xref: /linux/fs/hugetlbfs/inode.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32   ("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 
139 	/*
140 	 * vma address alignment (but not the pgoff alignment) has
141 	 * already been checked by prepare_hugepage_range.  If you add
142 	 * any error returns here, do so after setting VM_HUGETLB, so
143 	 * is_vm_hugetlb_page tests below unmap_region go the right
144 	 * way when do_mmap unwinds (may be important on powerpc
145 	 * and ia64).
146 	 */
147 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 	vma->vm_ops = &hugetlb_vm_ops;
149 
150 	ret = seal_check_future_write(info->seals, vma);
151 	if (ret)
152 		return ret;
153 
154 	/*
155 	 * page based offset in vm_pgoff could be sufficiently large to
156 	 * overflow a loff_t when converted to byte offset.  This can
157 	 * only happen on architectures where sizeof(loff_t) ==
158 	 * sizeof(unsigned long).  So, only check in those instances.
159 	 */
160 	if (sizeof(unsigned long) == sizeof(loff_t)) {
161 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 			return -EINVAL;
163 	}
164 
165 	/* must be huge page aligned */
166 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 		return -EINVAL;
168 
169 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 	/* check for overflow */
172 	if (len < vma_len)
173 		return -EINVAL;
174 
175 	inode_lock(inode);
176 	file_accessed(file);
177 
178 	ret = -ENOMEM;
179 	if (!hugetlb_reserve_pages(inode,
180 				vma->vm_pgoff >> huge_page_order(h),
181 				len >> huge_page_shift(h), vma,
182 				vma->vm_flags))
183 		goto out;
184 
185 	ret = 0;
186 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 		i_size_write(inode, len);
188 out:
189 	inode_unlock(inode);
190 
191 	return ret;
192 }
193 
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197 
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 static unsigned long
200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 		unsigned long len, unsigned long pgoff, unsigned long flags)
202 {
203 	struct hstate *h = hstate_file(file);
204 	struct vm_unmapped_area_info info;
205 
206 	info.flags = 0;
207 	info.length = len;
208 	info.low_limit = current->mm->mmap_base;
209 	info.high_limit = TASK_SIZE;
210 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 	info.align_offset = 0;
212 	return vm_unmapped_area(&info);
213 }
214 
215 static unsigned long
216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 		unsigned long len, unsigned long pgoff, unsigned long flags)
218 {
219 	struct hstate *h = hstate_file(file);
220 	struct vm_unmapped_area_info info;
221 
222 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223 	info.length = len;
224 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225 	info.high_limit = current->mm->mmap_base;
226 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 	info.align_offset = 0;
228 	addr = vm_unmapped_area(&info);
229 
230 	/*
231 	 * A failed mmap() very likely causes application failure,
232 	 * so fall back to the bottom-up function here. This scenario
233 	 * can happen with large stack limits and large mmap()
234 	 * allocations.
235 	 */
236 	if (unlikely(offset_in_page(addr))) {
237 		VM_BUG_ON(addr != -ENOMEM);
238 		info.flags = 0;
239 		info.low_limit = current->mm->mmap_base;
240 		info.high_limit = TASK_SIZE;
241 		addr = vm_unmapped_area(&info);
242 	}
243 
244 	return addr;
245 }
246 
247 static unsigned long
248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 		unsigned long len, unsigned long pgoff, unsigned long flags)
250 {
251 	struct mm_struct *mm = current->mm;
252 	struct vm_area_struct *vma;
253 	struct hstate *h = hstate_file(file);
254 
255 	if (len & ~huge_page_mask(h))
256 		return -EINVAL;
257 	if (len > TASK_SIZE)
258 		return -ENOMEM;
259 
260 	if (flags & MAP_FIXED) {
261 		if (prepare_hugepage_range(file, addr, len))
262 			return -EINVAL;
263 		return addr;
264 	}
265 
266 	if (addr) {
267 		addr = ALIGN(addr, huge_page_size(h));
268 		vma = find_vma(mm, addr);
269 		if (TASK_SIZE - len >= addr &&
270 		    (!vma || addr + len <= vm_start_gap(vma)))
271 			return addr;
272 	}
273 
274 	/*
275 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
276 	 * If architectures have special needs, they should define their own
277 	 * version of hugetlb_get_unmapped_area.
278 	 */
279 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
280 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
281 				pgoff, flags);
282 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
283 			pgoff, flags);
284 }
285 #endif
286 
287 static size_t
288 hugetlbfs_read_actor(struct page *page, unsigned long offset,
289 			struct iov_iter *to, unsigned long size)
290 {
291 	size_t copied = 0;
292 	int i, chunksize;
293 
294 	/* Find which 4k chunk and offset with in that chunk */
295 	i = offset >> PAGE_SHIFT;
296 	offset = offset & ~PAGE_MASK;
297 
298 	while (size) {
299 		size_t n;
300 		chunksize = PAGE_SIZE;
301 		if (offset)
302 			chunksize -= offset;
303 		if (chunksize > size)
304 			chunksize = size;
305 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
306 		copied += n;
307 		if (n != chunksize)
308 			return copied;
309 		offset = 0;
310 		size -= chunksize;
311 		i++;
312 	}
313 	return copied;
314 }
315 
316 /*
317  * Support for read() - Find the page attached to f_mapping and copy out the
318  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
319  * since it has PAGE_SIZE assumptions.
320  */
321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
322 {
323 	struct file *file = iocb->ki_filp;
324 	struct hstate *h = hstate_file(file);
325 	struct address_space *mapping = file->f_mapping;
326 	struct inode *inode = mapping->host;
327 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
328 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
329 	unsigned long end_index;
330 	loff_t isize;
331 	ssize_t retval = 0;
332 
333 	while (iov_iter_count(to)) {
334 		struct page *page;
335 		size_t nr, copied;
336 
337 		/* nr is the maximum number of bytes to copy from this page */
338 		nr = huge_page_size(h);
339 		isize = i_size_read(inode);
340 		if (!isize)
341 			break;
342 		end_index = (isize - 1) >> huge_page_shift(h);
343 		if (index > end_index)
344 			break;
345 		if (index == end_index) {
346 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
347 			if (nr <= offset)
348 				break;
349 		}
350 		nr = nr - offset;
351 
352 		/* Find the page */
353 		page = find_lock_page(mapping, index);
354 		if (unlikely(page == NULL)) {
355 			/*
356 			 * We have a HOLE, zero out the user-buffer for the
357 			 * length of the hole or request.
358 			 */
359 			copied = iov_iter_zero(nr, to);
360 		} else {
361 			unlock_page(page);
362 
363 			/*
364 			 * We have the page, copy it to user space buffer.
365 			 */
366 			copied = hugetlbfs_read_actor(page, offset, to, nr);
367 			put_page(page);
368 		}
369 		offset += copied;
370 		retval += copied;
371 		if (copied != nr && iov_iter_count(to)) {
372 			if (!retval)
373 				retval = -EFAULT;
374 			break;
375 		}
376 		index += offset >> huge_page_shift(h);
377 		offset &= ~huge_page_mask(h);
378 	}
379 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
380 	return retval;
381 }
382 
383 static int hugetlbfs_write_begin(struct file *file,
384 			struct address_space *mapping,
385 			loff_t pos, unsigned len, unsigned flags,
386 			struct page **pagep, void **fsdata)
387 {
388 	return -EINVAL;
389 }
390 
391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
392 			loff_t pos, unsigned len, unsigned copied,
393 			struct page *page, void *fsdata)
394 {
395 	BUG();
396 	return -EINVAL;
397 }
398 
399 static void remove_huge_page(struct page *page)
400 {
401 	ClearPageDirty(page);
402 	ClearPageUptodate(page);
403 	delete_from_page_cache(page);
404 }
405 
406 static void
407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
408 {
409 	struct vm_area_struct *vma;
410 
411 	/*
412 	 * end == 0 indicates that the entire range after
413 	 * start should be unmapped.
414 	 */
415 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
416 		unsigned long v_offset;
417 		unsigned long v_end;
418 
419 		/*
420 		 * Can the expression below overflow on 32-bit arches?
421 		 * No, because the interval tree returns us only those vmas
422 		 * which overlap the truncated area starting at pgoff,
423 		 * and no vma on a 32-bit arch can span beyond the 4GB.
424 		 */
425 		if (vma->vm_pgoff < start)
426 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
427 		else
428 			v_offset = 0;
429 
430 		if (!end)
431 			v_end = vma->vm_end;
432 		else {
433 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
434 							+ vma->vm_start;
435 			if (v_end > vma->vm_end)
436 				v_end = vma->vm_end;
437 		}
438 
439 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
440 									NULL);
441 	}
442 }
443 
444 /*
445  * remove_inode_hugepages handles two distinct cases: truncation and hole
446  * punch.  There are subtle differences in operation for each case.
447  *
448  * truncation is indicated by end of range being LLONG_MAX
449  *	In this case, we first scan the range and release found pages.
450  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
451  *	maps and global counts.  Page faults can not race with truncation
452  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
453  *	page faults in the truncated range by checking i_size.  i_size is
454  *	modified while holding i_mmap_rwsem.
455  * hole punch is indicated if end is not LLONG_MAX
456  *	In the hole punch case we scan the range and release found pages.
457  *	Only when releasing a page is the associated region/reserve map
458  *	deleted.  The region/reserve map for ranges without associated
459  *	pages are not modified.  Page faults can race with hole punch.
460  *	This is indicated if we find a mapped page.
461  * Note: If the passed end of range value is beyond the end of file, but
462  * not LLONG_MAX this routine still performs a hole punch operation.
463  */
464 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
465 				   loff_t lend)
466 {
467 	struct hstate *h = hstate_inode(inode);
468 	struct address_space *mapping = &inode->i_data;
469 	const pgoff_t start = lstart >> huge_page_shift(h);
470 	const pgoff_t end = lend >> huge_page_shift(h);
471 	struct pagevec pvec;
472 	pgoff_t next, index;
473 	int i, freed = 0;
474 	bool truncate_op = (lend == LLONG_MAX);
475 
476 	pagevec_init(&pvec);
477 	next = start;
478 	while (next < end) {
479 		/*
480 		 * When no more pages are found, we are done.
481 		 */
482 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
483 			break;
484 
485 		for (i = 0; i < pagevec_count(&pvec); ++i) {
486 			struct page *page = pvec.pages[i];
487 			u32 hash = 0;
488 
489 			index = page->index;
490 			if (!truncate_op) {
491 				/*
492 				 * Only need to hold the fault mutex in the
493 				 * hole punch case.  This prevents races with
494 				 * page faults.  Races are not possible in the
495 				 * case of truncation.
496 				 */
497 				hash = hugetlb_fault_mutex_hash(mapping, index);
498 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
499 			}
500 
501 			/*
502 			 * If page is mapped, it was faulted in after being
503 			 * unmapped in caller.  Unmap (again) now after taking
504 			 * the fault mutex.  The mutex will prevent faults
505 			 * until we finish removing the page.
506 			 *
507 			 * This race can only happen in the hole punch case.
508 			 * Getting here in a truncate operation is a bug.
509 			 */
510 			if (unlikely(page_mapped(page))) {
511 				BUG_ON(truncate_op);
512 
513 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
514 				i_mmap_lock_write(mapping);
515 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
516 				hugetlb_vmdelete_list(&mapping->i_mmap,
517 					index * pages_per_huge_page(h),
518 					(index + 1) * pages_per_huge_page(h));
519 				i_mmap_unlock_write(mapping);
520 			}
521 
522 			lock_page(page);
523 			/*
524 			 * We must free the huge page and remove from page
525 			 * cache (remove_huge_page) BEFORE removing the
526 			 * region/reserve map (hugetlb_unreserve_pages).  In
527 			 * rare out of memory conditions, removal of the
528 			 * region/reserve map could fail. Correspondingly,
529 			 * the subpool and global reserve usage count can need
530 			 * to be adjusted.
531 			 */
532 			VM_BUG_ON(HPageRestoreReserve(page));
533 			remove_huge_page(page);
534 			freed++;
535 			if (!truncate_op) {
536 				if (unlikely(hugetlb_unreserve_pages(inode,
537 							index, index + 1, 1)))
538 					hugetlb_fix_reserve_counts(inode);
539 			}
540 
541 			unlock_page(page);
542 			if (!truncate_op)
543 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
544 		}
545 		huge_pagevec_release(&pvec);
546 		cond_resched();
547 	}
548 
549 	if (truncate_op)
550 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
551 }
552 
553 static void hugetlbfs_evict_inode(struct inode *inode)
554 {
555 	struct resv_map *resv_map;
556 
557 	remove_inode_hugepages(inode, 0, LLONG_MAX);
558 
559 	/*
560 	 * Get the resv_map from the address space embedded in the inode.
561 	 * This is the address space which points to any resv_map allocated
562 	 * at inode creation time.  If this is a device special inode,
563 	 * i_mapping may not point to the original address space.
564 	 */
565 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
566 	/* Only regular and link inodes have associated reserve maps */
567 	if (resv_map)
568 		resv_map_release(&resv_map->refs);
569 	clear_inode(inode);
570 }
571 
572 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
573 {
574 	pgoff_t pgoff;
575 	struct address_space *mapping = inode->i_mapping;
576 	struct hstate *h = hstate_inode(inode);
577 
578 	BUG_ON(offset & ~huge_page_mask(h));
579 	pgoff = offset >> PAGE_SHIFT;
580 
581 	i_mmap_lock_write(mapping);
582 	i_size_write(inode, offset);
583 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
584 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
585 	i_mmap_unlock_write(mapping);
586 	remove_inode_hugepages(inode, offset, LLONG_MAX);
587 }
588 
589 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
590 {
591 	struct hstate *h = hstate_inode(inode);
592 	loff_t hpage_size = huge_page_size(h);
593 	loff_t hole_start, hole_end;
594 
595 	/*
596 	 * For hole punch round up the beginning offset of the hole and
597 	 * round down the end.
598 	 */
599 	hole_start = round_up(offset, hpage_size);
600 	hole_end = round_down(offset + len, hpage_size);
601 
602 	if (hole_end > hole_start) {
603 		struct address_space *mapping = inode->i_mapping;
604 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
605 
606 		inode_lock(inode);
607 
608 		/* protected by i_rwsem */
609 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
610 			inode_unlock(inode);
611 			return -EPERM;
612 		}
613 
614 		i_mmap_lock_write(mapping);
615 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
616 			hugetlb_vmdelete_list(&mapping->i_mmap,
617 						hole_start >> PAGE_SHIFT,
618 						hole_end  >> PAGE_SHIFT);
619 		i_mmap_unlock_write(mapping);
620 		remove_inode_hugepages(inode, hole_start, hole_end);
621 		inode_unlock(inode);
622 	}
623 
624 	return 0;
625 }
626 
627 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
628 				loff_t len)
629 {
630 	struct inode *inode = file_inode(file);
631 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
632 	struct address_space *mapping = inode->i_mapping;
633 	struct hstate *h = hstate_inode(inode);
634 	struct vm_area_struct pseudo_vma;
635 	struct mm_struct *mm = current->mm;
636 	loff_t hpage_size = huge_page_size(h);
637 	unsigned long hpage_shift = huge_page_shift(h);
638 	pgoff_t start, index, end;
639 	int error;
640 	u32 hash;
641 
642 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
643 		return -EOPNOTSUPP;
644 
645 	if (mode & FALLOC_FL_PUNCH_HOLE)
646 		return hugetlbfs_punch_hole(inode, offset, len);
647 
648 	/*
649 	 * Default preallocate case.
650 	 * For this range, start is rounded down and end is rounded up
651 	 * as well as being converted to page offsets.
652 	 */
653 	start = offset >> hpage_shift;
654 	end = (offset + len + hpage_size - 1) >> hpage_shift;
655 
656 	inode_lock(inode);
657 
658 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
659 	error = inode_newsize_ok(inode, offset + len);
660 	if (error)
661 		goto out;
662 
663 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
664 		error = -EPERM;
665 		goto out;
666 	}
667 
668 	/*
669 	 * Initialize a pseudo vma as this is required by the huge page
670 	 * allocation routines.  If NUMA is configured, use page index
671 	 * as input to create an allocation policy.
672 	 */
673 	vma_init(&pseudo_vma, mm);
674 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
675 	pseudo_vma.vm_file = file;
676 
677 	for (index = start; index < end; index++) {
678 		/*
679 		 * This is supposed to be the vaddr where the page is being
680 		 * faulted in, but we have no vaddr here.
681 		 */
682 		struct page *page;
683 		unsigned long addr;
684 
685 		cond_resched();
686 
687 		/*
688 		 * fallocate(2) manpage permits EINTR; we may have been
689 		 * interrupted because we are using up too much memory.
690 		 */
691 		if (signal_pending(current)) {
692 			error = -EINTR;
693 			break;
694 		}
695 
696 		/* Set numa allocation policy based on index */
697 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
698 
699 		/* addr is the offset within the file (zero based) */
700 		addr = index * hpage_size;
701 
702 		/*
703 		 * fault mutex taken here, protects against fault path
704 		 * and hole punch.  inode_lock previously taken protects
705 		 * against truncation.
706 		 */
707 		hash = hugetlb_fault_mutex_hash(mapping, index);
708 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
709 
710 		/* See if already present in mapping to avoid alloc/free */
711 		page = find_get_page(mapping, index);
712 		if (page) {
713 			put_page(page);
714 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
715 			hugetlb_drop_vma_policy(&pseudo_vma);
716 			continue;
717 		}
718 
719 		/*
720 		 * Allocate page without setting the avoid_reserve argument.
721 		 * There certainly are no reserves associated with the
722 		 * pseudo_vma.  However, there could be shared mappings with
723 		 * reserves for the file at the inode level.  If we fallocate
724 		 * pages in these areas, we need to consume the reserves
725 		 * to keep reservation accounting consistent.
726 		 */
727 		page = alloc_huge_page(&pseudo_vma, addr, 0);
728 		hugetlb_drop_vma_policy(&pseudo_vma);
729 		if (IS_ERR(page)) {
730 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
731 			error = PTR_ERR(page);
732 			goto out;
733 		}
734 		clear_huge_page(page, addr, pages_per_huge_page(h));
735 		__SetPageUptodate(page);
736 		error = huge_add_to_page_cache(page, mapping, index);
737 		if (unlikely(error)) {
738 			put_page(page);
739 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
740 			goto out;
741 		}
742 
743 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
744 
745 		SetHPageMigratable(page);
746 		/*
747 		 * unlock_page because locked by add_to_page_cache()
748 		 * put_page() due to reference from alloc_huge_page()
749 		 */
750 		unlock_page(page);
751 		put_page(page);
752 	}
753 
754 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
755 		i_size_write(inode, offset + len);
756 	inode->i_ctime = current_time(inode);
757 out:
758 	inode_unlock(inode);
759 	return error;
760 }
761 
762 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
763 			     struct dentry *dentry, struct iattr *attr)
764 {
765 	struct inode *inode = d_inode(dentry);
766 	struct hstate *h = hstate_inode(inode);
767 	int error;
768 	unsigned int ia_valid = attr->ia_valid;
769 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
770 
771 	error = setattr_prepare(&init_user_ns, dentry, attr);
772 	if (error)
773 		return error;
774 
775 	if (ia_valid & ATTR_SIZE) {
776 		loff_t oldsize = inode->i_size;
777 		loff_t newsize = attr->ia_size;
778 
779 		if (newsize & ~huge_page_mask(h))
780 			return -EINVAL;
781 		/* protected by i_rwsem */
782 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
783 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
784 			return -EPERM;
785 		hugetlb_vmtruncate(inode, newsize);
786 	}
787 
788 	setattr_copy(&init_user_ns, inode, attr);
789 	mark_inode_dirty(inode);
790 	return 0;
791 }
792 
793 static struct inode *hugetlbfs_get_root(struct super_block *sb,
794 					struct hugetlbfs_fs_context *ctx)
795 {
796 	struct inode *inode;
797 
798 	inode = new_inode(sb);
799 	if (inode) {
800 		inode->i_ino = get_next_ino();
801 		inode->i_mode = S_IFDIR | ctx->mode;
802 		inode->i_uid = ctx->uid;
803 		inode->i_gid = ctx->gid;
804 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
805 		inode->i_op = &hugetlbfs_dir_inode_operations;
806 		inode->i_fop = &simple_dir_operations;
807 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
808 		inc_nlink(inode);
809 		lockdep_annotate_inode_mutex_key(inode);
810 	}
811 	return inode;
812 }
813 
814 /*
815  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
816  * be taken from reclaim -- unlike regular filesystems. This needs an
817  * annotation because huge_pmd_share() does an allocation under hugetlb's
818  * i_mmap_rwsem.
819  */
820 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
821 
822 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
823 					struct inode *dir,
824 					umode_t mode, dev_t dev)
825 {
826 	struct inode *inode;
827 	struct resv_map *resv_map = NULL;
828 
829 	/*
830 	 * Reserve maps are only needed for inodes that can have associated
831 	 * page allocations.
832 	 */
833 	if (S_ISREG(mode) || S_ISLNK(mode)) {
834 		resv_map = resv_map_alloc();
835 		if (!resv_map)
836 			return NULL;
837 	}
838 
839 	inode = new_inode(sb);
840 	if (inode) {
841 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
842 
843 		inode->i_ino = get_next_ino();
844 		inode_init_owner(&init_user_ns, inode, dir, mode);
845 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
846 				&hugetlbfs_i_mmap_rwsem_key);
847 		inode->i_mapping->a_ops = &hugetlbfs_aops;
848 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
849 		inode->i_mapping->private_data = resv_map;
850 		info->seals = F_SEAL_SEAL;
851 		switch (mode & S_IFMT) {
852 		default:
853 			init_special_inode(inode, mode, dev);
854 			break;
855 		case S_IFREG:
856 			inode->i_op = &hugetlbfs_inode_operations;
857 			inode->i_fop = &hugetlbfs_file_operations;
858 			break;
859 		case S_IFDIR:
860 			inode->i_op = &hugetlbfs_dir_inode_operations;
861 			inode->i_fop = &simple_dir_operations;
862 
863 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
864 			inc_nlink(inode);
865 			break;
866 		case S_IFLNK:
867 			inode->i_op = &page_symlink_inode_operations;
868 			inode_nohighmem(inode);
869 			break;
870 		}
871 		lockdep_annotate_inode_mutex_key(inode);
872 	} else {
873 		if (resv_map)
874 			kref_put(&resv_map->refs, resv_map_release);
875 	}
876 
877 	return inode;
878 }
879 
880 /*
881  * File creation. Allocate an inode, and we're done..
882  */
883 static int do_hugetlbfs_mknod(struct inode *dir,
884 			struct dentry *dentry,
885 			umode_t mode,
886 			dev_t dev,
887 			bool tmpfile)
888 {
889 	struct inode *inode;
890 	int error = -ENOSPC;
891 
892 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
893 	if (inode) {
894 		dir->i_ctime = dir->i_mtime = current_time(dir);
895 		if (tmpfile) {
896 			d_tmpfile(dentry, inode);
897 		} else {
898 			d_instantiate(dentry, inode);
899 			dget(dentry);/* Extra count - pin the dentry in core */
900 		}
901 		error = 0;
902 	}
903 	return error;
904 }
905 
906 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
907 			   struct dentry *dentry, umode_t mode, dev_t dev)
908 {
909 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
910 }
911 
912 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
913 			   struct dentry *dentry, umode_t mode)
914 {
915 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
916 				     mode | S_IFDIR, 0);
917 	if (!retval)
918 		inc_nlink(dir);
919 	return retval;
920 }
921 
922 static int hugetlbfs_create(struct user_namespace *mnt_userns,
923 			    struct inode *dir, struct dentry *dentry,
924 			    umode_t mode, bool excl)
925 {
926 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
927 }
928 
929 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
930 			     struct inode *dir, struct dentry *dentry,
931 			     umode_t mode)
932 {
933 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
934 }
935 
936 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
937 			     struct inode *dir, struct dentry *dentry,
938 			     const char *symname)
939 {
940 	struct inode *inode;
941 	int error = -ENOSPC;
942 
943 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
944 	if (inode) {
945 		int l = strlen(symname)+1;
946 		error = page_symlink(inode, symname, l);
947 		if (!error) {
948 			d_instantiate(dentry, inode);
949 			dget(dentry);
950 		} else
951 			iput(inode);
952 	}
953 	dir->i_ctime = dir->i_mtime = current_time(dir);
954 
955 	return error;
956 }
957 
958 static int hugetlbfs_migrate_page(struct address_space *mapping,
959 				struct page *newpage, struct page *page,
960 				enum migrate_mode mode)
961 {
962 	int rc;
963 
964 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
965 	if (rc != MIGRATEPAGE_SUCCESS)
966 		return rc;
967 
968 	if (hugetlb_page_subpool(page)) {
969 		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
970 		hugetlb_set_page_subpool(page, NULL);
971 	}
972 
973 	if (mode != MIGRATE_SYNC_NO_COPY)
974 		migrate_page_copy(newpage, page);
975 	else
976 		migrate_page_states(newpage, page);
977 
978 	return MIGRATEPAGE_SUCCESS;
979 }
980 
981 static int hugetlbfs_error_remove_page(struct address_space *mapping,
982 				struct page *page)
983 {
984 	struct inode *inode = mapping->host;
985 	pgoff_t index = page->index;
986 
987 	remove_huge_page(page);
988 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
989 		hugetlb_fix_reserve_counts(inode);
990 
991 	return 0;
992 }
993 
994 /*
995  * Display the mount options in /proc/mounts.
996  */
997 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
998 {
999 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1000 	struct hugepage_subpool *spool = sbinfo->spool;
1001 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1002 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1003 	char mod;
1004 
1005 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1006 		seq_printf(m, ",uid=%u",
1007 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1008 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1009 		seq_printf(m, ",gid=%u",
1010 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1011 	if (sbinfo->mode != 0755)
1012 		seq_printf(m, ",mode=%o", sbinfo->mode);
1013 	if (sbinfo->max_inodes != -1)
1014 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1015 
1016 	hpage_size /= 1024;
1017 	mod = 'K';
1018 	if (hpage_size >= 1024) {
1019 		hpage_size /= 1024;
1020 		mod = 'M';
1021 	}
1022 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1023 	if (spool) {
1024 		if (spool->max_hpages != -1)
1025 			seq_printf(m, ",size=%llu",
1026 				   (unsigned long long)spool->max_hpages << hpage_shift);
1027 		if (spool->min_hpages != -1)
1028 			seq_printf(m, ",min_size=%llu",
1029 				   (unsigned long long)spool->min_hpages << hpage_shift);
1030 	}
1031 	return 0;
1032 }
1033 
1034 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1035 {
1036 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1037 	struct hstate *h = hstate_inode(d_inode(dentry));
1038 
1039 	buf->f_type = HUGETLBFS_MAGIC;
1040 	buf->f_bsize = huge_page_size(h);
1041 	if (sbinfo) {
1042 		spin_lock(&sbinfo->stat_lock);
1043 		/* If no limits set, just report 0 for max/free/used
1044 		 * blocks, like simple_statfs() */
1045 		if (sbinfo->spool) {
1046 			long free_pages;
1047 
1048 			spin_lock(&sbinfo->spool->lock);
1049 			buf->f_blocks = sbinfo->spool->max_hpages;
1050 			free_pages = sbinfo->spool->max_hpages
1051 				- sbinfo->spool->used_hpages;
1052 			buf->f_bavail = buf->f_bfree = free_pages;
1053 			spin_unlock(&sbinfo->spool->lock);
1054 			buf->f_files = sbinfo->max_inodes;
1055 			buf->f_ffree = sbinfo->free_inodes;
1056 		}
1057 		spin_unlock(&sbinfo->stat_lock);
1058 	}
1059 	buf->f_namelen = NAME_MAX;
1060 	return 0;
1061 }
1062 
1063 static void hugetlbfs_put_super(struct super_block *sb)
1064 {
1065 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1066 
1067 	if (sbi) {
1068 		sb->s_fs_info = NULL;
1069 
1070 		if (sbi->spool)
1071 			hugepage_put_subpool(sbi->spool);
1072 
1073 		kfree(sbi);
1074 	}
1075 }
1076 
1077 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1078 {
1079 	if (sbinfo->free_inodes >= 0) {
1080 		spin_lock(&sbinfo->stat_lock);
1081 		if (unlikely(!sbinfo->free_inodes)) {
1082 			spin_unlock(&sbinfo->stat_lock);
1083 			return 0;
1084 		}
1085 		sbinfo->free_inodes--;
1086 		spin_unlock(&sbinfo->stat_lock);
1087 	}
1088 
1089 	return 1;
1090 }
1091 
1092 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1093 {
1094 	if (sbinfo->free_inodes >= 0) {
1095 		spin_lock(&sbinfo->stat_lock);
1096 		sbinfo->free_inodes++;
1097 		spin_unlock(&sbinfo->stat_lock);
1098 	}
1099 }
1100 
1101 
1102 static struct kmem_cache *hugetlbfs_inode_cachep;
1103 
1104 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1105 {
1106 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1107 	struct hugetlbfs_inode_info *p;
1108 
1109 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1110 		return NULL;
1111 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1112 	if (unlikely(!p)) {
1113 		hugetlbfs_inc_free_inodes(sbinfo);
1114 		return NULL;
1115 	}
1116 
1117 	/*
1118 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1119 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1120 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1121 	 * in case of a quick call to destroy.
1122 	 *
1123 	 * Note that the policy is initialized even if we are creating a
1124 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1125 	 */
1126 	mpol_shared_policy_init(&p->policy, NULL);
1127 
1128 	return &p->vfs_inode;
1129 }
1130 
1131 static void hugetlbfs_free_inode(struct inode *inode)
1132 {
1133 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1134 }
1135 
1136 static void hugetlbfs_destroy_inode(struct inode *inode)
1137 {
1138 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1139 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1140 }
1141 
1142 static const struct address_space_operations hugetlbfs_aops = {
1143 	.write_begin	= hugetlbfs_write_begin,
1144 	.write_end	= hugetlbfs_write_end,
1145 	.set_page_dirty	=  __set_page_dirty_no_writeback,
1146 	.migratepage    = hugetlbfs_migrate_page,
1147 	.error_remove_page	= hugetlbfs_error_remove_page,
1148 };
1149 
1150 
1151 static void init_once(void *foo)
1152 {
1153 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1154 
1155 	inode_init_once(&ei->vfs_inode);
1156 }
1157 
1158 const struct file_operations hugetlbfs_file_operations = {
1159 	.read_iter		= hugetlbfs_read_iter,
1160 	.mmap			= hugetlbfs_file_mmap,
1161 	.fsync			= noop_fsync,
1162 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1163 	.llseek			= default_llseek,
1164 	.fallocate		= hugetlbfs_fallocate,
1165 };
1166 
1167 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1168 	.create		= hugetlbfs_create,
1169 	.lookup		= simple_lookup,
1170 	.link		= simple_link,
1171 	.unlink		= simple_unlink,
1172 	.symlink	= hugetlbfs_symlink,
1173 	.mkdir		= hugetlbfs_mkdir,
1174 	.rmdir		= simple_rmdir,
1175 	.mknod		= hugetlbfs_mknod,
1176 	.rename		= simple_rename,
1177 	.setattr	= hugetlbfs_setattr,
1178 	.tmpfile	= hugetlbfs_tmpfile,
1179 };
1180 
1181 static const struct inode_operations hugetlbfs_inode_operations = {
1182 	.setattr	= hugetlbfs_setattr,
1183 };
1184 
1185 static const struct super_operations hugetlbfs_ops = {
1186 	.alloc_inode    = hugetlbfs_alloc_inode,
1187 	.free_inode     = hugetlbfs_free_inode,
1188 	.destroy_inode  = hugetlbfs_destroy_inode,
1189 	.evict_inode	= hugetlbfs_evict_inode,
1190 	.statfs		= hugetlbfs_statfs,
1191 	.put_super	= hugetlbfs_put_super,
1192 	.show_options	= hugetlbfs_show_options,
1193 };
1194 
1195 /*
1196  * Convert size option passed from command line to number of huge pages
1197  * in the pool specified by hstate.  Size option could be in bytes
1198  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1199  */
1200 static long
1201 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1202 			 enum hugetlbfs_size_type val_type)
1203 {
1204 	if (val_type == NO_SIZE)
1205 		return -1;
1206 
1207 	if (val_type == SIZE_PERCENT) {
1208 		size_opt <<= huge_page_shift(h);
1209 		size_opt *= h->max_huge_pages;
1210 		do_div(size_opt, 100);
1211 	}
1212 
1213 	size_opt >>= huge_page_shift(h);
1214 	return size_opt;
1215 }
1216 
1217 /*
1218  * Parse one mount parameter.
1219  */
1220 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1221 {
1222 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1223 	struct fs_parse_result result;
1224 	char *rest;
1225 	unsigned long ps;
1226 	int opt;
1227 
1228 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1229 	if (opt < 0)
1230 		return opt;
1231 
1232 	switch (opt) {
1233 	case Opt_uid:
1234 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1235 		if (!uid_valid(ctx->uid))
1236 			goto bad_val;
1237 		return 0;
1238 
1239 	case Opt_gid:
1240 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1241 		if (!gid_valid(ctx->gid))
1242 			goto bad_val;
1243 		return 0;
1244 
1245 	case Opt_mode:
1246 		ctx->mode = result.uint_32 & 01777U;
1247 		return 0;
1248 
1249 	case Opt_size:
1250 		/* memparse() will accept a K/M/G without a digit */
1251 		if (!isdigit(param->string[0]))
1252 			goto bad_val;
1253 		ctx->max_size_opt = memparse(param->string, &rest);
1254 		ctx->max_val_type = SIZE_STD;
1255 		if (*rest == '%')
1256 			ctx->max_val_type = SIZE_PERCENT;
1257 		return 0;
1258 
1259 	case Opt_nr_inodes:
1260 		/* memparse() will accept a K/M/G without a digit */
1261 		if (!isdigit(param->string[0]))
1262 			goto bad_val;
1263 		ctx->nr_inodes = memparse(param->string, &rest);
1264 		return 0;
1265 
1266 	case Opt_pagesize:
1267 		ps = memparse(param->string, &rest);
1268 		ctx->hstate = size_to_hstate(ps);
1269 		if (!ctx->hstate) {
1270 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1271 			return -EINVAL;
1272 		}
1273 		return 0;
1274 
1275 	case Opt_min_size:
1276 		/* memparse() will accept a K/M/G without a digit */
1277 		if (!isdigit(param->string[0]))
1278 			goto bad_val;
1279 		ctx->min_size_opt = memparse(param->string, &rest);
1280 		ctx->min_val_type = SIZE_STD;
1281 		if (*rest == '%')
1282 			ctx->min_val_type = SIZE_PERCENT;
1283 		return 0;
1284 
1285 	default:
1286 		return -EINVAL;
1287 	}
1288 
1289 bad_val:
1290 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1291 		      param->string, param->key);
1292 }
1293 
1294 /*
1295  * Validate the parsed options.
1296  */
1297 static int hugetlbfs_validate(struct fs_context *fc)
1298 {
1299 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1300 
1301 	/*
1302 	 * Use huge page pool size (in hstate) to convert the size
1303 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1304 	 */
1305 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1306 						   ctx->max_size_opt,
1307 						   ctx->max_val_type);
1308 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1309 						   ctx->min_size_opt,
1310 						   ctx->min_val_type);
1311 
1312 	/*
1313 	 * If max_size was specified, then min_size must be smaller
1314 	 */
1315 	if (ctx->max_val_type > NO_SIZE &&
1316 	    ctx->min_hpages > ctx->max_hpages) {
1317 		pr_err("Minimum size can not be greater than maximum size\n");
1318 		return -EINVAL;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static int
1325 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1326 {
1327 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1328 	struct hugetlbfs_sb_info *sbinfo;
1329 
1330 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1331 	if (!sbinfo)
1332 		return -ENOMEM;
1333 	sb->s_fs_info = sbinfo;
1334 	spin_lock_init(&sbinfo->stat_lock);
1335 	sbinfo->hstate		= ctx->hstate;
1336 	sbinfo->max_inodes	= ctx->nr_inodes;
1337 	sbinfo->free_inodes	= ctx->nr_inodes;
1338 	sbinfo->spool		= NULL;
1339 	sbinfo->uid		= ctx->uid;
1340 	sbinfo->gid		= ctx->gid;
1341 	sbinfo->mode		= ctx->mode;
1342 
1343 	/*
1344 	 * Allocate and initialize subpool if maximum or minimum size is
1345 	 * specified.  Any needed reservations (for minimum size) are taken
1346 	 * taken when the subpool is created.
1347 	 */
1348 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1349 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1350 						     ctx->max_hpages,
1351 						     ctx->min_hpages);
1352 		if (!sbinfo->spool)
1353 			goto out_free;
1354 	}
1355 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1356 	sb->s_blocksize = huge_page_size(ctx->hstate);
1357 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1358 	sb->s_magic = HUGETLBFS_MAGIC;
1359 	sb->s_op = &hugetlbfs_ops;
1360 	sb->s_time_gran = 1;
1361 
1362 	/*
1363 	 * Due to the special and limited functionality of hugetlbfs, it does
1364 	 * not work well as a stacking filesystem.
1365 	 */
1366 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1367 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1368 	if (!sb->s_root)
1369 		goto out_free;
1370 	return 0;
1371 out_free:
1372 	kfree(sbinfo->spool);
1373 	kfree(sbinfo);
1374 	return -ENOMEM;
1375 }
1376 
1377 static int hugetlbfs_get_tree(struct fs_context *fc)
1378 {
1379 	int err = hugetlbfs_validate(fc);
1380 	if (err)
1381 		return err;
1382 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1383 }
1384 
1385 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1386 {
1387 	kfree(fc->fs_private);
1388 }
1389 
1390 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1391 	.free		= hugetlbfs_fs_context_free,
1392 	.parse_param	= hugetlbfs_parse_param,
1393 	.get_tree	= hugetlbfs_get_tree,
1394 };
1395 
1396 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1397 {
1398 	struct hugetlbfs_fs_context *ctx;
1399 
1400 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1401 	if (!ctx)
1402 		return -ENOMEM;
1403 
1404 	ctx->max_hpages	= -1; /* No limit on size by default */
1405 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1406 	ctx->uid	= current_fsuid();
1407 	ctx->gid	= current_fsgid();
1408 	ctx->mode	= 0755;
1409 	ctx->hstate	= &default_hstate;
1410 	ctx->min_hpages	= -1; /* No default minimum size */
1411 	ctx->max_val_type = NO_SIZE;
1412 	ctx->min_val_type = NO_SIZE;
1413 	fc->fs_private = ctx;
1414 	fc->ops	= &hugetlbfs_fs_context_ops;
1415 	return 0;
1416 }
1417 
1418 static struct file_system_type hugetlbfs_fs_type = {
1419 	.name			= "hugetlbfs",
1420 	.init_fs_context	= hugetlbfs_init_fs_context,
1421 	.parameters		= hugetlb_fs_parameters,
1422 	.kill_sb		= kill_litter_super,
1423 };
1424 
1425 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1426 
1427 static int can_do_hugetlb_shm(void)
1428 {
1429 	kgid_t shm_group;
1430 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1431 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1432 }
1433 
1434 static int get_hstate_idx(int page_size_log)
1435 {
1436 	struct hstate *h = hstate_sizelog(page_size_log);
1437 
1438 	if (!h)
1439 		return -1;
1440 	return hstate_index(h);
1441 }
1442 
1443 /*
1444  * Note that size should be aligned to proper hugepage size in caller side,
1445  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1446  */
1447 struct file *hugetlb_file_setup(const char *name, size_t size,
1448 				vm_flags_t acctflag, struct user_struct **user,
1449 				int creat_flags, int page_size_log)
1450 {
1451 	struct inode *inode;
1452 	struct vfsmount *mnt;
1453 	int hstate_idx;
1454 	struct file *file;
1455 
1456 	hstate_idx = get_hstate_idx(page_size_log);
1457 	if (hstate_idx < 0)
1458 		return ERR_PTR(-ENODEV);
1459 
1460 	*user = NULL;
1461 	mnt = hugetlbfs_vfsmount[hstate_idx];
1462 	if (!mnt)
1463 		return ERR_PTR(-ENOENT);
1464 
1465 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1466 		*user = current_user();
1467 		if (user_shm_lock(size, *user)) {
1468 			task_lock(current);
1469 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1470 				current->comm, current->pid);
1471 			task_unlock(current);
1472 		} else {
1473 			*user = NULL;
1474 			return ERR_PTR(-EPERM);
1475 		}
1476 	}
1477 
1478 	file = ERR_PTR(-ENOSPC);
1479 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1480 	if (!inode)
1481 		goto out;
1482 	if (creat_flags == HUGETLB_SHMFS_INODE)
1483 		inode->i_flags |= S_PRIVATE;
1484 
1485 	inode->i_size = size;
1486 	clear_nlink(inode);
1487 
1488 	if (!hugetlb_reserve_pages(inode, 0,
1489 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1490 			acctflag))
1491 		file = ERR_PTR(-ENOMEM);
1492 	else
1493 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1494 					&hugetlbfs_file_operations);
1495 	if (!IS_ERR(file))
1496 		return file;
1497 
1498 	iput(inode);
1499 out:
1500 	if (*user) {
1501 		user_shm_unlock(size, *user);
1502 		*user = NULL;
1503 	}
1504 	return file;
1505 }
1506 
1507 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1508 {
1509 	struct fs_context *fc;
1510 	struct vfsmount *mnt;
1511 
1512 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1513 	if (IS_ERR(fc)) {
1514 		mnt = ERR_CAST(fc);
1515 	} else {
1516 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1517 		ctx->hstate = h;
1518 		mnt = fc_mount(fc);
1519 		put_fs_context(fc);
1520 	}
1521 	if (IS_ERR(mnt))
1522 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1523 		       huge_page_size(h) >> 10);
1524 	return mnt;
1525 }
1526 
1527 static int __init init_hugetlbfs_fs(void)
1528 {
1529 	struct vfsmount *mnt;
1530 	struct hstate *h;
1531 	int error;
1532 	int i;
1533 
1534 	if (!hugepages_supported()) {
1535 		pr_info("disabling because there are no supported hugepage sizes\n");
1536 		return -ENOTSUPP;
1537 	}
1538 
1539 	error = -ENOMEM;
1540 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1541 					sizeof(struct hugetlbfs_inode_info),
1542 					0, SLAB_ACCOUNT, init_once);
1543 	if (hugetlbfs_inode_cachep == NULL)
1544 		goto out;
1545 
1546 	error = register_filesystem(&hugetlbfs_fs_type);
1547 	if (error)
1548 		goto out_free;
1549 
1550 	/* default hstate mount is required */
1551 	mnt = mount_one_hugetlbfs(&default_hstate);
1552 	if (IS_ERR(mnt)) {
1553 		error = PTR_ERR(mnt);
1554 		goto out_unreg;
1555 	}
1556 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1557 
1558 	/* other hstates are optional */
1559 	i = 0;
1560 	for_each_hstate(h) {
1561 		if (i == default_hstate_idx) {
1562 			i++;
1563 			continue;
1564 		}
1565 
1566 		mnt = mount_one_hugetlbfs(h);
1567 		if (IS_ERR(mnt))
1568 			hugetlbfs_vfsmount[i] = NULL;
1569 		else
1570 			hugetlbfs_vfsmount[i] = mnt;
1571 		i++;
1572 	}
1573 
1574 	return 0;
1575 
1576  out_unreg:
1577 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1578  out_free:
1579 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1580  out:
1581 	return error;
1582 }
1583 fs_initcall(init_hugetlbfs_fs)
1584