1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32 ("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 loff_t len, vma_len; 135 int ret; 136 struct hstate *h = hstate_file(file); 137 138 /* 139 * vma address alignment (but not the pgoff alignment) has 140 * already been checked by prepare_hugepage_range. If you add 141 * any error returns here, do so after setting VM_HUGETLB, so 142 * is_vm_hugetlb_page tests below unmap_region go the right 143 * way when do_mmap unwinds (may be important on powerpc 144 * and ia64). 145 */ 146 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 147 vma->vm_ops = &hugetlb_vm_ops; 148 149 /* 150 * page based offset in vm_pgoff could be sufficiently large to 151 * overflow a loff_t when converted to byte offset. This can 152 * only happen on architectures where sizeof(loff_t) == 153 * sizeof(unsigned long). So, only check in those instances. 154 */ 155 if (sizeof(unsigned long) == sizeof(loff_t)) { 156 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 157 return -EINVAL; 158 } 159 160 /* must be huge page aligned */ 161 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 162 return -EINVAL; 163 164 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 165 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 166 /* check for overflow */ 167 if (len < vma_len) 168 return -EINVAL; 169 170 inode_lock(inode); 171 file_accessed(file); 172 173 ret = -ENOMEM; 174 if (!hugetlb_reserve_pages(inode, 175 vma->vm_pgoff >> huge_page_order(h), 176 len >> huge_page_shift(h), vma, 177 vma->vm_flags)) 178 goto out; 179 180 ret = 0; 181 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 182 i_size_write(inode, len); 183 out: 184 inode_unlock(inode); 185 186 return ret; 187 } 188 189 /* 190 * Called under mmap_write_lock(mm). 191 */ 192 193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 194 static unsigned long 195 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 196 unsigned long len, unsigned long pgoff, unsigned long flags) 197 { 198 struct hstate *h = hstate_file(file); 199 struct vm_unmapped_area_info info; 200 201 info.flags = 0; 202 info.length = len; 203 info.low_limit = current->mm->mmap_base; 204 info.high_limit = TASK_SIZE; 205 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 206 info.align_offset = 0; 207 return vm_unmapped_area(&info); 208 } 209 210 static unsigned long 211 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 212 unsigned long len, unsigned long pgoff, unsigned long flags) 213 { 214 struct hstate *h = hstate_file(file); 215 struct vm_unmapped_area_info info; 216 217 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 218 info.length = len; 219 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 220 info.high_limit = current->mm->mmap_base; 221 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 222 info.align_offset = 0; 223 addr = vm_unmapped_area(&info); 224 225 /* 226 * A failed mmap() very likely causes application failure, 227 * so fall back to the bottom-up function here. This scenario 228 * can happen with large stack limits and large mmap() 229 * allocations. 230 */ 231 if (unlikely(offset_in_page(addr))) { 232 VM_BUG_ON(addr != -ENOMEM); 233 info.flags = 0; 234 info.low_limit = current->mm->mmap_base; 235 info.high_limit = TASK_SIZE; 236 addr = vm_unmapped_area(&info); 237 } 238 239 return addr; 240 } 241 242 static unsigned long 243 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 244 unsigned long len, unsigned long pgoff, unsigned long flags) 245 { 246 struct mm_struct *mm = current->mm; 247 struct vm_area_struct *vma; 248 struct hstate *h = hstate_file(file); 249 250 if (len & ~huge_page_mask(h)) 251 return -EINVAL; 252 if (len > TASK_SIZE) 253 return -ENOMEM; 254 255 if (flags & MAP_FIXED) { 256 if (prepare_hugepage_range(file, addr, len)) 257 return -EINVAL; 258 return addr; 259 } 260 261 if (addr) { 262 addr = ALIGN(addr, huge_page_size(h)); 263 vma = find_vma(mm, addr); 264 if (TASK_SIZE - len >= addr && 265 (!vma || addr + len <= vm_start_gap(vma))) 266 return addr; 267 } 268 269 /* 270 * Use mm->get_unmapped_area value as a hint to use topdown routine. 271 * If architectures have special needs, they should define their own 272 * version of hugetlb_get_unmapped_area. 273 */ 274 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 275 return hugetlb_get_unmapped_area_topdown(file, addr, len, 276 pgoff, flags); 277 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 278 pgoff, flags); 279 } 280 #endif 281 282 static size_t 283 hugetlbfs_read_actor(struct page *page, unsigned long offset, 284 struct iov_iter *to, unsigned long size) 285 { 286 size_t copied = 0; 287 int i, chunksize; 288 289 /* Find which 4k chunk and offset with in that chunk */ 290 i = offset >> PAGE_SHIFT; 291 offset = offset & ~PAGE_MASK; 292 293 while (size) { 294 size_t n; 295 chunksize = PAGE_SIZE; 296 if (offset) 297 chunksize -= offset; 298 if (chunksize > size) 299 chunksize = size; 300 n = copy_page_to_iter(&page[i], offset, chunksize, to); 301 copied += n; 302 if (n != chunksize) 303 return copied; 304 offset = 0; 305 size -= chunksize; 306 i++; 307 } 308 return copied; 309 } 310 311 /* 312 * Support for read() - Find the page attached to f_mapping and copy out the 313 * data. Its *very* similar to generic_file_buffered_read(), we can't use that 314 * since it has PAGE_SIZE assumptions. 315 */ 316 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 317 { 318 struct file *file = iocb->ki_filp; 319 struct hstate *h = hstate_file(file); 320 struct address_space *mapping = file->f_mapping; 321 struct inode *inode = mapping->host; 322 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 323 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 324 unsigned long end_index; 325 loff_t isize; 326 ssize_t retval = 0; 327 328 while (iov_iter_count(to)) { 329 struct page *page; 330 size_t nr, copied; 331 332 /* nr is the maximum number of bytes to copy from this page */ 333 nr = huge_page_size(h); 334 isize = i_size_read(inode); 335 if (!isize) 336 break; 337 end_index = (isize - 1) >> huge_page_shift(h); 338 if (index > end_index) 339 break; 340 if (index == end_index) { 341 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 342 if (nr <= offset) 343 break; 344 } 345 nr = nr - offset; 346 347 /* Find the page */ 348 page = find_lock_page(mapping, index); 349 if (unlikely(page == NULL)) { 350 /* 351 * We have a HOLE, zero out the user-buffer for the 352 * length of the hole or request. 353 */ 354 copied = iov_iter_zero(nr, to); 355 } else { 356 unlock_page(page); 357 358 /* 359 * We have the page, copy it to user space buffer. 360 */ 361 copied = hugetlbfs_read_actor(page, offset, to, nr); 362 put_page(page); 363 } 364 offset += copied; 365 retval += copied; 366 if (copied != nr && iov_iter_count(to)) { 367 if (!retval) 368 retval = -EFAULT; 369 break; 370 } 371 index += offset >> huge_page_shift(h); 372 offset &= ~huge_page_mask(h); 373 } 374 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 375 return retval; 376 } 377 378 static int hugetlbfs_write_begin(struct file *file, 379 struct address_space *mapping, 380 loff_t pos, unsigned len, unsigned flags, 381 struct page **pagep, void **fsdata) 382 { 383 return -EINVAL; 384 } 385 386 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 387 loff_t pos, unsigned len, unsigned copied, 388 struct page *page, void *fsdata) 389 { 390 BUG(); 391 return -EINVAL; 392 } 393 394 static void remove_huge_page(struct page *page) 395 { 396 ClearPageDirty(page); 397 ClearPageUptodate(page); 398 delete_from_page_cache(page); 399 } 400 401 static void 402 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 403 { 404 struct vm_area_struct *vma; 405 406 /* 407 * end == 0 indicates that the entire range after 408 * start should be unmapped. 409 */ 410 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 411 unsigned long v_offset; 412 unsigned long v_end; 413 414 /* 415 * Can the expression below overflow on 32-bit arches? 416 * No, because the interval tree returns us only those vmas 417 * which overlap the truncated area starting at pgoff, 418 * and no vma on a 32-bit arch can span beyond the 4GB. 419 */ 420 if (vma->vm_pgoff < start) 421 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 422 else 423 v_offset = 0; 424 425 if (!end) 426 v_end = vma->vm_end; 427 else { 428 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 429 + vma->vm_start; 430 if (v_end > vma->vm_end) 431 v_end = vma->vm_end; 432 } 433 434 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 435 NULL); 436 } 437 } 438 439 /* 440 * remove_inode_hugepages handles two distinct cases: truncation and hole 441 * punch. There are subtle differences in operation for each case. 442 * 443 * truncation is indicated by end of range being LLONG_MAX 444 * In this case, we first scan the range and release found pages. 445 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 446 * maps and global counts. Page faults can not race with truncation 447 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 448 * page faults in the truncated range by checking i_size. i_size is 449 * modified while holding i_mmap_rwsem. 450 * hole punch is indicated if end is not LLONG_MAX 451 * In the hole punch case we scan the range and release found pages. 452 * Only when releasing a page is the associated region/reserve map 453 * deleted. The region/reserve map for ranges without associated 454 * pages are not modified. Page faults can race with hole punch. 455 * This is indicated if we find a mapped page. 456 * Note: If the passed end of range value is beyond the end of file, but 457 * not LLONG_MAX this routine still performs a hole punch operation. 458 */ 459 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 460 loff_t lend) 461 { 462 struct hstate *h = hstate_inode(inode); 463 struct address_space *mapping = &inode->i_data; 464 const pgoff_t start = lstart >> huge_page_shift(h); 465 const pgoff_t end = lend >> huge_page_shift(h); 466 struct pagevec pvec; 467 pgoff_t next, index; 468 int i, freed = 0; 469 bool truncate_op = (lend == LLONG_MAX); 470 471 pagevec_init(&pvec); 472 next = start; 473 while (next < end) { 474 /* 475 * When no more pages are found, we are done. 476 */ 477 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 478 break; 479 480 for (i = 0; i < pagevec_count(&pvec); ++i) { 481 struct page *page = pvec.pages[i]; 482 u32 hash = 0; 483 484 index = page->index; 485 if (!truncate_op) { 486 /* 487 * Only need to hold the fault mutex in the 488 * hole punch case. This prevents races with 489 * page faults. Races are not possible in the 490 * case of truncation. 491 */ 492 hash = hugetlb_fault_mutex_hash(mapping, index); 493 mutex_lock(&hugetlb_fault_mutex_table[hash]); 494 } 495 496 /* 497 * If page is mapped, it was faulted in after being 498 * unmapped in caller. Unmap (again) now after taking 499 * the fault mutex. The mutex will prevent faults 500 * until we finish removing the page. 501 * 502 * This race can only happen in the hole punch case. 503 * Getting here in a truncate operation is a bug. 504 */ 505 if (unlikely(page_mapped(page))) { 506 BUG_ON(truncate_op); 507 508 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 509 i_mmap_lock_write(mapping); 510 mutex_lock(&hugetlb_fault_mutex_table[hash]); 511 hugetlb_vmdelete_list(&mapping->i_mmap, 512 index * pages_per_huge_page(h), 513 (index + 1) * pages_per_huge_page(h)); 514 i_mmap_unlock_write(mapping); 515 } 516 517 lock_page(page); 518 /* 519 * We must free the huge page and remove from page 520 * cache (remove_huge_page) BEFORE removing the 521 * region/reserve map (hugetlb_unreserve_pages). In 522 * rare out of memory conditions, removal of the 523 * region/reserve map could fail. Correspondingly, 524 * the subpool and global reserve usage count can need 525 * to be adjusted. 526 */ 527 VM_BUG_ON(PagePrivate(page)); 528 remove_huge_page(page); 529 freed++; 530 if (!truncate_op) { 531 if (unlikely(hugetlb_unreserve_pages(inode, 532 index, index + 1, 1))) 533 hugetlb_fix_reserve_counts(inode); 534 } 535 536 unlock_page(page); 537 if (!truncate_op) 538 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 539 } 540 huge_pagevec_release(&pvec); 541 cond_resched(); 542 } 543 544 if (truncate_op) 545 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 546 } 547 548 static void hugetlbfs_evict_inode(struct inode *inode) 549 { 550 struct resv_map *resv_map; 551 552 remove_inode_hugepages(inode, 0, LLONG_MAX); 553 554 /* 555 * Get the resv_map from the address space embedded in the inode. 556 * This is the address space which points to any resv_map allocated 557 * at inode creation time. If this is a device special inode, 558 * i_mapping may not point to the original address space. 559 */ 560 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 561 /* Only regular and link inodes have associated reserve maps */ 562 if (resv_map) 563 resv_map_release(&resv_map->refs); 564 clear_inode(inode); 565 } 566 567 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 568 { 569 pgoff_t pgoff; 570 struct address_space *mapping = inode->i_mapping; 571 struct hstate *h = hstate_inode(inode); 572 573 BUG_ON(offset & ~huge_page_mask(h)); 574 pgoff = offset >> PAGE_SHIFT; 575 576 i_mmap_lock_write(mapping); 577 i_size_write(inode, offset); 578 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 579 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 580 i_mmap_unlock_write(mapping); 581 remove_inode_hugepages(inode, offset, LLONG_MAX); 582 } 583 584 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 585 { 586 struct hstate *h = hstate_inode(inode); 587 loff_t hpage_size = huge_page_size(h); 588 loff_t hole_start, hole_end; 589 590 /* 591 * For hole punch round up the beginning offset of the hole and 592 * round down the end. 593 */ 594 hole_start = round_up(offset, hpage_size); 595 hole_end = round_down(offset + len, hpage_size); 596 597 if (hole_end > hole_start) { 598 struct address_space *mapping = inode->i_mapping; 599 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 600 601 inode_lock(inode); 602 603 /* protected by i_rwsem */ 604 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 605 inode_unlock(inode); 606 return -EPERM; 607 } 608 609 i_mmap_lock_write(mapping); 610 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 611 hugetlb_vmdelete_list(&mapping->i_mmap, 612 hole_start >> PAGE_SHIFT, 613 hole_end >> PAGE_SHIFT); 614 i_mmap_unlock_write(mapping); 615 remove_inode_hugepages(inode, hole_start, hole_end); 616 inode_unlock(inode); 617 } 618 619 return 0; 620 } 621 622 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 623 loff_t len) 624 { 625 struct inode *inode = file_inode(file); 626 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 627 struct address_space *mapping = inode->i_mapping; 628 struct hstate *h = hstate_inode(inode); 629 struct vm_area_struct pseudo_vma; 630 struct mm_struct *mm = current->mm; 631 loff_t hpage_size = huge_page_size(h); 632 unsigned long hpage_shift = huge_page_shift(h); 633 pgoff_t start, index, end; 634 int error; 635 u32 hash; 636 637 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 638 return -EOPNOTSUPP; 639 640 if (mode & FALLOC_FL_PUNCH_HOLE) 641 return hugetlbfs_punch_hole(inode, offset, len); 642 643 /* 644 * Default preallocate case. 645 * For this range, start is rounded down and end is rounded up 646 * as well as being converted to page offsets. 647 */ 648 start = offset >> hpage_shift; 649 end = (offset + len + hpage_size - 1) >> hpage_shift; 650 651 inode_lock(inode); 652 653 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 654 error = inode_newsize_ok(inode, offset + len); 655 if (error) 656 goto out; 657 658 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 659 error = -EPERM; 660 goto out; 661 } 662 663 /* 664 * Initialize a pseudo vma as this is required by the huge page 665 * allocation routines. If NUMA is configured, use page index 666 * as input to create an allocation policy. 667 */ 668 vma_init(&pseudo_vma, mm); 669 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 670 pseudo_vma.vm_file = file; 671 672 for (index = start; index < end; index++) { 673 /* 674 * This is supposed to be the vaddr where the page is being 675 * faulted in, but we have no vaddr here. 676 */ 677 struct page *page; 678 unsigned long addr; 679 680 cond_resched(); 681 682 /* 683 * fallocate(2) manpage permits EINTR; we may have been 684 * interrupted because we are using up too much memory. 685 */ 686 if (signal_pending(current)) { 687 error = -EINTR; 688 break; 689 } 690 691 /* Set numa allocation policy based on index */ 692 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 693 694 /* addr is the offset within the file (zero based) */ 695 addr = index * hpage_size; 696 697 /* 698 * fault mutex taken here, protects against fault path 699 * and hole punch. inode_lock previously taken protects 700 * against truncation. 701 */ 702 hash = hugetlb_fault_mutex_hash(mapping, index); 703 mutex_lock(&hugetlb_fault_mutex_table[hash]); 704 705 /* See if already present in mapping to avoid alloc/free */ 706 page = find_get_page(mapping, index); 707 if (page) { 708 put_page(page); 709 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 710 hugetlb_drop_vma_policy(&pseudo_vma); 711 continue; 712 } 713 714 /* 715 * Allocate page without setting the avoid_reserve argument. 716 * There certainly are no reserves associated with the 717 * pseudo_vma. However, there could be shared mappings with 718 * reserves for the file at the inode level. If we fallocate 719 * pages in these areas, we need to consume the reserves 720 * to keep reservation accounting consistent. 721 */ 722 page = alloc_huge_page(&pseudo_vma, addr, 0); 723 hugetlb_drop_vma_policy(&pseudo_vma); 724 if (IS_ERR(page)) { 725 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 726 error = PTR_ERR(page); 727 goto out; 728 } 729 clear_huge_page(page, addr, pages_per_huge_page(h)); 730 __SetPageUptodate(page); 731 error = huge_add_to_page_cache(page, mapping, index); 732 if (unlikely(error)) { 733 put_page(page); 734 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 735 goto out; 736 } 737 738 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 739 740 SetHPageMigratable(page); 741 /* 742 * unlock_page because locked by add_to_page_cache() 743 * put_page() due to reference from alloc_huge_page() 744 */ 745 unlock_page(page); 746 put_page(page); 747 } 748 749 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 750 i_size_write(inode, offset + len); 751 inode->i_ctime = current_time(inode); 752 out: 753 inode_unlock(inode); 754 return error; 755 } 756 757 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 758 struct dentry *dentry, struct iattr *attr) 759 { 760 struct inode *inode = d_inode(dentry); 761 struct hstate *h = hstate_inode(inode); 762 int error; 763 unsigned int ia_valid = attr->ia_valid; 764 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 765 766 error = setattr_prepare(&init_user_ns, dentry, attr); 767 if (error) 768 return error; 769 770 if (ia_valid & ATTR_SIZE) { 771 loff_t oldsize = inode->i_size; 772 loff_t newsize = attr->ia_size; 773 774 if (newsize & ~huge_page_mask(h)) 775 return -EINVAL; 776 /* protected by i_rwsem */ 777 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 778 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 779 return -EPERM; 780 hugetlb_vmtruncate(inode, newsize); 781 } 782 783 setattr_copy(&init_user_ns, inode, attr); 784 mark_inode_dirty(inode); 785 return 0; 786 } 787 788 static struct inode *hugetlbfs_get_root(struct super_block *sb, 789 struct hugetlbfs_fs_context *ctx) 790 { 791 struct inode *inode; 792 793 inode = new_inode(sb); 794 if (inode) { 795 inode->i_ino = get_next_ino(); 796 inode->i_mode = S_IFDIR | ctx->mode; 797 inode->i_uid = ctx->uid; 798 inode->i_gid = ctx->gid; 799 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 800 inode->i_op = &hugetlbfs_dir_inode_operations; 801 inode->i_fop = &simple_dir_operations; 802 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 803 inc_nlink(inode); 804 lockdep_annotate_inode_mutex_key(inode); 805 } 806 return inode; 807 } 808 809 /* 810 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 811 * be taken from reclaim -- unlike regular filesystems. This needs an 812 * annotation because huge_pmd_share() does an allocation under hugetlb's 813 * i_mmap_rwsem. 814 */ 815 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 816 817 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 818 struct inode *dir, 819 umode_t mode, dev_t dev) 820 { 821 struct inode *inode; 822 struct resv_map *resv_map = NULL; 823 824 /* 825 * Reserve maps are only needed for inodes that can have associated 826 * page allocations. 827 */ 828 if (S_ISREG(mode) || S_ISLNK(mode)) { 829 resv_map = resv_map_alloc(); 830 if (!resv_map) 831 return NULL; 832 } 833 834 inode = new_inode(sb); 835 if (inode) { 836 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 837 838 inode->i_ino = get_next_ino(); 839 inode_init_owner(&init_user_ns, inode, dir, mode); 840 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 841 &hugetlbfs_i_mmap_rwsem_key); 842 inode->i_mapping->a_ops = &hugetlbfs_aops; 843 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 844 inode->i_mapping->private_data = resv_map; 845 info->seals = F_SEAL_SEAL; 846 switch (mode & S_IFMT) { 847 default: 848 init_special_inode(inode, mode, dev); 849 break; 850 case S_IFREG: 851 inode->i_op = &hugetlbfs_inode_operations; 852 inode->i_fop = &hugetlbfs_file_operations; 853 break; 854 case S_IFDIR: 855 inode->i_op = &hugetlbfs_dir_inode_operations; 856 inode->i_fop = &simple_dir_operations; 857 858 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 859 inc_nlink(inode); 860 break; 861 case S_IFLNK: 862 inode->i_op = &page_symlink_inode_operations; 863 inode_nohighmem(inode); 864 break; 865 } 866 lockdep_annotate_inode_mutex_key(inode); 867 } else { 868 if (resv_map) 869 kref_put(&resv_map->refs, resv_map_release); 870 } 871 872 return inode; 873 } 874 875 /* 876 * File creation. Allocate an inode, and we're done.. 877 */ 878 static int do_hugetlbfs_mknod(struct inode *dir, 879 struct dentry *dentry, 880 umode_t mode, 881 dev_t dev, 882 bool tmpfile) 883 { 884 struct inode *inode; 885 int error = -ENOSPC; 886 887 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 888 if (inode) { 889 dir->i_ctime = dir->i_mtime = current_time(dir); 890 if (tmpfile) { 891 d_tmpfile(dentry, inode); 892 } else { 893 d_instantiate(dentry, inode); 894 dget(dentry);/* Extra count - pin the dentry in core */ 895 } 896 error = 0; 897 } 898 return error; 899 } 900 901 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 902 struct dentry *dentry, umode_t mode, dev_t dev) 903 { 904 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 905 } 906 907 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 908 struct dentry *dentry, umode_t mode) 909 { 910 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 911 mode | S_IFDIR, 0); 912 if (!retval) 913 inc_nlink(dir); 914 return retval; 915 } 916 917 static int hugetlbfs_create(struct user_namespace *mnt_userns, 918 struct inode *dir, struct dentry *dentry, 919 umode_t mode, bool excl) 920 { 921 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 922 } 923 924 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 925 struct inode *dir, struct dentry *dentry, 926 umode_t mode) 927 { 928 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 929 } 930 931 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 932 struct inode *dir, struct dentry *dentry, 933 const char *symname) 934 { 935 struct inode *inode; 936 int error = -ENOSPC; 937 938 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 939 if (inode) { 940 int l = strlen(symname)+1; 941 error = page_symlink(inode, symname, l); 942 if (!error) { 943 d_instantiate(dentry, inode); 944 dget(dentry); 945 } else 946 iput(inode); 947 } 948 dir->i_ctime = dir->i_mtime = current_time(dir); 949 950 return error; 951 } 952 953 static int hugetlbfs_migrate_page(struct address_space *mapping, 954 struct page *newpage, struct page *page, 955 enum migrate_mode mode) 956 { 957 int rc; 958 959 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 960 if (rc != MIGRATEPAGE_SUCCESS) 961 return rc; 962 963 if (hugetlb_page_subpool(page)) { 964 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page)); 965 hugetlb_set_page_subpool(page, NULL); 966 } 967 968 if (mode != MIGRATE_SYNC_NO_COPY) 969 migrate_page_copy(newpage, page); 970 else 971 migrate_page_states(newpage, page); 972 973 return MIGRATEPAGE_SUCCESS; 974 } 975 976 static int hugetlbfs_error_remove_page(struct address_space *mapping, 977 struct page *page) 978 { 979 struct inode *inode = mapping->host; 980 pgoff_t index = page->index; 981 982 remove_huge_page(page); 983 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 984 hugetlb_fix_reserve_counts(inode); 985 986 return 0; 987 } 988 989 /* 990 * Display the mount options in /proc/mounts. 991 */ 992 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 993 { 994 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 995 struct hugepage_subpool *spool = sbinfo->spool; 996 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 997 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 998 char mod; 999 1000 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1001 seq_printf(m, ",uid=%u", 1002 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1003 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1004 seq_printf(m, ",gid=%u", 1005 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1006 if (sbinfo->mode != 0755) 1007 seq_printf(m, ",mode=%o", sbinfo->mode); 1008 if (sbinfo->max_inodes != -1) 1009 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1010 1011 hpage_size /= 1024; 1012 mod = 'K'; 1013 if (hpage_size >= 1024) { 1014 hpage_size /= 1024; 1015 mod = 'M'; 1016 } 1017 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1018 if (spool) { 1019 if (spool->max_hpages != -1) 1020 seq_printf(m, ",size=%llu", 1021 (unsigned long long)spool->max_hpages << hpage_shift); 1022 if (spool->min_hpages != -1) 1023 seq_printf(m, ",min_size=%llu", 1024 (unsigned long long)spool->min_hpages << hpage_shift); 1025 } 1026 return 0; 1027 } 1028 1029 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1030 { 1031 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1032 struct hstate *h = hstate_inode(d_inode(dentry)); 1033 1034 buf->f_type = HUGETLBFS_MAGIC; 1035 buf->f_bsize = huge_page_size(h); 1036 if (sbinfo) { 1037 spin_lock(&sbinfo->stat_lock); 1038 /* If no limits set, just report 0 for max/free/used 1039 * blocks, like simple_statfs() */ 1040 if (sbinfo->spool) { 1041 long free_pages; 1042 1043 spin_lock(&sbinfo->spool->lock); 1044 buf->f_blocks = sbinfo->spool->max_hpages; 1045 free_pages = sbinfo->spool->max_hpages 1046 - sbinfo->spool->used_hpages; 1047 buf->f_bavail = buf->f_bfree = free_pages; 1048 spin_unlock(&sbinfo->spool->lock); 1049 buf->f_files = sbinfo->max_inodes; 1050 buf->f_ffree = sbinfo->free_inodes; 1051 } 1052 spin_unlock(&sbinfo->stat_lock); 1053 } 1054 buf->f_namelen = NAME_MAX; 1055 return 0; 1056 } 1057 1058 static void hugetlbfs_put_super(struct super_block *sb) 1059 { 1060 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1061 1062 if (sbi) { 1063 sb->s_fs_info = NULL; 1064 1065 if (sbi->spool) 1066 hugepage_put_subpool(sbi->spool); 1067 1068 kfree(sbi); 1069 } 1070 } 1071 1072 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1073 { 1074 if (sbinfo->free_inodes >= 0) { 1075 spin_lock(&sbinfo->stat_lock); 1076 if (unlikely(!sbinfo->free_inodes)) { 1077 spin_unlock(&sbinfo->stat_lock); 1078 return 0; 1079 } 1080 sbinfo->free_inodes--; 1081 spin_unlock(&sbinfo->stat_lock); 1082 } 1083 1084 return 1; 1085 } 1086 1087 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1088 { 1089 if (sbinfo->free_inodes >= 0) { 1090 spin_lock(&sbinfo->stat_lock); 1091 sbinfo->free_inodes++; 1092 spin_unlock(&sbinfo->stat_lock); 1093 } 1094 } 1095 1096 1097 static struct kmem_cache *hugetlbfs_inode_cachep; 1098 1099 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1100 { 1101 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1102 struct hugetlbfs_inode_info *p; 1103 1104 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1105 return NULL; 1106 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1107 if (unlikely(!p)) { 1108 hugetlbfs_inc_free_inodes(sbinfo); 1109 return NULL; 1110 } 1111 1112 /* 1113 * Any time after allocation, hugetlbfs_destroy_inode can be called 1114 * for the inode. mpol_free_shared_policy is unconditionally called 1115 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1116 * in case of a quick call to destroy. 1117 * 1118 * Note that the policy is initialized even if we are creating a 1119 * private inode. This simplifies hugetlbfs_destroy_inode. 1120 */ 1121 mpol_shared_policy_init(&p->policy, NULL); 1122 1123 return &p->vfs_inode; 1124 } 1125 1126 static void hugetlbfs_free_inode(struct inode *inode) 1127 { 1128 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1129 } 1130 1131 static void hugetlbfs_destroy_inode(struct inode *inode) 1132 { 1133 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1134 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1135 } 1136 1137 static const struct address_space_operations hugetlbfs_aops = { 1138 .write_begin = hugetlbfs_write_begin, 1139 .write_end = hugetlbfs_write_end, 1140 .set_page_dirty = __set_page_dirty_no_writeback, 1141 .migratepage = hugetlbfs_migrate_page, 1142 .error_remove_page = hugetlbfs_error_remove_page, 1143 }; 1144 1145 1146 static void init_once(void *foo) 1147 { 1148 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1149 1150 inode_init_once(&ei->vfs_inode); 1151 } 1152 1153 const struct file_operations hugetlbfs_file_operations = { 1154 .read_iter = hugetlbfs_read_iter, 1155 .mmap = hugetlbfs_file_mmap, 1156 .fsync = noop_fsync, 1157 .get_unmapped_area = hugetlb_get_unmapped_area, 1158 .llseek = default_llseek, 1159 .fallocate = hugetlbfs_fallocate, 1160 }; 1161 1162 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1163 .create = hugetlbfs_create, 1164 .lookup = simple_lookup, 1165 .link = simple_link, 1166 .unlink = simple_unlink, 1167 .symlink = hugetlbfs_symlink, 1168 .mkdir = hugetlbfs_mkdir, 1169 .rmdir = simple_rmdir, 1170 .mknod = hugetlbfs_mknod, 1171 .rename = simple_rename, 1172 .setattr = hugetlbfs_setattr, 1173 .tmpfile = hugetlbfs_tmpfile, 1174 }; 1175 1176 static const struct inode_operations hugetlbfs_inode_operations = { 1177 .setattr = hugetlbfs_setattr, 1178 }; 1179 1180 static const struct super_operations hugetlbfs_ops = { 1181 .alloc_inode = hugetlbfs_alloc_inode, 1182 .free_inode = hugetlbfs_free_inode, 1183 .destroy_inode = hugetlbfs_destroy_inode, 1184 .evict_inode = hugetlbfs_evict_inode, 1185 .statfs = hugetlbfs_statfs, 1186 .put_super = hugetlbfs_put_super, 1187 .show_options = hugetlbfs_show_options, 1188 }; 1189 1190 /* 1191 * Convert size option passed from command line to number of huge pages 1192 * in the pool specified by hstate. Size option could be in bytes 1193 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1194 */ 1195 static long 1196 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1197 enum hugetlbfs_size_type val_type) 1198 { 1199 if (val_type == NO_SIZE) 1200 return -1; 1201 1202 if (val_type == SIZE_PERCENT) { 1203 size_opt <<= huge_page_shift(h); 1204 size_opt *= h->max_huge_pages; 1205 do_div(size_opt, 100); 1206 } 1207 1208 size_opt >>= huge_page_shift(h); 1209 return size_opt; 1210 } 1211 1212 /* 1213 * Parse one mount parameter. 1214 */ 1215 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1216 { 1217 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1218 struct fs_parse_result result; 1219 char *rest; 1220 unsigned long ps; 1221 int opt; 1222 1223 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1224 if (opt < 0) 1225 return opt; 1226 1227 switch (opt) { 1228 case Opt_uid: 1229 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1230 if (!uid_valid(ctx->uid)) 1231 goto bad_val; 1232 return 0; 1233 1234 case Opt_gid: 1235 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1236 if (!gid_valid(ctx->gid)) 1237 goto bad_val; 1238 return 0; 1239 1240 case Opt_mode: 1241 ctx->mode = result.uint_32 & 01777U; 1242 return 0; 1243 1244 case Opt_size: 1245 /* memparse() will accept a K/M/G without a digit */ 1246 if (!isdigit(param->string[0])) 1247 goto bad_val; 1248 ctx->max_size_opt = memparse(param->string, &rest); 1249 ctx->max_val_type = SIZE_STD; 1250 if (*rest == '%') 1251 ctx->max_val_type = SIZE_PERCENT; 1252 return 0; 1253 1254 case Opt_nr_inodes: 1255 /* memparse() will accept a K/M/G without a digit */ 1256 if (!isdigit(param->string[0])) 1257 goto bad_val; 1258 ctx->nr_inodes = memparse(param->string, &rest); 1259 return 0; 1260 1261 case Opt_pagesize: 1262 ps = memparse(param->string, &rest); 1263 ctx->hstate = size_to_hstate(ps); 1264 if (!ctx->hstate) { 1265 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1266 return -EINVAL; 1267 } 1268 return 0; 1269 1270 case Opt_min_size: 1271 /* memparse() will accept a K/M/G without a digit */ 1272 if (!isdigit(param->string[0])) 1273 goto bad_val; 1274 ctx->min_size_opt = memparse(param->string, &rest); 1275 ctx->min_val_type = SIZE_STD; 1276 if (*rest == '%') 1277 ctx->min_val_type = SIZE_PERCENT; 1278 return 0; 1279 1280 default: 1281 return -EINVAL; 1282 } 1283 1284 bad_val: 1285 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1286 param->string, param->key); 1287 } 1288 1289 /* 1290 * Validate the parsed options. 1291 */ 1292 static int hugetlbfs_validate(struct fs_context *fc) 1293 { 1294 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1295 1296 /* 1297 * Use huge page pool size (in hstate) to convert the size 1298 * options to number of huge pages. If NO_SIZE, -1 is returned. 1299 */ 1300 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1301 ctx->max_size_opt, 1302 ctx->max_val_type); 1303 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1304 ctx->min_size_opt, 1305 ctx->min_val_type); 1306 1307 /* 1308 * If max_size was specified, then min_size must be smaller 1309 */ 1310 if (ctx->max_val_type > NO_SIZE && 1311 ctx->min_hpages > ctx->max_hpages) { 1312 pr_err("Minimum size can not be greater than maximum size\n"); 1313 return -EINVAL; 1314 } 1315 1316 return 0; 1317 } 1318 1319 static int 1320 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1321 { 1322 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1323 struct hugetlbfs_sb_info *sbinfo; 1324 1325 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1326 if (!sbinfo) 1327 return -ENOMEM; 1328 sb->s_fs_info = sbinfo; 1329 spin_lock_init(&sbinfo->stat_lock); 1330 sbinfo->hstate = ctx->hstate; 1331 sbinfo->max_inodes = ctx->nr_inodes; 1332 sbinfo->free_inodes = ctx->nr_inodes; 1333 sbinfo->spool = NULL; 1334 sbinfo->uid = ctx->uid; 1335 sbinfo->gid = ctx->gid; 1336 sbinfo->mode = ctx->mode; 1337 1338 /* 1339 * Allocate and initialize subpool if maximum or minimum size is 1340 * specified. Any needed reservations (for minimum size) are taken 1341 * taken when the subpool is created. 1342 */ 1343 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1344 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1345 ctx->max_hpages, 1346 ctx->min_hpages); 1347 if (!sbinfo->spool) 1348 goto out_free; 1349 } 1350 sb->s_maxbytes = MAX_LFS_FILESIZE; 1351 sb->s_blocksize = huge_page_size(ctx->hstate); 1352 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1353 sb->s_magic = HUGETLBFS_MAGIC; 1354 sb->s_op = &hugetlbfs_ops; 1355 sb->s_time_gran = 1; 1356 1357 /* 1358 * Due to the special and limited functionality of hugetlbfs, it does 1359 * not work well as a stacking filesystem. 1360 */ 1361 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1362 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1363 if (!sb->s_root) 1364 goto out_free; 1365 return 0; 1366 out_free: 1367 kfree(sbinfo->spool); 1368 kfree(sbinfo); 1369 return -ENOMEM; 1370 } 1371 1372 static int hugetlbfs_get_tree(struct fs_context *fc) 1373 { 1374 int err = hugetlbfs_validate(fc); 1375 if (err) 1376 return err; 1377 return get_tree_nodev(fc, hugetlbfs_fill_super); 1378 } 1379 1380 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1381 { 1382 kfree(fc->fs_private); 1383 } 1384 1385 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1386 .free = hugetlbfs_fs_context_free, 1387 .parse_param = hugetlbfs_parse_param, 1388 .get_tree = hugetlbfs_get_tree, 1389 }; 1390 1391 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1392 { 1393 struct hugetlbfs_fs_context *ctx; 1394 1395 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1396 if (!ctx) 1397 return -ENOMEM; 1398 1399 ctx->max_hpages = -1; /* No limit on size by default */ 1400 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1401 ctx->uid = current_fsuid(); 1402 ctx->gid = current_fsgid(); 1403 ctx->mode = 0755; 1404 ctx->hstate = &default_hstate; 1405 ctx->min_hpages = -1; /* No default minimum size */ 1406 ctx->max_val_type = NO_SIZE; 1407 ctx->min_val_type = NO_SIZE; 1408 fc->fs_private = ctx; 1409 fc->ops = &hugetlbfs_fs_context_ops; 1410 return 0; 1411 } 1412 1413 static struct file_system_type hugetlbfs_fs_type = { 1414 .name = "hugetlbfs", 1415 .init_fs_context = hugetlbfs_init_fs_context, 1416 .parameters = hugetlb_fs_parameters, 1417 .kill_sb = kill_litter_super, 1418 }; 1419 1420 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1421 1422 static int can_do_hugetlb_shm(void) 1423 { 1424 kgid_t shm_group; 1425 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1426 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1427 } 1428 1429 static int get_hstate_idx(int page_size_log) 1430 { 1431 struct hstate *h = hstate_sizelog(page_size_log); 1432 1433 if (!h) 1434 return -1; 1435 return hstate_index(h); 1436 } 1437 1438 /* 1439 * Note that size should be aligned to proper hugepage size in caller side, 1440 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1441 */ 1442 struct file *hugetlb_file_setup(const char *name, size_t size, 1443 vm_flags_t acctflag, struct user_struct **user, 1444 int creat_flags, int page_size_log) 1445 { 1446 struct inode *inode; 1447 struct vfsmount *mnt; 1448 int hstate_idx; 1449 struct file *file; 1450 1451 hstate_idx = get_hstate_idx(page_size_log); 1452 if (hstate_idx < 0) 1453 return ERR_PTR(-ENODEV); 1454 1455 *user = NULL; 1456 mnt = hugetlbfs_vfsmount[hstate_idx]; 1457 if (!mnt) 1458 return ERR_PTR(-ENOENT); 1459 1460 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1461 *user = current_user(); 1462 if (user_shm_lock(size, *user)) { 1463 task_lock(current); 1464 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1465 current->comm, current->pid); 1466 task_unlock(current); 1467 } else { 1468 *user = NULL; 1469 return ERR_PTR(-EPERM); 1470 } 1471 } 1472 1473 file = ERR_PTR(-ENOSPC); 1474 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1475 if (!inode) 1476 goto out; 1477 if (creat_flags == HUGETLB_SHMFS_INODE) 1478 inode->i_flags |= S_PRIVATE; 1479 1480 inode->i_size = size; 1481 clear_nlink(inode); 1482 1483 if (!hugetlb_reserve_pages(inode, 0, 1484 size >> huge_page_shift(hstate_inode(inode)), NULL, 1485 acctflag)) 1486 file = ERR_PTR(-ENOMEM); 1487 else 1488 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1489 &hugetlbfs_file_operations); 1490 if (!IS_ERR(file)) 1491 return file; 1492 1493 iput(inode); 1494 out: 1495 if (*user) { 1496 user_shm_unlock(size, *user); 1497 *user = NULL; 1498 } 1499 return file; 1500 } 1501 1502 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1503 { 1504 struct fs_context *fc; 1505 struct vfsmount *mnt; 1506 1507 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1508 if (IS_ERR(fc)) { 1509 mnt = ERR_CAST(fc); 1510 } else { 1511 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1512 ctx->hstate = h; 1513 mnt = fc_mount(fc); 1514 put_fs_context(fc); 1515 } 1516 if (IS_ERR(mnt)) 1517 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1518 huge_page_size(h) >> 10); 1519 return mnt; 1520 } 1521 1522 static int __init init_hugetlbfs_fs(void) 1523 { 1524 struct vfsmount *mnt; 1525 struct hstate *h; 1526 int error; 1527 int i; 1528 1529 if (!hugepages_supported()) { 1530 pr_info("disabling because there are no supported hugepage sizes\n"); 1531 return -ENOTSUPP; 1532 } 1533 1534 error = -ENOMEM; 1535 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1536 sizeof(struct hugetlbfs_inode_info), 1537 0, SLAB_ACCOUNT, init_once); 1538 if (hugetlbfs_inode_cachep == NULL) 1539 goto out; 1540 1541 error = register_filesystem(&hugetlbfs_fs_type); 1542 if (error) 1543 goto out_free; 1544 1545 /* default hstate mount is required */ 1546 mnt = mount_one_hugetlbfs(&default_hstate); 1547 if (IS_ERR(mnt)) { 1548 error = PTR_ERR(mnt); 1549 goto out_unreg; 1550 } 1551 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1552 1553 /* other hstates are optional */ 1554 i = 0; 1555 for_each_hstate(h) { 1556 if (i == default_hstate_idx) { 1557 i++; 1558 continue; 1559 } 1560 1561 mnt = mount_one_hugetlbfs(h); 1562 if (IS_ERR(mnt)) 1563 hugetlbfs_vfsmount[i] = NULL; 1564 else 1565 hugetlbfs_vfsmount[i] = mnt; 1566 i++; 1567 } 1568 1569 return 0; 1570 1571 out_unreg: 1572 (void)unregister_filesystem(&hugetlbfs_fs_type); 1573 out_free: 1574 kmem_cache_destroy(hugetlbfs_inode_cachep); 1575 out: 1576 return error; 1577 } 1578 fs_initcall(init_hugetlbfs_fs) 1579