xref: /linux/fs/hugetlbfs/inode.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 static const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 /*
87  * Mask used when checking the page offset value passed in via system
88  * calls.  This value will be converted to a loff_t which is signed.
89  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
90  * value.  The extra bit (- 1 in the shift value) is to take the sign
91  * bit into account.
92  */
93 #define PGOFF_LOFFT_MAX \
94 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
95 
96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
97 {
98 	struct inode *inode = file_inode(file);
99 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
100 	loff_t len, vma_len;
101 	int ret;
102 	struct hstate *h = hstate_file(file);
103 	vm_flags_t vm_flags;
104 
105 	/*
106 	 * vma address alignment (but not the pgoff alignment) has
107 	 * already been checked by prepare_hugepage_range.  If you add
108 	 * any error returns here, do so after setting VM_HUGETLB, so
109 	 * is_vm_hugetlb_page tests below unmap_region go the right
110 	 * way when do_mmap unwinds (may be important on powerpc
111 	 * and ia64).
112 	 */
113 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
114 	vma->vm_ops = &hugetlb_vm_ops;
115 
116 	ret = seal_check_write(info->seals, vma);
117 	if (ret)
118 		return ret;
119 
120 	/*
121 	 * page based offset in vm_pgoff could be sufficiently large to
122 	 * overflow a loff_t when converted to byte offset.  This can
123 	 * only happen on architectures where sizeof(loff_t) ==
124 	 * sizeof(unsigned long).  So, only check in those instances.
125 	 */
126 	if (sizeof(unsigned long) == sizeof(loff_t)) {
127 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
128 			return -EINVAL;
129 	}
130 
131 	/* must be huge page aligned */
132 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
133 		return -EINVAL;
134 
135 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
136 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
137 	/* check for overflow */
138 	if (len < vma_len)
139 		return -EINVAL;
140 
141 	inode_lock(inode);
142 	file_accessed(file);
143 
144 	ret = -ENOMEM;
145 
146 	vm_flags = vma->vm_flags;
147 	/*
148 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
149 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
150 	 * flag S_PRIVATE is set.
151 	 */
152 	if (inode->i_flags & S_PRIVATE)
153 		vm_flags |= VM_NORESERVE;
154 
155 	if (!hugetlb_reserve_pages(inode,
156 				vma->vm_pgoff >> huge_page_order(h),
157 				len >> huge_page_shift(h), vma,
158 				vm_flags))
159 		goto out;
160 
161 	ret = 0;
162 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
163 		i_size_write(inode, len);
164 out:
165 	inode_unlock(inode);
166 
167 	return ret;
168 }
169 
170 /*
171  * Called under mmap_write_lock(mm).
172  */
173 
174 static unsigned long
175 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
176 		unsigned long len, unsigned long pgoff, unsigned long flags)
177 {
178 	struct hstate *h = hstate_file(file);
179 	struct vm_unmapped_area_info info = {};
180 
181 	info.length = len;
182 	info.low_limit = current->mm->mmap_base;
183 	info.high_limit = arch_get_mmap_end(addr, len, flags);
184 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
185 	return vm_unmapped_area(&info);
186 }
187 
188 static unsigned long
189 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
190 		unsigned long len, unsigned long pgoff, unsigned long flags)
191 {
192 	struct hstate *h = hstate_file(file);
193 	struct vm_unmapped_area_info info = {};
194 
195 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
196 	info.length = len;
197 	info.low_limit = PAGE_SIZE;
198 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
199 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
200 	addr = vm_unmapped_area(&info);
201 
202 	/*
203 	 * A failed mmap() very likely causes application failure,
204 	 * so fall back to the bottom-up function here. This scenario
205 	 * can happen with large stack limits and large mmap()
206 	 * allocations.
207 	 */
208 	if (unlikely(offset_in_page(addr))) {
209 		VM_BUG_ON(addr != -ENOMEM);
210 		info.flags = 0;
211 		info.low_limit = current->mm->mmap_base;
212 		info.high_limit = arch_get_mmap_end(addr, len, flags);
213 		addr = vm_unmapped_area(&info);
214 	}
215 
216 	return addr;
217 }
218 
219 unsigned long
220 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
221 				  unsigned long len, unsigned long pgoff,
222 				  unsigned long flags)
223 {
224 	struct mm_struct *mm = current->mm;
225 	struct vm_area_struct *vma;
226 	struct hstate *h = hstate_file(file);
227 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
228 
229 	if (len & ~huge_page_mask(h))
230 		return -EINVAL;
231 	if (len > TASK_SIZE)
232 		return -ENOMEM;
233 
234 	if (flags & MAP_FIXED) {
235 		if (prepare_hugepage_range(file, addr, len))
236 			return -EINVAL;
237 		return addr;
238 	}
239 
240 	if (addr) {
241 		addr = ALIGN(addr, huge_page_size(h));
242 		vma = find_vma(mm, addr);
243 		if (mmap_end - len >= addr &&
244 		    (!vma || addr + len <= vm_start_gap(vma)))
245 			return addr;
246 	}
247 
248 	/*
249 	 * Use MMF_TOPDOWN flag as a hint to use topdown routine.
250 	 * If architectures have special needs, they should define their own
251 	 * version of hugetlb_get_unmapped_area.
252 	 */
253 	if (test_bit(MMF_TOPDOWN, &mm->flags))
254 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
255 				pgoff, flags);
256 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
257 			pgoff, flags);
258 }
259 
260 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
261 static unsigned long
262 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
263 			  unsigned long len, unsigned long pgoff,
264 			  unsigned long flags)
265 {
266 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
267 }
268 #endif
269 
270 /*
271  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
272  * Returns the maximum number of bytes one can read without touching the 1st raw
273  * HWPOISON subpage.
274  *
275  * The implementation borrows the iteration logic from copy_page_to_iter*.
276  */
277 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
278 {
279 	size_t n = 0;
280 	size_t res = 0;
281 
282 	/* First subpage to start the loop. */
283 	page = nth_page(page, offset / PAGE_SIZE);
284 	offset %= PAGE_SIZE;
285 	while (1) {
286 		if (is_raw_hwpoison_page_in_hugepage(page))
287 			break;
288 
289 		/* Safe to read n bytes without touching HWPOISON subpage. */
290 		n = min(bytes, (size_t)PAGE_SIZE - offset);
291 		res += n;
292 		bytes -= n;
293 		if (!bytes || !n)
294 			break;
295 		offset += n;
296 		if (offset == PAGE_SIZE) {
297 			page = nth_page(page, 1);
298 			offset = 0;
299 		}
300 	}
301 
302 	return res;
303 }
304 
305 /*
306  * Support for read() - Find the page attached to f_mapping and copy out the
307  * data. This provides functionality similar to filemap_read().
308  */
309 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
310 {
311 	struct file *file = iocb->ki_filp;
312 	struct hstate *h = hstate_file(file);
313 	struct address_space *mapping = file->f_mapping;
314 	struct inode *inode = mapping->host;
315 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
316 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
317 	unsigned long end_index;
318 	loff_t isize;
319 	ssize_t retval = 0;
320 
321 	while (iov_iter_count(to)) {
322 		struct folio *folio;
323 		size_t nr, copied, want;
324 
325 		/* nr is the maximum number of bytes to copy from this page */
326 		nr = huge_page_size(h);
327 		isize = i_size_read(inode);
328 		if (!isize)
329 			break;
330 		end_index = (isize - 1) >> huge_page_shift(h);
331 		if (index > end_index)
332 			break;
333 		if (index == end_index) {
334 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
335 			if (nr <= offset)
336 				break;
337 		}
338 		nr = nr - offset;
339 
340 		/* Find the folio */
341 		folio = filemap_lock_hugetlb_folio(h, mapping, index);
342 		if (IS_ERR(folio)) {
343 			/*
344 			 * We have a HOLE, zero out the user-buffer for the
345 			 * length of the hole or request.
346 			 */
347 			copied = iov_iter_zero(nr, to);
348 		} else {
349 			folio_unlock(folio);
350 
351 			if (!folio_test_hwpoison(folio))
352 				want = nr;
353 			else {
354 				/*
355 				 * Adjust how many bytes safe to read without
356 				 * touching the 1st raw HWPOISON subpage after
357 				 * offset.
358 				 */
359 				want = adjust_range_hwpoison(&folio->page, offset, nr);
360 				if (want == 0) {
361 					folio_put(folio);
362 					retval = -EIO;
363 					break;
364 				}
365 			}
366 
367 			/*
368 			 * We have the folio, copy it to user space buffer.
369 			 */
370 			copied = copy_folio_to_iter(folio, offset, want, to);
371 			folio_put(folio);
372 		}
373 		offset += copied;
374 		retval += copied;
375 		if (copied != nr && iov_iter_count(to)) {
376 			if (!retval)
377 				retval = -EFAULT;
378 			break;
379 		}
380 		index += offset >> huge_page_shift(h);
381 		offset &= ~huge_page_mask(h);
382 	}
383 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
384 	return retval;
385 }
386 
387 static int hugetlbfs_write_begin(struct file *file,
388 			struct address_space *mapping,
389 			loff_t pos, unsigned len,
390 			struct page **pagep, void **fsdata)
391 {
392 	return -EINVAL;
393 }
394 
395 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
396 			loff_t pos, unsigned len, unsigned copied,
397 			struct page *page, void *fsdata)
398 {
399 	BUG();
400 	return -EINVAL;
401 }
402 
403 static void hugetlb_delete_from_page_cache(struct folio *folio)
404 {
405 	folio_clear_dirty(folio);
406 	folio_clear_uptodate(folio);
407 	filemap_remove_folio(folio);
408 }
409 
410 /*
411  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
412  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
413  * mutex for the page in the mapping.  So, we can not race with page being
414  * faulted into the vma.
415  */
416 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
417 				unsigned long addr, struct page *page)
418 {
419 	pte_t *ptep, pte;
420 
421 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
422 	if (!ptep)
423 		return false;
424 
425 	pte = huge_ptep_get(ptep);
426 	if (huge_pte_none(pte) || !pte_present(pte))
427 		return false;
428 
429 	if (pte_page(pte) == page)
430 		return true;
431 
432 	return false;
433 }
434 
435 /*
436  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
437  * No, because the interval tree returns us only those vmas
438  * which overlap the truncated area starting at pgoff,
439  * and no vma on a 32-bit arch can span beyond the 4GB.
440  */
441 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
442 {
443 	unsigned long offset = 0;
444 
445 	if (vma->vm_pgoff < start)
446 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
447 
448 	return vma->vm_start + offset;
449 }
450 
451 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
452 {
453 	unsigned long t_end;
454 
455 	if (!end)
456 		return vma->vm_end;
457 
458 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
459 	if (t_end > vma->vm_end)
460 		t_end = vma->vm_end;
461 	return t_end;
462 }
463 
464 /*
465  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
466  * this folio can be created while executing the routine.
467  */
468 static void hugetlb_unmap_file_folio(struct hstate *h,
469 					struct address_space *mapping,
470 					struct folio *folio, pgoff_t index)
471 {
472 	struct rb_root_cached *root = &mapping->i_mmap;
473 	struct hugetlb_vma_lock *vma_lock;
474 	struct page *page = &folio->page;
475 	struct vm_area_struct *vma;
476 	unsigned long v_start;
477 	unsigned long v_end;
478 	pgoff_t start, end;
479 
480 	start = index * pages_per_huge_page(h);
481 	end = (index + 1) * pages_per_huge_page(h);
482 
483 	i_mmap_lock_write(mapping);
484 retry:
485 	vma_lock = NULL;
486 	vma_interval_tree_foreach(vma, root, start, end - 1) {
487 		v_start = vma_offset_start(vma, start);
488 		v_end = vma_offset_end(vma, end);
489 
490 		if (!hugetlb_vma_maps_page(vma, v_start, page))
491 			continue;
492 
493 		if (!hugetlb_vma_trylock_write(vma)) {
494 			vma_lock = vma->vm_private_data;
495 			/*
496 			 * If we can not get vma lock, we need to drop
497 			 * immap_sema and take locks in order.  First,
498 			 * take a ref on the vma_lock structure so that
499 			 * we can be guaranteed it will not go away when
500 			 * dropping immap_sema.
501 			 */
502 			kref_get(&vma_lock->refs);
503 			break;
504 		}
505 
506 		unmap_hugepage_range(vma, v_start, v_end, NULL,
507 				     ZAP_FLAG_DROP_MARKER);
508 		hugetlb_vma_unlock_write(vma);
509 	}
510 
511 	i_mmap_unlock_write(mapping);
512 
513 	if (vma_lock) {
514 		/*
515 		 * Wait on vma_lock.  We know it is still valid as we have
516 		 * a reference.  We must 'open code' vma locking as we do
517 		 * not know if vma_lock is still attached to vma.
518 		 */
519 		down_write(&vma_lock->rw_sema);
520 		i_mmap_lock_write(mapping);
521 
522 		vma = vma_lock->vma;
523 		if (!vma) {
524 			/*
525 			 * If lock is no longer attached to vma, then just
526 			 * unlock, drop our reference and retry looking for
527 			 * other vmas.
528 			 */
529 			up_write(&vma_lock->rw_sema);
530 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
531 			goto retry;
532 		}
533 
534 		/*
535 		 * vma_lock is still attached to vma.  Check to see if vma
536 		 * still maps page and if so, unmap.
537 		 */
538 		v_start = vma_offset_start(vma, start);
539 		v_end = vma_offset_end(vma, end);
540 		if (hugetlb_vma_maps_page(vma, v_start, page))
541 			unmap_hugepage_range(vma, v_start, v_end, NULL,
542 					     ZAP_FLAG_DROP_MARKER);
543 
544 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
545 		hugetlb_vma_unlock_write(vma);
546 
547 		goto retry;
548 	}
549 }
550 
551 static void
552 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
553 		      zap_flags_t zap_flags)
554 {
555 	struct vm_area_struct *vma;
556 
557 	/*
558 	 * end == 0 indicates that the entire range after start should be
559 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
560 	 * an inclusive "last".
561 	 */
562 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
563 		unsigned long v_start;
564 		unsigned long v_end;
565 
566 		if (!hugetlb_vma_trylock_write(vma))
567 			continue;
568 
569 		v_start = vma_offset_start(vma, start);
570 		v_end = vma_offset_end(vma, end);
571 
572 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
573 
574 		/*
575 		 * Note that vma lock only exists for shared/non-private
576 		 * vmas.  Therefore, lock is not held when calling
577 		 * unmap_hugepage_range for private vmas.
578 		 */
579 		hugetlb_vma_unlock_write(vma);
580 	}
581 }
582 
583 /*
584  * Called with hugetlb fault mutex held.
585  * Returns true if page was actually removed, false otherwise.
586  */
587 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
588 					struct address_space *mapping,
589 					struct folio *folio, pgoff_t index,
590 					bool truncate_op)
591 {
592 	bool ret = false;
593 
594 	/*
595 	 * If folio is mapped, it was faulted in after being
596 	 * unmapped in caller.  Unmap (again) while holding
597 	 * the fault mutex.  The mutex will prevent faults
598 	 * until we finish removing the folio.
599 	 */
600 	if (unlikely(folio_mapped(folio)))
601 		hugetlb_unmap_file_folio(h, mapping, folio, index);
602 
603 	folio_lock(folio);
604 	/*
605 	 * We must remove the folio from page cache before removing
606 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
607 	 * rare out of memory conditions, removal of the region/reserve
608 	 * map could fail.  Correspondingly, the subpool and global
609 	 * reserve usage count can need to be adjusted.
610 	 */
611 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
612 	hugetlb_delete_from_page_cache(folio);
613 	ret = true;
614 	if (!truncate_op) {
615 		if (unlikely(hugetlb_unreserve_pages(inode, index,
616 							index + 1, 1)))
617 			hugetlb_fix_reserve_counts(inode);
618 	}
619 
620 	folio_unlock(folio);
621 	return ret;
622 }
623 
624 /*
625  * remove_inode_hugepages handles two distinct cases: truncation and hole
626  * punch.  There are subtle differences in operation for each case.
627  *
628  * truncation is indicated by end of range being LLONG_MAX
629  *	In this case, we first scan the range and release found pages.
630  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
631  *	maps and global counts.  Page faults can race with truncation.
632  *	During faults, hugetlb_no_page() checks i_size before page allocation,
633  *	and again after obtaining page table lock.  It will 'back out'
634  *	allocations in the truncated range.
635  * hole punch is indicated if end is not LLONG_MAX
636  *	In the hole punch case we scan the range and release found pages.
637  *	Only when releasing a page is the associated region/reserve map
638  *	deleted.  The region/reserve map for ranges without associated
639  *	pages are not modified.  Page faults can race with hole punch.
640  *	This is indicated if we find a mapped page.
641  * Note: If the passed end of range value is beyond the end of file, but
642  * not LLONG_MAX this routine still performs a hole punch operation.
643  */
644 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
645 				   loff_t lend)
646 {
647 	struct hstate *h = hstate_inode(inode);
648 	struct address_space *mapping = &inode->i_data;
649 	const pgoff_t end = lend >> PAGE_SHIFT;
650 	struct folio_batch fbatch;
651 	pgoff_t next, index;
652 	int i, freed = 0;
653 	bool truncate_op = (lend == LLONG_MAX);
654 
655 	folio_batch_init(&fbatch);
656 	next = lstart >> PAGE_SHIFT;
657 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
658 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
659 			struct folio *folio = fbatch.folios[i];
660 			u32 hash = 0;
661 
662 			index = folio->index >> huge_page_order(h);
663 			hash = hugetlb_fault_mutex_hash(mapping, index);
664 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
665 
666 			/*
667 			 * Remove folio that was part of folio_batch.
668 			 */
669 			if (remove_inode_single_folio(h, inode, mapping, folio,
670 							index, truncate_op))
671 				freed++;
672 
673 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
674 		}
675 		folio_batch_release(&fbatch);
676 		cond_resched();
677 	}
678 
679 	if (truncate_op)
680 		(void)hugetlb_unreserve_pages(inode,
681 				lstart >> huge_page_shift(h),
682 				LONG_MAX, freed);
683 }
684 
685 static void hugetlbfs_evict_inode(struct inode *inode)
686 {
687 	struct resv_map *resv_map;
688 
689 	remove_inode_hugepages(inode, 0, LLONG_MAX);
690 
691 	/*
692 	 * Get the resv_map from the address space embedded in the inode.
693 	 * This is the address space which points to any resv_map allocated
694 	 * at inode creation time.  If this is a device special inode,
695 	 * i_mapping may not point to the original address space.
696 	 */
697 	resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
698 	/* Only regular and link inodes have associated reserve maps */
699 	if (resv_map)
700 		resv_map_release(&resv_map->refs);
701 	clear_inode(inode);
702 }
703 
704 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
705 {
706 	pgoff_t pgoff;
707 	struct address_space *mapping = inode->i_mapping;
708 	struct hstate *h = hstate_inode(inode);
709 
710 	BUG_ON(offset & ~huge_page_mask(h));
711 	pgoff = offset >> PAGE_SHIFT;
712 
713 	i_size_write(inode, offset);
714 	i_mmap_lock_write(mapping);
715 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
716 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
717 				      ZAP_FLAG_DROP_MARKER);
718 	i_mmap_unlock_write(mapping);
719 	remove_inode_hugepages(inode, offset, LLONG_MAX);
720 }
721 
722 static void hugetlbfs_zero_partial_page(struct hstate *h,
723 					struct address_space *mapping,
724 					loff_t start,
725 					loff_t end)
726 {
727 	pgoff_t idx = start >> huge_page_shift(h);
728 	struct folio *folio;
729 
730 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
731 	if (IS_ERR(folio))
732 		return;
733 
734 	start = start & ~huge_page_mask(h);
735 	end = end & ~huge_page_mask(h);
736 	if (!end)
737 		end = huge_page_size(h);
738 
739 	folio_zero_segment(folio, (size_t)start, (size_t)end);
740 
741 	folio_unlock(folio);
742 	folio_put(folio);
743 }
744 
745 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
746 {
747 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
748 	struct address_space *mapping = inode->i_mapping;
749 	struct hstate *h = hstate_inode(inode);
750 	loff_t hpage_size = huge_page_size(h);
751 	loff_t hole_start, hole_end;
752 
753 	/*
754 	 * hole_start and hole_end indicate the full pages within the hole.
755 	 */
756 	hole_start = round_up(offset, hpage_size);
757 	hole_end = round_down(offset + len, hpage_size);
758 
759 	inode_lock(inode);
760 
761 	/* protected by i_rwsem */
762 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
763 		inode_unlock(inode);
764 		return -EPERM;
765 	}
766 
767 	i_mmap_lock_write(mapping);
768 
769 	/* If range starts before first full page, zero partial page. */
770 	if (offset < hole_start)
771 		hugetlbfs_zero_partial_page(h, mapping,
772 				offset, min(offset + len, hole_start));
773 
774 	/* Unmap users of full pages in the hole. */
775 	if (hole_end > hole_start) {
776 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
777 			hugetlb_vmdelete_list(&mapping->i_mmap,
778 					      hole_start >> PAGE_SHIFT,
779 					      hole_end >> PAGE_SHIFT, 0);
780 	}
781 
782 	/* If range extends beyond last full page, zero partial page. */
783 	if ((offset + len) > hole_end && (offset + len) > hole_start)
784 		hugetlbfs_zero_partial_page(h, mapping,
785 				hole_end, offset + len);
786 
787 	i_mmap_unlock_write(mapping);
788 
789 	/* Remove full pages from the file. */
790 	if (hole_end > hole_start)
791 		remove_inode_hugepages(inode, hole_start, hole_end);
792 
793 	inode_unlock(inode);
794 
795 	return 0;
796 }
797 
798 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
799 				loff_t len)
800 {
801 	struct inode *inode = file_inode(file);
802 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
803 	struct address_space *mapping = inode->i_mapping;
804 	struct hstate *h = hstate_inode(inode);
805 	struct vm_area_struct pseudo_vma;
806 	struct mm_struct *mm = current->mm;
807 	loff_t hpage_size = huge_page_size(h);
808 	unsigned long hpage_shift = huge_page_shift(h);
809 	pgoff_t start, index, end;
810 	int error;
811 	u32 hash;
812 
813 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
814 		return -EOPNOTSUPP;
815 
816 	if (mode & FALLOC_FL_PUNCH_HOLE)
817 		return hugetlbfs_punch_hole(inode, offset, len);
818 
819 	/*
820 	 * Default preallocate case.
821 	 * For this range, start is rounded down and end is rounded up
822 	 * as well as being converted to page offsets.
823 	 */
824 	start = offset >> hpage_shift;
825 	end = (offset + len + hpage_size - 1) >> hpage_shift;
826 
827 	inode_lock(inode);
828 
829 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
830 	error = inode_newsize_ok(inode, offset + len);
831 	if (error)
832 		goto out;
833 
834 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
835 		error = -EPERM;
836 		goto out;
837 	}
838 
839 	/*
840 	 * Initialize a pseudo vma as this is required by the huge page
841 	 * allocation routines.
842 	 */
843 	vma_init(&pseudo_vma, mm);
844 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
845 	pseudo_vma.vm_file = file;
846 
847 	for (index = start; index < end; index++) {
848 		/*
849 		 * This is supposed to be the vaddr where the page is being
850 		 * faulted in, but we have no vaddr here.
851 		 */
852 		struct folio *folio;
853 		unsigned long addr;
854 
855 		cond_resched();
856 
857 		/*
858 		 * fallocate(2) manpage permits EINTR; we may have been
859 		 * interrupted because we are using up too much memory.
860 		 */
861 		if (signal_pending(current)) {
862 			error = -EINTR;
863 			break;
864 		}
865 
866 		/* addr is the offset within the file (zero based) */
867 		addr = index * hpage_size;
868 
869 		/* mutex taken here, fault path and hole punch */
870 		hash = hugetlb_fault_mutex_hash(mapping, index);
871 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
872 
873 		/* See if already present in mapping to avoid alloc/free */
874 		folio = filemap_get_folio(mapping, index << huge_page_order(h));
875 		if (!IS_ERR(folio)) {
876 			folio_put(folio);
877 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
878 			continue;
879 		}
880 
881 		/*
882 		 * Allocate folio without setting the avoid_reserve argument.
883 		 * There certainly are no reserves associated with the
884 		 * pseudo_vma.  However, there could be shared mappings with
885 		 * reserves for the file at the inode level.  If we fallocate
886 		 * folios in these areas, we need to consume the reserves
887 		 * to keep reservation accounting consistent.
888 		 */
889 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
890 		if (IS_ERR(folio)) {
891 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
892 			error = PTR_ERR(folio);
893 			goto out;
894 		}
895 		clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
896 		__folio_mark_uptodate(folio);
897 		error = hugetlb_add_to_page_cache(folio, mapping, index);
898 		if (unlikely(error)) {
899 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
900 			folio_put(folio);
901 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
902 			goto out;
903 		}
904 
905 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
906 
907 		folio_set_hugetlb_migratable(folio);
908 		/*
909 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
910 		 * folio_put() due to reference from alloc_hugetlb_folio()
911 		 */
912 		folio_unlock(folio);
913 		folio_put(folio);
914 	}
915 
916 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
917 		i_size_write(inode, offset + len);
918 	inode_set_ctime_current(inode);
919 out:
920 	inode_unlock(inode);
921 	return error;
922 }
923 
924 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
925 			     struct dentry *dentry, struct iattr *attr)
926 {
927 	struct inode *inode = d_inode(dentry);
928 	struct hstate *h = hstate_inode(inode);
929 	int error;
930 	unsigned int ia_valid = attr->ia_valid;
931 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
932 
933 	error = setattr_prepare(idmap, dentry, attr);
934 	if (error)
935 		return error;
936 
937 	if (ia_valid & ATTR_SIZE) {
938 		loff_t oldsize = inode->i_size;
939 		loff_t newsize = attr->ia_size;
940 
941 		if (newsize & ~huge_page_mask(h))
942 			return -EINVAL;
943 		/* protected by i_rwsem */
944 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
945 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
946 			return -EPERM;
947 		hugetlb_vmtruncate(inode, newsize);
948 	}
949 
950 	setattr_copy(idmap, inode, attr);
951 	mark_inode_dirty(inode);
952 	return 0;
953 }
954 
955 static struct inode *hugetlbfs_get_root(struct super_block *sb,
956 					struct hugetlbfs_fs_context *ctx)
957 {
958 	struct inode *inode;
959 
960 	inode = new_inode(sb);
961 	if (inode) {
962 		inode->i_ino = get_next_ino();
963 		inode->i_mode = S_IFDIR | ctx->mode;
964 		inode->i_uid = ctx->uid;
965 		inode->i_gid = ctx->gid;
966 		simple_inode_init_ts(inode);
967 		inode->i_op = &hugetlbfs_dir_inode_operations;
968 		inode->i_fop = &simple_dir_operations;
969 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
970 		inc_nlink(inode);
971 		lockdep_annotate_inode_mutex_key(inode);
972 	}
973 	return inode;
974 }
975 
976 /*
977  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
978  * be taken from reclaim -- unlike regular filesystems. This needs an
979  * annotation because huge_pmd_share() does an allocation under hugetlb's
980  * i_mmap_rwsem.
981  */
982 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
983 
984 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
985 					struct mnt_idmap *idmap,
986 					struct inode *dir,
987 					umode_t mode, dev_t dev)
988 {
989 	struct inode *inode;
990 	struct resv_map *resv_map = NULL;
991 
992 	/*
993 	 * Reserve maps are only needed for inodes that can have associated
994 	 * page allocations.
995 	 */
996 	if (S_ISREG(mode) || S_ISLNK(mode)) {
997 		resv_map = resv_map_alloc();
998 		if (!resv_map)
999 			return NULL;
1000 	}
1001 
1002 	inode = new_inode(sb);
1003 	if (inode) {
1004 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1005 
1006 		inode->i_ino = get_next_ino();
1007 		inode_init_owner(idmap, inode, dir, mode);
1008 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1009 				&hugetlbfs_i_mmap_rwsem_key);
1010 		inode->i_mapping->a_ops = &hugetlbfs_aops;
1011 		simple_inode_init_ts(inode);
1012 		inode->i_mapping->i_private_data = resv_map;
1013 		info->seals = F_SEAL_SEAL;
1014 		switch (mode & S_IFMT) {
1015 		default:
1016 			init_special_inode(inode, mode, dev);
1017 			break;
1018 		case S_IFREG:
1019 			inode->i_op = &hugetlbfs_inode_operations;
1020 			inode->i_fop = &hugetlbfs_file_operations;
1021 			break;
1022 		case S_IFDIR:
1023 			inode->i_op = &hugetlbfs_dir_inode_operations;
1024 			inode->i_fop = &simple_dir_operations;
1025 
1026 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
1027 			inc_nlink(inode);
1028 			break;
1029 		case S_IFLNK:
1030 			inode->i_op = &page_symlink_inode_operations;
1031 			inode_nohighmem(inode);
1032 			break;
1033 		}
1034 		lockdep_annotate_inode_mutex_key(inode);
1035 	} else {
1036 		if (resv_map)
1037 			kref_put(&resv_map->refs, resv_map_release);
1038 	}
1039 
1040 	return inode;
1041 }
1042 
1043 /*
1044  * File creation. Allocate an inode, and we're done..
1045  */
1046 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1047 			   struct dentry *dentry, umode_t mode, dev_t dev)
1048 {
1049 	struct inode *inode;
1050 
1051 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
1052 	if (!inode)
1053 		return -ENOSPC;
1054 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1055 	d_instantiate(dentry, inode);
1056 	dget(dentry);/* Extra count - pin the dentry in core */
1057 	return 0;
1058 }
1059 
1060 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1061 			   struct dentry *dentry, umode_t mode)
1062 {
1063 	int retval = hugetlbfs_mknod(idmap, dir, dentry,
1064 				     mode | S_IFDIR, 0);
1065 	if (!retval)
1066 		inc_nlink(dir);
1067 	return retval;
1068 }
1069 
1070 static int hugetlbfs_create(struct mnt_idmap *idmap,
1071 			    struct inode *dir, struct dentry *dentry,
1072 			    umode_t mode, bool excl)
1073 {
1074 	return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1075 }
1076 
1077 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1078 			     struct inode *dir, struct file *file,
1079 			     umode_t mode)
1080 {
1081 	struct inode *inode;
1082 
1083 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1084 	if (!inode)
1085 		return -ENOSPC;
1086 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1087 	d_tmpfile(file, inode);
1088 	return finish_open_simple(file, 0);
1089 }
1090 
1091 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1092 			     struct inode *dir, struct dentry *dentry,
1093 			     const char *symname)
1094 {
1095 	const umode_t mode = S_IFLNK|S_IRWXUGO;
1096 	struct inode *inode;
1097 	int error = -ENOSPC;
1098 
1099 	inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1100 	if (inode) {
1101 		int l = strlen(symname)+1;
1102 		error = page_symlink(inode, symname, l);
1103 		if (!error) {
1104 			d_instantiate(dentry, inode);
1105 			dget(dentry);
1106 		} else
1107 			iput(inode);
1108 	}
1109 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1110 
1111 	return error;
1112 }
1113 
1114 #ifdef CONFIG_MIGRATION
1115 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1116 				struct folio *dst, struct folio *src,
1117 				enum migrate_mode mode)
1118 {
1119 	int rc;
1120 
1121 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1122 	if (rc != MIGRATEPAGE_SUCCESS)
1123 		return rc;
1124 
1125 	if (hugetlb_folio_subpool(src)) {
1126 		hugetlb_set_folio_subpool(dst,
1127 					hugetlb_folio_subpool(src));
1128 		hugetlb_set_folio_subpool(src, NULL);
1129 	}
1130 
1131 	if (mode != MIGRATE_SYNC_NO_COPY)
1132 		folio_migrate_copy(dst, src);
1133 	else
1134 		folio_migrate_flags(dst, src);
1135 
1136 	return MIGRATEPAGE_SUCCESS;
1137 }
1138 #else
1139 #define hugetlbfs_migrate_folio NULL
1140 #endif
1141 
1142 static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1143 				struct folio *folio)
1144 {
1145 	return 0;
1146 }
1147 
1148 /*
1149  * Display the mount options in /proc/mounts.
1150  */
1151 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1152 {
1153 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1154 	struct hugepage_subpool *spool = sbinfo->spool;
1155 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1156 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1157 	char mod;
1158 
1159 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1160 		seq_printf(m, ",uid=%u",
1161 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1162 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1163 		seq_printf(m, ",gid=%u",
1164 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1165 	if (sbinfo->mode != 0755)
1166 		seq_printf(m, ",mode=%o", sbinfo->mode);
1167 	if (sbinfo->max_inodes != -1)
1168 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1169 
1170 	hpage_size /= 1024;
1171 	mod = 'K';
1172 	if (hpage_size >= 1024) {
1173 		hpage_size /= 1024;
1174 		mod = 'M';
1175 	}
1176 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1177 	if (spool) {
1178 		if (spool->max_hpages != -1)
1179 			seq_printf(m, ",size=%llu",
1180 				   (unsigned long long)spool->max_hpages << hpage_shift);
1181 		if (spool->min_hpages != -1)
1182 			seq_printf(m, ",min_size=%llu",
1183 				   (unsigned long long)spool->min_hpages << hpage_shift);
1184 	}
1185 	return 0;
1186 }
1187 
1188 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1189 {
1190 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1191 	struct hstate *h = hstate_inode(d_inode(dentry));
1192 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1193 
1194 	buf->f_fsid = u64_to_fsid(id);
1195 	buf->f_type = HUGETLBFS_MAGIC;
1196 	buf->f_bsize = huge_page_size(h);
1197 	if (sbinfo) {
1198 		spin_lock(&sbinfo->stat_lock);
1199 		/* If no limits set, just report 0 or -1 for max/free/used
1200 		 * blocks, like simple_statfs() */
1201 		if (sbinfo->spool) {
1202 			long free_pages;
1203 
1204 			spin_lock_irq(&sbinfo->spool->lock);
1205 			buf->f_blocks = sbinfo->spool->max_hpages;
1206 			free_pages = sbinfo->spool->max_hpages
1207 				- sbinfo->spool->used_hpages;
1208 			buf->f_bavail = buf->f_bfree = free_pages;
1209 			spin_unlock_irq(&sbinfo->spool->lock);
1210 			buf->f_files = sbinfo->max_inodes;
1211 			buf->f_ffree = sbinfo->free_inodes;
1212 		}
1213 		spin_unlock(&sbinfo->stat_lock);
1214 	}
1215 	buf->f_namelen = NAME_MAX;
1216 	return 0;
1217 }
1218 
1219 static void hugetlbfs_put_super(struct super_block *sb)
1220 {
1221 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1222 
1223 	if (sbi) {
1224 		sb->s_fs_info = NULL;
1225 
1226 		if (sbi->spool)
1227 			hugepage_put_subpool(sbi->spool);
1228 
1229 		kfree(sbi);
1230 	}
1231 }
1232 
1233 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1234 {
1235 	if (sbinfo->free_inodes >= 0) {
1236 		spin_lock(&sbinfo->stat_lock);
1237 		if (unlikely(!sbinfo->free_inodes)) {
1238 			spin_unlock(&sbinfo->stat_lock);
1239 			return 0;
1240 		}
1241 		sbinfo->free_inodes--;
1242 		spin_unlock(&sbinfo->stat_lock);
1243 	}
1244 
1245 	return 1;
1246 }
1247 
1248 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1249 {
1250 	if (sbinfo->free_inodes >= 0) {
1251 		spin_lock(&sbinfo->stat_lock);
1252 		sbinfo->free_inodes++;
1253 		spin_unlock(&sbinfo->stat_lock);
1254 	}
1255 }
1256 
1257 
1258 static struct kmem_cache *hugetlbfs_inode_cachep;
1259 
1260 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1261 {
1262 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1263 	struct hugetlbfs_inode_info *p;
1264 
1265 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1266 		return NULL;
1267 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1268 	if (unlikely(!p)) {
1269 		hugetlbfs_inc_free_inodes(sbinfo);
1270 		return NULL;
1271 	}
1272 	return &p->vfs_inode;
1273 }
1274 
1275 static void hugetlbfs_free_inode(struct inode *inode)
1276 {
1277 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1278 }
1279 
1280 static void hugetlbfs_destroy_inode(struct inode *inode)
1281 {
1282 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1283 }
1284 
1285 static const struct address_space_operations hugetlbfs_aops = {
1286 	.write_begin	= hugetlbfs_write_begin,
1287 	.write_end	= hugetlbfs_write_end,
1288 	.dirty_folio	= noop_dirty_folio,
1289 	.migrate_folio  = hugetlbfs_migrate_folio,
1290 	.error_remove_folio	= hugetlbfs_error_remove_folio,
1291 };
1292 
1293 
1294 static void init_once(void *foo)
1295 {
1296 	struct hugetlbfs_inode_info *ei = foo;
1297 
1298 	inode_init_once(&ei->vfs_inode);
1299 }
1300 
1301 static const struct file_operations hugetlbfs_file_operations = {
1302 	.read_iter		= hugetlbfs_read_iter,
1303 	.mmap			= hugetlbfs_file_mmap,
1304 	.fsync			= noop_fsync,
1305 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1306 	.llseek			= default_llseek,
1307 	.fallocate		= hugetlbfs_fallocate,
1308 	.fop_flags		= FOP_HUGE_PAGES,
1309 };
1310 
1311 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1312 	.create		= hugetlbfs_create,
1313 	.lookup		= simple_lookup,
1314 	.link		= simple_link,
1315 	.unlink		= simple_unlink,
1316 	.symlink	= hugetlbfs_symlink,
1317 	.mkdir		= hugetlbfs_mkdir,
1318 	.rmdir		= simple_rmdir,
1319 	.mknod		= hugetlbfs_mknod,
1320 	.rename		= simple_rename,
1321 	.setattr	= hugetlbfs_setattr,
1322 	.tmpfile	= hugetlbfs_tmpfile,
1323 };
1324 
1325 static const struct inode_operations hugetlbfs_inode_operations = {
1326 	.setattr	= hugetlbfs_setattr,
1327 };
1328 
1329 static const struct super_operations hugetlbfs_ops = {
1330 	.alloc_inode    = hugetlbfs_alloc_inode,
1331 	.free_inode     = hugetlbfs_free_inode,
1332 	.destroy_inode  = hugetlbfs_destroy_inode,
1333 	.evict_inode	= hugetlbfs_evict_inode,
1334 	.statfs		= hugetlbfs_statfs,
1335 	.put_super	= hugetlbfs_put_super,
1336 	.show_options	= hugetlbfs_show_options,
1337 };
1338 
1339 /*
1340  * Convert size option passed from command line to number of huge pages
1341  * in the pool specified by hstate.  Size option could be in bytes
1342  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1343  */
1344 static long
1345 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1346 			 enum hugetlbfs_size_type val_type)
1347 {
1348 	if (val_type == NO_SIZE)
1349 		return -1;
1350 
1351 	if (val_type == SIZE_PERCENT) {
1352 		size_opt <<= huge_page_shift(h);
1353 		size_opt *= h->max_huge_pages;
1354 		do_div(size_opt, 100);
1355 	}
1356 
1357 	size_opt >>= huge_page_shift(h);
1358 	return size_opt;
1359 }
1360 
1361 /*
1362  * Parse one mount parameter.
1363  */
1364 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1365 {
1366 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1367 	struct fs_parse_result result;
1368 	struct hstate *h;
1369 	char *rest;
1370 	unsigned long ps;
1371 	int opt;
1372 
1373 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1374 	if (opt < 0)
1375 		return opt;
1376 
1377 	switch (opt) {
1378 	case Opt_uid:
1379 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1380 		if (!uid_valid(ctx->uid))
1381 			goto bad_val;
1382 		return 0;
1383 
1384 	case Opt_gid:
1385 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1386 		if (!gid_valid(ctx->gid))
1387 			goto bad_val;
1388 		return 0;
1389 
1390 	case Opt_mode:
1391 		ctx->mode = result.uint_32 & 01777U;
1392 		return 0;
1393 
1394 	case Opt_size:
1395 		/* memparse() will accept a K/M/G without a digit */
1396 		if (!param->string || !isdigit(param->string[0]))
1397 			goto bad_val;
1398 		ctx->max_size_opt = memparse(param->string, &rest);
1399 		ctx->max_val_type = SIZE_STD;
1400 		if (*rest == '%')
1401 			ctx->max_val_type = SIZE_PERCENT;
1402 		return 0;
1403 
1404 	case Opt_nr_inodes:
1405 		/* memparse() will accept a K/M/G without a digit */
1406 		if (!param->string || !isdigit(param->string[0]))
1407 			goto bad_val;
1408 		ctx->nr_inodes = memparse(param->string, &rest);
1409 		return 0;
1410 
1411 	case Opt_pagesize:
1412 		ps = memparse(param->string, &rest);
1413 		h = size_to_hstate(ps);
1414 		if (!h) {
1415 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1416 			return -EINVAL;
1417 		}
1418 		ctx->hstate = h;
1419 		return 0;
1420 
1421 	case Opt_min_size:
1422 		/* memparse() will accept a K/M/G without a digit */
1423 		if (!param->string || !isdigit(param->string[0]))
1424 			goto bad_val;
1425 		ctx->min_size_opt = memparse(param->string, &rest);
1426 		ctx->min_val_type = SIZE_STD;
1427 		if (*rest == '%')
1428 			ctx->min_val_type = SIZE_PERCENT;
1429 		return 0;
1430 
1431 	default:
1432 		return -EINVAL;
1433 	}
1434 
1435 bad_val:
1436 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1437 		      param->string, param->key);
1438 }
1439 
1440 /*
1441  * Validate the parsed options.
1442  */
1443 static int hugetlbfs_validate(struct fs_context *fc)
1444 {
1445 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1446 
1447 	/*
1448 	 * Use huge page pool size (in hstate) to convert the size
1449 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1450 	 */
1451 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1452 						   ctx->max_size_opt,
1453 						   ctx->max_val_type);
1454 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1455 						   ctx->min_size_opt,
1456 						   ctx->min_val_type);
1457 
1458 	/*
1459 	 * If max_size was specified, then min_size must be smaller
1460 	 */
1461 	if (ctx->max_val_type > NO_SIZE &&
1462 	    ctx->min_hpages > ctx->max_hpages) {
1463 		pr_err("Minimum size can not be greater than maximum size\n");
1464 		return -EINVAL;
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static int
1471 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1472 {
1473 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1474 	struct hugetlbfs_sb_info *sbinfo;
1475 
1476 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1477 	if (!sbinfo)
1478 		return -ENOMEM;
1479 	sb->s_fs_info = sbinfo;
1480 	spin_lock_init(&sbinfo->stat_lock);
1481 	sbinfo->hstate		= ctx->hstate;
1482 	sbinfo->max_inodes	= ctx->nr_inodes;
1483 	sbinfo->free_inodes	= ctx->nr_inodes;
1484 	sbinfo->spool		= NULL;
1485 	sbinfo->uid		= ctx->uid;
1486 	sbinfo->gid		= ctx->gid;
1487 	sbinfo->mode		= ctx->mode;
1488 
1489 	/*
1490 	 * Allocate and initialize subpool if maximum or minimum size is
1491 	 * specified.  Any needed reservations (for minimum size) are taken
1492 	 * when the subpool is created.
1493 	 */
1494 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1495 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1496 						     ctx->max_hpages,
1497 						     ctx->min_hpages);
1498 		if (!sbinfo->spool)
1499 			goto out_free;
1500 	}
1501 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1502 	sb->s_blocksize = huge_page_size(ctx->hstate);
1503 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1504 	sb->s_magic = HUGETLBFS_MAGIC;
1505 	sb->s_op = &hugetlbfs_ops;
1506 	sb->s_time_gran = 1;
1507 
1508 	/*
1509 	 * Due to the special and limited functionality of hugetlbfs, it does
1510 	 * not work well as a stacking filesystem.
1511 	 */
1512 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1513 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1514 	if (!sb->s_root)
1515 		goto out_free;
1516 	return 0;
1517 out_free:
1518 	kfree(sbinfo->spool);
1519 	kfree(sbinfo);
1520 	return -ENOMEM;
1521 }
1522 
1523 static int hugetlbfs_get_tree(struct fs_context *fc)
1524 {
1525 	int err = hugetlbfs_validate(fc);
1526 	if (err)
1527 		return err;
1528 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1529 }
1530 
1531 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1532 {
1533 	kfree(fc->fs_private);
1534 }
1535 
1536 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1537 	.free		= hugetlbfs_fs_context_free,
1538 	.parse_param	= hugetlbfs_parse_param,
1539 	.get_tree	= hugetlbfs_get_tree,
1540 };
1541 
1542 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1543 {
1544 	struct hugetlbfs_fs_context *ctx;
1545 
1546 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1547 	if (!ctx)
1548 		return -ENOMEM;
1549 
1550 	ctx->max_hpages	= -1; /* No limit on size by default */
1551 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1552 	ctx->uid	= current_fsuid();
1553 	ctx->gid	= current_fsgid();
1554 	ctx->mode	= 0755;
1555 	ctx->hstate	= &default_hstate;
1556 	ctx->min_hpages	= -1; /* No default minimum size */
1557 	ctx->max_val_type = NO_SIZE;
1558 	ctx->min_val_type = NO_SIZE;
1559 	fc->fs_private = ctx;
1560 	fc->ops	= &hugetlbfs_fs_context_ops;
1561 	return 0;
1562 }
1563 
1564 static struct file_system_type hugetlbfs_fs_type = {
1565 	.name			= "hugetlbfs",
1566 	.init_fs_context	= hugetlbfs_init_fs_context,
1567 	.parameters		= hugetlb_fs_parameters,
1568 	.kill_sb		= kill_litter_super,
1569 	.fs_flags               = FS_ALLOW_IDMAP,
1570 };
1571 
1572 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1573 
1574 static int can_do_hugetlb_shm(void)
1575 {
1576 	kgid_t shm_group;
1577 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1578 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1579 }
1580 
1581 static int get_hstate_idx(int page_size_log)
1582 {
1583 	struct hstate *h = hstate_sizelog(page_size_log);
1584 
1585 	if (!h)
1586 		return -1;
1587 	return hstate_index(h);
1588 }
1589 
1590 /*
1591  * Note that size should be aligned to proper hugepage size in caller side,
1592  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1593  */
1594 struct file *hugetlb_file_setup(const char *name, size_t size,
1595 				vm_flags_t acctflag, int creat_flags,
1596 				int page_size_log)
1597 {
1598 	struct inode *inode;
1599 	struct vfsmount *mnt;
1600 	int hstate_idx;
1601 	struct file *file;
1602 
1603 	hstate_idx = get_hstate_idx(page_size_log);
1604 	if (hstate_idx < 0)
1605 		return ERR_PTR(-ENODEV);
1606 
1607 	mnt = hugetlbfs_vfsmount[hstate_idx];
1608 	if (!mnt)
1609 		return ERR_PTR(-ENOENT);
1610 
1611 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1612 		struct ucounts *ucounts = current_ucounts();
1613 
1614 		if (user_shm_lock(size, ucounts)) {
1615 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1616 				current->comm, current->pid);
1617 			user_shm_unlock(size, ucounts);
1618 		}
1619 		return ERR_PTR(-EPERM);
1620 	}
1621 
1622 	file = ERR_PTR(-ENOSPC);
1623 	/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts.  */
1624 	inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1625 				    S_IFREG | S_IRWXUGO, 0);
1626 	if (!inode)
1627 		goto out;
1628 	if (creat_flags == HUGETLB_SHMFS_INODE)
1629 		inode->i_flags |= S_PRIVATE;
1630 
1631 	inode->i_size = size;
1632 	clear_nlink(inode);
1633 
1634 	if (!hugetlb_reserve_pages(inode, 0,
1635 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1636 			acctflag))
1637 		file = ERR_PTR(-ENOMEM);
1638 	else
1639 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1640 					&hugetlbfs_file_operations);
1641 	if (!IS_ERR(file))
1642 		return file;
1643 
1644 	iput(inode);
1645 out:
1646 	return file;
1647 }
1648 
1649 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1650 {
1651 	struct fs_context *fc;
1652 	struct vfsmount *mnt;
1653 
1654 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1655 	if (IS_ERR(fc)) {
1656 		mnt = ERR_CAST(fc);
1657 	} else {
1658 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1659 		ctx->hstate = h;
1660 		mnt = fc_mount(fc);
1661 		put_fs_context(fc);
1662 	}
1663 	if (IS_ERR(mnt))
1664 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1665 		       huge_page_size(h) / SZ_1K);
1666 	return mnt;
1667 }
1668 
1669 static int __init init_hugetlbfs_fs(void)
1670 {
1671 	struct vfsmount *mnt;
1672 	struct hstate *h;
1673 	int error;
1674 	int i;
1675 
1676 	if (!hugepages_supported()) {
1677 		pr_info("disabling because there are no supported hugepage sizes\n");
1678 		return -ENOTSUPP;
1679 	}
1680 
1681 	error = -ENOMEM;
1682 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1683 					sizeof(struct hugetlbfs_inode_info),
1684 					0, SLAB_ACCOUNT, init_once);
1685 	if (hugetlbfs_inode_cachep == NULL)
1686 		goto out;
1687 
1688 	error = register_filesystem(&hugetlbfs_fs_type);
1689 	if (error)
1690 		goto out_free;
1691 
1692 	/* default hstate mount is required */
1693 	mnt = mount_one_hugetlbfs(&default_hstate);
1694 	if (IS_ERR(mnt)) {
1695 		error = PTR_ERR(mnt);
1696 		goto out_unreg;
1697 	}
1698 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1699 
1700 	/* other hstates are optional */
1701 	i = 0;
1702 	for_each_hstate(h) {
1703 		if (i == default_hstate_idx) {
1704 			i++;
1705 			continue;
1706 		}
1707 
1708 		mnt = mount_one_hugetlbfs(h);
1709 		if (IS_ERR(mnt))
1710 			hugetlbfs_vfsmount[i] = NULL;
1711 		else
1712 			hugetlbfs_vfsmount[i] = mnt;
1713 		i++;
1714 	}
1715 
1716 	return 0;
1717 
1718  out_unreg:
1719 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1720  out_free:
1721 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1722  out:
1723 	return error;
1724 }
1725 fs_initcall(init_hugetlbfs_fs)
1726