 	if (mode != MIGRATE_SYNC_NO_COPY)
863 		migrate_page_copy(newpage, page);
864 	else
865 		migrate_page_states(newpage, page);
866 
867 	return MIGRATEPAGE_SUCCESS;
868 }
869 
870 static int hugetlbfs_error_remove_page(struct address_space *mapping,
871 				struct page *page)
872 {
873 	struct inode *inode = mapping->host;
874 	pgoff_t index = page->index;
875 
876 	remove_huge_page(page);
877 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
878 		hugetlb_fix_reserve_counts(inode);
879 
880 	return 0;
881 }
882 
883 /*
884  * Display the mount options in /proc/mounts.
885  */
886 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
887 {
888 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
889 	struct hugepage_subpool *spool = sbinfo->spool;
890 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
891 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
892 	char mod;
893 
894 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
895 		seq_printf(m, ",uid=%u",
896 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
897 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
898 		seq_printf(m, ",gid=%u",
899 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
900 	if (sbinfo->mode != 0755)
901 		seq_printf(m, ",mode=%o", sbinfo->mode);
902 	if (sbinfo->max_inodes != -1)
903 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
904 
905 	hpage_size /= 1024;
906 	mod = 'K';
907 	if (hpage_size >= 1024) {
908 		hpage_size /= 1024;
909 		mod = 'M';
910 	}
911 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
912 	if (spool) {
913 		if (spool->max_hpages != -1)
914 			seq_printf(m, ",size=%llu",
915 				   (unsigned long long)spool->max_hpages << hpage_shift);
916 		if (spool->min_hpages != -1)
917 			seq_printf(m, ",min_size=%llu",
918 				   (unsigned long long)spool->min_hpages << hpage_shift);
919 	}
920 	return 0;
921 }
922 
923 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
924 {
925 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
926 	struct hstate *h = hstate_inode(d_inode(dentry));
927 
928 	buf->f_type = HUGETLBFS_MAGIC;
929 	buf->f_bsize = huge_page_size(h);
930 	if (sbinfo) {
931 		spin_lock(&sbinfo->stat_lock);
932 		/* If no limits set, just report 0 for max/free/used
933 		 * blocks, like simple_statfs() */
934 		if (sbinfo->spool) {
935 			long free_pages;
936 
937 			spin_lock(&sbinfo->spool->lock);
938 			buf->f_blocks = sbinfo->spool->max_hpages;
939 			free_pages = sbinfo->spool->max_hpages
940 				- sbinfo->spool->used_hpages;
941 			buf->f_bavail = buf->f_bfree = free_pages;
942 			spin_unlock(&sbinfo->spool->lock);
943 			buf->f_files = sbinfo->max_inodes;
944 			buf->f_ffree = sbinfo->free_inodes;
945 		}
946 		spin_unlock(&sbinfo->stat_lock);
947 	}
948 	buf->f_namelen = NAME_MAX;
949 	return 0;
950 }
951 
952 static void hugetlbfs_put_super(struct super_block *sb)
953 {
954 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
955 
956 	if (sbi) {
957 		sb->s_fs_info = NULL;
958 
959 		if (sbi->spool)
960 			hugepage_put_subpool(sbi->spool);
961 
962 		kfree(sbi);
963 	}
964 }
965 
966 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
967 {
968 	if (sbinfo->free_inodes >= 0) {
969 		spin_lock(&sbinfo->stat_lock);
970 		if (unlikely(!sbinfo->free_inodes)) {
971 			spin_unlock(&sbinfo->stat_lock);
972 			return 0;
973 		}
974 		sbinfo->free_inodes--;
975 		spin_unlock(&sbinfo->stat_lock);
976 	}
977 
978 	return 1;
979 }
980 
981 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
982 {
983 	if (sbinfo->free_inodes >= 0) {
984 		spin_lock(&sbinfo->stat_lock);
985 		sbinfo->free_inodes++;
986 		spin_unlock(&sbinfo->stat_lock);
987 	}
988 }
989 
990 
991 static struct kmem_cache *hugetlbfs_inode_cachep;
992 
993 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
994 {
995 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
996 	struct hugetlbfs_inode_info *p;
997 
998 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
999 		return NULL;
1000 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1001 	if (unlikely(!p)) {
1002 		hugetlbfs_inc_free_inodes(sbinfo);
1003 		return NULL;
1004 	}
1005 
1006 	/*
1007 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1008 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1009 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1010 	 * in case of a quick call to destroy.
1011 	 *
1012 	 * Note that the policy is initialized even if we are creating a
1013 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1014 	 */
1015 	mpol_shared_policy_init(&p->policy, NULL);
1016 
1017 	return &p->vfs_inode;
1018 }
1019 
1020 static void hugetlbfs_i_callback(struct rcu_head *head)
1021 {
1022 	struct inode *inode = container_of(head, struct inode, i_rcu);
1023 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1024 }
1025 
1026 static void hugetlbfs_destroy_inode(struct inode *inode)
1027 {
1028 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1029 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1030 	call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1031 }
1032 
1033 static const struct address_space_operations hugetlbfs_aops = {
1034 	.write_begin	= hugetlbfs_write_begin,
1035 	.write_end	= hugetlbfs_write_end,
1036 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1037 	.migratepage    = hugetlbfs_migrate_page,
1038 	.error_remove_page	= hugetlbfs_error_remove_page,
1039 };
1040 
1041 
1042 static void init_once(void *foo)
1043 {
1044 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1045 
1046 	inode_init_once(&ei->vfs_inode);
1047 }
1048 
1049 const struct file_operations hugetlbfs_file_operations = {
1050 	.read_iter		= hugetlbfs_read_iter,
1051 	.mmap			= hugetlbfs_file_mmap,
1052 	.fsync			= noop_fsync,
1053 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1054 	.llseek			= default_llseek,
1055 	.fallocate		= hugetlbfs_fallocate,
1056 };
1057 
1058 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1059 	.create		= hugetlbfs_create,
1060 	.lookup		= simple_lookup,
1061 	.link		= simple_link,
1062 	.unlink		= simple_unlink,
1063 	.symlink	= hugetlbfs_symlink,
1064 	.mkdir		= hugetlbfs_mkdir,
1065 	.rmdir		= simple_rmdir,
1066 	.mknod		= hugetlbfs_mknod,
1067 	.rename		= simple_rename,
1068 	.setattr	= hugetlbfs_setattr,
1069 };
1070 
1071 static const struct inode_operations hugetlbfs_inode_operations = {
1072 	.setattr	= hugetlbfs_setattr,
1073 };
1074 
1075 static const struct super_operations hugetlbfs_ops = {
1076 	.alloc_inode    = hugetlbfs_alloc_inode,
1077 	.destroy_inode  = hugetlbfs_destroy_inode,
1078 	.evict_inode	= hugetlbfs_evict_inode,
1079 	.statfs		= hugetlbfs_statfs,
1080 	.put_super	= hugetlbfs_put_super,
1081 	.show_options	= hugetlbfs_show_options,
1082 };
1083 
1084 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1085 
1086 /*
1087  * Convert size option passed from command line to number of huge pages
1088  * in the pool specified by hstate.  Size option could be in bytes
1089  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1090  */
1091 static long
1092 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1093 			 enum hugetlbfs_size_type val_type)
1094 {
1095 	if (val_type == NO_SIZE)
1096 		return -1;
1097 
1098 	if (val_type == SIZE_PERCENT) {
1099 		size_opt <<= huge_page_shift(h);
1100 		size_opt *= h->max_huge_pages;
1101 		do_div(size_opt, 100);
1102 	}
1103 
1104 	size_opt >>= huge_page_shift(h);
1105 	return size_opt;
1106 }
1107 
1108 static int
1109 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1110 {
1111 	char *p, *rest;
1112 	substring_t args[MAX_OPT_ARGS];
1113 	int option;
1114 	unsigned long long max_size_opt = 0, min_size_opt = 0;
1115 	enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1116 
1117 	if (!options)
1118 		return 0;
1119 
1120 	while ((p = strsep(&options, ",")) != NULL) {
1121 		int token;
1122 		if (!*p)
1123 			continue;
1124 
1125 		token = match_token(p, tokens, args);
1126 		switch (token) {
1127 		case Opt_uid:
1128 			if (match_int(&args[0], &option))
1129  				goto bad_val;
1130 			pconfig->uid = make_kuid(current_user_ns(), option);
1131 			if (!uid_valid(pconfig->uid))
1132 				goto bad_val;
1133 			break;
1134 
1135 		case Opt_gid:
1136 			if (match_int(&args[0], &option))
1137  				goto bad_val;
1138 			pconfig->gid = make_kgid(current_user_ns(), option);
1139 			if (!gid_valid(pconfig->gid))
1140 				goto bad_val;
1141 			break;
1142 
1143 		case Opt_mode:
1144 			if (match_octal(&args[0], &option))
1145  				goto bad_val;
1146 			pconfig->mode = option & 01777U;
1147 			break;
1148 
1149 		case Opt_size: {
1150 			/* memparse() will accept a K/M/G without a digit */
1151 			if (!isdigit(*args[0].from))
1152 				goto bad_val;
1153 			max_size_opt = memparse(args[0].from, &rest);
1154 			max_val_type = SIZE_STD;
1155 			if (*rest == '%')
1156 				max_val_type = SIZE_PERCENT;
1157 			break;
1158 		}
1159 
1160 		case Opt_nr_inodes:
1161 			/* memparse() will accept a K/M/G without a digit */
1162 			if (!isdigit(*args[0].from))
1163 				goto bad_val;
1164 			pconfig->nr_inodes = memparse(args[0].from, &rest);
1165 			break;
1166 
1167 		case Opt_pagesize: {
1168 			unsigned long ps;
1169 			ps = memparse(args[0].from, &rest);
1170 			pconfig->hstate = size_to_hstate(ps);
1171 			if (!pconfig->hstate) {
1172 				pr_err("Unsupported page size %lu MB\n",
1173 					ps >> 20);
1174 				return -EINVAL;
1175 			}
1176 			break;
1177 		}
1178 
1179 		case Opt_min_size: {
1180 			/* memparse() will accept a K/M/G without a digit */
1181 			if (!isdigit(*args[0].from))
1182 				goto bad_val;
1183 			min_size_opt = memparse(args[0].from, &rest);
1184 			min_val_type = SIZE_STD;
1185 			if (*rest == '%')
1186 				min_val_type = SIZE_PERCENT;
1187 			break;
1188 		}
1189 
1190 		default:
1191 			pr_err("Bad mount option: \"%s\"\n", p);
1192 			return -EINVAL;
1193 			break;
1194 		}
1195 	}
1196 
1197 	/*
1198 	 * Use huge page pool size (in hstate) to convert the size
1199 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1200 	 */
1201 	pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1202 						max_size_opt, max_val_type);
1203 	pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1204 						min_size_opt, min_val_type);
1205 
1206 	/*
1207 	 * If max_size was specified, then min_size must be smaller
1208 	 */
1209 	if (max_val_type > NO_SIZE &&
1210 	    pconfig->min_hpages > pconfig->max_hpages) {
1211 		pr_err("minimum size can not be greater than maximum size\n");
1212 		return -EINVAL;
1213 	}
1214 
1215 	return 0;
1216 
1217 bad_val:
1218 	pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1219  	return -EINVAL;
1220 }
1221 
1222 static int
1223 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1224 {
1225 	int ret;
1226 	struct hugetlbfs_config config;
1227 	struct hugetlbfs_sb_info *sbinfo;
1228 
1229 	config.max_hpages = -1; /* No limit on size by default */
1230 	config.nr_inodes = -1; /* No limit on number of inodes by default */
1231 	config.uid = current_fsuid();
1232 	config.gid = current_fsgid();
1233 	config.mode = 0755;
1234 	config.hstate = &default_hstate;
1235 	config.min_hpages = -1; /* No default minimum size */
1236 	ret = hugetlbfs_parse_options(data, &config);
1237 	if (ret)
1238 		return ret;
1239 
1240 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1241 	if (!sbinfo)
1242 		return -ENOMEM;
1243 	sb->s_fs_info = sbinfo;
1244 	sbinfo->hstate = config.hstate;
1245 	spin_lock_init(&sbinfo->stat_lock);
1246 	sbinfo->max_inodes = config.nr_inodes;
1247 	sbinfo->free_inodes = config.nr_inodes;
1248 	sbinfo->spool = NULL;
1249 	sbinfo->uid = config.uid;
1250 	sbinfo->gid = config.gid;
1251 	sbinfo->mode = config.mode;
1252 
1253 	/*
1254 	 * Allocate and initialize subpool if maximum or minimum size is
1255 	 * specified.  Any needed reservations (for minimim size) are taken
1256 	 * taken when the subpool is created.
1257 	 */
1258 	if (config.max_hpages != -1 || config.min_hpages != -1) {
1259 		sbinfo->spool = hugepage_new_subpool(config.hstate,
1260 							config.max_hpages,
1261 							config.min_hpages);
1262 		if (!sbinfo->spool)
1263 			goto out_free;
1264 	}
1265 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1266 	sb->s_blocksize = huge_page_size(config.hstate);
1267 	sb->s_blocksize_bits = huge_page_shift(config.hstate);
1268 	sb->s_magic = HUGETLBFS_MAGIC;
1269 	sb->s_op = &hugetlbfs_ops;
1270 	sb->s_time_gran = 1;
1271 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1272 	if (!sb->s_root)
1273 		goto out_free;
1274 	return 0;
1275 out_free:
1276 	kfree(sbinfo->spool);
1277 	kfree(sbinfo);
1278 	return -ENOMEM;
1279 }
1280 
1281 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1282 	int flags, const char *dev_name, void *data)
1283 {
1284 	return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1285 }
1286 
1287 static struct file_system_type hugetlbfs_fs_type = {
1288 	.name		= "hugetlbfs",
1289 	.mount		= hugetlbfs_mount,
1290 	.kill_sb	= kill_litter_super,
1291 };
1292 
1293 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1294 
1295 static int can_do_hugetlb_shm(void)
1296 {
1297 	kgid_t shm_group;
1298 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1299 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1300 }
1301 
1302 static int get_hstate_idx(int page_size_log)
1303 {
1304 	struct hstate *h = hstate_sizelog(page_size_log);
1305 
1306 	if (!h)
1307 		return -1;
1308 	return h - hstates;
1309 }
1310 
1311 static const struct dentry_operations anon_ops = {
1312 	.d_dname = simple_dname
1313 };
1314 
1315 /*
1316  * Note that size should be aligned to proper hugepage size in caller side,
1317  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1318  */
1319 struct file *hugetlb_file_setup(const char *name, size_t size,
1320 				vm_flags_t acctflag, struct user_struct **user,
1321 				int creat_flags, int page_size_log)
1322 {
1323 	struct file *file = ERR_PTR(-ENOMEM);
1324 	struct inode *inode;
1325 	struct path path;
1326 	struct super_block *sb;
1327 	struct qstr quick_string;
1328 	int hstate_idx;
1329 
1330 	hstate_idx = get_hstate_idx(page_size_log);
1331 	if (hstate_idx < 0)
1332 		return ERR_PTR(-ENODEV);
1333 
1334 	*user = NULL;
1335 	if (!hugetlbfs_vfsmount[hstate_idx])
1336 		return ERR_PTR(-ENOENT);
1337 
1338 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1339 		*user = current_user();
1340 		if (user_shm_lock(size, *user)) {
1341 			task_lock(current);
1342 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1343 				current->comm, current->pid);
1344 			task_unlock(current);
1345 		} else {
1346 			*user = NULL;
1347 			return ERR_PTR(-EPERM);
1348 		}
1349 	}
1350 
1351 	sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1352 	quick_string.name = name;
1353 	quick_string.len = strlen(quick_string.name);
1354 	quick_string.hash = 0;
1355 	path.dentry = d_alloc_pseudo(sb, &quick_string);
1356 	if (!path.dentry)
1357 		goto out_shm_unlock;
1358 
1359 	d_set_d_op(path.dentry, &anon_ops);
1360 	path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1361 	file = ERR_PTR(-ENOSPC);
1362 	inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1363 	if (!inode)
1364 		goto out_dentry;
1365 	if (creat_flags == HUGETLB_SHMFS_INODE)
1366 		inode->i_flags |= S_PRIVATE;
1367 
1368 	file = ERR_PTR(-ENOMEM);
1369 	if (hugetlb_reserve_pages(inode, 0,
1370 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1371 			acctflag))
1372 		goto out_inode;
1373 
1374 	d_instantiate(path.dentry, inode);
1375 	inode->i_size = size;
1376 	clear_nlink(inode);
1377 
1378 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1379 			&hugetlbfs_file_operations);
1380 	if (IS_ERR(file))
1381 		goto out_dentry; /* inode is already attached */
1382 
1383 	return file;
1384 
1385 out_inode:
1386 	iput(inode);
1387 out_dentry:
1388 	path_put(&path);
1389 out_shm_unlock:
1390 	if (*user) {
1391 		user_shm_unlock(size, *user);
1392 		*user = NULL;
1393 	}
1394 	return file;
1395 }
1396 
1397 static int __init init_hugetlbfs_fs(void)
1398 {
1399 	struct hstate *h;
1400 	int error;
1401 	int i;
1402 
1403 	if (!hugepages_supported()) {
1404 		pr_info("disabling because there are no supported hugepage sizes\n");
1405 		return -ENOTSUPP;
1406 	}
1407 
1408 	error = -ENOMEM;
1409 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1410 					sizeof(struct hugetlbfs_inode_info),
1411 					0, SLAB_ACCOUNT, init_once);
1412 	if (hugetlbfs_inode_cachep == NULL)
1413 		goto out2;
1414 
1415 	error = register_filesystem(&hugetlbfs_fs_type);
1416 	if (error)
1417 		goto out;
1418 
1419 	i = 0;
1420 	for_each_hstate(h) {
1421 		char buf[50];
1422 		unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1423 
1424 		snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1425 		hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1426 							buf);
1427 
1428 		if (IS_ERR(hugetlbfs_vfsmount[i])) {
1429 			pr_err("Cannot mount internal hugetlbfs for "
1430 				"page size %uK", ps_kb);
1431 			error = PTR_ERR(hugetlbfs_vfsmount[i]);
1432 			hugetlbfs_vfsmount[i] = NULL;
1433 		}
1434 		i++;
1435 	}
1436 	/* Non default hstates are optional */
1437 	if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1438 		return 0;
1439 
1440  out:
1441 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1442  out2:
1443 	return error;
1444 }
1445 fs_initcall(init_hugetlbfs_fs)
1446