1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_u32 ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_u32 ("uid", Opt_uid), 83 {} 84 }; 85 86 /* 87 * Mask used when checking the page offset value passed in via system 88 * calls. This value will be converted to a loff_t which is signed. 89 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 90 * value. The extra bit (- 1 in the shift value) is to take the sign 91 * bit into account. 92 */ 93 #define PGOFF_LOFFT_MAX \ 94 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 95 96 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 97 { 98 struct inode *inode = file_inode(file); 99 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 100 loff_t len, vma_len; 101 int ret; 102 struct hstate *h = hstate_file(file); 103 104 /* 105 * vma address alignment (but not the pgoff alignment) has 106 * already been checked by prepare_hugepage_range. If you add 107 * any error returns here, do so after setting VM_HUGETLB, so 108 * is_vm_hugetlb_page tests below unmap_region go the right 109 * way when do_mmap unwinds (may be important on powerpc 110 * and ia64). 111 */ 112 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 113 vma->vm_ops = &hugetlb_vm_ops; 114 115 ret = seal_check_write(info->seals, vma); 116 if (ret) 117 return ret; 118 119 /* 120 * page based offset in vm_pgoff could be sufficiently large to 121 * overflow a loff_t when converted to byte offset. This can 122 * only happen on architectures where sizeof(loff_t) == 123 * sizeof(unsigned long). So, only check in those instances. 124 */ 125 if (sizeof(unsigned long) == sizeof(loff_t)) { 126 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 127 return -EINVAL; 128 } 129 130 /* must be huge page aligned */ 131 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 132 return -EINVAL; 133 134 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 135 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 136 /* check for overflow */ 137 if (len < vma_len) 138 return -EINVAL; 139 140 inode_lock(inode); 141 file_accessed(file); 142 143 ret = -ENOMEM; 144 if (!hugetlb_reserve_pages(inode, 145 vma->vm_pgoff >> huge_page_order(h), 146 len >> huge_page_shift(h), vma, 147 vma->vm_flags)) 148 goto out; 149 150 ret = 0; 151 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 152 i_size_write(inode, len); 153 out: 154 inode_unlock(inode); 155 156 return ret; 157 } 158 159 /* 160 * Called under mmap_write_lock(mm). 161 */ 162 163 static unsigned long 164 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 165 unsigned long len, unsigned long pgoff, unsigned long flags) 166 { 167 struct hstate *h = hstate_file(file); 168 struct vm_unmapped_area_info info; 169 170 info.flags = 0; 171 info.length = len; 172 info.low_limit = current->mm->mmap_base; 173 info.high_limit = arch_get_mmap_end(addr, len, flags); 174 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 175 info.align_offset = 0; 176 return vm_unmapped_area(&info); 177 } 178 179 static unsigned long 180 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 181 unsigned long len, unsigned long pgoff, unsigned long flags) 182 { 183 struct hstate *h = hstate_file(file); 184 struct vm_unmapped_area_info info; 185 186 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 187 info.length = len; 188 info.low_limit = PAGE_SIZE; 189 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 190 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 191 info.align_offset = 0; 192 addr = vm_unmapped_area(&info); 193 194 /* 195 * A failed mmap() very likely causes application failure, 196 * so fall back to the bottom-up function here. This scenario 197 * can happen with large stack limits and large mmap() 198 * allocations. 199 */ 200 if (unlikely(offset_in_page(addr))) { 201 VM_BUG_ON(addr != -ENOMEM); 202 info.flags = 0; 203 info.low_limit = current->mm->mmap_base; 204 info.high_limit = arch_get_mmap_end(addr, len, flags); 205 addr = vm_unmapped_area(&info); 206 } 207 208 return addr; 209 } 210 211 unsigned long 212 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 213 unsigned long len, unsigned long pgoff, 214 unsigned long flags) 215 { 216 struct mm_struct *mm = current->mm; 217 struct vm_area_struct *vma; 218 struct hstate *h = hstate_file(file); 219 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 220 221 if (len & ~huge_page_mask(h)) 222 return -EINVAL; 223 if (len > TASK_SIZE) 224 return -ENOMEM; 225 226 if (flags & MAP_FIXED) { 227 if (prepare_hugepage_range(file, addr, len)) 228 return -EINVAL; 229 return addr; 230 } 231 232 if (addr) { 233 addr = ALIGN(addr, huge_page_size(h)); 234 vma = find_vma(mm, addr); 235 if (mmap_end - len >= addr && 236 (!vma || addr + len <= vm_start_gap(vma))) 237 return addr; 238 } 239 240 /* 241 * Use mm->get_unmapped_area value as a hint to use topdown routine. 242 * If architectures have special needs, they should define their own 243 * version of hugetlb_get_unmapped_area. 244 */ 245 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 246 return hugetlb_get_unmapped_area_topdown(file, addr, len, 247 pgoff, flags); 248 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 249 pgoff, flags); 250 } 251 252 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 253 static unsigned long 254 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 255 unsigned long len, unsigned long pgoff, 256 unsigned long flags) 257 { 258 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 259 } 260 #endif 261 262 /* 263 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset. 264 * Returns the maximum number of bytes one can read without touching the 1st raw 265 * HWPOISON subpage. 266 * 267 * The implementation borrows the iteration logic from copy_page_to_iter*. 268 */ 269 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes) 270 { 271 size_t n = 0; 272 size_t res = 0; 273 274 /* First subpage to start the loop. */ 275 page = nth_page(page, offset / PAGE_SIZE); 276 offset %= PAGE_SIZE; 277 while (1) { 278 if (is_raw_hwpoison_page_in_hugepage(page)) 279 break; 280 281 /* Safe to read n bytes without touching HWPOISON subpage. */ 282 n = min(bytes, (size_t)PAGE_SIZE - offset); 283 res += n; 284 bytes -= n; 285 if (!bytes || !n) 286 break; 287 offset += n; 288 if (offset == PAGE_SIZE) { 289 page = nth_page(page, 1); 290 offset = 0; 291 } 292 } 293 294 return res; 295 } 296 297 /* 298 * Support for read() - Find the page attached to f_mapping and copy out the 299 * data. This provides functionality similar to filemap_read(). 300 */ 301 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 302 { 303 struct file *file = iocb->ki_filp; 304 struct hstate *h = hstate_file(file); 305 struct address_space *mapping = file->f_mapping; 306 struct inode *inode = mapping->host; 307 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 308 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 309 unsigned long end_index; 310 loff_t isize; 311 ssize_t retval = 0; 312 313 while (iov_iter_count(to)) { 314 struct folio *folio; 315 size_t nr, copied, want; 316 317 /* nr is the maximum number of bytes to copy from this page */ 318 nr = huge_page_size(h); 319 isize = i_size_read(inode); 320 if (!isize) 321 break; 322 end_index = (isize - 1) >> huge_page_shift(h); 323 if (index > end_index) 324 break; 325 if (index == end_index) { 326 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 327 if (nr <= offset) 328 break; 329 } 330 nr = nr - offset; 331 332 /* Find the folio */ 333 folio = filemap_lock_hugetlb_folio(h, mapping, index); 334 if (IS_ERR(folio)) { 335 /* 336 * We have a HOLE, zero out the user-buffer for the 337 * length of the hole or request. 338 */ 339 copied = iov_iter_zero(nr, to); 340 } else { 341 folio_unlock(folio); 342 343 if (!folio_test_hwpoison(folio)) 344 want = nr; 345 else { 346 /* 347 * Adjust how many bytes safe to read without 348 * touching the 1st raw HWPOISON subpage after 349 * offset. 350 */ 351 want = adjust_range_hwpoison(&folio->page, offset, nr); 352 if (want == 0) { 353 folio_put(folio); 354 retval = -EIO; 355 break; 356 } 357 } 358 359 /* 360 * We have the folio, copy it to user space buffer. 361 */ 362 copied = copy_folio_to_iter(folio, offset, want, to); 363 folio_put(folio); 364 } 365 offset += copied; 366 retval += copied; 367 if (copied != nr && iov_iter_count(to)) { 368 if (!retval) 369 retval = -EFAULT; 370 break; 371 } 372 index += offset >> huge_page_shift(h); 373 offset &= ~huge_page_mask(h); 374 } 375 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 376 return retval; 377 } 378 379 static int hugetlbfs_write_begin(struct file *file, 380 struct address_space *mapping, 381 loff_t pos, unsigned len, 382 struct page **pagep, void **fsdata) 383 { 384 return -EINVAL; 385 } 386 387 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 388 loff_t pos, unsigned len, unsigned copied, 389 struct page *page, void *fsdata) 390 { 391 BUG(); 392 return -EINVAL; 393 } 394 395 static void hugetlb_delete_from_page_cache(struct folio *folio) 396 { 397 folio_clear_dirty(folio); 398 folio_clear_uptodate(folio); 399 filemap_remove_folio(folio); 400 } 401 402 /* 403 * Called with i_mmap_rwsem held for inode based vma maps. This makes 404 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 405 * mutex for the page in the mapping. So, we can not race with page being 406 * faulted into the vma. 407 */ 408 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 409 unsigned long addr, struct page *page) 410 { 411 pte_t *ptep, pte; 412 413 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 414 if (!ptep) 415 return false; 416 417 pte = huge_ptep_get(ptep); 418 if (huge_pte_none(pte) || !pte_present(pte)) 419 return false; 420 421 if (pte_page(pte) == page) 422 return true; 423 424 return false; 425 } 426 427 /* 428 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 429 * No, because the interval tree returns us only those vmas 430 * which overlap the truncated area starting at pgoff, 431 * and no vma on a 32-bit arch can span beyond the 4GB. 432 */ 433 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 434 { 435 unsigned long offset = 0; 436 437 if (vma->vm_pgoff < start) 438 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 439 440 return vma->vm_start + offset; 441 } 442 443 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 444 { 445 unsigned long t_end; 446 447 if (!end) 448 return vma->vm_end; 449 450 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 451 if (t_end > vma->vm_end) 452 t_end = vma->vm_end; 453 return t_end; 454 } 455 456 /* 457 * Called with hugetlb fault mutex held. Therefore, no more mappings to 458 * this folio can be created while executing the routine. 459 */ 460 static void hugetlb_unmap_file_folio(struct hstate *h, 461 struct address_space *mapping, 462 struct folio *folio, pgoff_t index) 463 { 464 struct rb_root_cached *root = &mapping->i_mmap; 465 struct hugetlb_vma_lock *vma_lock; 466 struct page *page = &folio->page; 467 struct vm_area_struct *vma; 468 unsigned long v_start; 469 unsigned long v_end; 470 pgoff_t start, end; 471 472 start = index * pages_per_huge_page(h); 473 end = (index + 1) * pages_per_huge_page(h); 474 475 i_mmap_lock_write(mapping); 476 retry: 477 vma_lock = NULL; 478 vma_interval_tree_foreach(vma, root, start, end - 1) { 479 v_start = vma_offset_start(vma, start); 480 v_end = vma_offset_end(vma, end); 481 482 if (!hugetlb_vma_maps_page(vma, v_start, page)) 483 continue; 484 485 if (!hugetlb_vma_trylock_write(vma)) { 486 vma_lock = vma->vm_private_data; 487 /* 488 * If we can not get vma lock, we need to drop 489 * immap_sema and take locks in order. First, 490 * take a ref on the vma_lock structure so that 491 * we can be guaranteed it will not go away when 492 * dropping immap_sema. 493 */ 494 kref_get(&vma_lock->refs); 495 break; 496 } 497 498 unmap_hugepage_range(vma, v_start, v_end, NULL, 499 ZAP_FLAG_DROP_MARKER); 500 hugetlb_vma_unlock_write(vma); 501 } 502 503 i_mmap_unlock_write(mapping); 504 505 if (vma_lock) { 506 /* 507 * Wait on vma_lock. We know it is still valid as we have 508 * a reference. We must 'open code' vma locking as we do 509 * not know if vma_lock is still attached to vma. 510 */ 511 down_write(&vma_lock->rw_sema); 512 i_mmap_lock_write(mapping); 513 514 vma = vma_lock->vma; 515 if (!vma) { 516 /* 517 * If lock is no longer attached to vma, then just 518 * unlock, drop our reference and retry looking for 519 * other vmas. 520 */ 521 up_write(&vma_lock->rw_sema); 522 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 523 goto retry; 524 } 525 526 /* 527 * vma_lock is still attached to vma. Check to see if vma 528 * still maps page and if so, unmap. 529 */ 530 v_start = vma_offset_start(vma, start); 531 v_end = vma_offset_end(vma, end); 532 if (hugetlb_vma_maps_page(vma, v_start, page)) 533 unmap_hugepage_range(vma, v_start, v_end, NULL, 534 ZAP_FLAG_DROP_MARKER); 535 536 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 537 hugetlb_vma_unlock_write(vma); 538 539 goto retry; 540 } 541 } 542 543 static void 544 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 545 zap_flags_t zap_flags) 546 { 547 struct vm_area_struct *vma; 548 549 /* 550 * end == 0 indicates that the entire range after start should be 551 * unmapped. Note, end is exclusive, whereas the interval tree takes 552 * an inclusive "last". 553 */ 554 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 555 unsigned long v_start; 556 unsigned long v_end; 557 558 if (!hugetlb_vma_trylock_write(vma)) 559 continue; 560 561 v_start = vma_offset_start(vma, start); 562 v_end = vma_offset_end(vma, end); 563 564 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 565 566 /* 567 * Note that vma lock only exists for shared/non-private 568 * vmas. Therefore, lock is not held when calling 569 * unmap_hugepage_range for private vmas. 570 */ 571 hugetlb_vma_unlock_write(vma); 572 } 573 } 574 575 /* 576 * Called with hugetlb fault mutex held. 577 * Returns true if page was actually removed, false otherwise. 578 */ 579 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 580 struct address_space *mapping, 581 struct folio *folio, pgoff_t index, 582 bool truncate_op) 583 { 584 bool ret = false; 585 586 /* 587 * If folio is mapped, it was faulted in after being 588 * unmapped in caller. Unmap (again) while holding 589 * the fault mutex. The mutex will prevent faults 590 * until we finish removing the folio. 591 */ 592 if (unlikely(folio_mapped(folio))) 593 hugetlb_unmap_file_folio(h, mapping, folio, index); 594 595 folio_lock(folio); 596 /* 597 * We must remove the folio from page cache before removing 598 * the region/ reserve map (hugetlb_unreserve_pages). In 599 * rare out of memory conditions, removal of the region/reserve 600 * map could fail. Correspondingly, the subpool and global 601 * reserve usage count can need to be adjusted. 602 */ 603 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 604 hugetlb_delete_from_page_cache(folio); 605 ret = true; 606 if (!truncate_op) { 607 if (unlikely(hugetlb_unreserve_pages(inode, index, 608 index + 1, 1))) 609 hugetlb_fix_reserve_counts(inode); 610 } 611 612 folio_unlock(folio); 613 return ret; 614 } 615 616 /* 617 * remove_inode_hugepages handles two distinct cases: truncation and hole 618 * punch. There are subtle differences in operation for each case. 619 * 620 * truncation is indicated by end of range being LLONG_MAX 621 * In this case, we first scan the range and release found pages. 622 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 623 * maps and global counts. Page faults can race with truncation. 624 * During faults, hugetlb_no_page() checks i_size before page allocation, 625 * and again after obtaining page table lock. It will 'back out' 626 * allocations in the truncated range. 627 * hole punch is indicated if end is not LLONG_MAX 628 * In the hole punch case we scan the range and release found pages. 629 * Only when releasing a page is the associated region/reserve map 630 * deleted. The region/reserve map for ranges without associated 631 * pages are not modified. Page faults can race with hole punch. 632 * This is indicated if we find a mapped page. 633 * Note: If the passed end of range value is beyond the end of file, but 634 * not LLONG_MAX this routine still performs a hole punch operation. 635 */ 636 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 637 loff_t lend) 638 { 639 struct hstate *h = hstate_inode(inode); 640 struct address_space *mapping = &inode->i_data; 641 const pgoff_t end = lend >> PAGE_SHIFT; 642 struct folio_batch fbatch; 643 pgoff_t next, index; 644 int i, freed = 0; 645 bool truncate_op = (lend == LLONG_MAX); 646 647 folio_batch_init(&fbatch); 648 next = lstart >> PAGE_SHIFT; 649 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 650 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 651 struct folio *folio = fbatch.folios[i]; 652 u32 hash = 0; 653 654 index = folio->index >> huge_page_order(h); 655 hash = hugetlb_fault_mutex_hash(mapping, index); 656 mutex_lock(&hugetlb_fault_mutex_table[hash]); 657 658 /* 659 * Remove folio that was part of folio_batch. 660 */ 661 if (remove_inode_single_folio(h, inode, mapping, folio, 662 index, truncate_op)) 663 freed++; 664 665 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 666 } 667 folio_batch_release(&fbatch); 668 cond_resched(); 669 } 670 671 if (truncate_op) 672 (void)hugetlb_unreserve_pages(inode, 673 lstart >> huge_page_shift(h), 674 LONG_MAX, freed); 675 } 676 677 static void hugetlbfs_evict_inode(struct inode *inode) 678 { 679 struct resv_map *resv_map; 680 681 remove_inode_hugepages(inode, 0, LLONG_MAX); 682 683 /* 684 * Get the resv_map from the address space embedded in the inode. 685 * This is the address space which points to any resv_map allocated 686 * at inode creation time. If this is a device special inode, 687 * i_mapping may not point to the original address space. 688 */ 689 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data; 690 /* Only regular and link inodes have associated reserve maps */ 691 if (resv_map) 692 resv_map_release(&resv_map->refs); 693 clear_inode(inode); 694 } 695 696 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 697 { 698 pgoff_t pgoff; 699 struct address_space *mapping = inode->i_mapping; 700 struct hstate *h = hstate_inode(inode); 701 702 BUG_ON(offset & ~huge_page_mask(h)); 703 pgoff = offset >> PAGE_SHIFT; 704 705 i_size_write(inode, offset); 706 i_mmap_lock_write(mapping); 707 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 708 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 709 ZAP_FLAG_DROP_MARKER); 710 i_mmap_unlock_write(mapping); 711 remove_inode_hugepages(inode, offset, LLONG_MAX); 712 } 713 714 static void hugetlbfs_zero_partial_page(struct hstate *h, 715 struct address_space *mapping, 716 loff_t start, 717 loff_t end) 718 { 719 pgoff_t idx = start >> huge_page_shift(h); 720 struct folio *folio; 721 722 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 723 if (IS_ERR(folio)) 724 return; 725 726 start = start & ~huge_page_mask(h); 727 end = end & ~huge_page_mask(h); 728 if (!end) 729 end = huge_page_size(h); 730 731 folio_zero_segment(folio, (size_t)start, (size_t)end); 732 733 folio_unlock(folio); 734 folio_put(folio); 735 } 736 737 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 738 { 739 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 740 struct address_space *mapping = inode->i_mapping; 741 struct hstate *h = hstate_inode(inode); 742 loff_t hpage_size = huge_page_size(h); 743 loff_t hole_start, hole_end; 744 745 /* 746 * hole_start and hole_end indicate the full pages within the hole. 747 */ 748 hole_start = round_up(offset, hpage_size); 749 hole_end = round_down(offset + len, hpage_size); 750 751 inode_lock(inode); 752 753 /* protected by i_rwsem */ 754 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 755 inode_unlock(inode); 756 return -EPERM; 757 } 758 759 i_mmap_lock_write(mapping); 760 761 /* If range starts before first full page, zero partial page. */ 762 if (offset < hole_start) 763 hugetlbfs_zero_partial_page(h, mapping, 764 offset, min(offset + len, hole_start)); 765 766 /* Unmap users of full pages in the hole. */ 767 if (hole_end > hole_start) { 768 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 769 hugetlb_vmdelete_list(&mapping->i_mmap, 770 hole_start >> PAGE_SHIFT, 771 hole_end >> PAGE_SHIFT, 0); 772 } 773 774 /* If range extends beyond last full page, zero partial page. */ 775 if ((offset + len) > hole_end && (offset + len) > hole_start) 776 hugetlbfs_zero_partial_page(h, mapping, 777 hole_end, offset + len); 778 779 i_mmap_unlock_write(mapping); 780 781 /* Remove full pages from the file. */ 782 if (hole_end > hole_start) 783 remove_inode_hugepages(inode, hole_start, hole_end); 784 785 inode_unlock(inode); 786 787 return 0; 788 } 789 790 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 791 loff_t len) 792 { 793 struct inode *inode = file_inode(file); 794 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 795 struct address_space *mapping = inode->i_mapping; 796 struct hstate *h = hstate_inode(inode); 797 struct vm_area_struct pseudo_vma; 798 struct mm_struct *mm = current->mm; 799 loff_t hpage_size = huge_page_size(h); 800 unsigned long hpage_shift = huge_page_shift(h); 801 pgoff_t start, index, end; 802 int error; 803 u32 hash; 804 805 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 806 return -EOPNOTSUPP; 807 808 if (mode & FALLOC_FL_PUNCH_HOLE) 809 return hugetlbfs_punch_hole(inode, offset, len); 810 811 /* 812 * Default preallocate case. 813 * For this range, start is rounded down and end is rounded up 814 * as well as being converted to page offsets. 815 */ 816 start = offset >> hpage_shift; 817 end = (offset + len + hpage_size - 1) >> hpage_shift; 818 819 inode_lock(inode); 820 821 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 822 error = inode_newsize_ok(inode, offset + len); 823 if (error) 824 goto out; 825 826 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 827 error = -EPERM; 828 goto out; 829 } 830 831 /* 832 * Initialize a pseudo vma as this is required by the huge page 833 * allocation routines. 834 */ 835 vma_init(&pseudo_vma, mm); 836 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 837 pseudo_vma.vm_file = file; 838 839 for (index = start; index < end; index++) { 840 /* 841 * This is supposed to be the vaddr where the page is being 842 * faulted in, but we have no vaddr here. 843 */ 844 struct folio *folio; 845 unsigned long addr; 846 847 cond_resched(); 848 849 /* 850 * fallocate(2) manpage permits EINTR; we may have been 851 * interrupted because we are using up too much memory. 852 */ 853 if (signal_pending(current)) { 854 error = -EINTR; 855 break; 856 } 857 858 /* addr is the offset within the file (zero based) */ 859 addr = index * hpage_size; 860 861 /* mutex taken here, fault path and hole punch */ 862 hash = hugetlb_fault_mutex_hash(mapping, index); 863 mutex_lock(&hugetlb_fault_mutex_table[hash]); 864 865 /* See if already present in mapping to avoid alloc/free */ 866 folio = filemap_get_folio(mapping, index << huge_page_order(h)); 867 if (!IS_ERR(folio)) { 868 folio_put(folio); 869 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 870 continue; 871 } 872 873 /* 874 * Allocate folio without setting the avoid_reserve argument. 875 * There certainly are no reserves associated with the 876 * pseudo_vma. However, there could be shared mappings with 877 * reserves for the file at the inode level. If we fallocate 878 * folios in these areas, we need to consume the reserves 879 * to keep reservation accounting consistent. 880 */ 881 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0); 882 if (IS_ERR(folio)) { 883 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 884 error = PTR_ERR(folio); 885 goto out; 886 } 887 clear_huge_page(&folio->page, addr, pages_per_huge_page(h)); 888 __folio_mark_uptodate(folio); 889 error = hugetlb_add_to_page_cache(folio, mapping, index); 890 if (unlikely(error)) { 891 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 892 folio_put(folio); 893 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 894 goto out; 895 } 896 897 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 898 899 folio_set_hugetlb_migratable(folio); 900 /* 901 * folio_unlock because locked by hugetlb_add_to_page_cache() 902 * folio_put() due to reference from alloc_hugetlb_folio() 903 */ 904 folio_unlock(folio); 905 folio_put(folio); 906 } 907 908 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 909 i_size_write(inode, offset + len); 910 inode_set_ctime_current(inode); 911 out: 912 inode_unlock(inode); 913 return error; 914 } 915 916 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 917 struct dentry *dentry, struct iattr *attr) 918 { 919 struct inode *inode = d_inode(dentry); 920 struct hstate *h = hstate_inode(inode); 921 int error; 922 unsigned int ia_valid = attr->ia_valid; 923 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 924 925 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 926 if (error) 927 return error; 928 929 if (ia_valid & ATTR_SIZE) { 930 loff_t oldsize = inode->i_size; 931 loff_t newsize = attr->ia_size; 932 933 if (newsize & ~huge_page_mask(h)) 934 return -EINVAL; 935 /* protected by i_rwsem */ 936 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 937 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 938 return -EPERM; 939 hugetlb_vmtruncate(inode, newsize); 940 } 941 942 setattr_copy(&nop_mnt_idmap, inode, attr); 943 mark_inode_dirty(inode); 944 return 0; 945 } 946 947 static struct inode *hugetlbfs_get_root(struct super_block *sb, 948 struct hugetlbfs_fs_context *ctx) 949 { 950 struct inode *inode; 951 952 inode = new_inode(sb); 953 if (inode) { 954 inode->i_ino = get_next_ino(); 955 inode->i_mode = S_IFDIR | ctx->mode; 956 inode->i_uid = ctx->uid; 957 inode->i_gid = ctx->gid; 958 simple_inode_init_ts(inode); 959 inode->i_op = &hugetlbfs_dir_inode_operations; 960 inode->i_fop = &simple_dir_operations; 961 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 962 inc_nlink(inode); 963 lockdep_annotate_inode_mutex_key(inode); 964 } 965 return inode; 966 } 967 968 /* 969 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 970 * be taken from reclaim -- unlike regular filesystems. This needs an 971 * annotation because huge_pmd_share() does an allocation under hugetlb's 972 * i_mmap_rwsem. 973 */ 974 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 975 976 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 977 struct inode *dir, 978 umode_t mode, dev_t dev) 979 { 980 struct inode *inode; 981 struct resv_map *resv_map = NULL; 982 983 /* 984 * Reserve maps are only needed for inodes that can have associated 985 * page allocations. 986 */ 987 if (S_ISREG(mode) || S_ISLNK(mode)) { 988 resv_map = resv_map_alloc(); 989 if (!resv_map) 990 return NULL; 991 } 992 993 inode = new_inode(sb); 994 if (inode) { 995 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 996 997 inode->i_ino = get_next_ino(); 998 inode_init_owner(&nop_mnt_idmap, inode, dir, mode); 999 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 1000 &hugetlbfs_i_mmap_rwsem_key); 1001 inode->i_mapping->a_ops = &hugetlbfs_aops; 1002 simple_inode_init_ts(inode); 1003 inode->i_mapping->i_private_data = resv_map; 1004 info->seals = F_SEAL_SEAL; 1005 switch (mode & S_IFMT) { 1006 default: 1007 init_special_inode(inode, mode, dev); 1008 break; 1009 case S_IFREG: 1010 inode->i_op = &hugetlbfs_inode_operations; 1011 inode->i_fop = &hugetlbfs_file_operations; 1012 break; 1013 case S_IFDIR: 1014 inode->i_op = &hugetlbfs_dir_inode_operations; 1015 inode->i_fop = &simple_dir_operations; 1016 1017 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 1018 inc_nlink(inode); 1019 break; 1020 case S_IFLNK: 1021 inode->i_op = &page_symlink_inode_operations; 1022 inode_nohighmem(inode); 1023 break; 1024 } 1025 lockdep_annotate_inode_mutex_key(inode); 1026 } else { 1027 if (resv_map) 1028 kref_put(&resv_map->refs, resv_map_release); 1029 } 1030 1031 return inode; 1032 } 1033 1034 /* 1035 * File creation. Allocate an inode, and we're done.. 1036 */ 1037 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 1038 struct dentry *dentry, umode_t mode, dev_t dev) 1039 { 1040 struct inode *inode; 1041 1042 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 1043 if (!inode) 1044 return -ENOSPC; 1045 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1046 d_instantiate(dentry, inode); 1047 dget(dentry);/* Extra count - pin the dentry in core */ 1048 return 0; 1049 } 1050 1051 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 1052 struct dentry *dentry, umode_t mode) 1053 { 1054 int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, 1055 mode | S_IFDIR, 0); 1056 if (!retval) 1057 inc_nlink(dir); 1058 return retval; 1059 } 1060 1061 static int hugetlbfs_create(struct mnt_idmap *idmap, 1062 struct inode *dir, struct dentry *dentry, 1063 umode_t mode, bool excl) 1064 { 1065 return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0); 1066 } 1067 1068 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1069 struct inode *dir, struct file *file, 1070 umode_t mode) 1071 { 1072 struct inode *inode; 1073 1074 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0); 1075 if (!inode) 1076 return -ENOSPC; 1077 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1078 d_tmpfile(file, inode); 1079 return finish_open_simple(file, 0); 1080 } 1081 1082 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1083 struct inode *dir, struct dentry *dentry, 1084 const char *symname) 1085 { 1086 struct inode *inode; 1087 int error = -ENOSPC; 1088 1089 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 1090 if (inode) { 1091 int l = strlen(symname)+1; 1092 error = page_symlink(inode, symname, l); 1093 if (!error) { 1094 d_instantiate(dentry, inode); 1095 dget(dentry); 1096 } else 1097 iput(inode); 1098 } 1099 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 1100 1101 return error; 1102 } 1103 1104 #ifdef CONFIG_MIGRATION 1105 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1106 struct folio *dst, struct folio *src, 1107 enum migrate_mode mode) 1108 { 1109 int rc; 1110 1111 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1112 if (rc != MIGRATEPAGE_SUCCESS) 1113 return rc; 1114 1115 if (hugetlb_folio_subpool(src)) { 1116 hugetlb_set_folio_subpool(dst, 1117 hugetlb_folio_subpool(src)); 1118 hugetlb_set_folio_subpool(src, NULL); 1119 } 1120 1121 if (mode != MIGRATE_SYNC_NO_COPY) 1122 folio_migrate_copy(dst, src); 1123 else 1124 folio_migrate_flags(dst, src); 1125 1126 return MIGRATEPAGE_SUCCESS; 1127 } 1128 #else 1129 #define hugetlbfs_migrate_folio NULL 1130 #endif 1131 1132 static int hugetlbfs_error_remove_folio(struct address_space *mapping, 1133 struct folio *folio) 1134 { 1135 return 0; 1136 } 1137 1138 /* 1139 * Display the mount options in /proc/mounts. 1140 */ 1141 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1142 { 1143 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1144 struct hugepage_subpool *spool = sbinfo->spool; 1145 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1146 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1147 char mod; 1148 1149 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1150 seq_printf(m, ",uid=%u", 1151 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1152 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1153 seq_printf(m, ",gid=%u", 1154 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1155 if (sbinfo->mode != 0755) 1156 seq_printf(m, ",mode=%o", sbinfo->mode); 1157 if (sbinfo->max_inodes != -1) 1158 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1159 1160 hpage_size /= 1024; 1161 mod = 'K'; 1162 if (hpage_size >= 1024) { 1163 hpage_size /= 1024; 1164 mod = 'M'; 1165 } 1166 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1167 if (spool) { 1168 if (spool->max_hpages != -1) 1169 seq_printf(m, ",size=%llu", 1170 (unsigned long long)spool->max_hpages << hpage_shift); 1171 if (spool->min_hpages != -1) 1172 seq_printf(m, ",min_size=%llu", 1173 (unsigned long long)spool->min_hpages << hpage_shift); 1174 } 1175 return 0; 1176 } 1177 1178 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1179 { 1180 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1181 struct hstate *h = hstate_inode(d_inode(dentry)); 1182 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 1183 1184 buf->f_fsid = u64_to_fsid(id); 1185 buf->f_type = HUGETLBFS_MAGIC; 1186 buf->f_bsize = huge_page_size(h); 1187 if (sbinfo) { 1188 spin_lock(&sbinfo->stat_lock); 1189 /* If no limits set, just report 0 or -1 for max/free/used 1190 * blocks, like simple_statfs() */ 1191 if (sbinfo->spool) { 1192 long free_pages; 1193 1194 spin_lock_irq(&sbinfo->spool->lock); 1195 buf->f_blocks = sbinfo->spool->max_hpages; 1196 free_pages = sbinfo->spool->max_hpages 1197 - sbinfo->spool->used_hpages; 1198 buf->f_bavail = buf->f_bfree = free_pages; 1199 spin_unlock_irq(&sbinfo->spool->lock); 1200 buf->f_files = sbinfo->max_inodes; 1201 buf->f_ffree = sbinfo->free_inodes; 1202 } 1203 spin_unlock(&sbinfo->stat_lock); 1204 } 1205 buf->f_namelen = NAME_MAX; 1206 return 0; 1207 } 1208 1209 static void hugetlbfs_put_super(struct super_block *sb) 1210 { 1211 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1212 1213 if (sbi) { 1214 sb->s_fs_info = NULL; 1215 1216 if (sbi->spool) 1217 hugepage_put_subpool(sbi->spool); 1218 1219 kfree(sbi); 1220 } 1221 } 1222 1223 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1224 { 1225 if (sbinfo->free_inodes >= 0) { 1226 spin_lock(&sbinfo->stat_lock); 1227 if (unlikely(!sbinfo->free_inodes)) { 1228 spin_unlock(&sbinfo->stat_lock); 1229 return 0; 1230 } 1231 sbinfo->free_inodes--; 1232 spin_unlock(&sbinfo->stat_lock); 1233 } 1234 1235 return 1; 1236 } 1237 1238 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1239 { 1240 if (sbinfo->free_inodes >= 0) { 1241 spin_lock(&sbinfo->stat_lock); 1242 sbinfo->free_inodes++; 1243 spin_unlock(&sbinfo->stat_lock); 1244 } 1245 } 1246 1247 1248 static struct kmem_cache *hugetlbfs_inode_cachep; 1249 1250 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1251 { 1252 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1253 struct hugetlbfs_inode_info *p; 1254 1255 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1256 return NULL; 1257 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1258 if (unlikely(!p)) { 1259 hugetlbfs_inc_free_inodes(sbinfo); 1260 return NULL; 1261 } 1262 return &p->vfs_inode; 1263 } 1264 1265 static void hugetlbfs_free_inode(struct inode *inode) 1266 { 1267 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1268 } 1269 1270 static void hugetlbfs_destroy_inode(struct inode *inode) 1271 { 1272 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1273 } 1274 1275 static const struct address_space_operations hugetlbfs_aops = { 1276 .write_begin = hugetlbfs_write_begin, 1277 .write_end = hugetlbfs_write_end, 1278 .dirty_folio = noop_dirty_folio, 1279 .migrate_folio = hugetlbfs_migrate_folio, 1280 .error_remove_folio = hugetlbfs_error_remove_folio, 1281 }; 1282 1283 1284 static void init_once(void *foo) 1285 { 1286 struct hugetlbfs_inode_info *ei = foo; 1287 1288 inode_init_once(&ei->vfs_inode); 1289 } 1290 1291 const struct file_operations hugetlbfs_file_operations = { 1292 .read_iter = hugetlbfs_read_iter, 1293 .mmap = hugetlbfs_file_mmap, 1294 .fsync = noop_fsync, 1295 .get_unmapped_area = hugetlb_get_unmapped_area, 1296 .llseek = default_llseek, 1297 .fallocate = hugetlbfs_fallocate, 1298 }; 1299 1300 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1301 .create = hugetlbfs_create, 1302 .lookup = simple_lookup, 1303 .link = simple_link, 1304 .unlink = simple_unlink, 1305 .symlink = hugetlbfs_symlink, 1306 .mkdir = hugetlbfs_mkdir, 1307 .rmdir = simple_rmdir, 1308 .mknod = hugetlbfs_mknod, 1309 .rename = simple_rename, 1310 .setattr = hugetlbfs_setattr, 1311 .tmpfile = hugetlbfs_tmpfile, 1312 }; 1313 1314 static const struct inode_operations hugetlbfs_inode_operations = { 1315 .setattr = hugetlbfs_setattr, 1316 }; 1317 1318 static const struct super_operations hugetlbfs_ops = { 1319 .alloc_inode = hugetlbfs_alloc_inode, 1320 .free_inode = hugetlbfs_free_inode, 1321 .destroy_inode = hugetlbfs_destroy_inode, 1322 .evict_inode = hugetlbfs_evict_inode, 1323 .statfs = hugetlbfs_statfs, 1324 .put_super = hugetlbfs_put_super, 1325 .show_options = hugetlbfs_show_options, 1326 }; 1327 1328 /* 1329 * Convert size option passed from command line to number of huge pages 1330 * in the pool specified by hstate. Size option could be in bytes 1331 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1332 */ 1333 static long 1334 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1335 enum hugetlbfs_size_type val_type) 1336 { 1337 if (val_type == NO_SIZE) 1338 return -1; 1339 1340 if (val_type == SIZE_PERCENT) { 1341 size_opt <<= huge_page_shift(h); 1342 size_opt *= h->max_huge_pages; 1343 do_div(size_opt, 100); 1344 } 1345 1346 size_opt >>= huge_page_shift(h); 1347 return size_opt; 1348 } 1349 1350 /* 1351 * Parse one mount parameter. 1352 */ 1353 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1354 { 1355 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1356 struct fs_parse_result result; 1357 char *rest; 1358 unsigned long ps; 1359 int opt; 1360 1361 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1362 if (opt < 0) 1363 return opt; 1364 1365 switch (opt) { 1366 case Opt_uid: 1367 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1368 if (!uid_valid(ctx->uid)) 1369 goto bad_val; 1370 return 0; 1371 1372 case Opt_gid: 1373 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1374 if (!gid_valid(ctx->gid)) 1375 goto bad_val; 1376 return 0; 1377 1378 case Opt_mode: 1379 ctx->mode = result.uint_32 & 01777U; 1380 return 0; 1381 1382 case Opt_size: 1383 /* memparse() will accept a K/M/G without a digit */ 1384 if (!param->string || !isdigit(param->string[0])) 1385 goto bad_val; 1386 ctx->max_size_opt = memparse(param->string, &rest); 1387 ctx->max_val_type = SIZE_STD; 1388 if (*rest == '%') 1389 ctx->max_val_type = SIZE_PERCENT; 1390 return 0; 1391 1392 case Opt_nr_inodes: 1393 /* memparse() will accept a K/M/G without a digit */ 1394 if (!param->string || !isdigit(param->string[0])) 1395 goto bad_val; 1396 ctx->nr_inodes = memparse(param->string, &rest); 1397 return 0; 1398 1399 case Opt_pagesize: 1400 ps = memparse(param->string, &rest); 1401 ctx->hstate = size_to_hstate(ps); 1402 if (!ctx->hstate) { 1403 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1404 return -EINVAL; 1405 } 1406 return 0; 1407 1408 case Opt_min_size: 1409 /* memparse() will accept a K/M/G without a digit */ 1410 if (!param->string || !isdigit(param->string[0])) 1411 goto bad_val; 1412 ctx->min_size_opt = memparse(param->string, &rest); 1413 ctx->min_val_type = SIZE_STD; 1414 if (*rest == '%') 1415 ctx->min_val_type = SIZE_PERCENT; 1416 return 0; 1417 1418 default: 1419 return -EINVAL; 1420 } 1421 1422 bad_val: 1423 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1424 param->string, param->key); 1425 } 1426 1427 /* 1428 * Validate the parsed options. 1429 */ 1430 static int hugetlbfs_validate(struct fs_context *fc) 1431 { 1432 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1433 1434 /* 1435 * Use huge page pool size (in hstate) to convert the size 1436 * options to number of huge pages. If NO_SIZE, -1 is returned. 1437 */ 1438 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1439 ctx->max_size_opt, 1440 ctx->max_val_type); 1441 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1442 ctx->min_size_opt, 1443 ctx->min_val_type); 1444 1445 /* 1446 * If max_size was specified, then min_size must be smaller 1447 */ 1448 if (ctx->max_val_type > NO_SIZE && 1449 ctx->min_hpages > ctx->max_hpages) { 1450 pr_err("Minimum size can not be greater than maximum size\n"); 1451 return -EINVAL; 1452 } 1453 1454 return 0; 1455 } 1456 1457 static int 1458 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1459 { 1460 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1461 struct hugetlbfs_sb_info *sbinfo; 1462 1463 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1464 if (!sbinfo) 1465 return -ENOMEM; 1466 sb->s_fs_info = sbinfo; 1467 spin_lock_init(&sbinfo->stat_lock); 1468 sbinfo->hstate = ctx->hstate; 1469 sbinfo->max_inodes = ctx->nr_inodes; 1470 sbinfo->free_inodes = ctx->nr_inodes; 1471 sbinfo->spool = NULL; 1472 sbinfo->uid = ctx->uid; 1473 sbinfo->gid = ctx->gid; 1474 sbinfo->mode = ctx->mode; 1475 1476 /* 1477 * Allocate and initialize subpool if maximum or minimum size is 1478 * specified. Any needed reservations (for minimum size) are taken 1479 * when the subpool is created. 1480 */ 1481 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1482 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1483 ctx->max_hpages, 1484 ctx->min_hpages); 1485 if (!sbinfo->spool) 1486 goto out_free; 1487 } 1488 sb->s_maxbytes = MAX_LFS_FILESIZE; 1489 sb->s_blocksize = huge_page_size(ctx->hstate); 1490 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1491 sb->s_magic = HUGETLBFS_MAGIC; 1492 sb->s_op = &hugetlbfs_ops; 1493 sb->s_time_gran = 1; 1494 1495 /* 1496 * Due to the special and limited functionality of hugetlbfs, it does 1497 * not work well as a stacking filesystem. 1498 */ 1499 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1500 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1501 if (!sb->s_root) 1502 goto out_free; 1503 return 0; 1504 out_free: 1505 kfree(sbinfo->spool); 1506 kfree(sbinfo); 1507 return -ENOMEM; 1508 } 1509 1510 static int hugetlbfs_get_tree(struct fs_context *fc) 1511 { 1512 int err = hugetlbfs_validate(fc); 1513 if (err) 1514 return err; 1515 return get_tree_nodev(fc, hugetlbfs_fill_super); 1516 } 1517 1518 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1519 { 1520 kfree(fc->fs_private); 1521 } 1522 1523 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1524 .free = hugetlbfs_fs_context_free, 1525 .parse_param = hugetlbfs_parse_param, 1526 .get_tree = hugetlbfs_get_tree, 1527 }; 1528 1529 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1530 { 1531 struct hugetlbfs_fs_context *ctx; 1532 1533 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1534 if (!ctx) 1535 return -ENOMEM; 1536 1537 ctx->max_hpages = -1; /* No limit on size by default */ 1538 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1539 ctx->uid = current_fsuid(); 1540 ctx->gid = current_fsgid(); 1541 ctx->mode = 0755; 1542 ctx->hstate = &default_hstate; 1543 ctx->min_hpages = -1; /* No default minimum size */ 1544 ctx->max_val_type = NO_SIZE; 1545 ctx->min_val_type = NO_SIZE; 1546 fc->fs_private = ctx; 1547 fc->ops = &hugetlbfs_fs_context_ops; 1548 return 0; 1549 } 1550 1551 static struct file_system_type hugetlbfs_fs_type = { 1552 .name = "hugetlbfs", 1553 .init_fs_context = hugetlbfs_init_fs_context, 1554 .parameters = hugetlb_fs_parameters, 1555 .kill_sb = kill_litter_super, 1556 }; 1557 1558 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1559 1560 static int can_do_hugetlb_shm(void) 1561 { 1562 kgid_t shm_group; 1563 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1564 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1565 } 1566 1567 static int get_hstate_idx(int page_size_log) 1568 { 1569 struct hstate *h = hstate_sizelog(page_size_log); 1570 1571 if (!h) 1572 return -1; 1573 return hstate_index(h); 1574 } 1575 1576 /* 1577 * Note that size should be aligned to proper hugepage size in caller side, 1578 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1579 */ 1580 struct file *hugetlb_file_setup(const char *name, size_t size, 1581 vm_flags_t acctflag, int creat_flags, 1582 int page_size_log) 1583 { 1584 struct inode *inode; 1585 struct vfsmount *mnt; 1586 int hstate_idx; 1587 struct file *file; 1588 1589 hstate_idx = get_hstate_idx(page_size_log); 1590 if (hstate_idx < 0) 1591 return ERR_PTR(-ENODEV); 1592 1593 mnt = hugetlbfs_vfsmount[hstate_idx]; 1594 if (!mnt) 1595 return ERR_PTR(-ENOENT); 1596 1597 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1598 struct ucounts *ucounts = current_ucounts(); 1599 1600 if (user_shm_lock(size, ucounts)) { 1601 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1602 current->comm, current->pid); 1603 user_shm_unlock(size, ucounts); 1604 } 1605 return ERR_PTR(-EPERM); 1606 } 1607 1608 file = ERR_PTR(-ENOSPC); 1609 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1610 if (!inode) 1611 goto out; 1612 if (creat_flags == HUGETLB_SHMFS_INODE) 1613 inode->i_flags |= S_PRIVATE; 1614 1615 inode->i_size = size; 1616 clear_nlink(inode); 1617 1618 if (!hugetlb_reserve_pages(inode, 0, 1619 size >> huge_page_shift(hstate_inode(inode)), NULL, 1620 acctflag)) 1621 file = ERR_PTR(-ENOMEM); 1622 else 1623 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1624 &hugetlbfs_file_operations); 1625 if (!IS_ERR(file)) 1626 return file; 1627 1628 iput(inode); 1629 out: 1630 return file; 1631 } 1632 1633 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1634 { 1635 struct fs_context *fc; 1636 struct vfsmount *mnt; 1637 1638 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1639 if (IS_ERR(fc)) { 1640 mnt = ERR_CAST(fc); 1641 } else { 1642 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1643 ctx->hstate = h; 1644 mnt = fc_mount(fc); 1645 put_fs_context(fc); 1646 } 1647 if (IS_ERR(mnt)) 1648 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1649 huge_page_size(h) / SZ_1K); 1650 return mnt; 1651 } 1652 1653 static int __init init_hugetlbfs_fs(void) 1654 { 1655 struct vfsmount *mnt; 1656 struct hstate *h; 1657 int error; 1658 int i; 1659 1660 if (!hugepages_supported()) { 1661 pr_info("disabling because there are no supported hugepage sizes\n"); 1662 return -ENOTSUPP; 1663 } 1664 1665 error = -ENOMEM; 1666 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1667 sizeof(struct hugetlbfs_inode_info), 1668 0, SLAB_ACCOUNT, init_once); 1669 if (hugetlbfs_inode_cachep == NULL) 1670 goto out; 1671 1672 error = register_filesystem(&hugetlbfs_fs_type); 1673 if (error) 1674 goto out_free; 1675 1676 /* default hstate mount is required */ 1677 mnt = mount_one_hugetlbfs(&default_hstate); 1678 if (IS_ERR(mnt)) { 1679 error = PTR_ERR(mnt); 1680 goto out_unreg; 1681 } 1682 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1683 1684 /* other hstates are optional */ 1685 i = 0; 1686 for_each_hstate(h) { 1687 if (i == default_hstate_idx) { 1688 i++; 1689 continue; 1690 } 1691 1692 mnt = mount_one_hugetlbfs(h); 1693 if (IS_ERR(mnt)) 1694 hugetlbfs_vfsmount[i] = NULL; 1695 else 1696 hugetlbfs_vfsmount[i] = mnt; 1697 i++; 1698 } 1699 1700 return 0; 1701 1702 out_unreg: 1703 (void)unregister_filesystem(&hugetlbfs_fs_type); 1704 out_free: 1705 kmem_cache_destroy(hugetlbfs_inode_cachep); 1706 out: 1707 return error; 1708 } 1709 fs_initcall(init_hugetlbfs_fs) 1710